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Abstract

In computer networks, congestion is a condition in which one or more egressin-

terfaces are offered more packets than are forwarded at any given instant [1]. In

wireless sensor networks, congestion can cause a number of problems including

packet loss, lower throughput and poor energy efficiency. These problems can

potentially result in a reduced deployment lifetime and under-performing applic-

ations. Moreover, idle radio listening is a major source of energy consumption

therefore low-power wireless devices must keep their radio transceivers off to max-

imise their battery life-time. In order to minimise energy consumption and thus

maximise the lifetime of wireless sensor networks, the research community has

made significant efforts towards power saving medium access control protocols

with Radio Duty Cycling. However, careful study of previous work reveals that

radio duty cycle schemes are often neglected during the design and evaluation of

congestion control algorithms. This thesis argues that the presence (or lack) of

radio duty cycle can drastically influence the performance of congestion control

mechanisms. To investigate if previous findings regarding congestion control are

still applicable in IPv6 over low power wireless personal area and duty cycling

networks; some of the most commonly used congestion detection algorithms are

evaluated through simulations. The research aims to develop duty cycle aware

congestion control schemes for IPv6 over low power wireless personal area net-

works. The proposed schemes must be able to maximise the networks goodput,

while minimising packet loss, energy consumption and packet delay. Two con-

gestion control schemes, namely DCCC6 (Duty Cycle-Aware Congestion Control

for 6LoWPAN Networks) and CADC (Congestion Aware Duty Cycle MAC) are

proposed to realise this claim.

DCCC6 performs congestion detection based on a dynamic buffer. When con-

gestion occurs, parent nodes will inform the nodes contributing to congestion and

rates will be readjusted based on a new rate adaptation scheme aiming for local

fairness. The child notification procedure is decided by DCCC6 and will be dif-

ferent when the network is duty cycling. When the network is duty cycling the

child notification will be made through unicast frames. On the contrary broad-

cast frames will be used for congestion notification when the network is not duty
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cycling. Simulation and test-bed experiments have shown that DCCC6 achieved

higher goodput and lower packet loss than previous works. Moreover, simulations

show that DCCC6 maintained low energy consumption, with average delay times

while it achieved a high degree of fairness.

CADC, uses a new mechanism for duty cycle adaptation that reacts quickly

to changing traffic loads and patterns. CADC is the first dynamic duty cycle pro-

tocol implemented in Contiki Operating system (OS) as well as one of the first

schemes designed based on the arbitrary traffic characteristics of IPv6 wireless

sensor networks. Furthermore, CADC is designed as a stand alone medium access

control scheme and thus it can easily be transfered to any wireless sensor network

architecture. Additionally, CADC does not require any time synchronisation al-

gorithms to operate at the nodes and does not use any additional packets for the

exchange of information between the nodes (For example no overhead).

In this research, 10000 simulation experiments and 700 test-bed experiments

have been conducted for the evaluation of CADC. These experiments demonstrate

that CADC can successfully adapt its cycle based on traffic patterns in every traffic

scenario. Moreover, CADC consistently achieved the lowest energy consumption,

very low packet delay times and packet loss, while its goodput performance was

better than other dynamic duty cycle protocols and similar to the highest goodput

observed among static duty cycle configurations.

Keywords: Sensor networks; MAC; Congestion control; Duty cycle; Channel

check rate; Energy conservation; 6LoWPAN.
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Chapter 1

Introduction

1.1 Introduction

A wireless sensor deployment usually consists of multiple nodes monitoring their

surrounding environment. Collected data traverse the network towards sink nodes

in a multi-hop fashion. Recently, IPv6 over Low power Wireless Personal Area

Networks (6LoWPAN) and related specifications are becoming increasingly pop-

ular in wireless sensor networks (WSN) community. Those technologies promise

better scalability in terms of number of nodes, due to the extended addressing

scheme. Additionally, the integration between 6LoWPAN and the Internet now

becomes a question of network layer routing and alleviates the need for application

layer gateways [5].

It has also been shown that idle radio listening is a major source of energy

consumption [6]. In order to prolong sensor deployment life cycle, research com-

munity members have made significant efforts in the development of Radio Duty

Cycling (RDC) Medium Access Control protocols (MAC). With radio duty cyc-

ling, nodes will turn off their transceivers for long periods of time in order to

minimise idle listening. Based on a synchronisation protocol, they will turn on

their radios almost simultaneously, exchange data and go back to sleep mode. Cru-

cially, the unique characteristics of duty cycle algorithms and 6LoWPAN sensor

networks can have a significant impact on the performance of WSN.

The design of many Congestion Control (CC) protocols does not take this

into account, resulting in different performance under the presence of RDC. Ad-

ditionally, with some sensor applications such as surveillance, fire detection and

object-tracking systems, a sudden event can cause a large amount of packets and

therefore network congestion. In such circumstances, MAC protocols with fixed

duty cycle will suffer from data loss due to their incapability of adapting to the

traffic needs [4, 7, 8, 9]. To reduce packet loss, the network must be configured with

21
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a duty cycle aware; congestion control scheme. Another solution to this problem

could be the reconfiguration of the network with a higher duty cycle. However,

the increased idle radio listening will consume more energy. Hence a duty cycle

should be increased during heavy load and decreased when the network is idle.

Recently, significant efforts have been made for the development of dynamic

duty cycle MAC protocols [10, 11, 12, 13, 14, 15, 16, 17]. Conceptually, a number

of MAC protocols with capabilities of cycle adaptation based on the traffic have

been proposed. The majority of previous works, have not carefully considered the

unique characteristics of IPv6 and 6LoWPAN WSN in their design.

1.2 Research Aims and Objectives

The aim of this research is to develop congestion aware MAC schemes that can

confront congestion, maximise the network’s goodput, minimise packet loss, en-

ergy consumption and packet delay in IPv6 WSN. Emerging architectures such as

IEEE 802.15.4 [18, 19, 20, 21], IPv6 and 6LoWPAN [22, 23] are becoming domin-

ant in wireless sensor networks, therefore the proposed ideas and implementations

thereof are based on these architectures. IEEE 802.15.4, is a MAC/PHY protocol

for low power and low data rate wireless networks and recently, it is emerging as a

popular choice for various monitoring and control applications. IEEE 802.15.4 is

aimed at providing cheap, low-power, short- range communications for embedded

devices. 802.15.4 MAC can be run in two modes: beaconless and beacon-enabled.

This work is focused in the evaluation and development of new MAC layer solutions

based on IEEE 802.15.4 beaconless operation. Even though the design of the pro-

posed schemes is based on 802.15.4 (beacon less operation mode) and 6LoWPAN

architectures, the schemes must be implemented as a generic MAC layer and be

transferable to any architecture without major modifications.

The objectives of the research are:

• To investigate the factors which contribute to congestion in WSN at a node

level perspective.

• To investigate the various congestion control schemes proposed by the WSN

research community. Additionally, a categorisation and a detailed analysis

of existing congestion control schemes must be performed.

• To investigate which of the existing congestion control approaches can be

transfered and function in WSN operating with Contiki OS [24, 25, 26, 27],

6LoWPAN and 802.15.4 architectures.
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• To investigate how the arbitrary traffic patterns of 6LoWPAN networks af-

fect the performance of existing congestion control schemes.

• To investigate the importance of duty cycle in WSN as well as how duty

cycle affects the performance of the various congestion control algorithms.

• To develop new MAC layers capable to confront congestion, minimise energy

consumption, achieve high goodput, low packet delay and loss without high

memory requirements. The developed schemes must also be:

1. Independent of the routing algorithms and the topology of the network.

2. Independent of traffic patterns (uni-directional, bi-directional or both).

3. Independent of the network stack and implemented as a stand alone

MAC layer.

4. Independent of the applications running at each sensor node.

5. Able to automatically detect if the network is configured with a radio

duty cycle algorithm and adjust its operation accordingly.

1.3 Original Contributions

This research not only contributes towards the research field of congestion control

in WSN but also contains contributions towards the Contiki OS. The contributions

of the thesis are outlined as below:

1. In literature numerous studies have suggested various categorisation meth-

ods for the existing congestion control schemes. These reports are categor-

ising the existing congestion control schemes based on their general design

or the network layer they are implemented (MAC, transport, cross layer).

Since congestion control schemes incorporate similar congestion detection

and avoidance mechanisms, this research study proposes a new categorisa-

tion which is based on the congestion avoidance mechanisms adopted by each

scheme. A categorisation such as the above mentioned, will allow readers to

achieve a broader understanding of congestion control and have a detailed

view of the mechanisms used by the existing congestion control protocols.

In addition to the new categorisation, a detailed analysis of how conges-

tion mechanisms are combined through the different schemes is proposed.

Moreover, congestion control schemes and mechanisms are also presented

in a time-line form in order to enhance the analysis thereof (showing the

direction wireless sensor community took through the years in the field of

congestion control).
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2. This is the first research study, presenting how the various congestion de-

tection mechanisms are affected by the unique characteristics of 6LoWPAN

networks and the presence of duty cycle algorithms. It is shown that some of

the existing congestion detection mechanisms are not tailored for 6LoWPAN

sensor networks and perform poorly when combined with a duty cycle al-

gorithm. This analysis is a significant step towards understanding the per-

formance of various CD mechanisms in a 6LoWPAN environment, with or

without duty cycle, and can serve as a basis for future network designers,

when facing the decision of which congestion detection mechanism to adopt

for their deployment.

3. A proposal for Duty Cycle-Aware Congestion Control for 6LoWPAN Net-

works (DCCC6). DCCC6 is one of the first congestion control schemes that

consider the existence of duty cycle and it is tailored for the characteristics

of IPv6 6LoWPAN networks. The proposed scheme dynamically detects if

a duty cycle is activated and modifies its functionality accordingly. Fur-

thermore, even though DCCC6 is based in the characteristics of IPv6 and

6LoWPAN networks it is designed as a stand-alone MAC layer and can eas-

ily be combined with other protocol stacks. Simulation and testbed results

were conducted for the evaluation of DCCC6. The experiments demonstrate

that DCCC6 is better than previous works in terms of goodput and packet

loss.

4. A proposal for a new Congestion Aware Duty Cycle MAC (CADC). CADC

is independent of network topology, routing protocol and the application at

each node. Furthermore, CADC is the first dynamic duty cycle protocol

designed based on the arbitrary traffic characteristics of 6LoWPAN. Even

though CADC is designed for IPv6 and 6LoWPAN networks, it is designed

as a stand alone MAC scheme and can easily be transfered to any WSN

architecture (various protocol stacks). Over 10000 simulations experiments

and 700 test-bed experiments have been conducted for the evaluation of

CADC. Through these experiments, it is demonstrated that CADC suc-

cessfully adapted its cycle based on traffic patterns in every traffic scenario.

Furthermore, CADC does not require any time synchronisation algorithms

to operate at the nodes and does not use any additional packets for the

exchange of information between the nodes (no overhead). Overall, CADC

achieved better performance than other works.

5. The schemes proposed in this research study, are the first congestion con-

trol works ever implemented in Contiki OS (as of the time this thesis is
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written). Contiki is an open source operating system currently used by hun-

dreds of companies and research institutions. Moreover, Contiki OS has

demonstrated an immense growth during the recent years. Therefore the

proposed schemes are an important contribution to the Contiki OS research

community and an example for future network mechanism architects. Ad-

ditionally, the proposed schemes are some of the first works that consider

the existence of duty cycle in the network and are tailored for the unique

characteristics of IPv6 6LoWPAN networks.

1.4 Research Methodology

Concept development stage is the first stage of this work and it consists of an

extensive literature review. As part of the literature review, a categorisation of the

existing congestion control schemes has been introduced. Additionally, a detailed

analysis of how congestion mechanisms are combined through the different schemes

is presented. Moreover, congestion control schemes and mechanisms are presented

in the form of a time-line. This enhances the analysis of existing schemes by

demonstrating the focus of WSN research community during the last years.

As the second stage, an evaluation of existing mechanisms, architectures and

protocols, as well as the design of the proposed congestion control schemes was

performed. Additionally, as part of this stage, various WSN architectures, proto-

cols and operating systems were studied and carefully selected for the evaluation

of future algorithms. Firstly, the selection of “Standard” and proprietary pro-

tocols that the proposed schemes will be evaluated is of great importance. For

example, a 6LoWPAN may be the host of a variety of applications which in turn

may lead to various traffic paths, packet sizes and destinations. These parameters,

should be taken under consideration for the design of a network protocol. This

research is mainly focused in IPv6 WSN (6LoWPAN) WSN architecture. Many of

the IPv6 advantages and the reasons behind this choice of protocol are described

in detail in subsection 2.2.1. In comparison to other semi-closed protocol stacks,

many of the network manufacturing goliaths are actively supporting 6LoWPAN.

Jon Titus, in one of his articles [28] has described that although IPv6 is relat-

ively new, the Internet Protocol has over 30 years of history behind it. Therefore,

6LoWPAN equipment should not encounter any problems with any type of intel-

lectual property (IP). Large companies such as IBM, Sun, Cisco, and Microsoft

have heavily invested in IP-based communications. In case IP had hidden pat-

ent liabilities, companies such as the above mentioned would have never invested

that amount of money. Unfortunately, proprietary or emerging network hard-

ware and software standards might run up against existing patents that engineers
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have yet to uncover. More articles supporting 6LoWPAN over other architectures

include [29, 5, 30] etc. Another important decision for the optimal design of con-

gestion control mechanism is the network layer in which the mechanism will be

implemented. In our work, congestion control mechanisms were implemented as a

stand alone MACs. Additionally to congestion control, this research studies how

radio duty cycle (RDC) affects it. Therefore, designing the congestion mechanisms

as a MAC layer can justified since radio duty cycle is implemented as part of the

MAC layer. Moreover, by implementing the congestion control schemes as a stand

alone MAC it is easy to transfer them into any WSN architecture (various protocol

stacks). As a final part of this stage, various congestion detection approaches were

implemented and evaluated with simulation experiments. This provided valuable

information about the behaviour of existing mechanism and how their behaviour

gets affected by RDC. The results obtained from the above mentioned experiments

had a significant impact on the design of the proposed algorithms.

The third stage includes the validation and evaluation of the proposed al-

gorithms. The proposed schemes were evaluated and validated through both sim-

ulation and test-bed experiments under various traffic parameters and network

topologies. During the simulation experiments, real hardware nodes operating

with the same as the test-bed codes were emulated. This significantly contrib-

utes in acquiring realistic results through the simulations. As part of this stage a

comparison of the simulation and test-bed results was performed.

Figure 1.1 illustrates the three stages of the methodology in the form of a flow

chart.
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Figure 1.1: Stages of methodology
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1.5 Thesis Outline

The rest of the thesis is organised as following:

Chapter 2 gives an overview of wireless sensor networks, IP in wireless sensor

networks and congestion control. Furthermore, existing congestion control ap-

proaches are categorised and summarised. The literature review is then concluded

with a detailed analysis of congestion control mechanisms incorporated by the

existing schemes and hence motivates the direction of this research.

Chapter 3 presents a detailed overview of the tools and methodology used

during this research study. Firstly, the operating system and simulation tools

used in this thesis are presented. A detailed description of the hardware used and

its architecture follows. Moreover, 802.15.4, radio duty cycle, IPv6 and 6LoWPAN

architectures are described in detail. Furthermore, this chapter presents a detailed

analysis (in the form of a guide) of how to set up a testbed and configuring a

WSN for experiments is presented. Finally, the general information concerning

the design of our test-bed as well as the software used during the experiments is

described in detail.

Chapter 4 presents a detailed analysis of how the various congestion detection

mechanisms are affected by the unique characteristics of 6LoWPAN networks and

the presence of duty cycle algorithms.

Chapter 5 presents a new Duty Cycle-Aware Congestion Control for 6LoWPAN

Networks (DCCC6). DCCC6 is designed as a stand alone MAC for Contiki OS.

All of the specific characteristics of 6LoWPAN and duty cycle as well as how these

characteristics can affect the design of the scheme are described in this chapter.

A detailed analysis of DCCC6’s design follows. Finally, simulation and test-bed

experiments are presented and evaluated.

Chapter 6 presents a new Congestion Aware Duty Cycle MAC (CADC). CADC

is designed as a stand alone MAC/RDC for Contiki OS. A detailed analysis

of 6LoWPAN and duty cycling networks as well as what is the constrains in

designing a dynamic duty cycle scheme are described in this chapter. Moreover,

CADC’s design and functionalities are described in detail. Finally, Simulation and

test-bed experiments are presented followed by discussions concerning CADC’s

performance.

Chapter 7 summarises the thesis to show how the aims have been achieved and

give suggestions and directions to future work.
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Background and Related Work

2.1 Introduction

2.2 Wireless Sensor Networks

Wireless sensor networks have evolved from the idea that small wireless sensor

devices can be used for the collection of information from the physical environment

in situations such as wild fire tracking, animal observation, agriculture manage-

ment, health, military and industrial monitoring. A wireless sensor deployment

usually consists of spatially distributed autonomous sensors monitoring their sur-

rounding environment. Collected data traverse the network towards sink nodes

in a multi-hop fashion. They are then sent to the end user from the sink node,

either directly or through a gateway. Generally, nodes in WSN posses limited

processing power and power capabilities while communication is over unreliable

and low bandwidth links.

Modern sensor networks are usually using bi-directional communication links

which in turn allows additional control to the sensors activity (for example the

administrator may extract data from a specific sensor at any given time). Bi-

directional links with the ability to access nodes individually are usually achieved

through sensor architectures such as 6LoWPAN) since each node has its own IP

address (nodes must have a unique address in order to receive data from sources

outside the sensor network). The above statement can also justify why IPv6 and

related specifications are becoming increasingly popular in the WSN community.

A thorough analysis of how these architectures can affect congestion control mech-

anisms designed for non IPV6 WSN is presented in subsection 2.2.2. The structure

of a modern WSN can be seen in Figure 2.1

During the last years, “Internet of things” has attracted lots of attention from

the research community. The Internet of Things predicts a world in which each

29
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“thing” is connected to the Internet. One approach for the connection of every

“thing” with the Internet is to integrate a wireless sensor in every “thing”. IPv6

over 6LoWPAN standard proposes a solution for the Internet Protocol on smart

objects (smart object is an item equipped with a form of sensor actuator, a tiny

microprocessor, a communication device and a power source [5]). This in turn

allows for the connection of low-power sensor devices with the Internet [31, 32, 33,

34, 35, 36]. Therefore, IPv6 over 6LoWPAN is a step towards the connection of

every device with the Internet.

2.2.1 IP Against Semi-closed Protocol Stacks

A plethora of private or semi-closed protocol stacks have been proposed over the

past decade with a purpose of improving the efficiency of networks. These semi-

closed protocol stacks usually consists of collapsing layers while there isn’t any

clear demarcation between the various functions handled by the network proto-

cols. On the contrary, these architectures are proven to be very rigid due to their

low link layer dependency and the dependency between the various network func-

tions. Moreover, semi-closed architectures require external mechanisms or add ons

usually described as gateways in order to route packets between the Internet and

the sensor network [5].

Contradictory to the semi-closed protocol stacks, an IP architecture provides:

• Scalability: due to the extended addressing scheme of IP, sensor networks

can now accomondate thousands or even millions of nodes.

• Evolvability: the IP architecture has proven to be evolvable due to the design

of applications, protocols and mechanisms for this architecture. Protocols

from different network layers can evolve independently of protocols or mech-

anisms from other network layers.

• Diversity of applications: a WSN technology, tailored for one specific ap-

plication may not work for other applications. Technologies designed for IP

can work with every application designed for an IP network.

• Interoperability: the majority of WSN require interoperability between the

sensor devices and the existing network infrastructures. With IPv6, the

integration between a 6LoWPAN and the Internet now becomes a question

of network layer routing and alleviates the need for an application layer

gateway.

• Standardisation: the mechanisms and protocols that define the operation of

a WSN is recommended to be standardised thorough open standards and
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well established standardisation practices. IP architectures provide open

standards and thus lower the entry barrier for the manufacturers and there-

fore allow them to freely choose between different vendors.

2.2.2 IPv6 and WSN

IPv4 has been deployed at an unimaginable scale and it is currently used by more

than a billion devices. In the past few years, it was clear that a new version of IP

would be needed due to the exponential growth of IP connected devices. IPv6 is

an IP version that intends to succeed IPv4. IPv6 uses 128 bit addresses therefore

it has an address space of 3, 4 × 1038 which is significantly larger to the IPv4’s

4, 294, 967, 296 address space. Even though the migration to IPv6 is inevitable

and has already started, the adoption of IPv6 has mainly been delayed due to

the migration costs. The need to connect thousands of sensors render IPv6 the

protocol of choice for WSN. From an architectural point of view IPv6 is build

on the fundamental principles of IPv4 while it offers a significantly larger address

space along with other very useful features for WSN such as stateless configura-

tion. The stateless configuration process allows a node to generate its link-local,

site local and global addresses by using a combination of local information and

information advertised by routers. Due to the usually large size of WSN, stateless

auto configuration is well suited to this type of network.

The distinct characteristics of architectures such as IPv6 over 6LoWPAN, can

dramatically affect the performance the behavior of standard congestion control

mechanisms especially when these mechanisms are designed for semi-closed pro-

tocol architectures. A detailed analysis of CC mechanisms and simulations of how

these mechanisms perform in a IPv6 sensor network will be presented in chapter 4

2.2.3 Routing Over Low Power and Lossy Networks

In WSN, the communication links are lossy and occasionally unreliable. Packet

drops on lossy links are extremely frequent and links may become totally unreli-

able for periods of time due to interference. The above observations have strong

consequences to the design of routing protocols and therefore, the routing protocol

should not overreact to failures and attempt to stabilise under unstable conditions.

In 2008, the Internet Engineering Task Force (IETF) formed a new group called

ROLL (Routing Over Low-Power and Lossy networks) in order to produce a set of

routing requirements and determine whether or not existing IETF routing proto-

cols can satisfy these requirements. The working group observed that none of the

existing routing protocols would satisfy the fairly unique set of routing require-

ments for Low power and Lossy Networks (LLN). This led to the design of the

http://www.ietf.org/dyn/wg/charter/roll-charter.html
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new emerging standard for routing in LLN named Routing for Low Power and

Lossy Networks (RPL). RPL will be described in detail in section 3.9

2.2.4 Duty Cycle

Recent studies has shown that idle radio listening is a major source of energy

consumption [6]. In order to prolong sensor deployment life cycle, research com-

munity members have made significant efforts in the development of RDC MAC.

With RDC, nodes will turn off their transceivers for long periods of time in order

to minimise idle listening. Based on a synchronisation protocol, they will turn

on their radios almost simultaneously, exchange data and go back to sleep mode.

The unique characteristics of RDC protocols and how such protocols can affect

CC mechanisms is described in detail in subsection 2.2.4, while simulations and a

technical review of the problem can be found in chapter 4.

The unique characteristics of duty cycle algorithms have a significant impact

on the performance of WSN and more specifically in the various CC mechanisms.

A detailed analysis and simulations of how CC mechanisms are affected by RDC

algorithms will be presented in chapter 4

2.3 An Introduction to Congestion Control

This chapter presents a comprehensive literature review on congestion control in

WSN. The congestion control schemes reviewed are categorised and summarised

in Table 2.1 (on page 52 ). Understanding congestion characteristics and con-

trolling the traffic have become critical with the enormous growth of WSN in

recent years.

Numerous methods and different approaches for CC have been suggested in

literature. In general, there are three main approaches for CC in WSN and thus

a primary categorisation can be made:

1. mechanisms that reduce the frequency of radio collisions.

2. m Congestion mitigation congestion prevention, in which nodes can take

multiple actions in order to mitigate or even prevent congestion from occur-

ring.

CC schemes can be implemented in different network layers, or be designed

as cross layer implementations; they can also be tailored in the needs of specific

applications and protocols or they can be generic. Taking this into consideration, it

is easy to conclude that schemes of the same category may achieve the same result

(for example congestion prevention etc.), but the procedures and the algorithms
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employed can be significantly, or even entirely different. When schemes of the

same category significantly differ in their design and operation procedures, there

can be a great confusion. In the past, numerous studies have suggested alternative

categorisation methods with the intention to cover this research field without

confusion of the schemes. In this work a new categorisation, based on the operation

mechanisms adopted by each scheme is suggested. The categorisation proposed in

this work divides the CC schemes in four categories:

1. Collision avoidance schemes.

2. Rate adaptation schemes.

3. Path adaptation schemes.

4. Dynamic Duty Cycle Adaptation Schemes.

The remainder of the chapter is organised as follows:

Subsection 2.3.1 describes congestion control, and how congestion control affect

WSN; section 2.4 (on page 34 ) gives an overview of existing CC schemes; A

comparison of existing CC schemes is made in subsection 2.4.5 (on page 51 );

lastly, the literature survey is summarised and discussed in section 2.5 (on page

59 ).

2.3.1 Congestion in WSN

Network congestion occurs when offered traffic load exceeds available capacity to

the degree that quality of service deteriorates. In WSN, congestion can cause a

plethora of malfunctions such as packet loss, increased delays, lower throughput

and energy inefficiency, potentially resulting in reduced deployment lifetime and

under-performing applications. It is evident that congestion in wireless sensor

networks mainly leads to two main events: i) buffer overflows and ii) radio colli-

sions (usually described as channel Contention). Collisions can be prevented with

Medium Access control approaches, such as with Carrier Sense (CSMA), Time

Division (TDMA) and Code Division (CDMA). Reducing the frequency of radio

collisions does not necessarily mean that the problem of congestion has been fully

resolved. Congestion can still occur, since the local fairness achieved by CSMA

protocols frequently contributes to potential buffer overflows.

In addition, several characteristics of WSN contribute significantly to conges-

tion. These characteristics are:

1. Traffic patterns. In traditional networks, traffic is disordered. Figure 2.2

represents the topology as well as the traffic patterns in a traditional wired
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network. Data flows can cross with each other since each traffic flow can

have a different destination. In comparison, WSN traffic is centripetal (Tree

topology with the root node as the center). In Figure 2.1 both the topology

and possible traffic patterns of a WSN are represented. In many-to-one

topologies, all the traffic is forwarded towards the root node (usually in

WSN the sink node is also configured as the root but this is not a necessity).

Considering the difference between the traffic patterns of traditional and

sensor networks, it is easy to conclude that the bottleneck of congestion will

occurs differently in each case. In a WSN tree topology, nodes closer to the

root are more prone to congestion.

2. Sensor node specifications. WSN nodes are hardware constrained with lim-

ited amount of memory, low-bandwidth radio and slow microprocessors. Un-

like nodes in traditional networks, memory restrictions render complicated

algorithms unusable in WSN. Moreover, the more the complexity of the al-

gorithm in a sensor node increases the higher the energy consumption (due

to higher CPU activities) will be. Algorithms tailored in the needs of WSN

should be efficient and simple with minimum processing requirements.

3. Low Power and lossy links (LowPAN’s). In a LowPAN, wireless links are un-

reliable with low-bandwidth (up to 250 kbps in 802.15.4) therefore network

failures may occur. Furthermore, in wireless links, a transmission is over-

heard by all the nodes in range, therefore the higher the network density the

higher the possibilities of collision. Continuous transmission failures such

as: collisions, non acknowledged packets etcetera can result in path changes,

routing loops and even congestive collapse of the whole network.

A CC scheme tailored for WSN should be simple enough so it can be applicable

in hardware constrained devices, with minimum energy consumption functionalit-

ies, aware of the afore mentioned characteristics of WSN and capable to confront

any form of congestion.

2.4 Congestion Control Schemes for WSN

In this section, the proposed categorisation of CC schemes is going to be presented

in chronological order. The categorisation of the protocols will be made based on

the CA mechanisms each CC scheme has embodied. The categories proposed in

this thesis are:

• Collision avoidance schemes. Generally, schemes belonging to this category

attempt to minimize (CSMA) or eliminate (TDMA, CDMA, FDMA etc.)
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radio collisions. Schemes in this category can incorporate congestion con-

frontation approaches such as radio collisions prevention.

• Rate adaptation schemes. Schemes in this category adjust their transmission

rates based on algorithms such as Additive Increase Multiplicative Decrease

(AIMD), in order to control congestion. Usually, rate adaptation schemes

have embodied techniques such as Explicit Congestion Notification (ECN)

and Implicit Congestion Notification (ICN) for the exchange of congestion

information between nodes. Schemes in this category usually incorporate

Congestion mitigation and Congestion avoidance approaches for congestion

confrontation.

• Path adaptation schemes. In this category, nodes maintain in their routing

tables alternative paths to the destination. Upon congestion, nodes will

forward the packets through an alternative path. Schemes in this category

can incorporate Congestion mitigation and Congestion avoidance approaches

for congestion confrontation.

• Dynamic Duty cycle adaptation schemes. Schemes in this category, adjust their

duty cycles based on the traffic load (when a node increases the duration of

radio ON time, the number of packets that can be received or transmitted

increases as well). With this approach for CC, a WSN can maintain min-

imum energy consumption with minimum packet losses. Schemes in this

category can incorporate congestion confrontation approaches such as Con-

gestion mitigation and Congestion avoidance mechanisms.

2.4.1 Collision Avoidance Schemes

Stathopoulos et al. proposed an application based collision avoidance for wireless

sensor networks [37]. Three different mechanisms have been proposed in this work.

The first one uniformed TCP-like collision avoidance suggests an additive increase

and multiplicative decrease AIMD based on NACK. For each successful packet

transmission the application will additively increase the transmission rate. When

a NACK packet is received the rate is decreased. In the second informed TCP-like

collision avoidance, a similar AIMD scheme is suggested. On the contrary, in this

mechanism packet failure information such as collision or link loss are added in

the NACK packet. The source will decrease its packet transmission rate only if

the packet loss was caused by a collision. Finally a phase-offset collision avoidance

mechanism is proposed. This mechanism incorporates a time offset indicating the

largest silent period in the NACK packet. Every time the source receives a NACK,

a non activity timer is set based on the time offset.
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In [38], authors have proposed the Simple, the Adaptive and the Range Ad-

aptive Backoff Protocol SRBP, ARBP and RARBP schemes for efficient collision

avoidance. All three protocols operate in a similar manner and calculate a back

off time for packet retransmission when a collision occurs. In SRBP the back off

period is selected uniformly randomly from a continuous space of numbers. This

space of numbers is pre-configured. The ARBP protocol is based on the assump-

tion that parameters such as network density and packet transmission rate are

known in advance and produces a space of numbers based on these parameters.

RARBP protocol adjusts the back off time based on the distance between the

sender and the receiver of the message.

A hybrid collision avoidance method is proposed in [39]. In this study each

node operates in two alternative modes, sender initiated (SI) and receiver initiated

(RI). SI is the default mode, and uses a four-way RTS-CTS, data, ACK handshake.

RI is the newly introduced mode in this hybrid mechanism, which operates with

a three-way collision avoidance handshake: i) request for request to send (RRTS),

ii) multiple access with collision avoidance by introducing (MCA-IB) and iii) col-

lision free receiver initiated multiple access (RIMA). A node switches to RI mode

only when it does not perform well in SI mode mode. In order to perform receiver

initiated handshake, both sender and receiver need to enter RI mode. By ad-

aptively sharing the burden of collision avoidance hand shake between the nodes,

better fairness and higher throughput is achieved.

In [40], the authors study carrier sense performance and demonstrate that it

can significantly improve the performance in heavy traffic conditions. However,

carrier sense has some limitations, originating from the fact that the sender relies

on local information to predict the packet reception probability. This can result

in lack of information related to parent nodes, which in turn can cause collisions

and thus low channel utilisation.

In idle sense [41], each node observes the number of idle slots between two

transmission attempts and compares their theoretical estimate. It then adjusts the

contention window via an Additive Increase and Multiplicative Decrease (AIMD)

algorithm. In reality, idle sense is a modification of CSMA/CA; after contention,

nodes dynamically converge (in a fully distributed manner) to similar values of

their contention window instead of relying on exponential back off. In order to

achieve this, a relation between the current state of the network and controlling the

contention window is established. Idle sense adjusts the contention window when

a collision occurs rather than detecting the collision to control the congestion.

Transmission opportunities are allocated to the nodes based on the number of idle

slots. This method results in higher throughput and short term fairness.

While traditional CSMA based protocols resolve collisions by backing off in
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time, Power back off (CSMA/PB), CSMAPB enhances CSMA by adding a trans-

mission power control component called power back off (back off in space compon-

ent). The authors argue that backing off in space is more efficient than backing off

in time, demonstrating that by reducing transmission range by 50% results in a

four fold decrease in contention. Low transmission range leads to a low contention

path and thus higher network throughput. Using this method may lead to extra

routing message exchanges in order to adjust the routes to the sink, leading to

slightly increased network overhead.

Enhanced CSMA [42], attempts to improve the performance of CSMA by

lowering the cost of channel state, by adding a learning approach in order to

predict the probability of successful reception. In E-CSMA nodes keep state in-

formation about all their neighbours. This is acquired by recording the successful

reception probability for each neighbour. Before transmitting a packet, a node

uses current channel state and the reserved information of the intended receiver

as references.

A contention access method for collision avoidance is suggested in [43]. This

work assumes the presence of a DC MAC protocol. In case of collision, all con-

tending sensors reduce their contending probability to half. Based on this, only

half of the contending sensors will wake up during the next transmission. This

algorithm ensures 50% lower probability for collision each time it is trigered.

In [44], authors have proposed a grant-to-sent approach in order to avoid colli-

sions. Grant-to-send mechanism is implemented as an addition to the traditional

CSMA/CA MAC. When a node sends a packet, it also informs other neighbour

nodes to remain inactive so they will not collide with the recipient’s future trans-

mission. Nodes are also sharing some estimated information about the recipients

future actions and thus a higher degree of collision avoidance is achieved.

IBPS: a fault tolerant wireless sensor MAC protocol for efficient collision avoid-

ance is proposed at [45]. When a collision occur, IBPS nodes calculate the back

off packet retransmission time and propagate it to all neighbour nodes. Nodes

are then calculating future back off periods based on the information received by

their neighbours. This mechanism eliminates the probability of collision but adds

significant packet overhead.

2.4.2 Rate Adaptation Schemes

Congestion detection (CD) and avoidance (CODA), CODA is an energy efficient,

congestion control scheme for WSN. In CODA, two basic approaches are used in

order to confront congestion: Open-loop hop-by-hop backpressure and Closed-loop

multi-source regulation. With the former, a backpressure message is generated and
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transmitted to all one-hop downstream nodes through a broadcast when congestion

is detected. When a node receives the backpressure message it decides based on

its local network conditions if the message will be further propagated. In Closed-

loop multi-source regulation when a source event rate is less than the maximum

theoretical throughput of the channel the source regulates itself. On the other

hand if the source rate is higher than the maximum theoretical throughput of the

channel, closed-loop congestion control is triggered. In that case a source requires

constant, slow time-scale feedback (e.g. ACK ) from the sink in order to maintain

its rate. As long as there is no failure to receive ACK, sources maintain their rates;

otherwise rate reduction is forced. The mechanisms proposed in this protocol can

successfully reduce congestion but they don’t eliminate it.

Event to Sink Reliable Transport (ESRT) is a transport solution developed to

achieve reliable event detection with minimum energy expenditure and congestion

resolution functionality [46]. With ESRT, a congestion notification (CN) bit is

set to the packets header when the buffer is likely to overflow during the next

period. The sink based in the reliability measurement, the congestion notification

bits and the previous reporting rate will compute the next new reporting rate. In

this protocol there is no congestion control mechanism at the intermediate nodes;

the sink is responsible upon all rate adjustments in the network. The weakness of

this protocol is the need to use a powerful sink node in order to broadcast the rate

updates even to the most remote nodes in the network. Furthermore fairness is

not considered in this protocol since in case of congestion, rate reduction is applied

to all network nodes even when their traffic path is not congested.

In [47] a mitigating congestion control protocol is recommended. This pro-

tocol uses three congestion mitigation mechanisms: i) hop-by-hop flow control,

ii) source-rate limiting and iii) prioritised medium access layer that allows con-

gestion to drain quickly at local nodes. In rate limiting mechanisms, nodes must

continuously monitor their parents actions in order to generate tokens. This pass-

ive continuous listening consumes more energy and network resources. In addition,

this protocol requires a tree routing structure to work correctly.

In [48] a congestion control and fairness CCF for many-to-one routing scheme

has been proposed. This congestion control proposal assumes a tree routing struc-

ture from the data sources to a sink. This algorithm exists in the transport layer

of the traditional network stack model and is designed to work with any MAC.

CCF considers two types of congestion and proposes two methods to eliminate

them. In the first proposed method, a small jitter is added to the data-link layer

in order to achieve small amounts of phase shifting. By implementing a phase

shifting technique at the nodes, the probability of collision during simultaneous

transmissions from the nodes is reduced. In the second method, the queue occu-
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pancy is monitored. When the queue occupancy increases beyond a threshold, the

congested node will inform its child nodes about the congestion and a rate reduc-

tion mechanism will be triggered at the child nodes. The rate reduction algorithm

in this work is suggesting rate allocation based on the number of child nodes:

rchild = rparent/n where r is the packet transmission rate and n is the number of

child nodes.

A reliable bursty convergecast (RBC) is proposed in [49]. In RBC, authors have

proposed a window-less block acknowledgment as well as a distributed contention

control scheme. The former scheme, improves channel utilisation and guaran-

tees continuous packet forwarding irrespective of the underlying link reliability by

implementing linked virtual queues. In the later scheme, packet incurred delay

is reduced by scheduling the packet retransmissions based on the priority of the

virtual queue they have been assigned to.

STCP [50] is a scalable and reliable transport layer protocol for sensor net-

works. The majority of its functionalities are implemented at the sink. STCP,

also supports networks with multiple functionalities such as controlled variable

reliability and congestion detection and avoidance. Each node needs to establish

an association with the sink; this is achieved with the use of session initiation

packets (session initiation packets contain information such as number of flows,

type of date flow, transmission rate and required reliability). In order to detect

congestion, STCP adopts the method of explicit congestion notification. Every

sensor node maintains two thresholds in its buffer(Tlow, Thigh). When the buffer

reaches Tlow, it sets the congestion notification bit in packets with a certain prob-

ability (the value of this probability is determined by an approach similar to that

employed in RED). When the buffer reaches Thigh, the node set the congestion

notification bit to every packet it forwards. On receiving of this packet the sink

informs the source of the congested path by setting the congestion bit in the ac-

knowledgment packet. On receiving of the congestion notification packet the sink

will slow down the transmission rate.

SenTCP has been proposed in [51]. SenTCP is an open-loop hop-by-hop con-

gestion control protocol and it has two special features: a) Congestion degree

is estimated by calculating the ratio of the packet service time over the packet

inter-arrival time. This ratio is also used in order to differentiate the occurrence

of packet loss in the sensor network. b) When a node becomes congested, it

generates a feedback signal that contains the congestion degree and the queue

occupancy. This signal is transmitted to the downstream nodes in a hop-by-hop

fashion. When a node receives the feedback signal, based on the received con-

gestion degree and queue occupancy a node will adjust its transmission rate (in

transport layer).
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Chen et al [52] propose an aggregate fairness model which implements end-to-

end fairness with a localized algorithm. In order to avoid congestion each node

piggybacks its current buffer state in the frame header. When a child node over-

hears a message it caches the buffer state of it parent node. Child nodes forward

packets to parent nodes only if the buffer is not full. Moreover, an aggregate fair-

ness algorithm is used for rate reduction. When a node receives more packets than

it can forward, the sensor will calculate and allocate the data rates of child nodes

by a weighted fairness function. This means the actual rate from an upstream link

should be proportional to the link’s aggregate flow weight.

The authors of [53] propose a low-overhead congestion sharing mechanism

called Interference-aware Fair Rate Control (IFRC). In IFRC each node adaptively

converges to a fair and efficient rate for the flows; with the use of a distributed

rate adaptation technique. This is achieved by accurately sharing congestion in-

formation with potential interferes (two nodes are potential interferes when the

flow originating from one node uses a link that interferes with the link between the

other node and it’s parent). IFRC consists of three inter-related components; one

that measures the level of congestion at a node, another that shares congestion

information with potential interferes, and a third that adapts rate using an AIMD

control law. In order to measure the level of congestion at a node, a single queue

for all the flows passing through that node is maintained. When the queue size

exceeds an upper threshold (the upper threshold is dynamically adjusted according

to average queue size exchanged between nodes), the node is said to be congested,

and the node reduces its rate according to an AIMD rate adaptation scheme. In

order to successfully achieve sharing the average queue size between nodes, the

information about the current transmission rate and the average queue size in each

node is attached in the header of each outgoing packet.

In [54] a congestion avoidance protocol based on lightweight buffer management

is recommended. This protocol, implements a 1/kbuffer buffer algorithm in order

to solve the hidden terminal problem. Sensors are advertising their remaining

buffer continuously. A node will transmit a packet only if it overhears that its

parent node has enough buffer space for the reception of the packet. Although

there is no packet loss; with the use of this algorithm the utilisation of the buffer

is very low.

PCCP priority based congestion control for WSN is proposed in [55]. PCCP

offers a weighted fairness by offering different degrees of priority to each sensor

node. This weighted fairness function allocates more bandwidth to nodes with

higher priority index. PCCP further defines the priority index for both self gen-

erated and transit traffic. Furthermore, the congestion degree is calculated as the

ratio of packet inter-arrival over service time and then imposes hob-by-hop con-
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gestion control based on the measured congestion degree and the priority index.

PCCP uses ICN by piggybacking the congestion information on the header of the

packets. Finally, in PCCP the application can overwrite the priority index at the

sensor nodes.

In [56] an adaptive flow and back-off interval that work’s in unison with energy

efficient, distributed power control (DPC ) are proposed. The onset of congestion

is detected from buffer occupancies at the nodes as well as the predicted trans-

mitting power. Then the rate selection algorithm is executed at the receivers to

determine the appropriate rate. Moreover, weights can be assigned to assign dif-

ferent importance between the flows. In addition, in this scheme the distributed

power control (DPC ) and rate information is exchanged between the nodes. The

adaptive rate scheme in this protocol is implemented at each node and acts as a

back-pressure signal to minimise the effect of congestion on a hop-by-hop basis.

First, the outgoing traffic flow is estimated. Consequently the congestion is alle-

viated by designing a suitable back off intervals for each node based on channel

state and current traffic.

RCRT :[57] Rate controlled reliable transport provides reliable, sequenced de-

livery of flows from the source to the sink. Furthermore RCRT ensures that for

a given application, the available network capacity will be allocated according to

capacity allocation policy. In RCRT End - to - End reliability is achieved with the

use of negative acknowledgments. The sink decides if the network is congested if

the time to repair the loss is significantly higher than the round trip time. Once

network congestion is determined, the rate adaptation component (This compon-

ent is located at the sink) estimates the total sustainable traffic in the network.

Then the rate allocation component (This component is located at each node, and

gets activated upon the reception of a negative acknowledgment) decreases the flow

rates of the sources in order to achieve the rate send by the rate adaptation com-

ponent. When there is no network congestion rate adaptation component (in the

sources) additively increase the transmission rates.

HRCCP : hop-by-hop based reliable congestion control has been proposed in [58].

HRCCP uses a pair of end-to-end and hop-by-hop sequence numbers in order to

speed up the end-to-end delay. Hop-by-hop sequence numbers are used for the

packet retransmissions (at the MAC layer) while end-to end sequence is used for

the packet reassembly at the sink node. Furthermore, this work has introduced

DSbACK feedback messages for CC. A DSbACK will be piggybacked from the

parent to the child node in three cases: 1) an error packet is received, 2) a timer is

out, 3) the degree of buffer occupancy exceeds the predefined threshold. When a

node receives a DSbACK message, it will exponentially decrease its transfer rate.

ABPS, a simple active congestion control protocol is proposed in [59]. This
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work is designed for many-to-one traffic patterns and needs a tree routing al-

gorithm to operate. In ABPS, when the queue occupancy exceed a predefined

threshold, a congestion alleviation mechanism is triggered. When congestion is

detected, the congested node will divide its transmission rate with the size of the

tree (at the congested node) and piggyback this information to its child nodes.

When a node receives a congestion message, it will calculate its tree size and set

its output transmission rate to the minimum rate based on its newly calculated

tree.

In [60] a hybrid congestion control protocol (HCCP) is suggested. Each node

calculates its congestion degree (the levels of congestion at the node) by checking

if its packet buffer is likely to overflow during the next period if every packet

transmission fail. Nodes periodically exchange their congestion degree which is

used for the calculation of the next period’s transmission rate. The number of

upstream neighbours is also taken into account in this calculation. The periodical

exchange of packets consumes more energy and creates additional overhead to

the network, especially when the frequency is very high (HCCP’s performance

improves as frequency increases).

Karenos et al. proposed COMUT, a framework that supports multiple classes

of traffic for WSN [61]. In COMUT, nodes are organised into classes. The design

of COMUT consists of three mechanisms: 1) cluster formation, 2) traffic intensity

estimation, 3) rate regulation. In the first mechanism, sensor nodes are organised

into clusters and elect a cluster head called sentinel is elected. A zone routing

protocol (ZRP) is employed to assist in the cluster formation. The second mech-

anism calculates the traffic intensity within and across multiple clusters and based

on that the congestion levels of each cluster are estimated. Once congestion levels

are estimated, the third mechanism adjusts the source rates. This is achieved by a

communication between the sentinel nodes and the source. COMUT also provides

a differentiation between the flows. Low importance flows reduce their rates to

the minimum if packets with higher importance exist in the congested path.

In [62], CTCP: a collaborative transport control protocol for WSN is proposed.

CTCP guarantees reliable packet transmissions between the source and the sink

and implements two reliability profiles for energy saving. In order to confront

congestion, a CTCP node will broadcast a stop message when the queue occupancy

exceed a predefined threshold. When a node receives a stop message, it will

immediately stop transmitting packets to the congested node until the reception

of a start message.

A priority based congestion control protocol for WSN (QCCP-PS) is proposed

at [63]. QCCP-PS consists of three parts: 1) congestion detection unit (CDU),

2) rate adjustment unit (RAU), 3) congestion notification unit (CNU). The CDU
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uses the queue length as the congestion indicator and produces a congestion index

which is a number between 0 and 1. Based on the current congestion index and

source traffic priority, the RAU calculates the new rate of each child traffic sources

as well as its local traffic source. The new rate is then sent to CNU which is

responsible for notifying all the child nodes about the new rate. CNU achieves

that with ICN, the new rate for each child node is added to the sending data of

each sensor node.

In FACC [64] a rate-based fairness-aware congestion control is proposed. In

this protocol the intermediate relaying sensor nodes are categorised into near-sink

and near-source nodes. Near-source nodes maintain a per-flow state and allocate

an approximately fair rate to each passing flow by comparing the incoming rate

of each flow and the fair bandwidth share. On the other hand, near-sink nodes do

not need to maintain a per-flow state and use lightweight probabilistic dropping

algorithm based on queue occupancy and hit frequency. This categorisation allows

an appropriate rate to be assigned to the near-source nodes, while energy saving

and congestion avoidance is secured to the near-sink nodes by a simple algorithm.

Wang et al. proposed upstream hop-by-hop congestion control (UHCC) in [65].

UHCC is a cross layer design and operate in two phases: CD and rate adjustment.

Based on the queue length and the traffic rate at MAC layer, UHCC calculates

a congestion index. All upstream traffic rates are then adjusted according to the

calculated congestion index.

LACAS an adaptive learning solution for congestion avoidance is proposed

in [66]. The target of this work is to control the data rate of intermediate nodes

in order to avoid congestion. To achieve this, a code capable of taking intelligent

actions (called automata) is implemented at each node. Automata are adjusting

the data rates of the intermediate nodes based on the probability of how many

packets are likely to be dropped if the data rate in the node remains the same.

Automata learn from past behaviors and allocates more accurate data rates in the

future.

Extended DCCP is proposed in [67]. In this work, the authors have extended

the existing datagram congestion control protocol (DCCP) with a new congestion

control component. Extended DCCP is a transport layer protocol that implements

the following functions: 1) buffering of the received packets at the receivers, 2)

retransmission of the corrupted or lost packets by the sources, 3) detection of

duplicate packets at the receivers. Moreover, each sender node has four operation

modes.

• Normal state: the senders adjust their rates based on the minimum recorded

RTT over the average RTT.
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• Congestion state: When a ECN is received, rate will be reduced similar to

normal state if there aren’t any packet losses. In case of packet losses the

transmission rate will be halved.

• Failure state: probe packets are sent out to monitor the network situation.

• Error state: according to the state of error a new rate is calculate.

Fang et al. proposed CADA, congestion avoidance detection and alleviation

in WSN [68]. CADA measures the congestion levels at each node by both queue

occupancy and channel utilisation. A node will detect congestion if the queue

occupancy exceeds the threshold or the channel utilisation reaches the maximum

achievable channel utilisation. If congestion takes place in an intersection hotspot,

a resource control mechanism will be applied. On the contrary if congestion is takes

place in a convergence hotspot, a traffic control mechanism will be activated.

Antoniou et al. proposed Lotka-Volterra based congestion control (LVCC)

in [69]. This study is mainly focusing on streaming applications in WSN and

congestion prevention based on the Lotka-Volterra population model. LVCC re-

quires minimum exchange of information and low computational burden.

2.4.3 Path Adaptation Schemes

The direct diffusion dissemination paradigm is proposed in [70]. In this study sink

nodes announce their interest, which is a task description, to all sensors. The

task descriptors are named by assigning attribute-value pairs describing the task.

Each sensor node stores the received interest announcement on their cache. Each

interest announcement entry contains a time-stamp and several other gradient

fields. As the interest is propagated throughout the sensor network, the gradients

from the source back to the sink are set up. When the source has data for the

interest, the source sends the data along the interest’s gradient path. The interest

and data propagation and aggregation are determined locally. Also, the sink must

refresh and reinforce the interest when it starts to receive data from the source.

Note that the directed diffusion is based on data-centric routing where the sink

broadcasts the interest.

A practical resource control scheme is proposed in [71]. When the congestion

degree exceeds a predefined threshold, the algorithm in this scheme will wake up

inactive nodes and calculate new alternative paths. With this approach the hot-

spots are bypassed by redirecting the traffic through the alternative paths. This

scheme ignores the character of the centralised traffic patterns in WSN.

Wan et al. proposed Siphon [72]. In this work, the concept of virtual sinks

(VS) is introduced. VS can be distributed dynamically for the tunneling of traffic
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events from areas with high sensor traffic. At the point of congestion, these VS

divert extra traffic through them in order to maintain the required throughput

at the base station. The Siphon algorithm mainly aims at addressing the VS

discovery, operating scope control, CD, CA and traffic redirection. For the optimal

operation of this protocol, VS nodes require dual radio. One for the low power

communication between the nodes and a high power one for the communication

between the VS.

BGR, a biased geographical routing protocol has been proposed in [73]. In

BGR two congestion control algorithms namely: in-network packet scatter (IPS)

and end-to-end packet scatter are used in order to avoid the direction of the packets

through the congested areas of the network. IPS alleviates transient congestion

by splitting the traffic before the congested areas. On the contrary, EPS alleviates

long term congestion by splinting the flows at the source nodes. EPS select the

paths dynamically and uses a less aggressive congestion control mechanism for

energy efficiency.

Kang et al. proposed the topology aware resource adaptation TARA protocol

in [74]. In TARA, congestion is detected by both queue occupancy and channel

loading. The congestion alleviation in TARA, is performed with the assistance

of two important nodes. These are the distributor and the merger. Between the

important nodes, an alternative path is established. The distributor splits the

traffic between the original and the alternative path and the merger merges the

two flows. When there is no congestion in the network the alternative path is not

used.

HTAP, a hierarchical tree alternative path protocol is proposed in [75]. HTAP

is based on the creation of alternative paths from the source to the sink. In

order to safely transmit data a creation of alternative paths which are not in

the initial shortest path are created. These alternative paths are calculated by a

hierarchical tree algorithm based on the congestion state in the network. When

a node becomes congested, a back pressure message is transited. The receivers of

the backpresure message will stop any active transmissions towards the congested

nodes and immediately search their routing table for an alternative, less congested

path.

A QoS adaptive congestion control scheme is proposed in [76]. In this study,

each node calculates the packet service rate based on the processing time per

packet at the MAC layer. According to the packet service rate the scale of con-

gestion is estimated. There are two mechanisms implemented in this protocol for

congestion control. The first one is called short term congestion control. With

short term congestion control before the congested node, the traffic is split to its

alternate parent in proportion to a weight factor. The second mechanism imple-
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mented in this protocol is called long term congestion control. In this mechanism,

the congested node transmits a backpressure message. If the sources receive this

message, traffic will be split between alternative paths from the source node.

He Tao et al. proposed (TADR), TADR a traffic aware, dynamic routing pro-

tocol. In this study, the proposed protocol, route packets around the congested

areas by scattering the excessive packets through idle and underloaded nodes.

TADR algorithm, constructs a mixed potential field using depth and normalised

queue length. Based on this field, packets avoid the congested areas and eventually

move towards the sink.

Hsu et al. proposed an adaptive NAV-assisted routing protocol (ANAR), ANAR.

ANAR is a cross-layer implementation which encapsulates network allocation vec-

tor (NAV) information in the Request-To-Send (RTS) and Clear-To-Send (CTS)

packets of the MAC protocol. NAV vectors are then used for the calculation of

a congestion free probability which in turn carried through the route discovery

process and based on this information, a feasible route for the packet delivery

is determined. ANAR can dynamically switch between paths when the levels of

congestion change.

A congestion avoidance and fairness protocol has been proposed in [77]. Each

node with this protocol, will calculate the number of its upstream and downstream

neighbours. The characteristic ratio (CR) is then measured as the ratio of the

upstream over the downstream neighbours. If the value of CR is higher than

1, a node will forward packets towards the upstream node with the lower queue

occupancy. If a node has more downstream than upstream neighbours, the value

of CR will be lower than one. In that case, in order to prevent congestion a rate

reduction algorithm will be activated and the transmission rates will be adjusted.

This protocol assumes that a perfect- collision free MAC is in operation.

TALONet: a power efficient grid based congestion avoidance scheme is pro-

posed at [78]. TALONet operate in three phases. 1) Network formation: in this

phase, information about the sinks location and the square grid (virtual grid) to-

pology are transmitted from the sink towards every sensor node. Sensor nodes

can then operate as TALON or normal nodes. A node will operate as a TALON

node if its location is close to the virtual grids cross points. 2) Data dissemina-

tion: during this phase, normal nodes forward the packets to their closest TALON

node. A TALON node will forward the received packets to another TALON node

until this information reach the sink. 3) Framework update: In order to preserve

energy, sink will periodically broadcast control packets including offsets for every

node in the network which in turn will result in a new network formation.

A grid based multi-path with congestion avoidance routing protocol (GMCAR)

has been proposed in [79]. GMCAR will form squared-shaped grids of predefined
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size. When the grids are created, a node will randomly selected to operate as the

master node. Sink nodes will then flood the network with messages in order to

discover routing paths from all the grids. All nodes in a grid will transmit their

information to the master node and consequently, master nodes will forward this

information to the sink. In order to avoid congestion, multiple diagonal paths are

created between the master nodes and the sink. Each formed path is assigned

with a weight. Traffic will then be distributed to the paths based on their weight.

DAIPaS: a dynamic alternative path selection algorithm is proposed in [80].

DAIPaS combines the information about nodes remaining power and congestion

levels in order to calculate the optimal path between sources and sink. This pro-

tocol is operating in two phases: soft and hard. During the soft phase, nodes that

serve more than one traffic flow will estimate which flow has the highest bandwidth

and keep servicing. The rest of the flows will be forced in an alternative path. This

algorithm can avoid the creation of hot spots during low traffic conditions. A node

will enter the hard phase when traffic should not be routed through that node.

Nodes in this phase will become unable to accept any more traffic. Nodes with

queue occupancies close to the upper limit will temporarily enter hard phase. On

the contrary, unavailable nodes or nodes with low power levels will permanently

enter the hard phase.

2.4.4 Dynamic Duty Cycle Adaptation Schemes

S. H. Lee et al. propose AMAC: a traffic-adaptive sensor network MAC protocol

through variable duty cycle operations [10]. In AMAC when the network is idle,

Request to Send / Clear to Send (RTS/CTS) messages are not performed for

energy saving. In order to achieve variable duty cycle operations, two basic com-

ponents are used in this work: a) a clock synchronisation algorithm. Each node

synchronising its wake-up time with its neighbours in a similar way to S-MAC.

b) a schedule synchronisation mechanism. This mechanism is responsible for the

synchronisation of wake-up times between neighbour nodes when AMAC nodes

have adapted their cycle times.

J. Jeon propose DCA: A duty cycle adaptation algorithm for 802.15.4 beacon-

enabled WSNs [11]. DCA assumes that beacon order (BO) is constant and adapts

superframe order (SO) according to the superframe estimations. In this protocol,

the control field in MAC protocol data unit (MPDU) is modified in order to gather

traffic information from the end devices. After all the data are collected, the DCA

coordinator estimates the number of packets being queued in the end devices and

adjusts the SO accordingly.

S. Bac propose a traffic-aware MAC protocol using adaptive duty cycle for
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WSN [12]. In this work, each node adjusts its duty cycle based on the traffic

intensity measured by the queue length in its child nodes. A parent node will

enter listen state and remain in this state until all the packets from its child nodes

have been received. This protocol adds some additional overhead for the exchange

of the traffic intensity between child and parent nodes. Furthermore, in order for

this protocol to be functional, all packets in the WSN must be of the same size and

traffic must be unidirectional (from the edges of the network towards the sink).

N. Saxena propose a dynamic duty cycle and adaptive contention window

based on QoS-MAC protocol for wireless multimedia sensor networks [13]. This

protocol periodically measure the number of transmitted packets and calculates

the probability of transmission failure based on the success-failure packet trans-

mission ratio. When a probability of transmission failure is high a node will adjust

its contention window (CW) and wait for its neighbour nodes to adjust their CW

accordingly. Each node will keep adjusting its own CW until it achieves its CW-

target. This protocol also suggests a scaling factor for the different traffic classes.

The scaling factor is used by the CW increase and decrease algorithm for service

differentiation between the different traffic classes. In this protocol, duty cycle

times are also based on the class of the traffic. Depending on the dominating

traffic class (which traffic class had the most transmitted packets), the algorithm

selects the active time and adjusts the duty cycle.

TA-MAC [14] is an adaptive duty cycle protocol for WSN. In TA-MAC, all

nodes must be synchronised. In order to achieve node synchronisation, all nodes

keep their radio on until they receive a SYNC packet. The SYNC packets is first

broadcasted by the sink and then further propagated with broadcast messages by

the rest of the nodes. In contrast to this protocols name, duty cycle is not altered

under any network conditions; instead two or more packets may be transmitted

in a single cycle through a two-way hand shaking mechanism (DATA/ACK).

R.D.P. Alberola propose DCLA: a duty cycle learning algorithm for IEEE

802.15.4 beacon-enabled WSN [15]. In DCLA one node will operate as the co-

ordinator. The coordinator node need to employ some estimation of the end

devices traffic requirements in order to calculate an optimal duty cycle. In order

to achieve this, the coordinator calculates the number of received messages dur-

ing an active period. On the other side, end-devices embed their transmit queue

occupation and delay values in the MAC header of sent data frames. When a

coordinator node has no knowledge regarding the end devices the optimal duty

cycle is calculated by the DCLA agent. The technique used for the calculation of

the optimal duty cycle in that case is known as Q-Learning.

L. Dongho propose ADCC: an adaptive duty cycle based on congestion control

scheme for home automation networks [16]. ADCC calculates the required service
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time based on the information received from the incoming packets, then makes

a decision of whether this node is congested. Two mechanisms are implemented

in this protocol in order to alleviate congestion. First, congestion is detected

based on the required packet service time. After congestion is detected, each node

will increase the duration of their active state based on the calculated congestion

degree. Then a congestion notification message is broadcast by the congested

node. When a node receives a congestion notification message, it will adjust its

transmission rate. The rate reduction on a node is equal to the required service

time over the maximum duty cycle active state in that node.

M. Anwander propose BEAM: a burst aware energy efficient adaptive MAC

protocol for WSN [17]. The BEAM protocol is designed as an improvement upon

X-MAC. The BEAM protocol comprises two different operational modes to op-

timise receiver sleep time dependent on the payload size. Both modes rely on

positive acknowledgments of MAC frames upon reception. The two operational

modes of this protocol are: a) basic operation mode, b) short preambles mode. In

the first mode, the receivers wake-up and listen to the channel. If the receiver’s

address matches the address in the preamble an ack frame is transmitted. A

sender node will continuously transmit a short preamble with payload frame until

a positive acknowledgment is received. In the second mode, the receiver listens

to the channel for preamble frames. If the address in the preamble matches the

receiver’s address an ack frame is transmitted. Upon the reception of an ack frame

the sender is informed that the receiver is awake and transmits the data frame.

BEAM’s switching between these two states depends in the payload size (for pack-

ets with more than 40 byte payload, basic operation mode is used). Furthermore,

BEAM can transmit more than one frame to the same neighbour (packets can

be aggregated) if there is enough space for both packets in a single MAC frame.

During a strong traffic increase, BEAM uses 1 bit information (traffic indicator)

in the frame control field (FCF) of every transmitted frame in order to inform its

parent node about the traffic increase. Upon the reception of a frame with the

traffic indicator bit set, a node will adapt its listen cycle by calculating an earlier

time to wake-up.

H. Hu et al. propose ADC-SMAC [81]: an improvement of S-MAC based on

dynamic duty cycle. In ADC-SMAC, each node periodically calculate its utilisa-

tion and sleeping delay. This information is then used for the calculation of a new

duty cycle. After the calculation of the new duty cycle, nodes will share the in-

formation with their neighbours. In ADC-SMAC the information sharing between

neighbour nodes is performed through the transmission of broadcast frames.

H. Yoo et al. propose DSR [82]: duty cycle scheduling based on residual energy.

In this mechanism, each sensor calculates it’s residual energy every time it wakes
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up. The duty cycle at each node is then calculated based on the residual energy.

The algorithm used for the duty cycle calculation in DSR can is:

I idc = Imaxdc − (Imaxdc × Ei
r − Eth

Emax − Eth
) (2.1)

were I idc is the current duty cycle, Imaxdc is the maximum duty cycle, Ei
r is

the nodes residual energy, Emax is the maximum residual energy and Eth is the

residual energy threshold.

2.4.5 A Detailed Comparison of Congestion Control

Schemes

In previous sections a categorisation of various CC, based on the CA mechanisms

each scheme has embodied, was introduced. In this section, a more generic analysis

will be made in which all schemes described previously will be evaluated as a whole.

Additionally, an individual analysis of the mechanisms incorporated by the various

schemes will be presented. Table 2.1 shows all 57 CC approaches discussed in this

thesis as well as the individual mechanisms each scheme uses for CA,CD and

Congestion Notification (CN). The protocols in Table 2.1 are shorted based on a

chronological order. In subsection 2.3.1, a categorisation of the CC schemes based

on their CA mechanisms was introduced and thus the individual techniques for

CA hve already been described in detail. On the contrary CD and CN have not

been described in such detail and therefore during the rest of this Section CD and

CN mechanisms will also be categorised and described in detail in order to present

a complete analysis on CC for WSN.

• Congestion Detection(CD): is usually referred to mechanisms that try to pre-

dict if congestion is going to occur in advance. The most common methods

for CD are:

1. Queue Occupancy: nodes monitor their local queue. When the queue

occupancy exceed a predefined threshold congestion is detected.

2. Channel Status: includes collisions and channel load or traffic rate.

When the channel load increase dramatically congestion is detected.

Some schemes will detect congestion and reduce their transmission win-

dows based on the collisions occurred.

3. Failed Transmissions: usually when a packet does not get acknowledged

congestion is detected. The type of the acknowledgment varies based on

the network layer each scheme is implemented at (usually link, network

and application layer).
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4. Inter Packet Arrival Over Service Time: nodes measure their local

packet service time (Ps) and packet arrival time (Pa). If the ratio of

Ps/Pa is lower than one, packets are arriving faster than the node can

service and thus congestion is detected.

5. Energy usage: includes techniques such as power used for the packet

transmission or total energy consumed by the radio. If the energy

consumption due to packet transmission/reception in a node exceed

an energy threshold congestion is detected. In addition some proto-

cols modify the transmission energy in the radio in order to reduce

the transmission power and thus the interference and packet collision

frequency.

• Congestion Notification(CN): usually refers to mechanisms used by the vari-

ous schemes in order to exchange information between the nodes.

1. Explicit Congestion Notification (ECN): non data packets are explicitly

used for the exchange of congestion information between the nodes.

2. Implicit Congestion Notification (ICN): congestion information exchanged

between the nodes are encapsulated in the data packets.

Table 2.1: Congestion control schemes

Protocols Congestion

Detection

Congestion Avoid-

ance

Congestion

Notification

Category &Year

CODA [83] Queue occu-

pancy & channel

status

AIMD end-to-end

& hop-by-hop

traffic control

Explicit Rate adaptation

(2003)

ESRT [46] Queue occu-

pancy

Reliability based

end-to-end traffic

control

Explicit Rate adaptation

(2003)

Direct diffu-

sion [70]

Failed transmis-

sions

Traffic redirection N/A Path adaptation

(2003)

Application

based collision

avoidance [37]

Failed transmis-

sions

AIMD end-to-end

traffic control

Explicit Collision avoid-

ance (2004)

SRBP

ARBP and

RARBP [38]

Collision occur-

rence

CSMA Back-off re-

transmission

N/A Collision avoid-

ance (2004)

Hybrid collision

avoidance [39]

Unsuccessful

RTS packets

RTS/CTS phase

not performed

Implicit Collision avoid-

ance (2004)

Fusion [47] Queue occu-

pancy & channel

status

Start and stop hop-

by-hop traffic con-

trol

Implicit Rate adaptation

(2004)
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CCF [48] Queue occu-

pancy

Phase shifting &

hop-by-hop traffic

control

Implicit Rate adaptation

(2004)

Resource con-

trol scheme [71]

Packet inter ar-

rival and packet

service time

Traffic redirection N/A Path adaptation

(2004)

Carrier

sence [40]

Energy detect

from signal

received

CSMA Back-off re-

transmission

N/A Collision avoid-

ance (2005)

Idle sence [41] Failed transmis-

sion at MAC

layer

AIMD increments

of CSMA Back-off

window

N/A Collision avoid-

ance (2005)

RBC [49] N/A Virtual queues and

prioritised packet

transmission

Implicit Rate adaptation

(2005)

STCP [50] Queue occu-

pancy

AIMD end-to-end

traffic control

Explicit Rate adaptation

(2005)

SenTCP [51] Queue occu-

pancy & packet

inter arrival time

Hop-by-hop traffic

control

Implicit Rate adaptation

(2005)

Siphon [72] Queue occu-

pancy & Channel

status

Traffic redirection N/A Path adaptation

(2005)

AFA [52] Queue occu-

pancy

Start and stop

Hop-by-hop traffic

control

Implicit Rate adaptation

(2006)

IFRC [53] Queue occu-

pancy

AIMD hop-by-hop

traffic control

Implicit Rate adaptation

(2006)

Lightweight

buffer manage-

ment [54]

Queue occu-

pancy

Start and stop hop-

by-hop traffic con-

trol

Implicit Rate adaptation

(2006)

BGR [73] Queue occu-

pancy & Channel

status

Traffic redirection

& hop-by-hop

traffic control

Implicit Path adaptation

(2006)

CSMA/PB [84] Collision occur-

rence

Power back-off (re-

duce transmission

power)

N/A Collision avoid-

ance (2007

E-CSMA [42] Ratio of failed

packet transmis-

sions

CSMA Back-off re-

transmission

Implicit Collision avoid-

ance (2007)

Contention ac-

cess for collision

avoidance [43]

Collision occur-

rence

50% reduction of

the nodes to wake

up

N/A Collision avoid-

ance (2007)

PCCP [55] Packet inter ar-

rival and packet

service time

Hop-by-hop traffic

control

Implicit Rate adaptation

(2007)



CHAPTER 2. BACKGROUND AND RELATED WORK 54

DPCC [56] Queue occu-

pancy & channel

status

Hop-by-hop traffic

control

Explicit Rate adaptation

(2007)

RCRT [57] Based on time

to recover packet

loss

AIMD End-to-end

traffic control

Explicit Rate adaptation

(2007)

HRCCP [58] Queue occu-

pancy, timer &

packet error

Hop-by-hop traffic

control

Explicit Rate adaptation

(2007)

ABPS [59] Queue occu-

pancy

Hop-by-hop traffic

control

Explicit Rate adaptation

(2007)

TARA [74] Queue occu-

pancy & Channel

status

Traffic redirection Explicit Path adaptation

(2007)

HTAP [75] Queue occu-

pancy

Traffic redirection Explicit Path adaptation

(2007)

AMAC [10] Channel status Duty cycle adapta-

tion (requires node

syncronisation)

Explicit Dynamic duty

cycle (2007)

DCA [11] Queue occu-

pancy

Duty cycle adapta-

tion (requires node

syncronisation)

Implicit Dynamic duty

cycle (2007)

HCCP [60] Queue occu-

pancy & packet

inter arrival and

packet service

time

Hop-by-hop traffic

control

Explicit Rate adaptation

(2008)

COMUT [61] Cluster/traffic

intensity

Hop-by-hop

(cluster by cluster)

traffic control

Explicit Rate adaptation

(2008)

QCCP-PS [63] Queue occu-

pancy

Hop-by-hop traffic

control

Explicit Rate adaptation

(2008)

QoS adapt-

ive congestion

control [76]

Packet inter ar-

rival and packet

service time

Traffic redirection Implicit Path adaptation

(2008)

TADR [85] Queue occu-

pancy

Traffic redirection N/A Path adaptation

(2008)

ANAR [86] Channel status Traffic redirection Implicit Path adaptation

(2008)

Congestion

avoidance and

fairness [77]

Queue occu-

pancy

Traffic redirection

& Hop-by-hop

traffic control

Implicit or

Explicit

Path adaptation

(2008)

Traffic aware

MAC [12]

Queue occu-

pancy

Duty cycle adapta-

tion (requires node

syncronisation)

Explicit Dynamic duty

cycle (2008)
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Dynamic duty

cycle and adapt-

ive contention

window based

QoS MAC [13]

Successful over

failed packet

ratio

Duty cycle adapta-

tion (requires node

syncronisation) &

traffic control

N/A Dynamic duty

cycle (2008)

TA-MAC [14] N/A Duty cycle adapta-

tion (requires node

syncronisation)

Implicit Dynamic duty

cycle (2008)

Inverting wire-

less collision [44]

N/A Start and stop

transmission time

at neighbour nodes

Implicit Collision avoid-

ance (2009)

FACC [64] Channel status Hop-by-hop traffic

control

Implicit Rate adaptation

(2009)

UHCC [65] Queue occu-

pancy & Channel

status

Hop-by-hop traffic

control

Implicit Rate adaptation

(2009)

LACAS [66] N/A Learning automata

traffic control

N/A Rate adaptation

(2009)

Extended-

DCCP [87]

Packet loss

similar to FAST-

TCP

End-to-end AIMD

traffic control

Explicit Rate adaptation

(2009)

CADA [68] Queue occu-

pancy & Channel

status

Hop-by-hop traffic

control

Implicit Rate adaptation

(2009)

LVCC [69] Queue occu-

pancy

Hop-by-hop traffic

control

Implicit Rate adaptation

(2009)

TALONet [78] Queue occu-

pancy

Traffic redirection

& traffic control

N/A Path adaptation

(2009)

GMCAR [79] Queue occu-

pancy

Traffic redirection N/A Path adaptation

(2009)

IBPS [45] N/A Transmission back-

off at the nodes in-

terfering with the

sender

Explicit Collision avoid-

ance (2010)

DCLA [15] Queue occu-

pancy & Channel

status

Duty cycle adapta-

tion (requires node

syncronisation)

Implicit

(congestion

informa-

tion) &

Explicit

(DC

adaptation)

Dynamic duty

cycle (2010)

ADCC [16] Packet service

time

Duty cycle adapta-

tion & traffic con-

trol

Explicit Dynamic duty

cycle (2010)

BEAM [17] Channel status Duty cycle adapta-

tion

Implicit Dynamic duty

cycle (2010)
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Figure 2.3: Percentage of the overall congestion research field over the years for
the different categories

DAIPAS [80] Queue occu-

pancy

Traffic redirection N/A Path adaptation

(2011)

ADC-

SMAC [81]

Channel status &

sleeping delay

Duty cycle adapta-

tion

Implicit Dynamic duty

cycle (2011)

DSR [82] Residual energy Duty cycle adapta-

tion

N/A Dynamic duty

cycle (2011)

According to the scheme categorisation proposed in subsection 2.3.1, Table 2.2

describes how many schemes and from which category were suggested during the

last years. In addition, Figure 2.3 represents the percentage of the number of

different categories schemes over the total schemes proposed. Further studying

the above table, it can be observed that rate adaptation schemes were the most

popular choice for congestion control within the WSN research community. It is

also noticeable that overall, the number of rate adaptation schemes proposed by

WSN research community is approximately double from the second most popular

category which is the path adaptation schemes.

Moreover, there was no dynamic duty cycle protocols proposed before 2007.

Additionally, based on Figure 2.3 dynamic duty cycle schemes have attracted lots

of attention from the WSN community since their appearance with significantly

higher numbers of schemes developed in the late years compared to the rest of the

categories.
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Table 2.2: Congestion control categories over the years

Categories 2003 2004 2005 2006 2007 2008 2009 2010 2011 Total

Collision Avoidance 0 3 2 0 3 0 1 1 0 10

Rate Adaptation 2 2 4 3 5 3 6 0 0 25

Path Adaptation 1 1 1 1 2 4 2 0 1 13

Dynamic Duty Cycle 0 0 0 0 2 3 0 3 2 10

Total 3 6 7 4 12 10 9 4 3 58

In fusion [47], authors suggested that queue occupancy is sufficient for CD.

On the contrary, others [60, 65, 68] suggest that queue occupancy is not suffi-

cient.Table 2.3 demonstrates the use of various CD mechanisms through the years.

Based on the above table, it is easy to conclude that measuring the queue is the

most common approach for CD in WSN and it is used by the majority of CC

schemes.

Table 2.4 demonstrates which CD mechanisms are used by the different CC

scheme categories. Through this table, it is visible that the majority of rate

adaptation and path adaptation schemes use the queue occupancy in order to

detect congestion. On the contrary, collision detection schemes mainly use the

transmission status as a congestion indicator. This is expected since collisions

and the hiden-terminal problem (collision at the receiver) are usually the reason

behind failed transmission in WSN (failed packet transmissions can also be caused

due to corrupted data or link failure but these are not related to congestion). It

is also observed that all of the CD mechanisms have been used in the design of

dynamic duty cycle schemes.
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Table 2.3: Congestion detection mechanisms over the years

Congestion Detec-

tion Mechanism

2003 2004 2005 2006 2007 2008 2009 2010 2011 Total

Queue Occupancy 2 2 4 4 6 5 5 1 1 30

Channel Status 1 1 1 1 3 1 3 3 1 15

Failed Transmissions 1 3 1 0 5 1 1 0 0 12

Inter Packet Arrival

Over Service Time

0 0 2 0 1 2 0 1 0 6

Energy 0 0 1 0 0 0 0 0 1 2

N/A 0 0 1 0 0 1 1 1 0 4

Table 2.4: Congestion detection mechanisms for the different CD categories

Collision

Avoidance

Rate Adaptation Path Adaptation Dynamic

Duty Cycle

Queue Occupancy 0 18 9 3

Channel Status 1 5 5 4

Failed Transmissions 7 3 1 1

Inter Packet Arrival

Over Service Time

0 4 1 1

Energy 1 0 0 1

N/A 1 2 0 1

Studying Table 2.5 and Table 2.6, it is clear that ICN is the most preferred

method for congestion knowledge sharing between the nodes. As mentioned pre-

viously, with ICN the information is encapsulated in the data packets and thus no

additional overhead is inserted in the network. During congestion, the network is

heavily loaded; therefore avoiding any extra packet transmissions and successfully

sharing the information is the ideal solution. This can easily explain why ICN is

the most preferred approach for congestion sharing by the CC schemes.

Table 2.5: Congestion sharing approaches over the years

Congestion Notifica-

tion

2003 2004 2005 2006 2007 2008 2009 2010 2011 Total

Explicit 2 1 1 0 7 5 1 0 0 17

Implicit 0 3 3 4 3 4 5 2 1 25

N/A 1 2 3 0 2 2 3 2 2 17
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Table 2.6: Congestion sharing approaches for the different categories

Congestion Notifica-

tion

Collision

Avoidance

Rate Adaptation Path Adaptation Dynamic

Duty Cycle

Explicit 2 11 3 1

Implicit 3 13 4 1

N/A 5 1 7 2

Over all, there is no ideal CD, CA and CN approach. Based on the networks

traffic patterns various combinations of CC mechanisms may demonstrate different

results. In order to explain the above statement lets assume the following two

scenarios:

1. an end-to-end approach will demonstrate better results by using ECN for

CN and rate or path adaptation for CA since the source is directly commu-

nicating with the sink and there is no need for a high degree of congestion

information at the intermediate nodes.

2. a hop-by-hop approach that tries to mitigate or eliminate congestion can

save lots of bandwidth combined with ICN instead of ECN.

2.5 Summary and Discussions

Subsection 2.2.1,and subsection 2.2.2 describe the importance of IP in WSN. Ob-

viously IPv6 over 6LoWPAN has received lots of attention from researchers since

architectures such as the above are of great importance for the interconnection of

every device to the Internet (Internet of Things). Additionally new routing proto-

cols are tailored in the specific needs and characteristics of WSN. Subsection 2.2.3

describes the importance of new routing protocols for WSN. Subsection 2.2.4 in-

troduces the duty cycle algorithms and describes how vital these algorithms are for

the operation and lifetime of a sensor network. Through the rest of this review the

importance of congestion control in sensor networks is demonstrated. Numerous

approaches are attempting to solve the problem of congestion in all of its forms

(collision, buffer overflow). One of the most common approaches for congestion

control is the traffic or rate control while different approaches that attempt to

eliminate collision or diverge the traffic from the congestion hot-spots have also

attracted lots of attention from the researchers. More recently, new methods that
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adapt a nodes duty cycle in order to confront congestion have been introduced. It

is also observed that these approaches are becoming the focus of the WSN research

community. A new categorisation of the existing congestion control schemes based

on the congestion avoidance mechanisms incorporated by each protocol has been

introduced in section 2.3. Details about the existing congestion control schemes

for WSN can be found in section 2.4 while a summarisation of them is presented

in Table 2.1. Table 2.6, Table 2.5, Table 2.4, Table 2.3 and Table 2.2. These tables

analyse in detail the mechanisms incorporated by each congestion control scheme

as well as the focus and direction of the research community in the past years.

Collision avoidance is very important for congestion control to combat the

adverse effects of hidden terminals and collisions. Schemes focusing on collision

avoidance, usually attempt to minimise simultaneous transmissions between inter-

fering nodes. In order to achieve this, numerous mechanisms such as backing-off

in time or in space have been proposed. In the former, nodes adapt their trans-

mission windows and retransmit packets after random intervals when a collision is

detected. The latter attempts to reduce interference between nodes by reducing

the transmission range at the nodes. Reducing the frequency of radio collisions

does not necessarily mean that the congestion problem has been fully resolved.

Congestion can still occur, since the local fairness achieved by CSMA and collision

avoidance protocols contributes to potential buffer overflows.

Rate adaptation approaches have received lots of attention for the confront-

ation of congestion. In general, sources know an explicit rate at which they can

send. The rate may be given to the source during a negotiation phase or be

specific to the application. End-to-end rate adaptation schemes usually attempt

to dynamically impose the transmission rate based on the congestion state at

the network. Alternatively, some rate adaptation approaches attempt to mitigate

congestion from the intermediate nodes towards the sources. These schemes are

usually piggyback in hop-by-hop fashion the congestion information and adapt

the transmission rates at the MAC layer. Rate adaptation schemes can confront

congestion but don’t always eliminate it with success.

Architects of path adaptation schemes, believe that reducing the traffic during

congestion is undesirable since it can violate fidelity requirements. This has led

to the development of protocols able to increase the capacity of the network by

utilizing a greater number of resources. Taking advantage of the nature of WSN

and their usually dense deployment, path adaptation schemes are calculating nu-

merous paths between the sources and the destination. When congestion occurs,

the traffic is redirected towards an alternative path and thus congestion is confron-

ted without any traffic reduction. These schemes usually calculate the alternative

paths in advance and thus the lossy link nature of WSN may lead to undesirable
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behaviors or frequent recalculation of alternative paths and therefore unnecessary

energy consumption. Moreover, these algorithms are usually tailored for specific

traffic characteristics and thus their functionality over IPv6 sensor networks with

diverse traffic patterns is uncertain.

Self powered WSN usually use a duty cycle algorithm in order to preserve

energy and extend its lifetime (it is not realistic to assume that a self powered

sensor network operates without a duty cycle algorithm). When congestion is

detected, dynamic duty cycle schemes will increase the networks bandwidth by

increasing the amount of time a node spends in the up state (during the up state

a node has its radio transceiver on). The majority of these protocols require node

synchronisation for the duty cycles reconfiguration.

In literature, there are a plethora of schemes, mechanisms and approaches for

the confrontation of congestion. Even though there is a vast amount of research

in the field of congestion, the majority of the existing congestion control schemes

have not considered carefully the existence of an underlying duty cycle algorithm

in the network (except the dynamic duty cycle protocols). Additionally, most of

the existing protocols are tailored in the needs of semi-closed protocol stacks.

Both duty cycling and IP architectures for sensor networks are becoming increas-

ingly popular amongst the WSN research community. This, combined with the

inadequate performance of TCP in WSN has lead to the need of new duty cycle

aware congestion control protocols tailored in the unique characteristics of IP and

6LoWPAN.



Chapter 3

Experimental Setup and

Empirical Practice

3.1 Introduction

This chapter presents a comprehensive analysis of the experimental setup and

methodology used during the experiments. The Contiki OS, an open source op-

erating system for the Internet of things will be described in section 3.2 while

Cooja a network simulator for Contiki OS will be presented in section 3.3. IEEE

802.15.4 has become the standard of choice for low-rate wireless personal area net-

works (LR-WPANs) and used by the majority of the nowadays sensor networks.

802.15.4 and related physical layer and MAC specifications will be discussed in sec-

tion 3.5. Radio duty cycle has attracted lots of attention by the WSN research

community. Additionaly, understanding RDC’s importance and applicability is

vital for this thesis. Radio duty cycle and related algorithms implemented in

Contiki OS will be described in detail in section 3.6. In order to apply the In-

ternet Protocol to small devices with limited processing capabilities, 6LoWPAN

has been introduced. Therefore, 6loWPAN constitutes an important role towards

the Internet of things. 6LoWPAN will be discussed in section 3.7. uIP (micro

IP) stack and related IP stacks for microcontrollers will be summarised in sec-

tion 3.8 while Routing for Low Power and Lossy Networks (RPL) is discussed

in section 3.9. Experiences on how to set up a real hardware test-bed and the

methodology used for the experiments in this thesis will be explained in detail

in section 3.10. Moreover, in order to implement a fully functional testbed, it is

very important to collect the necessary data and store them in an easy to process

format. Finally, the nodes and the data collection server should be able to adapt

to various network parameters such as source rates and traffic patterns in order to

avoid frequent reconfiguration of the nodes; which in turn can lead to wasted time

62
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and inconsistencies between the experiments. Details about the data collection

server, the sensor applications and how auto network configuration was performed

will be described in detail during section 3.11.

3.2 Contiki Operating System

Contiki is a highly portable multitasking computer operating system developed

for use on networked embedded systems and wireless sensor networks and it is

designed for microcontrollers with small amounts of memory. In general, the

Contiki OS allows small devices such as wireless sensors to communicate with the

Internet and each other with very low energy consumption. The main innovation

of Contiki, is it’s ability to allow resource-constrained systems to communicate

using Internet protocol (IPv4 and IPv6). Contiki provides a built-in TCP/IP

stack. Even though, a typical configuration of Contiki OS can be as small as

2 kilobytes of RAM and 40 kilobytes of ROM. The Contiki team currently has

members from Cisco, Redwire LLC, SAP, SICS, and other [24, 25, 26, 27].

The contiki OS, uses multiple communication stacks such as Rime and uIP/uIP6.

It is a lightweight communication stack designed for low-power radios. Rime

provides a wide range of communication primitives, from best-effort local area

broadcast, to reliable multi-hop bulk data flooding [88, 89, 90]. The uIP embed-

ded IP stack [91, 92, 93, 94] is currently used by hundreds of companies in systems

such as freighter ships, satellites and oil drilling equipment and it is recognised by

popular network scanning tools such as nmap and Wireshark. More details about

the uIP is going to be presented in section 3.8.

Contiki, also uses an intuitive way of controlling multiple tasks through pro-

tothreads. Protothreads are a novel programming abstraction that provide a con-

ditional blocking wait statement which intends to simplify event-driven program-

ming for memory-constrained embedded systems [95]. Nowadays protothreads are

used in many different places such as TV decoders, wireless vibration sensors and

even games.

As of the time this thesis was written, the latest commercial version of Contiki

OS was the 2.5 release. During this study, the latest version of Contiki OS (fre-

quently updated with the latest changes through Git); was used for the simulation

and test-bed experiments.

3.2.1 Contiki Structure

Figure 3.1 demonstrates the structure of Contiki OS. In Contiki, applications and

platform specific drivers can be developed independent of the core components.
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Figure 3.1: Structure of Contiki

Being designed this way Contiki is highly portable since various sensor and embed-

ded system manufacturers can port their hardware independently of each other.

Contiki also allows for communication between different hardware devices. Sim-

ilarly to the drivers, applications are not part of the core and thus various nodes

in the same network can incorporate different applications and communicate with

each other at the same time.

The Contiki Core host the network, MAC and RDC layers as shown in Fig-

ure 3.2.

As mentioned earlier in this Chapter, Contiki uses multiple communication

stacks. A detailed representation of the communication stacks as well as the rout-

Core

Network

MAC

Radio Duty Cycle

Figure 3.2: The Contiki core
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Figure 3.3: Networking in Contiki

ing and compression protocols in Contiki can be found in Figure 3.3. Contiki

can be configured to use Rime, uIP or a combination thereof. An example of a

combined use of Rime with uIP is a network configuration with IPv4. To be more

precise, IPv4 in Contiki uses a mesh-under configuration in order to achieve mesh

routing and route discovery [89]. This is done by the Rime communication stack.

On the contrary, IPv6 in Contiki uses a route-over configuration. Therefore, in

uIP6 routing is handled by RPL: Routing Protocol for LLNs (currently only RPL

protocol is implemented for IPv6 routing in Contiki). Additionally, header com-

pression is provided by the 6LoWPAN module. The uIP and rime communication

stack is going to be analysed in detail in section 3.8. RPL routing protocol and the

6LoWPAN module will be summarised in section 3.9 and section 3.7 respectively.

Figure 3.4 shows the structure of the MAC and RDC layer in Contiki as well

as the existing protocol implementations in these network layers. In some OS for

sensor networks such as Tiny OS, the MAC layer includes both the MAC and

the radio duty cycling algorithms. In Contiki OS the RDC algorithms have been

separated from the MAC (implemented as a different network layer) in order to

increase the configuration flexibility. For example, CSMA MAC can be configured

either with or without a duty cycle algorithm with no changes in the protocol or

any need of alternative implementations of the same algorithm. Currently, Contiki
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Figure 3.4: MAC and RDC layers in Contiki

can be configured with CSMA, TDMA, CTDMA (same as TDMA implementation

but uses different timers) or NullMAC as its MAC layer and LPP, X-MAC, CX-

MAC (same as X-MAC implementation but uses different timers), ContikiMAC or

NullRDC. The protocols mentioned above will be described in detail in section 3.6.

The complete Contiki uIP6 network stack is presented in Figure 3.5

Upper Layers
Network

MAC
RDC

Link Layer

6LoWPAN
(adaptation layer)

Figure 3.5: Contiki with uIP6 network stack
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3.2.2 Why Contiki?

There are many alternative OS’s to Contiki for sensor networks. The unique

characteristics of Contiki and thus the reason behind the choice of this OS for the

evaluation of the proposed algorithms, follows [96]:

• Contiki is an open source operating system.

• Out of the box data collection: Contiki has tools that allows the user to

monitor the data collection in real time through a GUI.

• Extensive simulator support: Contiki has a full featured simulator suite

that allows rapid testing of software for functional correctness (The same

codes used for simulations can be transferred to hardware devices without

code modifications).

• Good support: Contiki OS currently supports over 25 platform ports. Addi-

tionally, the OS is well documented and developers can get in touch directly

through a mailing list and more recently an IRC channel.

• Contiki networking: Contiki has the first and smallest IPv6 compatible net-

work stack and allows easy access and direct modifications to the network

stack.

• Coffee Filesystem: a simple and easy to use filesystem that allows a user to

store data without worrying about underlying problems.

• Power profiling: Contiki allows the user to monitor the energy usage with

the energest library that can easily be extended based on the user needs.

• Extremely low power consumption: When Contiki is configured to duty cycle

with ContikiMAC, nodes can achieve up to 99% lower energy consumption

than non duty cycle configurations.

• Simple and straightforward: Contiki is written in simple and straight C99

(C programming language standard).

• Contiki Protothreads: Contiki uses the most intuitive way of controlling mul-

tiple tasks through protothreads, a very lightweight form of POSIX inspired

threading [97, 98].
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Figure 3.6: COOJA can simulate at several levels [2]

3.3 COOJA Simulator

Software development for sensor networks can be simplified when the developer

uses tools such as network simulators. With network simulators, developers can

study the system behavior and observe interactions in controlled environment [99,

100, 101, 102, 103]. The majority of existing network simulators for WSN, perform

simulations either at the operating system or hardware level. The level at which

the simulation is performed can affect both the software development and the

execution efficiency of the simulator. In general, hardware level simulators can

produce more accurate results and informations about the low-level software such

as device drivers but at the price of longer simulation times and code complexity.

On the contrary, a high-level simulator can provide short simulation times but

does not provide any hardware level information.

COOJA is a network simulator for Contiki that enables cross-level simulation:

simultaneous simulation at many levels of the system [104, 2]. Figure 3.6 demon-

strates the operation levels (can individually or simultaneously simulate nodes of

application, operating system or machine code level) of the COOJA simulator

compared to other simulators.

COOJA is implemented in Java and thus it is very easy for the users to extend

it, while it allows sensor node software to be written in C by using the Java

Native Interface (JNI). Furthermore, COOJA is flexible and allows many parts

of the simulator to be replaced with ease. This way users may develop their own

modules such as visualiser plugins and radio modules in order to enhance COOJA

and achieve the additional functionality required.

Moreover, COOJA simulates networks of sensor nodes where each node can

be of a different type; both in on-board software and in the simulated hardware.
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Figure 3.7: Example of various level nodes in COOJA [2]

All nodes simulated by COOJA have 3 basic properties: data memory, node type

and hardware peripherals. Since COOJA is a cross-layer simulator, nodes can be

simulated at multiple layers. Therefore, COOJA supports three different categor-

ies of nodes: Application or java nodes, native or OS level nodes and emulated or

machine code nodes. An example of how COOJA can simulate various level nodes

can be seen in Figure 3.7.

The three different categories of simulated nodes and their different pros and

cons are listed below:

Application or java nodes: much faster simulations, can not implement de-

ployable code.

Native or OS level nodes: more efficient than application nodes, can simulate

deployable code.

Emulated or machine code nodes: provide more fine-grained details compared

to the other categories but much slower simulation times.

All in all, COOJA is a very useful network simulator and it is recommended

for testing sensor network applications written for Contiki. The users can simulate

nodes in various layers including hardware and produce fine-grained details about

their algorithms.

3.4 Sensinode and the CC2431 System-on-Chip

The devices used for the implementation of our testbed was N601 Nanorouter

USB and N740 Nanosensor from Sensinode [105]. An image of N601 and N740
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Figure 3.8: N601 Nanorouter USB and N740 Nanosensor from Sensinode

sensinode devices can be seen in Figure 3.8. These devices are equipped with the

Texas Instruments cc2431 System-on-Chip (SoC). The CC2431 System-on-Chip

(SoC) solution is specifically tailored for IEEE 802.15.4 and ZigBee applications.

In Sensinode devices, the CC2431 SoC has the following characteristics:

• CC2431 consists of a CC2430 SoC plus a location engine.

• Intel 8051 mcu (CC2430 consists of a CC2420 and a 8051 mcu)

• 2.4 GHz IEEE 802.15.4 compliant RF transceiver (cc2420)

• 128 KB flash, 8KB RAM

The CC2430 is highly suited for systems where ultra low power consumption

is required. This is ensured by various operating modes. Short transition times

between operating modes further ensure low power consumption [106].

3.4.1 8051 CPU and it’s Memory

This section is very important because it explains how Sensinode devices operate

and how the memory in these devices work.

CC2430 includes an 8-bit CPU core which is an enhanced version of the in-

dustry standard 8051 core. The enhanced 8051 execute instructions faster than

the standard 8051 due to:

• The use of only one clock cycle per instruction (CPI) cycle compared to the

12 CPI used by the standard 8051.

• Elimination of wasted bus states
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• Instruction cycles are aligned with memory fetch when possible and thus

single byte instructions are performed in a single clock cycle.

8051 CPU architecture has four different memory spaces. The 8051 has sep-

arate memory spaces for program memory and data memory. Even though the

four memory spaces are distinct in the 8051 architecture, in CC2430 are partially

overlapping in order to ease DMA transfers and hardware debugger operation.

The Physical memory in CC2430 and the information stored in each part of

the physical memory are:

• Flash: Program code and const data.

• Static RAM - (S)RAM : Data memory.

• Special Function Registers (SFR): Hardware control.

• Flash Information Page (Info Page): Device information and configuration.

• XREG: Additional registers.

The CC2430 memory spaces and an explanation of their mapping to physical

ram is described in Table 3.1, while a detailed explanation of them follows [107]:

• CODE: Read-only program memory. Can address 64KB. This memory

space maps the flash.

• DATA: Fast access (single instruction), read/write data memory. Addresses

256 Bytes. Maps the SRAM.

- The lower 128 bytes of DATA can be addressed either directly or indirectly.

- The upper 128 bytes of DATA can be addressed only indirectly.

• SFR: Read/Write register memory, directly accessible by a single CPU in-

struction. Addresses 128 bytes.

- SFR registers whose address is divisible by eight are also bit-addressable.

- XREGs are NOT mapped in SFR (which is why they are not called SFRs).

• XDATA: Slow access (usually 4-5 instruction cycles), 16-bit wide, read/write

data memory. XDATA addresses the entire RAM (including the parts ad-

dressed by DATA). It also addresses SFRs, parts of the flash, RF registers,

XREGs. On the cc2530, XDATA also maps the Info Page.
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Table 3.1: CC2430 Mapping between physical memory and hardware memory
spaces

8051 Memory Spaces Physical Memory

XDATA SRAM, SFR, RFR, XREG, Flash,
Info. Page

DATA SRAM
CODE Flash
SFR SFR

64KB

CODE

Memory Space 32KB

HOME/CSEG

32KB

Bank 1

32KB

Bank 2

32KB

Bank 3

HOME/CSEG

Bank 1 - 3

8051 CODE 

memory space

CC2430-F128 

CODE memory 

space

128KB Flash

Physical memory

Figure 3.9: CC2430 CODE memory space
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Figure 3.9 and Figure 3.10 detailed illustrate how CODE and XDATA memory

spaces are mapped in the physical memory.

In particular, DATA memory space is very important for the understanding

of crucial modifications made in Contiki during this work. To be more precise,

DATA hosts bit variables, R0-R7 register banks and variables placed there by the

developer. What remains of DATA memory space will be the stack. Thus, the

absolute theoretical maximum stack depth is 256 bytes, assuming nothing else

resides in DATA. Contiki’s 8051-based ports leave 223 bytes for the stack. Based

on the above it is easy to conclude that a protocol developer that uses Contiki and

8051 based ports such as the CC2431 has very limited amount of stack and it is very

likely to experience node crashes or even non functional nodes. More details about

stack optimisations and necessary changes to Contikis codes for the functionality

of the proposed mechanisms in this thesis can be found in Appendix D.

3.5 IEEE 802.15.4

IEEE 802.15.4 is a standard which specifies the physical layer and media access

control for low-rate wireless personal area networks (LR-WPANs). The protocol

stack can be seen in Figure 3.11. 802.15.4 intends to offer the fundamental lower

network layers of a type of wireless personal area network (WPAN) which focuses

on low-cost, low-speed ubiquitous communication between devices (in contrast
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Figure 3.11: IEEE 802.15.4 protocol stack [3]

with other, more end user-oriented approaches, such as Wi-Fi). The emphasis

is on very low cost communication of nearby devices with little or no underlying

infrastructure, so that an even lower power consumption can be achieved [18, 19].

IEEE 802.15.4 networks are divided into PANs. Each PAN has a PAN co-

ordinator and a set of PAN members. Packets sent over a PAN carry a 16-bit

PAN identifier that specifies to what PAN the packet is destined. A device can

participate in a PAN as a coordinator and simultaneously be a member in another

PAN.

Each 802.15.4 node has a 64-bit address that uniquely identifies the device

(OUI: organisation unique identifiers). 802.15.4 networks have limited packets,

therefore the length of 64-bit addresses is prohibitive. For this reason, 802.15.4

allows nodes to use short addresses of 16 bits long. Long addresses are globally

unique and each 802.15.4 device is assigned an address when manufactured. Short

addresses are assigned at runtime by the PAN coordinator. A short address is valid
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only within the PAN in which it was assigned. It is also possible that devices can

communicate with devices outside the PAN by using short addresses. This can

be achieved by including 16-bit PAN identifiers, of both its own and the receiver

devices PAN in the message.

The basic framework conceives a 10-meter communications area with a transfer

rate of 250 kbit/s. Through the definition of multiple physical layers, embedded

devices with lower power requirements can be benefited. Initially, the 802.15.4

transfer rates were defined between 20 and 40 kbit/s. In the current revision,

another 100 kbit/s of rate has been added [3, 108].

Even lower rates can be considered with the resulting effect on power con-

sumption. As already mentioned, the main identifying feature of 802.15.4 among

WPAN’s is the importance of achieving extremely low manufacturing and opera-

tion costs and technological simplicity, without sacrificing flexibility or generality.

Important features include real-time suitability by reservation of guaranteed

time slots, collision avoidance through CSMA/CA and integrated support for se-

cure communications. Devices also include power management functions such as

link quality (LQI) and energy detection.

Although the definition of the network layers is based on the OSI model; only

the lower layers are defined in the standard. In order to interact with upper layers

an IEEE 802.2 logical link control sublayer that accesses the MAC through a

convergence sublayer must be used [20, 21].

3.6 Radio Duty Cycle

In general, it is believed that packet transmissions (TX) consume more energy

than packet reception (RX) or radio idle listen (lots of the previous works, only

measure TX and sometimes RX for the calculation of energy consumption). This

assumption is incorrect since radio RX and idle listening consume as much energy

as radio TX. Therefore, if the sensor network is not configured with a duty cycle

algorithm, the energy consumption of idle nodes will be similar to the one of the

active nodes.

In order to justify the above statements, I further investigated the energy

consumption of Sensinode (CC2430 SoC; used for the test-bed experiments) and

Tmotesky (CC2420 Radio transceiver; used for the simulation experiments) nodes.

The former architecture [106], has an electrical current of:

Radio RX/Idle listen: 19.2 mA

Radio TX: 19.4 mA



CHAPTER 3. EXPERIMENTAL SETUP AND EMPIRICAL PRACTICE 76

and average electrical potential difference (Voltage) of 3. This in turn means that

the power consumption for Sensinode will be:

Radio RX/Idle listen: 0.0576 Watt

Radio TX: 0.0582 Watt

therefore the energy consumption of Sensinode is:

Radio RX/Idle listen: 0.0576 Joule for every second in this state.

Radio TX: 0.0582 Joule for every second in this state.

The later architecture [109], has an electrical current of:

Radio RX/Idle listen: 19.7 mA

Radio TX: 17.4 mA

and average electrical potential difference (Voltage) of 2.85. This in turn means

that the power consumption for Tmotesky will be:

radio RX/Idle listen: 0.056145 Watt

radio TX: 0.04959 Watt

therefore the energy consumption of Tmotesky is:

radio RX/Idle listen: 0.056145 Joule for every second in this state.

radio TX: 0.04959 Joule for every second in this state.

According to the above calculations, it is clear that the energy consumption is

similar for the radio states of TX and RX/idle-listen. In some cases such as the

Tmotesky nodes, radio RX/idle-listen had noticeably higher energy consumption.

Consequently, a sensor network may have a significant waste of energy during idle

operation. During the last years, in order to prolong the networks life-time, signi-

ficant efforts has been made for the development of duty cycling MAC protocols.

With radio duty cycling, nodes will turn off their transceivers for long periods of

time in order to minimise idle listening [6]. The majority of the existing DC MACs

use a synchronisation algorithm, in order to turn on their radios almost simultan-

eously, exchange data and go back to sleep mode. A smaller part of DC MACs

such as ContikiMAC, are using continuous packet transmissions in order achieve

communication between nodes without the operation of a node synchronisation

algorithm. These protocols will be described in detail in subsection 3.6.1.
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Figure 3.12: an example of a 20% duty cycle

In literature, duty cycle is the time that an entity spends in an active state as

a fraction of the total time under consideration [110, 111, 112].

In sensor nodes, a 20% duty cycle means the radio transceiver is on for 20%

and off for 80% of the time. The on time for a 20% duty cycle could be a fraction

of mseconds, seconds, or even days depending on how long the device’s period

is. Hence one period is the length of time it takes for the device to go through a

complete on/off cycle [113]. Figure 3.12 demonstrates 20% duty cycle.

In a periodic event, the duty cycle is the ratio of the duration of the event to

the total period of a signal [114]:

D =
τ

T
(3.1)

were:

D is the duty cycle.

τ is the duration that the function is active.

T is the period of the function.

Duty cycle algorithms can be divided in two categories:
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Asynchronous duty cycle achieves low-power operation by switching the radio

off most of the time and periodically switching it on for a short while. By

keeping the radio on for a short period, it is possible for nodes to detect

and receive traffic from neighbour nodes. Protocols tailored based on this

approach, need to send a train of strobes or packets. When the receiver

hears an incoming strobe or packet it keeps the radio on for the full packet

reception. Asynchronous duty cycle protocols are more simple and implicitly

synchronise themselves on every data transmission.

Synchronous duty cycle protocols are built on time synchronisation by expli-

citly synchronising themselves before sending any data packets can be with

the use of time synchronisation mesh protocols, WSNIP. Several methods

for time synchronisation exist [115, 116].

3.6.1 Radio Duty Cycle in Contiki

In Contiki, duty cycle is performed by the Radio Duty Cycling (RDC) layer. In

Contiki, the radio duty cycle is expressed as a function of the wake up frequency

called channel check rate (a channel check rate of 8 will result in 8 wake-ups a

second for each node). Contiki provides a set of RDC mechanisms, with vari-

ous properties such as: X-MAC, LPP, and ContikiMAC. All three duty cycle

protocols in Contiki are asynchronous. The default mechanism in Contiki is Con-

tikiMAC [117, 118].

Figure 3.13: Energy consumption of the individual ContikiMAC operations [4]
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Figure 3.14: The network radio duty cycle with ContikiMAC, averaged for all
nodes ta the network without path loss [4]

ContikiMAC [4] uses periodical wake-ups in order to listen for packet transmis-

sions from neighbour nodes. If a packet transmission is detected during a wake-up,

the receiver keeps the radio on to receive the packet. When a packet is received,

the receiver sends a radio acknowledgment. In each packet transmission, sender

is repeatedly sending the packet until an acknowledgment is received. Broadcast

packets doe not wait for link layer acknowledgments. Instead the transmitter node

will continuously send the packet for the whole wake-up interval. Additionally,

ContikiMAC uses a fast sleep optimisation, to allow receivers to quickly detect

false-positive wake-ups, and a transmission phase-lock optimisation, to allow run-

time optimisation of the energy-efficiency of transmissions. Furthermore, a power-

efficient wake-up mechanism that relies on precise timing between transmissions is

implemented in ContikiMAC. An inexpensive Clear Channel Assessment (CCA)

mechanism that uses the Received Signal Strentgh Indicator (RSSI) of the radio

transceiver to give an indication of radio activity on the channel is used for Con-

tikiMAC’s wake-up. If the RSSI is below a given threshold, the CCA returns

positive, indicating that the channel is clear and thus node returns to sleep mode.

If CCA returns negative, indicates that the channel is in use. Therefore the radio

remains on for the reception of the transmitted frame. Figure 3.13 shows the energy

consumption for the individual ContikiMAC operations. It is visible that wake-up



CHAPTER 3. EXPERIMENTAL SETUP AND EMPIRICAL PRACTICE 80

Figure 3.15: The network radio duty cycle with ContikiMAC, averaged for all
nodes in a network with path loss [4]

has the lowest energy cost. This can explain why ContikiMAC is designed to oper-

ate with frequent (many times per second) wake-ups and CCA checks. Figure 3.14

and Figure 3.15 demonstrate the radio duty cycle in ContikiMAC, averaged for

all nodes in the network for no-loss and with loss paths accordingly.

In X-MAC [8], before each packet transmission, nodes transmit short preambles

that contain the destination address. Periodically, a node will switch its radio on

and scan for incoming preambles. When a node is not included in a communication

(no preamble received or preamble is not destined for that node), it will immedi-

ately go back to sleep mode. When a node successfully receives a preamble, it will

reply with an early acknowledgment (ACK) and keep the radio listening in order

to receive the incoming packet. X-MAC assume that nodes will wake-up simul-

taneously after a fixed interval. Figure 3.16, demonstrates the radio duty cycle in

a data collection network with path loss for X-MAC and ContikiMAC.

R. Musaloiu-E et al. propose Koala: an Ultra-Low Power Data Retrieval in

Wireless Sensor Networks [9]. In this work a low power probing (LPP) tech-

nique has been proposed for duty cycling. Nodes will periodically broadcast short

packets (probes) requesting acknowledgments. When a node receives an acknow-

ledgment, it remains active and starts waking up other nodes by acknowledging

their probes. If a node does not receive an acknowledgment after transmitting the
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Figure 3.16: The radio duty cycle in a data collection network with path loss, with
X-MAC and ContikiMAC, as a function of the wake up frequency called channel
check rate [4]

probe packets, it will go immediately back to sleep.
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Figure 3.17: 6LoWPAN adaptation layer

3.7 6LoWPAN

In subsection 2.2.1 we discussed what are the advantages of integrating IP in sensor

nodes. However, to integrate IP in WSNs, several significant attributes must be

combined. WSNs are data centric while IP networks are address centric. The

main objective of 6lowPAN, proposed by IETF, is to integrate IPv6 in LoWPANs

supported by IEEE 802.15.4 [119, 120, 121, 122, 123].

IPv6’s MTU is 1280 bytes. IEEE 802.15.4 standard defines a packet size of 127

bytes. Out of the 127 bytes of 802.15.4, 25 are used by the MAC layer headers

and optionally 21 bytes are consumed for security by AES-CCM-128. In the worst

case this leaves 81 bytes for the IPv6 payload. After removing the size of an IPv6
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Figure 3.18: Layout of 6LoWPAN headers
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header (40 bytes) only 41 bytes are left. Additionally, the transport layer header

must be deducted from the remaining 41 bytes (8byte UDP header and 20 bytes

the TCP header). This would lead to a very short payload (33 bytes if UDP is

used and 21 bytes if TCP is used).

Based on the above, an adaptation layer is needed to comply with the IPv6

requirement to support a minimum MTU size of 1280 bytes as well as compression

techniques to reduce protocol overhead. RFCs 4919 [22] and 4944 [23], define the

functions included in 6LoWPAN. The 6LoWPAN adaptation layer provides three

main services:

• Packet size adaptation, fragmentation and reassembly in order to fragment

IPv6’s packets into 127 byte packets.

• Header compression. This feature allows the protocol to compress the 40

bytes of standard IPV6 to just 2 bytes.

• Link layer (layer 2) forwarding when multi-hop is used by the link layer.

In most cases, the use of efficient compression allows most applications to send

their data within a single IPv6 packet. Figure 3.17 demonstrates an IPv6 with

6LoWPAN protocol stack.

Similar to IPv6, the 6LoWPAN adaptation layer makes use of header stack-

ing (headers are added only when needed). Currently three type of headers are

supported by 6LoWPAN:

• A mesh addressing header.

• A fragment header.

• An IPv6 compression header.

These headers will appear in the above order when present. Figure 3.18 shows the

layout of 6LoWPAN headers.

3.8 uIP other IP Stacks for Embedded Systems

For many years, it was believed that IP was too complex and heavyweight to be us-

able in sensor nodes since the microcontrollers used by the sensors are constrained

in memory size and processing power. In general, an IP stack (in Linux) requires

at least one megabyte of memory. In contrast, sensor nodes typically have a few

kilobytes of memory [5, 124, 125].

uIP stack is an implementation of the IP stack specifically designed to meet

the memory requirements of sensor nodes and other embedded systems [126, 127].
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Figure 3.19: The memory footprint for uIP and other commercialy available IPv6
stacks [5]

uIP was first released in September 2001 under permissive open source license that

allows the software to be used freely in commercial and non-commercial systems.

Since its release, uIP has seen a significant adoption.

uIP has very low memory requirements of 1KB of RAM and a few KB of ROM

in its initial configuration. The initial configuration includes IP, ICMP, UDP

and TCP protocols. More specifically, uIP’s code size depends on the processor in

which the stack will be used. It is possible to further reduce the RAM requirements

but at expense of standard compliance. A uIP configuration can be as small as

100 bytes of RAM.

lwIP stack [126] is another implementation of IP for embedded systems. LwIP

is designed for slightly larger systems than the uIP stack and thus it has larger

memory requirements. A typical installation of lwIP stack requires 40KB of RAM

and 20KB of ROM. Even though lwIP has higher memory requirements than uIP

it can achieve higher performance.

uIP stack implements the network and transport layer protocols of the IP

protocol family such as: IP, ICMP, UDP and TCP. Additionally, uIP was the

first IP protocol stack for embedded systems to implement a fully compatible

with the standards TCP protocol. In 2008, Cisco Systems extended uIP with IPv6

capabilities. UIPv6 was the first stack to comply with all IPv6 requirements [128,

129].

Originaly, uIP was designed to be used either with or without an operating

system. Today many operating systems use uIP for IP communications. Contiki

OS uses uIP as its primary IP communication stack. FreeRTOS provides a choice

between uIP and lwIP while TinyOS uses uIP for IPv4 communications. Fig-
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ure 3.19 demonstrates a memory requirements comparison between the existing

commercial IP stacks for embedded systems.

The three main methods used by uIP for the reduction of code size are:

• an event-driven programming interface

• a simple buffer management scheme

• a memory efficient TCP implementation.

3.9 RPL: Routing Over Low Power and Lossy

Networks

As discussed in subsection 2.2.3, in 2008, the Internet Engineering Task Force

(IETF) formed a new group called ROLL (Routing Over Low-Power and Lossy

networks) in order to produce a set of routing requirements and determine whether

or not existing IETF routing protocols can satisfy these requirements. The working

group quickly converted on the fact that none of the existing routing protocols

would satisfy the fairly unique set of routing requirements for LLN. This led to

the design of the new emerging standard for routing in LLN named Routing for

Low Power and Lossy Networks (RPL). RPL [130, 131] is still a work in progress

and the IETF RFC [132] should be used as reference. Various aspects may change

or be added to the specification.

A lossy link is a link with significantly higher Bit Error Rates (BER) than

traditional Ethernet and optical links. Packet losses in lossy links are extremely

frequent, and links may even become totally unusable for quite some time for mul-

tiple reasons such as interference. This observation is one of the most important

factors in the design of protocols for lossy links. Knowing that link failures are

frequent and usually transient means that a routing protocol should not overreact

to network instabilities or try to stabilise under unstable conditions. Routing pro-

tocols designed for non lossy links can lead to routing instabilities and generate

significant amount of control traffic which is costly for the whole network [5].

A routing protocol designed for LLN must be able to determine whether or

not a link should be considered as down and consequently inadequate for traffic

forwarding. The same reasoning applies for the decision of whether the link is

usable or not. When a link is used for a communication, it must be observed

carefully in order to determine if it remains usable or not(link state may change

in LLN). Furthermore, since the resources are scarce the control traffic must be

tightly bounded for bandwidth and energy saving.

http://www.ietf.org/dyn/wg/charter/roll-charter.html
http://www.ietf.org/dyn/wg/charter/roll-charter.html
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As specified in [133, 134], RPL is a distance vector protocol that builds Des-

tination Oriented Directed Acyclic Graph (DODAG) where paths are constructed

from each node in the network towards the DODAG root (usually a sink or border

router node). There are numerous reasons behind the distance vector design of

RPL. The main reason is that link state routing protocols are more powerful and

thus they require a much greater amount of resources such as memory(routing

tables) and control traffic (synchronise the link state databases).

A DODAG is a set of vertices connected by directed edges with no directed

cycles. For each DODAG, RPL is forming a set of paths from each leaf node

towards the DODAG root. The routing paths within a DODAG are redundant

which is an important requirement for LLN. Therefore if the topology permits,

RPL may provide multiple paths between the leaf nodes and the DODAG root.

In each DODAG, one or more nodes can be configured as the root by the admin-

istrator. The node discovery mechanism in RPL use the newly defined ICMPv6

messages. RPL defines two new ICMPv6 messages called DODAG information

object (DIO) and destination advertisement object (DAO).

DIO messages are sent by nodes in order to advertise information about the

DODAG, along with other DODAG parameters such as path metrics. When

a node discovers multiple DODAG neighbours, it makes use of various rules to

decide whether to join the DODAG (currently in Contiki each node can participate

in only one DODAG). When a node joins a DODAG, it has a route towards the

DODAG root (up traffic; leaf nodes to sink).

In order to provide routing information in the down direction (sink to leaf

nodes), RPL uses the DAO messages. DAO messages are used to simply advertise

prefix reachability toward the leaf nodes. DAO messages, carry prefix information

as well as the lifetime of the message and the depth of the path or cost information

to determine how far the destination is.

Another type of message used by RPL is the DODAG information solicitation

message (DIS). DIS messages are similar to the IPv6 router solicitation (RS)

message; used to discover DODAGs in the neighbourhood and solicit DIO messages

from the RPL nodes in that neighbourhood. DIS messages have no additional body

(information).

The transmission of DIO and DAO messages in RPL is governed by the use of

trickle timers [135]. With Trickle, dynamic timers that govern the sending of RPL

control messages and attempt to reduce redundant messages are used as discussed

in the previous paragraphs. When a DODAG is unstable, RPL messages are sent

more frequently. On the contrary, as a DODAG stabilises RPL messages become

less frequent.

When RPL links fail, paths are repaired using the local and global repair
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mechanisms. The former, quickly finds a new backup path without an attempt to

globally optimise the whole DODAG. The later, rely on re-optimisation process

driven by the DODAG root.

In RPL, each node has a node rank which is determined through the objective

function (OF). RPL can be configured to operate with two OF:

1. Link quality level (LQL) is used as the global recorded metric and favors

paths with the minimum of low and fair quality links.

2. Distance between the leaf and the RPL root nodes.

Routing loops are always undesirable and one of the objectives of routing

protocols is to avoid the formation of loops whenever possible. RPL, does not

guarantee the absence of temporary loops; instead it tries to avoid loops by using

loop detection mechanism via data path validation. In order to avoid loops, RPL

follows two main rules:

1. A node is not allowed to select as a parent a node with higher rank than the

node’s rank+DAGMaxRankIncrease.

2. A node is not allowed to be greedy and attempt to move deeper in the

DODAG in order to increase the selection of DODAG parents.

Even with the two loop avoidance mechanisms stated earlier, loops may take

place in a number of circumstances such as lost DIO messages and failed attempts

to inform parents about lost paths through DAO messages. Potential ways to

solve this problems include the acknowledgment of DAO messages. Since loops

are hardly avoidable, loop detection mechanisms must be available. The loop

detection mechanism in RPL, piggybacks RPL data in the data packets by setting

flags in the packet header (the exact location where these flags are carried is not

yet defined). The idea behind the flags is to verify that the packets are making

forward progress in order to detect loops or DODAG inconsistencies [5].

3.9.1 RPL What Went Wrong?

In recent studies T. Clausen et al. has presented a critical evaluation of RPL rout-

ing protocol [136]. This evaluation provides an insight of the limits and weaknesses

of RPL.

The evaluation in [136], shows that DIO message generation/processing rules

and the trickle timers are straight forward and the state required at each RPL

router is minimal. On the contrary, the mechanism for DAO messages is less

elegant and thus problems include underspecifications such as:
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1. If a DAO message is not sent before the time of the previously sent DAO

expires, the routing entry will not be renewed and thus there is a high risk

of data traffic loss.

2. RPL does not specify any jitter between packet transmissions. Therefore if

DAOs sent periodically, adjacent routes may transmit DAO messages at the

same time which in turn lead to link layer collisions.

3. Non-storing mode calculate routes based on a “piece-wise calculation,”. This

approach relies on previous reception of DAOs from intermediate routes

along the path. Consequently, if some of these DAOs are not received;

route calculations is impossible and thus data traffic cannot be sent to the

destination.

Additionally to the above listed underspecifications, RPL suffers from rooting

loops. Authors in [136] has experimentally demonstrated that routing loops can

occur with the current implementations of RPL. Routing loops can occur in both

strong and non-storing mode. Even though loops can be detected during the

construction of the source-route, the only corrective measure that the DODAG

root can take is to trigger global repair and thus a complete rooting reboot in the

LLN.

In Contiki, only strong mode is implemented. Therefore the above observations

can occur during the experiments. To avoid this the network administrator should

always be aware of the routing state in the network. How this can be achieved

will be explained in section 3.10

3.10 Setting Up a Test-bed

The majority of experimental works on WSNs are based on results from simu-

lators. Network simulators may not always be reliable [137]. Furthermore, most

network simulators assume that the environment is ideal and only some of them

provide features for the simulation of real environmental parameters during the

simulations. This has led to the conclusion that real test-bed experiments are of

great importance for the evaluation of protocols under real environment. A test-

bed can be defined as:

“A controlled environment for experimentation and evaluation, with metrics

and benchmark content that allow comparison of tools and strategies”

A test-beds, can be deployed both indoors and outdoors. There are numerous

parameters that play an important role for this decision. These parameters can
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be the design of the nodes (e.g waterproof casing at the nodes), the season of the

year, the security in the area the sensors will be deployed (nodes can be stolen),

infrastructure in the test-bed area (power supply for laptops or nodes etcetera) or

even the duration of the experiment/measurements. Usually outdoor test-beds

demonstrate more stable behavior due to the reduced interference (people, elec-

tric machines, wifi etcetera). On the other hand, it is easier and more secure to

deploy an indoors testbed. In this work, due to the characteristics of the devices

and the environmental conditions the test-beds deployed for the evaluation of the

algorithms were indoors. The rest of this section describes the steps and pro-

cedures required for the successful deployment of indoor test-beds (The following

procedures were used every time we deployed a testbed).

Step 1: Pick the optimal location. Analysing the area that the test will be

deployed is very important since different dimension rooms, corridors, dis-

tance and objects (video devices such as satellite TV, microwave ovens or

even car alarms) can result in decay of the received signal strength which in

turn can cause link failures and routing path readjustments [138]. Therefore

the placement of the sensor nodes must be considered carefully. This can be

achieved by using some sensors to collect the LQI and RSSI values for each

packet transmitted over the different links. Based on the collected values

from the different node positions - distances; a decision for the placement of

the sensor nodes and the deployment of the test-bed can be made.

Step 2: Reduce the environmental interference. As mentioned previously,

the environment can dramatically affect the behaviour at each node. As

a result eliminating as many environmental variables as possible, such as

people interference can lead to more accurate measurements. Running the

sensor experiments during low peak times (not many people around) can

significantly help in attaining more consistent results between different ex-

periment runs. To explain how this can affect a testbed lets assume two

scenarios:

1. different positioning on the doors, which can potentially lead to the

creation of different routing paths (due to the changed RSSI/LQI and

thus depending on the OF of the routing protocol, node ranks can be

changed). Combining frequent changes in the environment such as

doors positioning with the a purposely unstable routing protocol such

as RPL, can lead to confusing results (3 hops away node may re-pick a

parent and end up 2 hops away) and thus significant delay in the eval-

uation of algorithms or even discarding of hours of experiment results.
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2. 802.11 Wifi access points are installed in every building nowadays. Wifi

operates in the same radio frequency (2.4 GHz) as the 802.15.4 used

by the sensors. When wifi activity is high, 802.15.4 performance can

significantly be affected (in some cases nodes can become totally unable

to communicate with each other).

Step 3: Reduce the wifi interference. If the area that the test-bed will be

deployed incorporates wifi access points, potential interference with the

802.15.4 sensors may lead to undesirable behaviours or even impossibility to

conduct experiments. In such cases, it will be wise to configure the 802.15.4

sensors with a non overlapping channel. Figure 3.20 shows the 26 802.15.4

channels and which channels overlap with the 802.11. Therefore, 802.15.4

channels 25 and 26 are usually the most popular choice for the configuration

of 802.15.4 devices. This in turn may lead to potential interference from

other 802.15.4 devices in the area and thus similar problems may occur dur-

ing the experiments. Based on the above, in order to configure the 802.15.4

devices with a low-interference channel, a complete knowledge of the status

in every 802.15.4 channel is required. This knowledge can be achieved with

the use of an energy scan. Energy scan is usually one device that periodically

scans every 802.15.4 channel and then returns the energy detected from the

radio in every channel (this can be achieved by measuring the RSSI values).

More details about the energy scan can be found in Appendix B. During our

experiments, a sensor was configured as the energy scan in order to ensure

that there wasn’t any interference at the testbed from outside devices.

Step 4: What is the optimal data collection method? Collecting the desired

data in a test-bed is not as easy and straightforward as it is in network simu-

lators. Usually in a test-bed, the majority of nodes are not directly connected

to devices such as PCs and thus collection of data from the sensors becomes

harder. In order to collect data in WSN methods such as storing of the data

in external flash or through network packets are used. When the data are

stored in external flash, nodes have to be collected for the retrieval of the

information (or requested through the network). On the other hand, when

nodes periodically transmit their data through network, the base station

will receive and process the information. Since data collection constitutes

one of the most significant parts of the test-bed and redeploying a test-bed

is time-consuming and hard, the network architects must carefully consider

what network data are required for their evaluation. Likewise, the sensor

applications must be adjusted to successfully collect and deliver the data to

the base station.
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Figure 3.20: The 26 defined by the IEEE 802.15.4 channels and how they overlap
with 802.11 channels

Step 5: Sett up the transmission range at the devices. The transmission range

of 802.15.4 devices is usually up to 75 meters. This can also differ based on

the antenna used by the devices. Based on the 802.15.4 transmission ranges,

in order to deploy a multi-device and multi-hop network a huge area would

be required. Therefore, the transmission range at each node should be con-

figured based on the area where the test-bed will be deployed (not always

the default).

Step 6: Avoid frequent device reconfiguration. According to the experiments

needs, environmental parameters such as the ones described in steps 3 - 5

and the protocols to be evaluated in the testbed; different images of the OS

should be build for the sensor nodes. To explain this in detail, lets assume

that there are 2 MAC protocols to be tested. This will require two different

images of the operating system (MAC protocols can also be switched on the

fly but this will result in a larger image in terms of memory. Sensor nodes

do not have large amounts of memory and thus this may not be possible in

various cases). Configuring the nodes with different images usually means

that every node must be reprogrammed. Reprogramming the nodes can be

a very time consuming and hard procedure. For our testbed, the various

Contiki OS images were saved in the external Flash. Each node was pro-

grammed with a boot-loader software (software which allows the user to load

different images when the node boots). More information about the boot-
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loader can be found in Appendix B. With this approach, the OS image at

the nodes can be switched every time the nodes reboot. In some cases, nodes

do not have external flash memory and thus this approach is not possible.

Consequently, other node reprogramming methods such as Over The Air

Programming (OTA) should be used.

Step 7: Auto device programming. Programming the sensor nodes can be

very time consuming, especially when there is a large number of sensor nodes.

In order to speed up this procedure, we developed an auto programming

script it program all the devices connected to the USB interface with the

desired OS image. A script such as the above can significantly speed up the

node programming process.

Step 8: Internally monitor the network. At least one node in the network

must be the border router. The border router is the RPL route node and is

used to route IPv6 traffic between the 6LoWPAN and the Internet. More

specifically, in our experiments, 6LoWPAN traffic is forwarded by the bor-

der router to the tuneslip6 interface from which it then is received by a

data collection sever. The data collection server used in our testbed will

be described in detail at section 3.11. In addition, a network visualisation

software is developed and included in Contiki OS. Through this software,

the routing tree and routing information can be retrieved from the nodes at

any time. A tool like this is very useful for the understanding of the sensor

node behaviour and debugging of the network.

Step 9: Externally monitor the network. During step 3, it was mentioned

that an energy scan should be used in order to decide which 802.15.4 chan-

nel is the most appropriate for use for the deployment of the test-bed. It is

suggested that the energy scan is attached to a mobile device. This way scan-

ning the status of the channels in various areas of the testbed can be achieved.

In addition to the energy scan, it is wise to have a packet sniffer device. A

packet sniffer is usually a sensor that can scan the radio (it scans only one

channel; usually the one that the test-bed devices are configured with) and

capture the packets transmitted in the area. With the use of packet sniffers,

debugging the network and understanding the behaviour of the protocols

becomes much easier. Through our experience, a packet sniffer should be

used in every sensor network for debugging purposes. More details about

the packet sniffer used for our experiments can be found in Appendix B.

Step 10: Set up the desired routing protocol. Configuring the network with

a routing protocol is very important since the network will demonstrate
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Figure 3.21: IPv6 and 6LoWPAN WSN
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much more realistic behaviour than networks configured with static routing.

Making a decision about the routing protocol in the network is also very

important since routing protocols are responsible for the establishment of

the routing tree and thus communication between the nodes. In Contiki

OS the routing is handled by RPL (there are no other routing protocols for

6LoWPAN network configurations). Even though RPL is the only routing

protocol in Contiki (for 6LoWPAN traffic), it can be configured with differ-

ent OF. When configured with different OF the nodes behaviour and even

the routing tree will vary. For example, when the routing tree will vary

between an OF which assumes distance as the only metric and one that

considers the link quality as well. Since one of the main attributes of sensor

networks is lossy and unstable links, the OF used in our experiments was

considering both distance and link quality as metrics. An OF such as the

one mentioned can contribute in a more realistic network behaviour (links

and paths can change frequently during the experiments).

A WSN, designed on the above ten steps is presented in Figure 3.21.

3.11 WSN Application layer and Data

Collection Server

In section 3.10, the importance of collecting the required data from the network

was discussed. Moreover, the deployed network should be capable of collecting

data from different scenarios with varied parameters such as data rates and num-

ber of transmitted packets per flow without the need of reconfiguring the whole

network. As a result, the application layer in the nodes should be capable of dy-

namic reconfiguration of parameters such as transmission rates and the number of

packets to be transmitted. Additionally, the data collection server must be able to

collect and save in an easy to process format the desired parameters. The rest of

this section describes in detail both the application layer and the data collection

server used in this study.

3.11.1 WSN Application layer

The application layer used during the test-bed experiments was designed based

on the characteristics of 6LoWPAN networks. Every node in the network (except

the RPL border router), was configured with the exact same application layer

software and thus every node could become a traffic source upon request. Firstly,

we divided the measured parameters in two categories:
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1. parameters that need to be gathered from every node in the network. This

includes the time each node spend at each of the various radio states (radio

RX, radio TX, radio idle and radio OFF). This time was later converted in

the total energy consumption at the nodes as described in section 3.6.

2. parameters specific to the source-destination. These parameters can be the

total number of packets transmitted, number of packets received and round-

trip delay.

Each node was configured to operate as a UDP client. Nodes would periodically

measure parameters of the first category and transmit them to the data collection

server (UDP server). In addition to the above parameters, each message contained

a sequence number (specific to these type of messages). Node crashes (usually

due to stack overflow or due to a function that keeps control for long period of

time. Appendix D contains detailed information on stack overflow and MCUs

based on the 8051 architecture) could be detected through the sequence number

(will reset to 0 when a node crashes). In case of a node crash, the last energy

measurements were added to the new energy measurements after the crash. This

approach ensures as much knowledge of the status in unstable environments such

as sensor networks as possible. The period between each packet transmission of

this category, must be long enough not to interfere with the rest of the experiments

but not too long in order to minimise the information loss in case of a node crash.

During our experiments the period was configured to one minute. In our test-bed

experiments, a node that only transmits this type of messages is considered idle.

Additionally to the UDP client at each sensor node, a UDP server was operat-

ing as well. The UDP server at nodes was used for the dynamic configuration of

the nodes based on the experiment needs such as distance in hops, duration of the

transmission in number of packets and transmission rate. To explain this in detail,

each sensor node was idle until the reception of a UDP START packet carrying

the experiment specific parameters. Upon the reception of the packet, nodes were

extracting the required parameters and start transmitting packets (CBR) towards

the data collection server. Packet transmissions could be terminated either upon

the reception of a STOP packet or when the number of packets to be transmit-

ted, specified in the START packet, reached. This way, the administrator can

create various sources in different distances, transmission rates and transmission

durations. START and STOP messages could be transmitted ether from the base

station or from any computer connected to the 6LoWPAN network (This can also

be through the Internet).

The tool used for the transmission of START and STOP messages was Netcat

a computer networking service for reading from and writing network connections
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using TCP or UDP [139, 140]. How Hex values and thus our START message

configuration parameters can be transmitted through Netcat is shown:

echo -ne ‘‘\<first hex value >\<second hex value >" |
nc <IPv6 address > <Port number >

where echo is a command that places a string on the computer terminal, -n

is an argument and means no new line at the end, -e is an argument and means

interpret escapes and finally nc is the netcat command.

Figure 3.22 represents the state transition diagram of the sensor nodes applic-

ation layer.
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Figure 3.22: Sensor node application flow chart
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3.11.2 Data Collection Server

For the collection of sensor data, an UDP server is implemented. In our experi-

ments, the UDP server was operating in the local network directly connected to

the 6LoWPAN WSN through the RPL border router. If it is required by the

design of the WSN (such as WSN deployed in remote areas), The UDP server can

operate in any network connected through the Internet with the 6LoWPAN WSN.

As mentioned earlier, there are two types of data that the UDP server collects

from the WSN: the periodic data (energy consumption) and the flow specific data

(packets received, packets transmitted, loss, round-trip delay and IP address of the

source). It is very important for these two categories of data to be saved separately

in an easy to process format for the ease of data processing later. Even though

data from the two categories are saved separately, a mechanism that will make

the linking of these two categories is required.

The implemented UDP server, makes the distinction between the different

packets and the parameters carried by them and then saves the received data in

two files based on the type of parameters carried within the received packets. In

addition, a common time-stamp is used. The common time-stamp is later used

during the processing of the data in order to link different type of data, saved

in different files. The format of the saved data as well as how this data were

processed is demonstrated in Appendix A.



Chapter 4

Congestion Detection (CD) in

Duty Cycle and 6LoWPANs

The aims of the chapter is to identify what is the behaviour of common CD

mechanisms in Contiki and IPv6 6LoWPAN networks.

4.1 Introduction

In a WSN, congestion can occur due to simultaneous packet transmission by mul-

tiple nodes as a result of an event detection (for example sudden temperature

rise). Current state-of-the-art congestion control schemes operate in two phases:

i) congestion detection (CD) and ii) congestion avoidance (CA). The former em-

ploys algorithms aiming to predict if the network is likely to get congested, based

on observed network traffic. The latter incorporate various methods such as the

ones described in section 2.3. Due to the constrained nature of sensor networks,

adopting existing congestion control (CC) methods from wired networks is not

suitable. For instance, it has been shown that TCP has suboptimal performance

as well as high energy consumption when applied in sensor networks. This has led

to the development of new CC protocols, often optimised for WSN-specific net-

work topologies and operation (for example tree data collection). However, such

optimisations can potentially harm the generality of the findings.

It has been shown that idle radio listening is a major source of energy con-

sumption. In order to achieve energy savings and prolong the life cycle of a sensor

deployment, research community members have made significant efforts on the

development of radio cycling algorithms (section 3.6). Crucially, while it can have

significant impact on the performance of CC, this trait of a typical WSN is often

neglected when comparing various CC algorithms.

Additionally, with the entrance of IPv6 and 6LowPAN in WSN, IP architec-

100
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tures became one of the the most popular choice for WSN. However, the distinct

features of sensor networks (tree topology, small packets in size and simultan-

eous transmissions in event detection) has created the need of alternative conges-

tion control mechanisms for IP networks. Whether alternative congestion control

mechanisms or mechanism designed for non layered architectures, can be applied

to layered architectures using IPv6 and 6LoWPAN is going to be investigated in

this chapter as well as how radio duty cycle affects existing congestion detection

mechanisms.

There are several congestion control protocols in literature, with varied CD

and CA mechanisms. These protocols and thus mechanisms are often evaluated

for a limited subset of possible scenarios and parameters, although the actual

space is very large. This makes it difficult to compare and evaluate the congestion

mechanisms implemented in each protocol.

In literature there are many surveys for congestion control protocols in WSN [141,

142]. Additionally, a survey on congestion schemes and their CD/CA mechanisms

was presented in section 2.4. In this chapter a comparative study of existing CD

mechanisms is going to be presented. Such a study would provide useful inform-

ation on congestion control mechanism and their design choices especially when

these mechanisms have to be implemented in a layered (IP) WSN, aid to the

development of more efficient and robust congestion mechanisms and allow wide-

spread adaptation of congestion mechanisms by showing which design choice is

appropriate for a given network scenario.

With the above observations taken into account, this chapter contribution is

two-fold: i) we present results highlighting the behavior of standard congestion

detection mechanisms in a multi-hop 6LoWPAN network ii) we demonstrate how

RDC mechanisms affect different congestion detection mechanisms.

The rest of the chapter is organised as follows. Section 4.2 discusses the details

of CD and CA mechanisms used by existing schemes as well as the CD mech-

anisms evaluated in this chapter. The simulation configurations are presented

in section 4.3 while simulation results are presented in section 4.4. Our conclu-

sions appear in section 4.5.

4.2 Congestion Detection Approaches

As discussed in subsection 2.4.5, congestion control schemes use different mechan-

isms for CD and different for CA. As a first part of the study we focus on the most

used, by the WSN community, category of congestion control schemes; the rate

adaptation schemes. The majority of rate adaptation schemes are using methods

such as AIMD or variations thereof in order to achieve CA. This is why the focus
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of this chapter was on evaluating the existing CD mechanisms. Rate adaptation

schemes, are mostly using mechanisms such as buffer occupancy and calculating

the congestion degree by dividing the packet service time with packet inter arrival

time (CD = Ps/Pa) in order to detect congestion. The later category can also be

referred as intelligent CD as described in [63].

More specifically, buffer occupancy can be measured either with a buffer threshold

(when packets in the buffer exceed the threshold, congestion is detected) or with

a periodic buffer (the node calculates if the buffer would overflow, if it were to

receive the same number of packets in the next period P).

For this study, we implemented the two different ways of detecting conges-

tion based on the buffer occupancy (described above) as well as the mechanism

calculating the congestion degree based on CD = Ps/Pa. In order to evaluate

the different ways to detect congestion, we tested them under the same AIMD

mechanism. The implemented AIMD mechanism work as follows: when a node

receives a congestion notification message, it reduces its rate to 50%. Furthermore

each node increases its rate by reducing the inter packet transmission time. Let

ti be the inter packet transmission time, then the the transmission rates will be

increased by reducing the ti by ti/δ every ti seconds. Hence we have:

ti+1 = ti −
ti
δ

(4.1)

It is trivial to show that the transmission rate ri will be a linear function

with slope δ. The choice of δ dictates the intensity of additive increase and thus

choosing a suitable value is of great significance. Let tmin be the lowest value for

inter transmission time (highest rate) and tmax the highest after a rate reduction

(tmax = tmin/2). In order to avoid tmax to jump to tmin in a single step we require:

tmax/δ << tmax (4.2)

In order to achieve these requirements we set δ to:

δ = α×
√
tmax (4.3)

where α is a positive number greater than one (α > 1). The final equation will

be:

ti+1 = ti −
ti

α×
√
tmax

(4.4)

Some of the above CD mechanisms, and variations of the AIMD scheme used

in this evaluation; has been used as parts of the later work. Therefore, related to

the above mechanisms pseudocodes, can be found in chapter 5.
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4.3 Simulation Configurations

The comparison of the above mechanisms has been conducted with COOJA ( sec-

tion 3.3), a cross layer simulator part of the Contiki embedded operating system.

The radio medium used for the experiments is called unit disk graph medium

with distance loss UDGM (allows modification of radio transmission ranges by

the user). In order to perform our evaluation, we implemented the mechanisms as

extensions of Contiki’s CSMA MAC layer. The buffer size used in MAC layer is 10

packets (total size 10 × 128 bytes). Furthermore, there is no buffer for incoming

packets (only outgoing packets are stored in the buffer). In the RDC layer, both

sicslowMAC and ContikiMAC configured with a channel check rate of 8, have been

used for the experiments. SicslowMAC is a non duty cycling simple protocol which

creates the 802.15.4 frames and forwards them to the next node. On the other

hand ContikiMAC is the default duty cycling RDC of Contiki OS (section 3.6).

Routing in our experiments was handled by RPL described in section 3.9. The

sources were producing CBR traffic of 4 packets/s, and each packet had a 32-byte

application data. The motes emulated in COOJA for our experiments are sky

motes and the total duration of each simulation was 50 seconds.

The experiments were repeated under various random topologies. In order to

create scenarios with high congestion, the majority of the sources were sharing

the same traffic path in most of the simulation experiments. It is worthy to

mention, that the above set up can lead to congestion collapse when the network

is configured with ContikiMAC and a channel check rate of 8 (8 is the default

configuration of ContikiMAC). A higher channel check configuration could have

been used in order to avoid congestion collapse but the aims of these experiments

is to test the mechanisms under the default configurations in both cases (duty

cycle and not).

In our experiments, we had a total of 20 nodes. Among them we had 6 sources

and 1 sink, while the remaining nodes were intermediates. The sources were always

deployed as neighbours in order to simulate the detection of an event. For the eval-

uation we used two metrics: i) total packets received by the source and ii) packet

loss. Since our implementation was at the MAC layer, only MAC layer transmis-

sion rates could be adjusted. Even when the sources where informed about the

congestion, the application layer source rates were not adjusted. On the contrary,

packets unable to be transmitted (more than the MAC layer adjusted rate) were

discarded before transmission at the sources. Therefore, only the packets dropped

after entered the network (at least transmitted once) was measured in the figures

describing the simulation results. Even though, Table 4.2 demonstrates the total

packet loss out of every packet the application attempted to transmit.
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4.4 Simulation Results

Figure 4.1 displays the total received packets/second while Figure 4.2 (on page

107 ) shows the loss for each of the selected CD mechanisms (see section 4.2),

operating with the Sicslowmac RDC. We can observe that mechanisms using buf-

fer occupancy performed much better than intelligent CD. We also observe that

intelligent CD was less successful in receiving packets than in scenarios without

congestion control. Studying Figure 4.1 (on page 106 ) and Table 4.1, mechan-

isms that detect congestion based on buffer state had significantly higher number

of successfully received packets than both cases of no congestion control and intelli-

gent CD. Both buffer threshold and periodic buffer performed similarly in terms of

total packets received by the sink, with periodic buffer demonstrating slightly bet-

ter performance. On the contrary, buffer monitoring based on threshold had lower

packet loss in the network than periodic buffer. Furthermore it is noteworthy that

with different period times, periodic buffer had significant differences in packet

loss (the smallest the period the lower the loss). More detailed results about the

different performance of periodic buffer when different time periods used, can be

found in [60]. Without congestion control, network performance was worse than

the majority of CD mechanisms in both total packets received and packet loss. It

is also notable that intelligent CD demonstrated a very poor performance during

the experiments. Intelligent CD’s throughput was even lower than no congestion

control.

Figure 4.3 displays the total packets received while Figure 4.4 (on page 109 the

loss for each of the selected CD mechanisms, operating with RDC (contikimac).

When the network was configured with a duty cycle algorithm, all of the congestion

control algorithms had better performance than no congestion control. We can

also observe that, similarly to the previous experiment, mechanisms detecting

congestion based on the buffer state had significantly better results than intelligent

CD and no congestion control. In contrast to simulations without RDC, buffer

threshold based CD had higher number of received packets than periodic buffers.

In addition buffer based CD had the lowest loss. With RDC big differences are

noticeable at the performance of intelligent CD. In this experiment, intelligent CD

performed better than no congestion control in terms of total successfully received

packets. On the contrary intelligent CD had the highest loss in comparison to

the rest of the CD mechanisms. Similarly to the previous experiment, without

congestion control the network’s performance was worse than any of the other

configurations.

As mentioned previously, the aim of the compared mechanisms was to mitig-

ate congestion towards the sources. Therefore, the number of packets lost in the
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network (packets that entered the network; at least transmitted once) is a better

metric than the total number of packets lost at the application (application at-

tempted to transmit a packet but the packet was dropped before transmission) for

the evaluation of the above algorithms. Even though, in order to give a complete

representation of our experimental results, Table 4.2 demonstrates the total packet

loss at the applications.

Table 4.1: Number of successfully received packets at the sink

Threshold Period 0.5 Period 0.25 Service/Arrival No CC

SicslowMAC 699 742 747 165 264
ContikiMAC 123 115 106 81 69

Table 4.2: Number of total lost packets (Application wise)

Threshold Period 0.5 Period 0.25 Service/Arrival No CC

SicslowMAC 284 187 230 819 3
ContikiMAC 858 776 716 656 358

4.4.1 Performance Analysis of the Evaluated Congestion

Detection Mechanisms Without Duty Cycle

When a mechanism has more successfully received packets within the same time

interval, it is natural to conclude that this mechanism has higher throughput.

Based on the previously discussed simulation results, we observe that intelligent

CD performed poorly. In comparison to buffer state CD mechanisms, intelligent

CD had over 200% lower throughput. This poor performance can be justified if

we take under consideration RPL’s control messages. Intelligent CD measures the

congestion levels based on the received and transmitted packets and thus even

control packets such as RPL control packets; that will not further contribute to

buffer overflows or congestion (only transmitted periodicaly), will be taken under

account for the measurment of the congestion levels at the nodes. Consequently,

congestion will be detected more frequently and thus the rate reduction algorithm

will be triggered. It is also worthy to mention, that the more congested the network

becomes, the more packets will be lost. Additionally, when the number of lost

packets increases, the Link Quality Indicator (LQI) decreases and thus there is a

higher possibility for RPL to attempt and find alternative paths. This in turn will
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Figure 4.1: Successfully received packets without RDC (SicslowMAC)

lead to a higher overhead of RPL control messages in the network. This in turn

explains why this mechanism resulted in the lowest number of received packets.

On the other hand, detecting congestion frequently resulted in lower transmission

rates and thus less traffic was inserted in the network by the sources. This can

explain why this mechanism had no loss in the network. Based on the experiments,

it is also observed that without RDC, CD based on periodic buffer had over all

the most received packets and thus the highest throughput. On the other hand

the highest transmission rates in the intermediate nodes resulted in higher packet

loss than CD based on buffer threshold and intelligent CD. The reason behind the

higher throughput of this mechanism is the higher buffer utilisation (CD based on

buffer threshold will always trigger back off when the buffer capacity reaches the

threshold therefore only a percentage of the total capacity of the buffer is used.

On the other hand periodic buffers can utilise buffer capacity more efficiently and

avoid rate reduction messages, even when buffer occupancy levels are very high).

4.4.2 Performance Analysis of the Evaluated Congestion

Detection Mechanisms With Duty Cycle

Further analysis of the above experiments has revealed that CD (and thus conges-

tion control) can be directly affected by RDC algorithms. Without RDC, all CD
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Figure 4.2: Packet Lost in the network (NO RDC - SicslowMAC - always on)

mechanisms detected and confronted congestion successfully. On the other hand,

with RDC the experiment results were different, especially in the case of intelligent

CD. Without RDC, Intelligent CD achieved zero packet loss but suffered from low

numbers of received packets and thus throughput. On the contrary, when RDC is

used the performance of this method is closer to the other CD mechanisms in terms

of throughput, but at the cost of a very high packet loss rate. With RDC, nodes

synchronise before transmissions or transmit trains of packets (see section 3.6 for

details). Additionally, nodes will frequently turn the radio off. Furthermore, since

the RDC layer underlies MAC (see details in section 3.2), RDC synchronisation

message exchange (or packet train packet transmission method) happens transpar-

ently and is not taken into account by the MAC layer CD algorithm.

These distinct characteristics of ContikiMAC and thus duty cycle, can result

in less frequent packet reception and thus reduce the rate at which packets are

forwarded to the MAC layer. Intelligent CD is based on the periodical measure-

ment of packet service time (transmitted from the MAC layer packets) over inter

packet arrival time (received by the MAC packets). Therefore, it is heavily affected

when a radio duty cycle algorithm operates in the network since radio turn offs

affect the rate of received packets. This in turn render intelligent CD incapable

to successfully detect congestion. This problem could easily be fixed if ether the

period in which intelligent CD measures the packet service time over packet inter

arrival time was adjusted based on the duty cycle or the duty cycle is adapted
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Figure 4.3: Successfully received packets with RDC (ContikiMAC)

to the period. Adjusting the duty cycle based on the congestion detection mech-

anism would not be the ideal option since the aim of duty cycle algorithms is to

reduce energy consumption. Therefore adjusting the duty cycles based on CD

would affect the energy consumption on the nodes and possibly lead to unneces-

sary waste of energy. On the other hand, adjusting the period of the congestion

detection mechanism based on the duty cycle render the mechanism cumbersome

since frequent reconfiguration would be necessary in any changes of the duty cycle

in the network. This in turn can explain the poor performance of the mechanism

during the simulations.

Even though CD schemes based on buffer state confronted congestion success-

fully both with and without duty cycle, the results were diverse. With RDC, buffer

based on threshold CD resulted in approximately 20% higher amount of received

packets than periodic buffers. On top of that, CD based on buffer threshold main-

tained insignificant packet loss. In contrast to this CD based on periodic buffer

had high packet loss. The reason behind this behaviour is the same as the one

described above for the poor performance of intelligent CD: the period in which

periodic buffer measures it’s congestion levels should be based on the channel

check rate of the duty cycle to achieve the optimal results.
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4.4.3 Overall Performance Analysis

Over all, CD based on buffer threshold is the most efficient method for congestion

detection since it demonstrated the most stable behaviour in both duty cycle and

non duty cycle networks; overall (both cases of DC) buffer based CD achieved the

highest throughput and the lowest loss compared the other mechanisms. Further-

more, as observed in our experiments, intelligent CD is an inferior CD method for

IPv6 sensor networks with notable constrains when the network is duty cycling(the

performance of this mechanism can be different in non IP sensor networks or in

combination with different rate reduction schemes).

Based on Figure 4.1 and Figure 4.3, it is notable that without RDC and packet

ACKs (sicslowmac does not use any packet ACKs), our network demonstrated a

six-fold throughput increase under heavily congested scenarios. This results was

based on the default configuration of duty cycle in Contiki with channel check

rate of 8. The more the channel check rate is increased the smallest the difference

will become between duty cycle and non duty cycle networks. On the contrary,

higher duty cycles lead to significantly higher energy consumption (more detailed

results about the energy consumption with different configurations of channel check

rate can be seen in chapter 6). Since sensor networks are most of the time idle,

it is recommended to be configured with the default (usually the one of lowest

configurations) channel check rate configurations.
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In this study, it is demonstrated, that WSN can achieve significantly higher

throughput and lower loss without duty cycling. On the other hand it is not

realistic to assume that a self powered wireless sensor network operates without a

RDC mechanism. Efficient RDC can extend a deployment’s lifetime expectancy

by orders of magnitude, up to years.

Lastly, the decision of which mechanism is better totally depends in the de-

mands, configuration of the WSN. If the sensor network requires high throughput

(no RDC) and can afford a slightly higher packet loss, periodic buffer can be

the best option, while in the remaining cases CD based on buffer threshold can

successfully detect and confront congestion.

4.5 Summary and Discussions

In this chapter, we conducted a simulation-based comparative study concerning

the performance of multiple CD mechanisms in 6LoWPAN sensor networks. We

implemented the mechanisms for the Contiki operating system and tested them

under different network conditions and protocols such as with and without duty

cycle.

Our main conclusion of interest is that some of the existing congestion de-

tection mechanisms (packet service time / packet arrival time) perform poorly

in 6LoWPAN sensor networks especially under the presence of a duty cycle al-

gorithm. Therefore congestion control protocol architects must carefully choose

the methods and mechanisms incorporated in their design and not just import

existing methods.

Moreover, it is shown that the performance of CD algorithms is directly influ-

enced by the underlying radio duty cycling mechanisms (this applies to congestion

control mechanisms designed as parts of the lower network layers). This chapter

is a significant step towards understanding the performance of various CD mech-

anisms in a 6LoWPAN environment, with or without duty cycle, and can serve

as a basis for future network designers, when facing the decision of which CD

mechanism to adopt for their deployment.

The results of this section, had a significant impact on the design of the pro-

posed algorithms in this thesis. More specifically, DCCC6’s CD mechanism and

design has significantly been inspired from this work.



Chapter 5

DCCC6: Duty Cycle-Aware

Congestion Control (CC) for

6LoWPANs

The proposed mechanism is influenced by the results of chapter 4 and the most

commonly used type of congestion control schemes for WSN the rate adaptation

schemes.

5.1 Introduction

In Wireless Sensor Networks, congestion can cause a number of problems includ-

ing packet loss, lower throughput and poor energy efficiency. These problems

can potentially result in reduced deployment lifetime and under-performing ap-

plications. This has led to several proposals for congestion control schemes for

sensor networks. Furthermore, the WSN research community has made signific-

ant efforts towards power saving MAC protocols with Radio Duty Cycling (RDC).

However, chapter 4 revealed that a great number of the existing congestion control

mechanisms have neglected the presence of a RDC scheme in their design.

The most important challenge in this work, is to design a protocol- and topology-

independent CC mechanism through which each node can locally detect conges-

tion, and signal all relevant nodes to fairly adapt their rates. Furthermore, a

mechanism should lead to similar results regardless of the choice of duty cycling

mechanism (or lack thereof). In general, the traffic communication patterns of

IPv6 WSNs are arbitrary. The proposed mechanism should be able to maintain

its performance, detect congestion and fairly adapt node transmission rates under

any communication pattern.

In this context, this chapter contributes a new CC scheme for Duty Cycle

111
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and IPv6 over Low power Wireless Personal Area Networks 6LoWPAN sensor

Networks—DCCC6. DCCC6 detects the presence of duty cycling and adjust its

operation accordingly. Both simulations and a testbed are used for the evalu-

ation of DCCC6. The experimental results have shown that DCCC6 achieved

higher goodput and lower packet loss than previous works. Moreover, simulations

show that DCCC6 maintained low energy consumption, average delay times and

achieved a high degree of hop-by-hop fairness.

The remainder of this chapter is organised as follows: In section 5.2 the design

considerations of DCCC6 are discussed. In section 5.4 the detailed design of

DCCC6 is presented. Section 5.4 presents a detailed comparison of DCCC6 with

other congestion control schemes evaluated with simulations. Section 5.5 discusses

the test-bed experiments while a comparison between the simulation and the test-

bed results is presented in section 5.6. Finally section 5.7 has DCCC6’s perform-

ance evaluation summary and general discussions about the scheme.

5.2 DCCC6 Design Considerations

Contrary to traditional, application-centric WSN design, a 6LoWPAN may be

the host of a variety of applications (e.g. network management, data collection,

Constrained Application Protocol services) simultaneously. If this is the case,

then:

1. Packets from different applications will have different sizes, priorities and

possibly different destinations

2. Traffic will be bidirectional since most of these applications require constant

exchange of packets with the destination

3. Applications may use different protocols for communication (udp or tcp)

4. Large packets may get fragmented by the 6LoWPAN adaptation layer.

Considering the above characteristics the CC protocol should:

a) be protocol-independent

b) be topology-independent

c) forward packets based on their priority.

d) implement a traffic-aware congestion detection (CD) method.
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As mentioned in section 3.6, duty cycling nodes are switching their radio state

to on and off for energy saving. A node will also turn its radio off when a collision

is detected, as well as after a packet acknowledgment is received. As network

density increases, so does collision probability. When a collision occurs, a back

off retransmission time for the packet is calculated randomly (traditional CSMA).

Even with the most advanced synchronisation algorithms, the existence of col-

lisions makes perfect synchronisation between nodes very challenging. In order

to address it, existing protocols transmit link layer frames repeatedly until they

receive a successful acknowledgment (train of packets like ContikiMAC does), or

until a collision is detected. This works efficiently for link layer unicasts; however

broadcast packets never get acknowledged and are thus inefficient [143].

Chapter 4 have shown that RDC highly affects the performance of CC schemes.

The majority of CC protocols operate by control data exchange among neighbour-

ing nodes, either with broadcast frames or by piggy-backing information inside ac-

knowledgment frames. However, under the presence of RDC, link layer broadcasts

are inefficient. Furthermore, with modern 802.15.4 radio transceivers, acknowledg-

ments are generated automatically by the hardware and it is thus impossible to

modify their content. The only way to tackle this problem is by disabling this

feature and by re-implementing it by software, thus incurring costs in terms of

processing time, code size and complexity. For those reasons, there is need for

further investigation into CC algorithms for IPv6 WSNs.

5.3 Implementation of DCCC6

DCCC6 is made up from two components: i) a congestion detection mechanism

and ii) a rate adaptation scheme.

The state transition diagram of DCCC6 can be seen in Figure 5.1 while a

detailed analysis of DCCC6 and its mechanisms follows.

5.3.1 Congestion Detection

Previous works on Congestion Detection (CD) have demonstrated that measuring

queue occupancy is one of the most efficient and accurate methods [47], [chapter 4].

DCCC6 maintains a single packet queue for all flows passing through the node.

In order to detect congestion, it adopts a dynamic threshold similar to the one used

in [53]. Queue occupancy is monitored on a per incoming packet basis. Congestion

is triggered when the number of messages in the buffer exceeds a threshold. By

inspecting incoming traffic, the congested node identifies the source of the prob-

lem and sends a congestion notification. In order to avoid notification storms,
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the congested node then dynamically adjusts the threshold. This process goes

under multiple iterations until the queue overflows or starts to drain. Figure 5.2

demonstrates how DCCC6 dynamic buffer operates.
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Figure 5.1: DCCC6 flow chart
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Figure 5.2: Dynamic buffer in DCCC6
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5.3.2 Rate Adaptation

DCCC6 can detect the presence of duty cycling and adjust its behaviour accord-

ingly. This can be achieved by requesting duty cycle specific information from

the RDC layer. When an RDC scheme is in operation, notifications are sent in-

side unicast frames in order to bypass RDC broadcast inefficiency. Conversely, if

radios are always on, DCCC6 reverts to notifications with a broadcast link layer

destination.

When using unicast notifications, different recipients will receive a different

number of rate reduction messages. Thus, a traditional additive increase and mul-

tiplicative decrease (AIMD) approach, would lead to unfairness. For this reason,

DCCC6 uses a modified rate adaptation scheme, achieving fair bandwidth alloc-

ation. Figure 5.3 illustrates a qualitative comparison between traditional AIMD

and the adaptation scheme adopted by DCCC6.

5.3.2.1 Rate Reduction

Let ti be the interval between two successive frame transmissions, with a maximum

value of tmax. Each time a congestion notification is received, transmission rate

must decrease. We achieve this by increasing inter-packet interval ti by α. For

lower transmission rates, reductions are smaller: α itself is decreased as ti increases.

Thus:

ti+1 = ti + α

= ti +
γ ×
√
tmax√
ti

(5.1)

where γ is a factor used to control the slope with γ > 1.

5.3.2.2 Rate Increase

Transmission rates increase periodically by reducing ti by ti/δ every ti seconds.

Hence we have ti+1 = ti − ti
δ
. Since δ will decrease when ti increases, it is trivial

to mention that the transmission rate ri will be a non linear function. The choice

of δ dictates the intensity of rate increase and thus choosing a suitable value is of

great significance. Let tmin be the lowest value for inter transmission time (tmin

represents the highest rate, and it is related to the duty cycle configuration in the

network. How tmin is related to duty cycle can be seen in Table 5.1). In order to

avoid tmax jumping to tmin in a single step we require tmax/δ << tmax. In order

to achieve these requirements we set δ to
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δ =
β × ti ×

√
ni + 1

(ε×
√
tmin)−

√
ti

(5.2)

where β is greater than one. The higher the value of β, the lower the function

slope. On the other hand ε prevents the denominator taking the value of 0 after

a congestion notification message is firstly received. Therefore, the value of ε is

related to the CCR and tmax. Table 5.1, demonstrates how ε and tmin change for

the different duty cycle configurations (for the different Channel Check Rates).

The number of active child nodes is represented with ni. The final equation will

be:

ti+1 = ti −
β × ti ×

√
ni + 1

(ε×
√
tmin)−

√
ti

(5.3)

With this design child nodes may receive an unequal number of rate reduction

messages. This ensures a high degree of fairness. Nodes with lower rates will

increase the rate faster than nodes with higher rates and the opposite is observed

in case of rate reduction.

Table 5.1: An example of the relation between duty (expressed as CCR) and the
variables: ε, tmin for tmax = 256t (clock ticks)

CCR ε tmin (time in clock ticks)

N/A (No DC) 16.1 1

8 4.1 16

16 5.7 8

32 8.1 4

64 11.4 2

The values of ε displayed in Table 5.1,
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Figure 5.3: Comparison between traditional AIMD and proposed rate adaptation

5.4 Simulation Experiments

5.4.1 Simulation Configurations

Simulations aimed at evaluating behaviour in a heavily congested, duty cycled

WSN. We used the cooja simulator, distributed as part of the Contiki OS. All

features of DCCC6 described in section 5.3 have been implemented as a new MAC

layer in the Contiki embedded operating system. The packet queue can hold a

maximum of 10 outgoing packets (10 × 128 bytes). As an addition, when the

queue were full the oldest packet in the queue was droped and replaced by the

new ones (traditionally in Contiki when the queue is full, incoming packets are

transmitted unreliable similarly to broadcasts. The traditional approach can some

times give a boost to goodput but in multiple cases such as fragmentation it leads

to complete network collapse or out of order packet reception). At the RDC layer

we used contikimac with a channel check rate of 8. Contikimac [143] uses 802.15.4



CHAPTER 5. DCCC6: DUTY CYCLE-AWARE CC FOR 6LOWPANS 120

radio acknowledgements (ACK) and turns the radio off for energy saving. Routing

in our experiments was handled by RPL described in section 3.9. Cooja’s Unit

Disk Graph Medium (UDGM) was used to emulate the radio environment.

The experiments were repeated under various random topologies with similar

results. In order to create scenarios with high congestion, the majority of the

sources were sharing the same traffic path in most of the simulation experiments.

For each experiment we used a total of 25 emulated sky motes, positioned randomly

(6 sources, 1 sink, 18 intermediate nodes). The sources were producing CBR

traffic of 6 packets/s, and each packet had a 32-byte payload. Each experiment

was repeated 15 times with a new random seed per iteration. For each experiment

we recorded the following metrics:

1. Goodput as total number of packets received by the sink,

2. Packet loss,

3. End to end delay (from source to sink) (the delay measured was from multiple

sources of the same distance from the base station),

4. Energy consumption,

5. Jain’s fairness index [144] (all sources were transmitting in the same rate,

packets of the same size and were at the same distance from the base station

in the experiments that fairness was measured).

5.4.2 Simulation Results

Table 5.2: Packet Loss (loss due to reception of corrupted packets is not calculated)

HCCP [60] AFA [52] IFRC [53] DCCC6 CSMA

Packet loss at source

nodes (MAC layer)

4784 6561 6528 5444 1142

Packet loss at inter-

mediate nodes (MAC

layer)

1223 0 32 92 5032

packet loss max num-

ber of retransmissions

(MAC layer)

1398 1163 249 829 979

Total packet loss

(MAC layer)

7405 7724 6809 6365 7153
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Table 5.3: Jain’s Index Fairness

HCCP [60] AFA [52] IFRC [53] DCCC6 CSMA

Average 0.799 0.681 0.742 0.759 0.728

Standard deviation 0.099 0.104 0.068 0.049 0.039

Table 5.4: Diversity Energy Consumption

HCCP [60] AFA [52] IFRC [53] DCCC6 CSMA

Standard deviation 1.185 0.545 0.318 0.343 0.483

Energy consump-

tion per successful

packet(joules)

0.00151 0.00195 0.000824 0.000813 0.001148485

In Figure 5.6, can be observed that HCCP’s goodput was one of the lowest,

while it maintained the highest energy consumption (Figure 5.10) and the second

highest packet loss (Table 5.2). The high energy consumption of HCCP was ex-

pected since nodes with this mechanism are periodically transmitting broadcast

packets in order to share their congestion states. Therefore the additional, peri-

odical overhead cause by this packets is responsible for the mechanism’s high

energy consumption. From Table 5.3, it can be observed that this scheme had the

best average Jain’s index fairness. If we further study Figure 5.8, we can observe

that during smaller intervals of time the Jain’s index fairness of this protocol was

very low. On the contrary, in Figure 5.7 can be observed that this scheme main-

tained a low and very stable delay during the experiments. This is expected since

HCCP demonstrated low goodput, by mitigating congestion towards the sources

and keeping the transmission rates low in the network. This in turn resulted in

less occupied packet queues and thus lower delay.

The reason behind HCCP’s poor performance is the periodic broadcasting of

frames, used in order to exchange congestion information. As discussed in sec-

tion 5.2 broadcasts are very inefficient with ContikiMAC. Additionally, if a node

does not receive the broadcast, it will not update its congestion state and this will

result in repeated broadcasts transmissions (notification storm).

With AFA, a sensor will forward a packet only if its parent has enough space

in the packet queue. As seen in Table 5.2 this protocol had no packet loss at

the intermediate nodes. Furthermore, due to it’s nature, AFA’s average energy
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consumption was the lowest out of the compared schemes. This is expected since

nodes will remain idle after the reception of a congestion notification message and

until the reception of a START transmission message. On the other hand, since

many nodes may remain idle, the energy consumption was not balanced between

the nodes (Figure 5.10 and Table 5.4.2). As discussed earlier, radio acknowledg-

ments are generated by the hardware and thus it is not possible to modify them in

order to carry congestion information. Therefore for the implementation of AFA

broadcast messages were used for the propagation of START and STOP trans-

mission messages. During section 5.2 was explained that broadcasts are unreliable

when a duty cycle protocol is operating. Due to the previously discussed char-

acteristics of ContikiMAC, used as the duty cycle algorithm in our experiments;

informing the child nodes to start transmitting packets again was significantly

delayed. This in turn lead to longer than intended idle times at some nodes. This

problem could be confronted if the software acknowledgments were implemented

instead of the hardware or unicast messages were used for the congestion noti-

fication (START - STOP messages) instead of broadcasts. On the other hand,

both software acknowledgments and unicast congestion notification messages have

their own draw backs. By implementing software acknowledgments, the interval

between packet transmissions would noticeable increase and thus the scheme’s

performance. Due to the nature of unicasts (always inform one child), the later

solution can lead to cases where not all child nodes receive a packet signaling the

start of transmission and thus unfairness in the network. The above observations

can explain why AFA had the lowest goodput and the lowest degree of fairness

(Figure 5.5 and Figure 5.9).

Studying Figure 5.10 and Table 5.4.2, we can conclude that IFRC had the most

balanced energy consumption between nodes, while its average energy consump-

tion was the second lowest. Furthermore, it managed to successfully confront

congestion in a duty cycling network and thus maximised goodput. In addi-

tion, Table 5.2 shows that IFRC maintained low packet loss (compared to most

of the schemes) and a very good degree of fairness. IFRC maintained high trans-

mission rates at the intermediate nodes and thus the packet queues were built

up more than some of the other schemes in the simulations. The built up packet

queues is the reason for IFRC’s high delay times (Figure 5.7).

If we further analyze Figure 5.5, Figure 5.6 and Table 5.2, it is observed that

the proposed scheme DCCC6, had the best performance in terms of goodput and

packet loss with 18% higher goodput and 7.4% lower loss than IFRC which had

the second best performance. Since both DCCC6 and IFRC use a similar CD

mechanism, DCCC6’s CA mechansim is responsible for it’s higher goodput. This

can be justified if we take under consideration that traditional AIMD (used in
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IFRC) mechanisms can lead to more than desired rate reductions in case of con-

sequent reception of congestion notification messages. On the contrary, DCCC6’s

CA mechanism tries to maintain ideal rate’s and rate stability between the flows.

Even though, DCCC6’s overall energy consumption was not the lowest (second

lowest); if the energy consumption is calculated per successfully received packets

at the base station, DCCC6 is the most energy efficient out of the compared proto-

cols (Figure 5.10 and Table 5.4.2). This is expected since DCCC6 had the highest

goodput and it’s mechanisms trying to always achieve the optimal transmission

rates at the nodes. Further analysis of Figure 5.7 shows that the packet delay

of DCCC6 was lower than IFRC and AFA but higher than HCCP and CSMA.

DCCC6 is trying to fully utilise the packet queue (during congestion, all nodes are

trying to maintain the highest posible rate which leads to slow drain of the queues)

in the intermediate nodes and thus the delay increases. The Fairness achieved by

the proposed scheme was overall the highest. This is expected since DCCC6’s rate

adaptation mechanism is designed to distribute similar transmission rates at the

various-active child nodes. It is worthy to mention that DCCC6 managed not only

to maintain high overall fairness but consistent high fairness during any instant of

the simulations. Moreover, DCCC6 had the lowest diversity in the results of the

different experiments (Figure 5.8, Figure 5.9 and Table 5.3).

Figure 5.4 illustrates the routing tree forged by RPL protocol during simula-

tions.
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CHAPTER 5. DCCC6: DUTY CYCLE-AWARE CC FOR 6LOWPANS 125

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

20 70 120 170 220 270 

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 b

y 
th

e
 b

a
s
e

 s
ta

ti
o

n
 

Time in Seconds 

Goodput 

HCCP IFRC DCCC6 

Figure 5.6: Successfully received packets at the sink
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Figure 5.7: Packet delay
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Figure 5.8: Jain’s Index fairness over 10 second intervals
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Figure 5.9: Jain’s Index fairness over 10 second intervals
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Figure 5.10: Average energy consumption per node (for the whole duration of the
experiment)

5.5 Testbed Experiments

5.5.1 Testbed Configurations

Subsequently, we investigated the performance of DCCC6 and CSMA MAC in a

15 node multihop indoor testbed (Appendix D explains in detail why we picked

15 nodes for our test-bed). Our deployment is based on Sensinode N740 Nano-

Sensors (TI/Chipcon cc243x System-on-Chip with IEEE 802.15.4 low power RF

transceiver, 8KB volatile RAM and 128 KB Flash). For this work we used our

port of the Contiki OS for Sensinode /cc2430 devices [145]. The radio at the

nodes was configured with an output power of -25.2 dBm. The firmware on each

device implements a simple UDP server, which waits listening for a packet which

signals the start of a test. Upon reception, the device will start transmitting until

it has sent 3000 datagrams or until the UDP server receives a “stop” message.

Similarly to the simulation experiments the transmission rates used at the source

was 6pkts/sec. The methodology used for the packet queue was the same as the

one in the simulations. As described in section 3.11, with this method any of the

devices can act as a traffic source and we can test multiple different scenarios in

the same deployment. By using a USB border router, we can route IPv6 traffic

between the 6LoWPAN and the Internet. The receiver of the flows is an Internet

host, controlling tests and performing all logging and necessary measurements.
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Figure 5.11: Routing tree used in our test bed experiments

After switching the deployment on, the RPL routing protocol converged forming

the tree illustrated in Figure 5.11. The number inside each bubble depicts the last

two bytes of each node’s IPv6 address.

The objective of this testbed was to evaluate the performance of DCCC6 in real

hardware and thus during the testbed evaluation, only one source was transmitting

at a time. The performance of the nodes was measured for various distances (in

hops). For each test iteration, we evaluated two metrics: i) goodput as total

number of packets received by the UDP server and ii) delay as the round trip

time from the server to the sensor nodes.

5.5.2 Testbed Results

By examining Figure 5.12, how goodput changes when the number of hops in-

creases can be observed. In this experiment, network density was very high with

most of the nodes been in transmission range with each other. The more the

distance between the source and the destination, the more times each packet will

be transmitted in order to reach the base station. Since nodes are in transmission

range with each other, it is understandable that the greater the distance between

the source and the destination the more interference between the nodes (when a

node is transmitting most nodes in the tree could receive the packet). Taking the

above under consideration, we can conclude that the more hops the source is away

from the destination, the higher is the probability of collisions, buffer overflows

and thus congestion to occur.

Both DCCC6 and CSMA had the same number of successfully received pack-

ets at the sink when the distance of the source is 1 hop away. This is expected
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Figure 5.12: Ratio of successfully received packets over the number of hops

since there can’t be any congestion when the distance of the source is 1 hop. On

the contrary when the distance increased, the difference between the goodput per-

formance of the above protocols became noticeable. It is also worthy to mention,

that the greater the distance between the source and the destination the more the

gap in their goodput performances grow with DCCC6 having 15% higher goodput

when the distance increased to 4 hops.

In our testbed, “ping6” was used for the measurement of the round-trip times.

In both heavy and no traffic scenarios one ping6 packet was transmitted every 5

seconds. Figure 5.13 illustrates the round trip delay when our network was idle

(no traffic in the network) is presented. Since there was no traffic in the network

and therefore no congestion, the round trip delay of the compared schemes was

similar.

On the other hand, Figure 5.14 shows the round trip delay of DCCC6 and

CSMA during congestion. In this figure, it can be observed that during congestion

DCCC6 had significantly higher delay. Furthermore, the greater the distance (in

hops) between the source and the destination the greater the difference between the

delay time of the two schemes increased. As mentioned previously in section 5.4,

during congestion, with DCCC6 packet queues will be utilised in most of the nodes

in a flow path (congestion mitigation). On the other hand with CSMA only the

congested nodes will have an increased number of packets in their packet queues.

This different behavior can explain why DCCC6 had higher delay times and why

the difference in the delay times of the schemes increased as the distance grow.
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Figure 5.13: Packet delay (round trip)
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Figure 5.14: Packet delay (round trip)
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Figure 5.15: Goodput: hardware against simulation

5.6 Simulation Vs Testbed

In section 3.3 COOJA simulator was described. During the simulations, nodes sim-

ulating real hardware based on tmotesky platform were used. By simulating nodes

emulating the behaviour of real hardware more realistic results can be achieved

(results closer to real test-bed). Even though, due to various reasons described

in section 3.10, it is very hard to achieve identical network conditions between

simulations and test-bed. This in turn can lead to inconsistencies between results

achieved from simulations and test-bed.

The test-bed experiments done for DCCC6 and presented in subsection 5.5.2

aimed in validating the performance and functionality of DCCC6 in real hard-

ware. Therefore, even though successfully demonstrated similar behaviour to the

simulations they are not as suitable for comparison with the simulation results.

During the next chapters of this work section 6.7, simulation and test-bed experi-

ments are going to be compared throughly in as similar as possible environments.

That way an understanding of the performance difference and constrains between

simulations and test-bed are going to be more visible for every experiment.

Since it is hard to relate the previously conducted test-bed experiments with

the simulations, a comparative experiment is made for further evaluation. In or-

der to get an idea of the relation between the simulated and test-bed experiments,

network conditions must be as similar as possible. Additionally, the experiment

must be under heavy congestion conditions since most network failures and ab-
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Sink Node i

Node j

Node k

All nodes in range of each other

Figure 5.16: Simulation and Test-bed common schenario

normalities this study is focused on occur during this conditions. So that we can

satisfy the above requirements a simple four node scenario was used. Figure 5.16

demonstrate the node topology used for the comparative experiment. In this scen-

ario, all nodes were in range of each other in order to increase the network density

and thus the collisions occurrence and congestion. Out of the four nodes, two were

sources one node was intermediate and one the sink node. The application layer

software at the sources was flooding the network with packets by transmitting one

packet every 62.5 ms (this way intense congestion will be achieved in the majority

of the experiment). The mechanism used for the packet queue was the same as

the one used for the previously discussed simulation and test-bed experiments.

The performance of DCCC6 and CSMA MAC, in both simulation and test bed

experiments are presented in Figure 5.15. Even though both schemes had similar

performances between simulation and test-bed experiments, their performance was

noticeably better during the simulation experiments. There are two main reasons

behind the better simulation performance of the algorithms:

1. COOJA is simulating Sky motes which are different than the Sensinode used

for the test-bed. Even under the same operating system different platforms

and thus different hardware can behave slightly different in some occasions
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(the most important difference in the hardware wich affects the results will

be discussed in the next paragraph).

2. It is very hard if not impossible, to create the same radio conditions in

the simulations and the test-bed. In reality the environmental conditions

affecting the radio transmissions at the nodes can always change. On the

contrary simulators always have a stable, consistent radio environment. The

above observation was discussed in detail during section 3.10.

When a collision occurs, CSMA triggers a back off algorithm for future retrans-

missions of the packet. This back off algorithm, uses a random algorithm for the

calculation of the next transmission time. Sky mote random generator takes as a

random seed parameters related to the node’s ID. Usually, the node ID is created

by the MAC address but simulated nodes does not have any hard coded MAC

address and thus rime addresses such as: 1 - N , where N is the number of nodes

in the simulation, are used. This in turn adds less complexity to the random seed.

Additionally, Sky motes are using the MSP430 random generator (software) and

the software is initialized with a constant seed. This can lead to the generation

of the same random numbers (in some cases) unless you have manually assigned

a node id. On the other hand, the nodes used in our testbed (Sensinode) use a

hardware random generator. The packet retransmission back off algorithm used in

the MAC layer, uses the formula shown below for the retransmission of a packet:

Ri = Ci + (Randno%Retno) (5.4)

Where Ri is the retransmission interval, Ci is the current inter packet trans-

mission interval, Randno is a randomly generated number and Retno is number

showing how many times the packet has been retransmitted. Ci is always a fixed

and unchanged number in Contiki’s CSMA. Therefore, the importance of the

random number in this formula is easy to understand.

Taking under consideration the above observations, it can be concluded that

the random generation used by the back off algorithm of CSMA had lower random-

ness during simulations. This lead to more frequent and even consequent collisions

which in turn can justify the high jitter observed in the simulation performance

of CSMA. CSMA demonstrated a much less jittery behaviour during the test-bed

experiments.

A further analysis shows that the performance difference of DCCC6 was much

greater than the performance difference in Contiki CSMA. The reason behind this

is the CA mechanism used by DCCC6. The congestion avoidance mechanism in
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Table 5.5: Size of the various schemes in bytes

HCCP AFA IFRC DCCC6 CSMA

Simulation (Compiler: MSP430)

TEXT 1884 1174 1824 1790 730
DATA 102 16 68 78 12
BSS 154 188 150 182 88

Hardware (Compiler: SDCC)

CODE 5259 3979 4888 4795 2796
XRAM 330 272 301 314 103
CONST 92 121 94 27 26
DATA 0 0 0 0 0
BITS 0 0 0 0 0

DCCC6 assigns different transmission rates to the nodes causing congestion (Ci)

and thus the estimation of Ri has a greater degree of randomness in DCCC6. This

in turn explains both DCCC6’s noticeably bigger performance difference and why

this scheme didn’t demonstrate as high jitter during simulations. In Table 5.5 the

sizes of the algorithms used for our experiments are presented. It is notable that

MSP430 compiler produced more than two times smaller executables than SDCC

compiler.

What parts of the programme are mapped in each of the CODE, XRAM,

CONST, DATA and BITS is described in detail in section 3.4. The related spe-

cifications for MSPGCC compiler are summarised bellow [146, 147]:

DATA: This portion contains the program’s data part. It further divided into

1. Initialised Read Only Data - This contains the data elements that are ini-

tialised by the program and they are read only during the execution of the

process.

2. Initialised Read Write Data - This contains the data elements that are initial-

ised by the program and will be modified in the course of process execution.

BSS: This contains the elements that are not initialised by the program and

are set 0 before the execution of the processes. These can also be modified and

referred as BSS(Block Started Symbol).

TEXT: This portion contains the instructions to be executed. On many Op-

erating Systems this is set to read only, so that the process can’t modify its

instructions. This allows multiple instances of the program to share the single

copy of the text.
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5.7 Summary and Discussions

In this chapter, the problem of congestion control in 6LoWPAN networks with

duty cycling is addressed. DCCC6, a new CC scheme which considers the ex-

istence of an underlying duty cycle protocol has also been proposed. DCCC6

performs congestion detection based on a dynamic buffer. When congestion oc-

curs, parent nodes will inform the nodes contributing to congestion and rates will

be readjusted based on a rate adaptation scheme. The child notification procedure

will be decided by DCCC6 and will be different when the network is duty cycling.

When the network is duty cycling the child notification will be made through

unicast frames. On the contrary broadcast frames will be used for congestion no-

tification when the network is not duty cycling. Additionally, the main differences

between IPv6 and non IP sensor networks as well as how duty cycle algorithms

can affect existing CC schemes are discussed.

DCCC6 is developed as a stand alone MAC. Therefore, it is protocol inde-

pendent and can be used with various WSN applications. Additionally, DCCC6

confronts congestion in a hop-by-hop fashion and thus it’s congestion mechanisms

are not related to the topology and the routing protocol in the network. Moreover

DCCC6 can forward packets based on their priority and successfully detect and

confront congestion under both duty cycle and non duty cycle WSN.

Simulation and testbed results show that DCCC6 is better than previous works

in terms of goodput and packet loss. Energy consumption, delay and fairness levels

were also competitive when compared to other mechanisms with DCCC6 main-

taining the overall lowest energy consumption per successfully received packet.

This work is the first work on congestion control for Contiki OS. Furthermore,

DCCC6 is one of the first congestion control schemes that consider the existence

of duty cycle and it is tailored in the characteristics of IPv6 6LoWPAN networks.

Therefore DCCC6 has is of great significance for the Contiki OS and WSN com-

munity. In the future, DCCC6 can be used as a paradigm by congestion control

protocol architects using both Contiki or other commercial operating systems for

WSN. Even though DCCC6 is based in the characteristics of IPv6 and 6LoWPAN

networks it is designed as a stand-alone MAC layer and can easily be combined

with other protocol stacks.



Chapter 6

CADC: Congestion Aware Duty

Cycle MAC

The aims of the chapter is to propose a complete and stand alone MAC designed

in Contiki OS based on the arbitrary traffic characteristics of IPv6 WSN.

6.1 Introduction

A wireless sensor deployment usually consists of multiple nodes monitoring their

surrounding environment. Collected data traverse the network towards sink nodes

in a multi-hop fashion. With the growing maturity of wireless sensor networks

(WSN) the attractiveness of their flexible deployment scheme enters the focus of

applications from a variety of domains. The majority of WSN implementations re-

quire large numbers of battery powered devices, capable to autonomously operate

and communicate. The flexibility of these networks comes however at the price

of high demands concerning the implementation of protocol stack. Recently, IPv6

over Low power Wireless Personal Area Networks 6LoWPAN and related spe-

cifications [148, 149] are becoming increasingly popular in the WSN community.

Those technologies promise better scalability in terms of number of nodes, due

to the extended IPv6 addressing scheme. Additionally, the integration between

6LoWPAN and the Internet now becomes a question of network layer routing and

alleviates the need for application layer gateways [5].

In order to achieve long network lifetime, energy-efficiency must be a primary

concern in WSN deployments. Data aggregation and energy-aware routing are

some of the primary energy saving techniques. It has also been shown that idle

radio listening is one of the most major sources of energy consumption [6]. In

order to prolong sensor deployment life cycle, research community members have

made significant efforts in the development of Radio Duty Cycling (RDC) Medium

136
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Access Control protocols (MAC). With radio duty cycling, nodes turn off their

transceivers for long periods of time in order to minimise idle listening. Crucially,

as demonstrated in chapter 4 and chapter 5 the unique characteristics of duty

cycle algorithms and 6LoWPAN sensor networks can have significant impact on

the performance of a WSN deployment.

In sensor applications, a burst of traffic can be caused by a sudden event,

resulting in network congestion. Under these conditions, MAC protocols with

fixed duty cycle will suffer from data loss due to their inability to adapt to traffic

needs. In order to avoid packet loss, the fixed duty cycle [7, 8, 9, 4] should be

increased. However, increased cycles will lead to longer periods of radio listening,

which in turn will lead to higher energy consumption. Hence duty cycles should

only increase under heavy load and decrease when the network is idle.

Recently, there were significant efforts towards the development of dynamic

duty cycle MAC protocols [10, 11, 12, 13, 14, 15, 16, 17]. Conceptually, a number

of MAC protocols with capabilities of traffic-based cycle adaptation have been

proposed. Previous works, have not carefully considered the unique characteristics

of IPv6 WSN and it’s arbitrary traffic patterns in their design.

In this section, CADC: a congestion-aware duty cycling MAC protocol is

proposed. The proposed MAC can operate with any routing topology, traffic

patterns and it is protocol independent. Our congestion aware MAC prevents

packet loss by increasing the duty cycle under heavy traffic and saves energy by

decreasing the duty cycle in light traffic. CADC is evaluated and compared with

other dynamic and fixed duty cycle protocols in both COJA simulator and real

hardware test-bed. The scheme is extensively tested under various traffic patterns

(different source rates, distances in hops and topologies) and we demonstrate that

it exhibits an overall better performance than both fixed duty cycle schemes and

other dynamic duty cycle protocols in terms of energy consumption, goodput,

delay and packet loss.

The rest of the section is organised as follows: a discussion on the limitations

of dynamic duty cycle protocols can be found in section 6.2. Section 6.3 discloses

CADC’s design details. The simulation experiments and analysis thereof can be

found in section 6.5 while tes-bed experiments will be analysed in section 6.6.

A comparison between simulation and test-bed results will be presented in sec-

tion 6.7. Lastly, section 6.8 summarises our main results and describes future

research directions.
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6.2 CADC Design Considerations

Contrary to traditional, application-centric WSN design, a 6LoWPAN may be the

host of a variety of applications (e.g. network management, data collection, CoAP:

Constrained Application Protocol services) simultaneously. In this case:

1. packets from different applications will have different sizes, priorities and

possibly different destinations

2. Traffic may be bi-directional

3. Applications may use different protocols for communication (UDP or TCP)

4. Large packets may get fragmented by the 6LoWPAN adaptation layer.

Considering the above characteristics, a dynamic duty cycle protocol for 6LoWPAN

sensor networks should:

1. Be protocol-independent,

2. Be topology-independent,

3. Forward packets based on their priority,

4. Implement a traffic-aware method for the calculation of the required duty

cycle, with nodes along the traffic path adjusting their cycles in a uniform

fashion.

As discussed in chapter 5 and section 3.6, duty cycling nodes switch their radio

transceivers on and off for energy saving. Usually, nodes will also turn their radio

off when collisions occur [4]. As the network density increases, so does collision

probability. When a collision occurs, a back off time for packet retransmission

will be calculated randomly. Even with the most advanced synchronisation al-

gorithms, the existence of collisions render perfect synchronisation between nodes

very challenging. In order to address it, many existing protocols transmit link

layer frames repeatedly (multiple strobes) until they receive a successful acknow-

ledgment, or until a collision is detected. This approach, which is also known as a

‘packet train’, works efficiently for link layer unicasts, however broadcast packets

never get acknowledged and thus are inefficient [4]. Therefore, a dynamic duty

cycle protocol must not rely on broadcasts for information sharing between the

nodes.

Under dynamic adjustment schemes, calculation of the new duty cycle can be:

1. centralised, whereby a single node calculates the new DC and informs the

remainder of the network,
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2. distributed, where each node calculates its own optimal DC based on in-

formation available locally. With the first approach, problems such as faulty

connection links due to different cycles are prevented since all nodes will

update to the same DC. This in turn will lead to unnecessarily high energy

consumption at idle nodes and longer adaptation times.

Distributed protocols can adapt to traffic requirements faster, since each node

can change its DC without waiting for the entire network to converge to the same

cycle. This is also more energy efficient, since only active nodes will adjust their

cycles. On the contrary, this approach may result in incorrect cycle synchronisa-

tion between the nodes. If a node increases its cycle and its parent node fails to

receive that information correctly, the communication link between the two nodes

will become unreliable. Therefore, designing a distributed scheme can be a very

challenging task in an IPv6 and 6LoWPAN WSN where the traffic patterns are

arbitrary. Usually, distributed duty cycle protocols, use periodical wake-ups in

order to listen for packet transmissions from neighbour nodes. If a packet trans-

mission is detected during a wake-up, the receiver keeps the radio on to receive

the packet. When a packet is received, the receiver sends a radio acknowledgment.

To transmit a packet, sender repeatedly sends the packet until the reception of a

link layer acknowledgment from the receiver. Broadcast packets does not wait for

link layer acknowledgments, with the transmitter instead continuously sending the

packet for the whole wake-up interval [4]. Therefore, in the majority of dynamic

duty cycle protocols, the duration of each packet’s transmission is related with the

node’s wake-up frequency. When the above packet transmission approach is used

by a dynamic duty cycle protocol; there is a possibility for incorrect cycle adapt-

ations to occur. How this incorrect cycle adaptations can occur can be explained

if we take under consideration the following example:

Lets assume that node i is the transmitter and node j the receiver. If i decreases

the interval between its radio wake-ups (higher cycle) and j does not, i’s continuous

packet transmissions will not be long enough to be detected during j’s wake up

periods. Based on that, it is easy to conclude that node i will transmit packets

while node j is still in sleep mode. Consequent failure of packet transmissions

may lead to a new, cycle adaptation in node i which in turn may result in a worse

situation such as path adaptation (a node will change its parent node). Thus

dynamic duty cycle protocols with distributed cycle adaptations must be designed

carefully and successfully share the duty cycle information between nodes.

All of the above considerations, have been taken into account in the design

of the proposed protocol, and thus CADC is tailored on the versatile needs of an

IPv6 WSN.
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6.3 Implementation of CADC

The design of the proposed CADC is focused on overcoming all existing chal-

lenges related to DC in 6LoWPANs, such as the ones discussed in section 6.2.

Furthermore, CADC is routing, application and traffic independent. It operates

efficiently under varied traffic patterns and with multiple applications operating

simultaneously. Even though CADC is designed for 6LoWPANs, it can easily be

applied to any WSN deployment.

In this research study, the radio duty cycle of a WSN is expressed as a func-

tion of node wake-up frequency called channel check rate (CCR). More details

about the relation of channel check rate and radio duty cycle can be found in [4]

and section 3.6.

6.3.1 General Characteristics and Rules

In order to achieve fast adaptation times, CADC measures congestion levels based

on node activity. Congestion level sampling is not performed when nodes are idle,

since congestion can not occur. On the other hand, when traffic increase so does

the frequency of congestion level sampling. In order to achieve this, every ni packet

transmissions each node will measure its queue occupancy and packet transmission

ratios (successful, not acknowledged, collisions). If a node has no in-traffic at the

MAC layer (can be both self and from other node traffic) within a period of time

Pt; it is considered idle and thus congestion levels are not measured. Additionally,

a node will return its channel check rate back to the default if it becomes idle.

The period of time Pt, is proportional to the node’s channel check rate (higher

channel check rates have smaller periods since they can transmit a greater number

of packets per second). Moreover, two queue thresholdsQh andQl are implemented

at each CADC node. Nodes are considered to be in a light congested state if

queue occupancy exceeds the low queue threshold Ql and in heavy congestion state

when queue occupancy exceeds the high threshold Qh. A transmission threshold

UT is applied to the packet transmission statistics (measured during congestion

sampling), in order to provide more efficient congestion detection. Each node will

also measure its incoming traffic (in packets). The aforementioned metrics are

then combined for the reconfiguration of the channel check rates at the nodes.

Overall, CADC’s dynamic CCR adaptation is designed to achieve energy ef-

ficiency, high performance, scalability and very fast adapting times without need

for synchronisation between nodes.

Even though CADC is designed so as nodes can operate independently (no

time synchronisation between nodes), every CADC node must follow some rules:
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Figure 6.1: CADC Channel check rate adaptation scenarios for different traffic
patterns

1. A CADC node must always have the same or lower channel check rate than

its parent nodes (in bi-directional traffic, a node must have the same DC

as its parent and children). A detailed explanation of how CADC nodes

will adjust their channel check rates in different traffic patterns, can be seen

in Figure 6.1.

2. Information about a node’s channel check rate must frequently be forwarded

to parent nodes.

3. When a node becomes idle, its channel check rate will return to the default

configuration (minimum channel check rate).

In order to satisfy the above rules and maximise the performance, CADC proposes

a 5-state operation mode at each node. Nodes will measure their congestion levels

and enter a state accordingly. The 5 congestion states are presented in detail in

the next section.

6.3.2 Measuring Congestion Levels and Cycle Adaptation

Various techniques have been proposed in the wireless sensor literature for the

measurement of node congestion. In recent studies [47] and through the ex-

periments conducted in chapter 4, it is reported that queue occupancy is suffi-

cient when traffic patterns are many-to-one, which is the predominant case for

6LoWPANs. In case of arbitrary communication traffic patterns with varied duty
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cycles between the nodes, measuring congestion based on queue length may be

insufficient. Nodes require a higher degree of knowledge in order to efficiently ad-

just their duty cycles. For the successful calculation of the optimal channel check

rate in each node, CADC is based on five parameters:

1. The ratio of successful transmissions (in %) over the transmission threshold:

Rsucc =
Tsucc
UT

(6.1)

2. The ratio of failed transmissions (in %) over the transmission threshold:

Rfail =
Tfail
UT

(6.2)

3. The packet-queue occupancy

4. The ratio of successful transmissions over failed transmissions:

Rservice =
Tsucc
Tfail

(6.3)

If Tfail = 0, Rservice is considered > 1without running the above calculation.

5. The highest channel check rate announced by a node’s children (CCRannounced).

Every ni transmitted packets, these parameters are recalculated (ni must be

proportional to the maximum queue size in order to achieve minimum reaction

times). Upon the calculation of the above parameters, CADC’s duty cycle ad-

aptation algorithm will be executed and the node will enter a state. A detailed

transition diagram of CADC’s states can be seen in Fig. 6.2.

The five CADC states are:

• Congestion collapse state: This state signifies that the node is heavily

congested and the channel check rate must significantly be increased. A

node will enter this state if:

1. its packet queue levels are above the high threshold Qh. This indicates

that it is likely packets to be dropped in the near future. Therefore we

need to significantly increase the cycle to prevent it.

2. Rsucc is below 1. This indicates that the queue keep increasing fast

because the node has a very high percentage of failed transmissions.
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Figure 6.2: State transition diagram of CADC’s 5 operating states
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3. finally that nodes channel check rate must be significantly lower than

the highest channel check rate maxCCR (the highest value a channel

check rate can take must be defined in advance). We can’t increase the

cycle more than the maximum configuration.

If the above parameters are met, a node is highly likely to drop packets and

thus there is a need for an immediate duty cycle increase. When a node

enters this state its channel check rate will be quadrupled.

• Congested state: When a node is not heavily congested, but predicts

that there is a possibility of congestion occurring during the next packet

transmissions it will enter this state. In this state, a minimum will be made

to the channel check rate. Therefore the risk of over-increasing channel check

rate and thus have unnecessary energy consumption will be decreased. More

specifically, a node will enter this state if:

1. its packet queue level is above the lower threshold Ql. This indicates

that the node is congested but packets are not likely to be dropped yet.

2. Rservice is below or equal to 1. This indicates that the queue is not

draining and it will keep growing.

3. Nodes that entered the congestion collapse state, do not operate in the

maximum channel check rate but cannot quadruple their channel check

rate will also enter this state.

• Over duty cycle state: This state represents that the channel check rate

in the node is higher than the required. A node will enter this state when:

1. Packet queue level is below the lower threshold Ql.

2. the channel check rate in the node must be higher than CCRannounced.

Nodes cannot disobey the rules rule - 1

3. Rservice must be equal or greater than 1 and Rfail must be below 1.

This way nodes can confirm that the queues are draining and there is

no need to operate in a higher than the required cycle.

4. the node’s channel check rate must be higher than the minimum channel

check rate minCCR. Nodes cannot operate in lower than the minimum

cycle.

When a node successfully enters this state, its channel check rate will be

halved.
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• Normal operation state: This is the default operation state of CADC

protocol. Nodes in this state will maintain their current channel check rate

configuration. A node will remain in this state if no congestion is detected

(either node is idle or traffic is not high enough to cause congestion).

• Forwarding state: This is an intermediate state with the purpose of in-

forming receiver nodes about future changes of the transmitter’s channel

check rate. After a node enters congestion collapse state or congestion state,

a new channel check rate will be calculated for that node. Before a node ad-

justs its channel check rate to the calculated value, it will enter the forward-

ing state and remain in this state for a duration of time (guard period) related

to the minimum channel check rate (minCCR). During this period, nodes

will propagate their new channel check rate to any possible receive nodes.

Moreover, relating guard period to minCCR will result in having nodes with

higher channel check rates remain in this state for a greater number of packet

transmissions than nodes with lower channel check rates. This is important

since nodes with lower channel check rates are more likely to have a packet

received in a single transmission (as discussed in section 6.2, the duration

of each packets continuous transmission is higher for lower channel check

rates). When guard period finishes, nodes will adjust their channel check

rate to the calculated value.

In order to explain in detail the role of Forwarding state in CADC, lets assume

that node i is the transmitter node and node j a receiver. When node i detects

congestion, it will enter congestion collapse or congested state and the optimal

channel check rate will be calculated accordingly. Before node i adapts its cycle,

node j must be informed about the change (rule 2). In order to achieve that,

node i will enter the forwarding state and insert the information about the future

change in its channel check rate to every out going packet. When node j receives

a packet from i it will extract the channel check rate information from the packet,

enter forwarding state and further propagate this information.

In addition to the mentioned states, when a CADC node becomes inactive (no

transmitted packets for a time period), it will set its channel check rate to minCCR.

This functionality allow nodes to independently return their cycles to the default

configuration.

6.3.3 Duty Cycle and Information Sharing

In order to achieve optimal network performance, it is necessary for each node to

propagate its current channel check rate to its parent nodes. For the propagation
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of channel check rate information, CADC uses the 3 reserved bits of the FCF

field in the 802.15.4 frame header (Figure 6.4). Before each unicast transmission,

nodes will set a flag in the 3 bit field. Through that flag, a node can calculate

the channel check rate at its child nodes. If the channel check rate received is

higher than the receiver node’s current channel check rate, the node will enter the

forwarding state and further propagate this information. When the node exits the

forwarding state, it will adjust its channel check rate to the same value as the one

received by its child node. Moreover, a node can not reduce its channel check rate

to a lower value than the highest received.

A scenario of how CADC will adjust the nodes channel check rate during

uni-directional traffic can be seen in Figure 6.3. In the majority of cases, the

information will successfully be shared between the nodes through the forward-

ing state. But in IPv6 WSN, a node may start transmitting or change traffic

patterns at any time (multiple applications running in the same node, some with

one-way traffic and others with bi-directional traffic). Taking this under consider-

ation, CADC must incorporate some intelligent mechanisms capable of detecting

traffic patterns changes and adjusting the channel check rates accordingly. These

mechanisms will be presented in detail at the next Section.

1 2 3 4 5 6 7 8 9

Sink node Source node

Congested nodeCongested node

Channel check rate =4Channel check rate =16Channel check rate =64

Figure 6.3: CADC traffic flow operation scenario
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Figure 6.4: 802.15.4 frame header and the 2 bytes of frame control field (FCF)

6.3.4 CADC Packet Retransmission Scheme

Traditionally, nodes perform tasks such as neighbour discovery with the use of

broadcast packets. As mentioned in 6.2 duty cycle protocols such as ContikiMAC

will repeatedly transmit a packet for a period of time. The duration of a packet

train must be slightly longer than the intended recipient’s wake up period. With

this scheme there is no need for clock synchronisation between nodes, since the des-

tination will definitely wake up once during the packet train. Since channel check

rate (CCR) represents the radio wake-up frequency, both packet train duration

and node sleep times are calculated based on CCR.

If nodes operate with different channel check rates, information exchanges with

broadcast frames will become unreliable since nodes with a lower CCR will not

receive the majority of broadcast frames transmitted by nodes with higher channel

check rates. In order to avoid broadcast frame losses due to this ‘disagreement’,

CADC sets the duration of broadcast packet trains to a fixed value regardless of

CCR.

Fixed transmission times for broadcasts can in turn cause continuous collisions

to nodes with high channel check rates since unicast transmission times will be

much lower. To avoid this, we improved the traditional CSMA backoff algorithm

by applying multiple packet retransmission windows for the different cases of col-

lisions. If a collision is detected during the transmission by a unicast frame, the

back off algorithm will estimate a retransmission time based on the node’s current

channel check rate (different channel check rates result in different backoff times).
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Figure 6.5: CADC packet retransmission scheme

On the contrary, when a collision is caused by an incoming broadcast frame, the

backoff time will be based on the fixed duration of broadcast packet trains. This

is illustrated in Figure 6.5.

Traditionally, there are three main reasons why a node will not receive an

acknowledgment after a packet transmission: i) the presence of a hidden terminal,

ii) data corruption and iii) loss of the link to the destiantion. In case of a dynamic

DC protocol with varied cycles between the nodes, it is possible that incorrect DC

adaptations may lead to the same problem. To further explain this let’s assume

that node i is the source node, node j its parent node and node k is the sink node.

Now let’s assume that node j becomes congested and adapts its channel check rate

to a higher value. This will result in node k updating its channel check rate to the

same or higher value. At this point, if another traffic flow from node k towards

node i starts, the majority of the packets will be lost in the link between node

j and node i since node j already operates in a higher channel check rate than

node i. This phenomenon will cause a stream of failed, unacknowledged packets.

In order to confront scenarios like the one described above CADC nodes will:

1. when a node enters the forwarding state, it will transmit packets based on the

maximum transmission time that corresponds to minCCR. This will ensure

that the information about the new channel check rate will be propagated

even between nodes with different channel check rates. This is very useful in
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scenarios where the traffic converges from semi-directional to bi-directional

after nodes have adjusted their channel check rates.

2. when a node is in forwarding state and a packet does not receive an acknow-

ledgment, the node will immediately retransmit “stitch” the packet. This

will ensure that nodes in forwarding state will even by force propagate the

information to the neighbour nodes.

6.4 Evaluation of CADC

CADC is designed to achieve energy efficiency, high performance, scalability and

very fast adapting times without need for synchronisation between nodes. Addi-

tionally, how CADC is designed to operate and confront congestion is described

in detail during the previous sections .

In this section, two basic experiments (using 3 nodes) have been conducted

in COOJA and analysed in detail in order to investigate whether CADC can

successfully achieve its design targets. Simulations aimed at evaluating behaviour

of the protocols in both heavily congested and normal network conditions. During

these experiments, the source was configured with CBR traffic and attempted to

transmit 200 packets. Detailed simulation logs of the above mentioned experiments

can be found in Appendix G, while the detailed performance of CADC during the

simulation experiment with low congestion is illustrated in detail by Figure 6.6

and Figure 6.7 (Text in red represents congestion detection and changes in the

nodes status due to congestion while green text represents changes due to node

over duty cycling. Text in black colour represents no changes at the nodes status).

It is also worthy to mention that the codes used for the simulation experiments in

this section are identical with the ones used for the test-bed experiment (Contiki

can simulate hardware nodes loaded with the actual firmware used for test-bed

experiments section 3.3).

Studying Figure 6.6, it can be observed that for <80 packet transmissions no

congestion was detected by CADC. During the transmission of the 80th packet

by the source, node’s 2 (intermediate node) queue occupancy exceeded the Ql

but remained below Qh. Additionally, node’s 2 Rserv was below 1 and thus the

queue will keep building up. In order to prevent its queue from overflowing,

node 2 entered congestion state and updated its CCR to 16 and encapsulated the

information on it’s outgoing packets according to rule 2. Consequently, node 1

updated its CCR according to rule 1. Even though node’s 2 packet queue was

higher than Ql for the packet transmissions between 80 and 90; Node 2 did not

detect any congestion and remained in normal operation state. The reason behind
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Figure 6.6: CADC evaluation experiment with normal traffic
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Figure 6.7: CADC evaluation experiments with normal traffic (part-2)
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this is node’s 2 Rserv was higher than 1 and thus the queue was draining. Therefore

node 2 waited for the queue to drain instead of triggering the congestion avoidance

mechanism again. Nodes remained in normal state (queues drained below Ql) and

operated without any congestion for another 10 packet transmissions. During the

100th packet transmission from the source, node’s 2 queue built up and exceeded

the lower threshold Ql. Moreover, node’s 2 Rserv was below 1 and thus the node

entered congestion state and further propagated the information to its parent node.

Both nodes 2 and 1 updated their CCR. 10 packet transmissions later, node’s 2

queue had drained and the node had Rserv > 1, Rfail < 1 and a higher than the

default CCR. Therefore node 2 entered the over duty cycle state and reduced its

CCR. From this point on, nodes continued to operate without congestion till the

end of the experiment where inactivity was detected and all nodes reconfigured

their CCR back to the default.

There was no packet loss during this experiment. On the contrary, during

high congestion there was more changes between CADC’s states (detailed logs

in ). Even though, CADC demonstrated similar results in both low and high

congestion experiments.

Through these experiments, CADC met all design targets and demonstrated

that it can fast adapt to various changes, operate under various traffic requirements

and successfully confront congestion while it keeps the CCR at the nodes to the

minimum required.

6.5 Simulation Experiments

6.5.1 Simulation Configurations

Through simulations, this section investigates the performance of various duty

cycle algorithms and compares them with the proposed CADC. Simulations aimed

at evaluating behaviour of the protocols in both heavily congested and normal

network conditions. In order to achieve this, over 10,000 simulation runs were

conducted: 160 configuration and traffic rate permutations for each protocol in

each topology. Each source attempted to transmit 500 packets. The packet trans-

mission intervals (the time between two consequent packet transmissions) that the

sources have been configured for the different simulation runs was: 500ms, 250ms,

125ms and 62.5 ms and each packet had a 24-byte application data. The tool

used to perform the simulations was COOJA [99]. All features of CADC de-

scribed in section 6.3 have been implemented as a new MAC layer in the Contiki

embedded operating system.

The packet queue in every MAC layer used for the simulations (CADC, BEAM,
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Table 6.1: Different simulation configuration permutations

ContikiMAC CADC X-MAC BEAM

MAC layer CSMA CADC CSMA BEAM
RDC layer ContikiMAC CADC X-MAC BEAM
Channel check
rate (Hz)

4, 8, 16, 32, 64 dynamic dynamic 4, 8, 16, 32, 64

minCCR (Hz) configuration
dependent

4 configuration
dependent

4

maxCCR (Hz) configuration
dependent

64 configuration
dependent

64

ni N/A 10 N/A N/A
Qh N/A 90% N/A 100%
Ql N/A 60% N/A 60%
UT N/A 20% N/A N/A

CSMA) was configured to buffer up to 10 outgoing packets (10 × 128 bytes). There

was no queue implemented for incoming traffic.

The BEAM protocol was implemented, accordingly to [17] for both MAC and

the RDC layer. In Contiki OS and hence our simulations, the RDC is expressed

as a function of the wake-up frequency. In our results and graphs this frequency

is called channel check rate. For the majority of the platforms in Contiki OS the

default value for the channel check rate is 8 (each node will wake-up 8 times every

second). Moreover, channel check rate values must always be a power of 2. For

the simulations, protocols were tested with all the values (which are powers of 2)

between 4 and 64. This range of channel check rate values, is sufficient for under-

standing how the network would behave in each case (low, medium or high channel

check rate) and how channel check rate and consequently different duty cycles can

affect a WSN in different network conditions. A more detailed representation of

the configurations used during the experiments can be seen in Table 6.1.

Routing is handled by RPL [150] (IPv6 Routing Protocol for Low power and

Lossy Networks). Unit Disk Graph Medium (UDGM) in which nodes communicate

and interfere in fixed-radius circles was used to emulate the radio environment in

our simulations. The nodes used for the simulations were emulated Tmote sky

motes. Emulated motes in Cooja simulate the same firmware as as would be

uploaded and executed on a real Sky board.

Two different topologies were used for the simulations, a line topology of 9

nodes Figure 6.8 (1 source, 1 sink, 7 intermediate nodes. Different simulation

runs with different distance between sink and source) and a 25 node random to-

pology Figure 6.9 (6 sources, 1 sink, 18 intermediate nodes). The first topology

aimed at presenting each protocols performance in a low density network as well
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Figure 6.8: Routing tree with coverage (line topology)

as how the distance (in hops) affects the performance of each protocol. The aim of

the simulations with random topology was to investigate the performance of the

compared protocols in a WSN with higher node density and intense traffic load

conditions.

Each experiment has been repeated 15 times with a new random seed per

iteration. The duration of each experiment was 10 minutes. For each experiment

we recorded the following metrics:

1. goodput as total number of packets received by the sink,

2. packet loss,

3. end to end delay (from source to sink),

4. energy consumption.

Lastly, we recorded the code footprint and memory requirements for each MAC/RDC

configurations.

6.5.2 Simulation Results

6.5.2.1 Goodput

Figure 6.10 and Figure 6.14 are presenting a detailed protocol performance in

terms of goodput for every simulation configuration (different channel check rates

and packet transmission intervals). The former represents the performance of the

compared protocols during line topology simulations while the later represents the

performance in the random topology. Additionaly, Figure 6.15 demonstrates the

detailed goodput performance of the schemes for the different distances in hops

during line topology simulations. Figure 6.12 describes how different channel check

rate configurations affect goodput in a heavily congested WSN (62.5 ms packet

transmission interval). Finally, in Figure 6.13 a comparison of each protocols best

performance in goodput over the different packet transmission intervals can be

seen (CADC&BEAM default performance since there is only one configuration for

the channel check rate).
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Further studying the above Figures, it can be observed that CADC and Con-

tikiMAC outperformed X-MAC and BEAM protocols in terms of goodput. CADC’s

achieved a very high goodput, similar to the highest channel check rate config-

uration of ContikiMAC. In the line topology experiments CADC’s goodput was

lower than ContikiMAC’s highest channel check rate configuration (channel check

64 had the highest goodput for ContikiMAC) by 6-10%. This result was expec-

ted since the initial channel check rate of CADC was 4. Therefore, CADC needs

to adapt to the optimal channel check rate based on the traffic load in the net-

work. This adaptation procedure can in turn take some time and thus lead to

some packet loses while the sceme operates in lower than the optimal channel

check rate. It is worthy to mention that the adaptation times of CADC will vary

based on the traffic patterns and load (bi-directinal traffic may take longer since

nodes adjust the channel check rates in bi-direction flows. Moreover, based on the

load CADC may or may not enter congestion collapse state which quadruples the

channel check rate. In that case CADC will have lower adaptation times).

On the contrary, during the random topology simulations, CADC’s perform-

ance was higher than ContikiMAC’s highest channel check rate configuration by

2-3%. Based on these results we can conclude that when network density and the

traffic load increased, CADC outperformed ContikiMAC when configured with it’s

highest channel check rate. The main reasons behind this are:

• During random topology experiments, multiple sources may share the same

traffic paths. Since the traffic was uni-directional, CADC mainly adapted

the rates in nodes sharing the different flows. Moreover, in both experiments

the sources were transmitting in a constant bit rate (CBR) and thus CADC

didn’t require frequent channel check rate adaptations. As mentioned dur-

ing the previous paragraph, CADC may suffer some packet losses during it’s

channel check adapting phase. Since the sources had CBR traffic, CADC

required approximately the same time to adapt in both scenarios and thus

had the same packet loss. Having more sources in random topology sim-

ulations lead to a greater number of packets transmitted in the network.

Since CADC lost approximately the same number of packets in both topo-

logy experiments but had significantly more packets transmitted during the

random topology; the loss due to CADC’s adaptation periods was much less

noticeable.

• the modified back off algorithm in CADC, which is more intelligent and adds

more randomness to the back off algorithm.

• In CADC, each node may operate in a different channel check rate from
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its neighbour nodes. Each node calculates the maximum number of pack-

ets that it can transmit every second based on its Channel check rate and

thus it is directly connected with the maximum size of the contention win-

dow (CW) calculated by the back off retransmission algorith (similarly to

CSMA). Consequently, when neighbour nodes have different size CW the

probability of collisions is further reduced since the back off interval can be

between 0 and CW.

• Random topology simulations had a greater number of source nodes and

thus some of these sources shared the same traffic path to the source. When

a traffic path is shared by multiple sources, it is more likely that CADC will

enter the heavy congestion state and significantly increase the channel check

rates at the nodes. This will result in less channel check rate adaptations

in the same path and consequently faster adaptation to the high traffic de-

mands. The two above mentioned characteristics of CADC is described in

detail in section 6.3.

It can also be observed that CADC and ContikiMAC managed to maintain high

goodput for all the simulated packet transmission rates. On the contrary, packet

transmission rate had a significant impact to the performance of X-MAC and

BEAM. From the simulations it is noticeable that X-MAC and BEAM, demon-

strated similar to CADC’s and ContikiMAC’s goodput performance when the

traffic in the network was low. On the other hand, during high traffic configur-

ations their performance was significantly lower. If we further analyze the per-

formance of X-MAC, when the channel check rate was set to 4, a tenfold decrease

(between packet transmission intervals of 62.5 and 500ms) in the protocols per-

formance can be observed. Based on the above, it is easy to conclude that the

packet transmission mechanism with probing used by BEAM and X-MAC is much

more susceptible to congestion.

Furthermore, it is noticeable that when the distance (in hops) between the

source and the sink increased, CADC achieved the most stable behavior. CADC’s

goodput dropped by 24% when we increased the distance by 8 hops. On the other

hand ContikiMAC’s goodput droped by 30%, X-MAC’s by 55% and BEAM’s by

43%. How the distance in hops affected the goodput of each mechanism can be

seen in Figure 6.11.
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Figure 6.10: Goodput for the different packet transmission intervals with different
channel check rates (line topology)
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Figure 6.11: Goodput over distance in hops (ContikiMAC&X-MAC best perform-
ance. Channel check rate=64 - line topology)
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Figure 6.12: Goodput over the different channel check rates (highest traffic condi-
tion with inter packet transmission interval equal to 62.5 ms - random topology)
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Figure 6.13: Goodput with different packet transmission intervals
(ContikiMAC&X-MAC best performance. Channel check rate=64 - random
topology)
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Figure 6.14: Goodput for the different packet transmission intervals with different
channel check rates (random topology)
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Figure 6.15: Goodput for the different channel check rates and distances in hops
(the demonstrated performance is during heavy congestion with inter packet trans-
mission interval of 62.5 ms)
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6.5.2.2 Packet Loss

Figure 6.16 shows the average packet loss for the line topology simulations. Fig-

ure 6.17 presents a detailed analysis of the packet loss for the different transmission

rates during random topology simulations. Similarly to goodput (as application

layer packet transmissions are not reliable), CADC and ContikiMAC achieved

lower loss for both simulation scenarios. In comparison to line topology, both

CADC and BEAM had better performance compared to ContikiMAC and X-MAC

when the network density and traffic load increased.
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Figure 6.16: Average packet loss (line topology)
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Figure 6.17: Packet loss for the different packet transmission intervals with differ-
ent channel check rates (random topology)

6.5.2.3 Packet Delay

Figure 6.19 shows packet delay against the distance in hops. Overall, X-MAC

configured with a high channel check rate had the lowest delay in the majority

of the simulated experiments with BEAM following and lastly ContikiMAC and

CADC. When the network was configured with BEAM or X-MAC, the goodput

was lower and thus there was less packets in the network. Having fewer packets

in the network results in less built up queues and thus lower delay times. Even

though X-MAC had the lowest delay times, both BEAM and CADC maintained

lower delay than X-MAC and ContikiMAC when the later was configured with

lower channel check rates and thus duty cycles. It can also be observed that CADC

achieved lower delay than any channel check configurations of ContikiMAC and X-

MAC between 4 - 16. BEAM demonstrated an even better delay with lower delay

times for any channel check configurations of ContikiMAC and X-MAC between 4 -

32. The average delay for the line topology simulations can be seen in Figure 6.18

while Figure 6.20 shows the detailed delay of each mechanism for the different

simulation configurations during random topology experiments. Additionally to

the above, Figure 6.19 shows how delay scales when the distance in hops increases

while Figure 6.22 and Figure 6.23 demonstrate the delay times for the different

channel check rates over distance in hops for the line topology simulations.

Further analysis of the delay in the simulation experiments revealed that Con-

tikiMAC’s and X-MAC’s delay was reduced as the packet transmission rate de-

creased (inter packet transmission interval increases). This is expected since
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higher transmission rates contribute to built up of the packet queue. On the

contrary, CADC and BEAM in some cases demonstrated higher delay when the

packet transmission rate was lower. Figure 6.21 is a good example to study the

above observation. In this figure it can be observed that the average delay times

for CADC and BEAM varied for the different inter packet transmission intervals.

More specifically, CADC shown much higher delay times when the sources were

transmitting one packet every 125ms. As explained in section 6.3, a dynamic duty

cycle protocol adjusts its cycle based on the traffic parameters. Therefore, in the

same topology when the packet transmission rate is higher CADC and BEAM may

adjust the nodes channel check rate to a higher value (higher frequency). Higher

channel check rates result in a greater number of layer 2 packet transmission rate

and thus a faster drain of the packet queue, which in turn results in a lower delay

times. Taking the above under consideration the jitter observed during the delay

times for the various source rates, when the network was configured with CADC

and BEAM, can be explained.
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Figure 6.18: Average delay with different channel check rates (line topology)
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Figure 6.19: Packet delay over distance in hops (contikiMAC&X-MAC best per-
formance. Channel check rate=64 - line topology)

0 

5 

10 

15 

20 

25 

30 

4 8 16 32 64 4 8 16 32 64 

ContikiMAC CADC X-MAC BEAM 

D
e
la

y
 i
n
 s

e
c
o
n
d
s
 

Channel check rate (Hz) 

62.5 ms 125 ms 250 ms 500 ms 

Figure 6.20: Average packet delay for the different packet transmission intervals
with different channel check rates (random topology)
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Figure 6.21: Packet delay with different packet transmission intervals
(contikiMAC&X-MAC best performance. Channel check rate=64 - random to-
pology)
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Figure 6.22: Packet delay for the different channel check rates and distances
between 2 - 5 hops (line topology)
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Figure 6.23: Packet delay for the different channel check rates and distances
between 6 - 9 hops (line topology)
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6.5.2.4 Energy Consumption

Figure 6.24, demonstrates the per node average energy consumption per second

when the network is idle (no packet transmissions). It can be observed, that

when the network is idle, the per node energy consumption approximately doubles

when the channel check rate is doubled (as mentioned in the beginning of this

section channel check values can only be powers of 2). In ContikiMAC and X-

MAC the channel check rate must be pre-configured. The default channel check

rate value for the majority of the platforms in Contiki OS is 8. In order to

increase the bandwidth, a WSN can be configured with a higher channel check rate.

Configuring a WSN with a channel check rate of 64 will result in an approximately

800% higher energy consumptin compared to the default channel check value of 8.

Figure 6.25 shows the average energy consumption per received packet, for

the line topology simulations. In some cases, it is also noticeable that when the

network is active, a higher channel check rate configuration can result in lower

energy consumption. Studying Figure 6.28 and Figure 6.29, this phenomenon

can be explained by comparing the average energy consumption in the network

with the average energy consumption per successfully received packet. The former

Figure, represents the average node energy consumption for each node consumed

during random topology simulations while the later represents the per packet

energy consumption for each node.

The total average energy consumption for X-MAC protocol was followed using

the same pattern as the energy consumption when the network was idle. Higher

channel check rates resulted in significantly higher energy consumption. On the

contrary, the average energy consumption per successfully received packet didn’t

follow the same pattern for every transmission rate. The cause of this was the high

packet loss of X-MAC in high packet transmission rates. On the other hand, Con-

tikiMAC exhibited higher over all energy consumption for the two lowest values of

the channel check rate (4–8). This can more distinctively be observed during low

packet transmission rates (longer packet transmission intervals. See Figure 6.28)

since higher rates had significantly higher packet loss (higher packet loss results

in less total transmissions from the nodes in the network). When the network is

idle, ContikiMAC’s energy consumption is very low compared to the energy con-

sumed during packet transmissions or packet reception/idle listen. Moreover, the

duration of each packet transmission in ContikiMAC is longer for lower channel

check rates (a packet is continuously transmitted for a period of time or until an

acknowledgment is received. This period of time is calculated based on how often

each node scans the radio for packet transmissions). The above characteristics

of ContikiMAC result in higher energy consumption per packet transmission for
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lower channel check rates. Therefore, when the network transmits the same num-

ber of packets with a lower channel check rate, the energy consumption is going

to be greater than a higher channel check rate configuration. Even though the

same principle applies to X-MAC, the above phenomenon is not observed with

that scheme due to X-MAC’s significantly higher energy consumption when the

network is idle. Therefore, the amount of extra energy consumed per transmission

is too small to be observed compared to X-MAC’s overall energy consumption.

CADC and BEAM maintained the lowest possible energy consumption when

the network was idle with overall (for every distance in hops and packet trans-

mission interval), BEAM achieving approximately 40% lower energy consump-

tion than X-MAC’s configuration with the lowest energy consumption. Further-

more, CADC achieved the lowest energy consumption in every simulated scenario.

CADC’s overall energy consummption per succesfully received packet was lower

than ContikiMAC’s lowest energy consumption configuration by 20% during line

topology experiments and approximately 15% lower during random topology ex-

periments. Figure 6.26 shows how energy consumption increases over the distance

while Figure 6.31 demonstrates the energy consumption per succesfully received

packet for the different distances in hops. In Figure 6.27 average energy consump-

tion over different packet transmission intervals is plotted.
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Figure 6.24: Idle network energy consumption/sec for each node
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Figure 6.25: Average energy consumption per successfully received packet (line
topology)
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Figure 6.26: Average energy consumption/successfully received packet over dis-
tance in hops (for all channel check rates, line topology)
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Figure 6.27: Average energy consumption/successfully received packet with dif-
ferent packet transmission intervals (line topology)

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

4 8 16 32 64 4 8 16 32 64 

ContikiMAC CADC X-MAC BEAM 

E
n
e
rg

y
 i
n
 J

o
u
le

 

Channel check rate (Hz) 

62.5 ms 125 ms 250 ms 500 ms 

Figure 6.28: Total energy consumption for the different packet transmission inter-
vals with different channel check rates (random topology)



CHAPTER 6. CADC: CONGESTION AWARE DUTY CYCLE MAC 173

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

4 8 16 32 64 4 8 16 32 64 

ContikiMAC CADC X-MAC BEAM 

E
n
e

rg
y 

in
 J

o
u

le
 

Channel check rate (Hz) 

62.5 ms 125 ms 250 ms 500 ms 

Figure 6.29: Energy consumption/successfully received packet for the different
packet transmission intervals with different channel check rates (random topology)
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Figure 6.30: Average energy consumption per successfully received packet with
different packet transmission intervals (random topology)
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Figure 6.31: Average energy consumption/successfully received packet for the
different distances in hops (line topology)
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6.5.2.5 Memory Requirements

Table 6.2 show the memory requirements of the compared protocols. The num-

bers in this table represent the size of each algorithm in both MAC and RDC

layer. X-MAC has the lowest memory requirements while CADC requires approx-

imately 1kb extra memory than the rest of the protocols. This was expected since

CADC incorporates much more functionalities in order to precisely calculate the

desired cycle at each given time. Actual memory requirement will depend on the

architecture of the implementation platform, but the relative values here will be

relevant in most platforms. During section 6.6, the sizes of the protocols compiled

with SDCC are going to be presented while a comparison thereof will be made

in section 6.7.

Table 6.2: Size of protocols in bytes (RDC + MAC layer, compiled with MSP430
GCC)

CADC ContikiMAC/

CSMA

X-MAC/

CSMA

BEAM

text 3236 2378 2030 2544

data 28 24 38 38

bss 420 366 250 274

dec 3684 2768 2318 2856

6.5.2.6 Simulation Result Analysis

The main objective in this research study is to show the impact of duty cycles on

the performance of WSNs. As shown in previous sections, increased duty cycles

(higher channel check rates) significantly increase the performance of WSN in

terms of goodput, delay and packet. Furthermore it is observed that increased duty

cycles (in %) does not necessarily lead to higher energy consumption when the

network is active (see ContikiMAC energy performance in subsubsection 6.5.2.4).

On the contrary, increased duty cycles have significantly higher energy consump-

tion when the sensor network is idle. As explained in subsubsection 6.5.2.4 when

the network is idle, energy consumption is approximately doubled for each increase

(powers of 2) of the channel check rate. Assuming that a WSN is configured in

a lower channel check rate, its lifespan can be extended for months. Moreover,

experiments have shown that for the different sensor network conditions (load of

traffic and distance), different duty cycle configurations had the optimal perform-

ance in terms of energy consumption, goodput, delay and packet loss. To be more
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precise, ContikiMAC’s energy consumption per succesfully received packets varied

between the different packet transmission intervals and channel check configura-

tions. Based on the above, in order to achieve the best performance with the

lowest energy consumption in a WSN, nodes should be frequently reconfigured.

Frequent reprogramming in large scale sensor network implementations is difficult

and energy consuming (in case over the air reprogramming). The decision of the

optimal duty cycle for a sensor network can be even harder in 6LoWPAN where

the communication patterns are arbitrary and multiple different applications may

be operating at same WSN (different packet sizes, bandwidth requirements and

destination nodes). This problem can be solved with the use of protocols such

as CADC and BEAM which dynamically adjust the duty cycle in the nodes in

order to minimise energy consumption and maximise the performance. Simulation

results have shown that the proposed protocol, successfully coped with the differ-

ent network parameters during our simulations and adjusted the duty cycles in

each node accordingly. Furthermore, CADC achieved close to the highest possible

goodput and the lowest possible packet losses, the lowest energy consumption and

very competitive delay times.

6.6 Test-bed Experiments

6.6.1 Test-bed Configurations

In this section, the performance of the default DC protocol in Contiki is invest-

igated and compared with CADC through test-bed experiments. All of CADC

features described in section 6.3 having been implemented as a new MAC/RDC

layer for the Contiki embedded operating system. Similarly with the simulation

experiments, test-bed aimed at evaluating the behaviour of the protocols in both

heavily congested and normal network conditions. In order to achieve this, we

conducted approximately 720 testbed experiments, including multiple runs with

different permutations of channel check rate, inter packet transmission interval and

distance in hops. The different packet transmission intervals (the time between two

consequent packet transmissions) used for the comparison of the mechanisms dur-

ing our experiments were: 250ms, 125ms and 62.5ms, with each packet having a

24-byte application data. In each experiment, the source attempted to transmit

100 packets. The configurations of packet queue and routing protocol used during

the test-bed experiments were identical to the simulation runs.

In Contiki OS and hence our experiments, the radio duty cycle is expressed

as a function of the wake-up frequency. In our results and graphs this frequency

is called channel check rate. As mentioned earlier in section 6.5 for the majority
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Table 6.3: Different testbed configuration permutations

ContikiMAC CADC

MAC layer CSMA CADC
RDC layer ContikiMAC CADC
Channel check rate 8 - 16 - 32 - 64 8 (dynamic adjustment)
minCCR (Hz) configuration dependent 8
maxCCR (Hz) configuration dependent 64
ni N/A 10
Qh N/A 90%
Ql N/A 60%
UT N/A 20%

of platforms supported in Contiki, the default CCR value is 8 (each node will

wake-up 8 times every second). Moreover, channel check rate values must always

be a power of 2. The range of channel check rate values used during our testbed

experiments as well as the packet transmission interval and other configuration

specific information can be seen in Table 6.3. The different testbed configuration

permutations used was selected carefully and it is crucial for understanding how

the network would behave in each case (low, medium or high channel check rate)

and how channel check rate and consequently different duty cycles can affect a

WSN in different network conditions.

Subsequently, we investigated the performance of CADC and ContikiMAC

in a 15 node multihop indoor testbed (Appendix D explains in detail why we

picked 15 nodes for our test-bed). Our deployment is based on Sensinode N740

NanoSensors (TI/Chipcon cc243x System-on-Chip with IEEE 802.15.4 low power

RF transceiver, 8KB volatile RAM and 128KB Flash). For this work we used

our port of the Contiki OS for Sensinode/cc2430 devices [145]. Similarly to the

method described in section 3.11 the firmware on each device implements a UDP

server, which waits listening for a packet which signals the start of a test. Upon

reception, the device will extract experiment configuration parameters (number of

packets to be transmitted and inter-packet interval) and start the test. By using

this method, any of the devices can act as a traffic source with varied transmission

lengths and source rates and thus we can test multiple different scenarios in the

same deployment. Moreover, each sensor was periodically transmitting its energy

consumption measurements. A USB border router, is used to route IPv6 traffic

between the 6LoWPAN and the Internet. The receiver of the flows is an Internet

host, controlling tests and performing all logging and necessary measurements.

After switching the deployment on, the RPL routing protocol converged forming
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Figure 6.32: Routing tree created by RPL during our test bed experiments

trees similar to the one illustrated in Figure 6.32. The number inside each bubble

depicts the last two bytes of each node’s IPv6 address.

Each experiment was repeated 10 times. For each experiment we recorded the

following metrics:

1. goodput as percentage of packets received by the sink over the total trans-

mitted packets,

2. packet loss,

3. Round trip delay,

4. energy consumption.

Additionally, the code footprint and memory requirements for each MAC/RDC

configuration is recorded.

Finally, it is worthy to mention that the test-bed scenarios was designed as

close as possible to the simulation ones in order to achieve a result comparison

between thereof.

6.6.2 Testbed Results

6.6.2.1 Goodput

Figure 6.33 is presenting in detail the percentage ratio of the successfully re-

ceived packets at the base station for every different permutation of channel check
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Figure 6.33: Goodput for different inter packet transmission intervals over channel
check rate and distance in hops

rate and packet transmission interval. Further studying this figure, it can be ob-

served that both distance and different packet transmission intervals affect the

performance of the protocols. It can also be observed, that the higher the chan-

nel check rate of ContikiMAC the best goodput the protocol achieved. Between

the different protocol configurations, ContikiMAC with channel check rate of 8

demonstrated a significantly inferior goodput in every possible combination of

distance and packet transmission interval. The reason behind this poor perform-

ance was that all the combinations of packet transmissions intervals and network

density (most of the nodes were in range of each other) used during the experi-

ments was enough to cause intense congestion when ContikiMAC was configured

with a channel check rate of 8. Both CADC and ContikiMAC with channel check

configurations between 16 - 64 didn’t face any congestion problems and achieved

optimal performance during light traffic (250ms packet interval). On the contrary,

the more we decreased the packet transmission interval the more visible became

the difference between the performances of the different channel check rate con-

figurations. This phenomenon is magnified when the packets were injected to

the network in 62.5 ms intervals and thus this configuration would be ideal for

analysing the performance of the protocols during congestion.

Figure 6.34 shows in detail the performance of the protocols in terms of per-

centage goodput over distance in hops during high traffic (62.5 ms packet inter-

val). From this figure, it can be observed that CADC had lower goodput than

ContikiMAC when configured with a channel check rate of 64 but achieved higher

goodput than the remaining ContikiMAC configurations. As mentioned in sec-

tion 6.3, CADC is dynamically adjusting its channel check rate based on the
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Figure 6.34: goodput for different channel check rates over distance in hops during
high traffic configuration (inter packet transmission interval 62.5 ms)

traffic requirements. During our experiments, in order to achieve a valid com-

parison between the proposed protocol CADC and ContikiMAC, the range of

values CADC could dynamically adjust its channel check rate was between 8 and

64 (same parameter range as the different range of channel check rates used for

ContikiMAC). Since CADC initially starts with the lowest channel check rate,

some time is required for the recalculation and readjustment of the channel check

rate. This process can lead to packet losses during high traffic scenarios and it is

the main reason behind CADC’s lower goodput compared to ContikiMAC with

channel check rate of 64.

As mentioned previously and observed during simulations, CADC channel

check rate adaptation requires some time and can lead to some packet losses

during high traffic and thus congestion. Therefore, in CADC the highest ratio of

packet losses occurs at the start and before CADC converges to the optimal chan-

nel check rate. Once CADC converges to the optimal channel check rate packet

losses decrease and thus packet delivery ratio is also increased for the entire re-

mainder of the traffic stream. In order to demonstrate this phenomenon, we also

evaluated CADC under the same topology with varied number of packet transmis-

sions. Figure 6.35 demonstrates the percentage of CADC’s successfully received

packets over different transmission lengths (same interval and distance but differ-

ent number of packets injected to the network). Further studying this figure, it can

be observed that the percentage of successfully received packets was higher when

the number of transmitted packets increased. This does not mean that CADC

behaves differently for varied transmission lengths. On the contrary this result
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Figure 6.35: Percentage of successfully received packets over different transmission
lengths (Distance is three hops)

demonstrate that CADC has a very stable behaviour by been able to identify the

optimal channel check rate and adapt to it for as long as it is necessary. To further

explain this it must be taken under consideration that part of CADC’s dropped

packets happened during the channel check adaptation phase. Since the channel

check rate will be adapted once per flow (if the traffic pattern does not change)

and the traffic is CBR during the experiments, the number of dropped packets due

to the adaptation will remain the same for the varied length experiments. This

in turn explains why CADC had higher packet reception ratio when we increased

the number of packets for each transmission. CADC adaptation times are going

to be discussed more detailed during subsubsection 6.6.2.3.

Overall CADC confronted congestion during various traffic patterns and suc-

cessfully reconfigured nodes to the optimal channel check rates each time. Fur-

thermore, CADC achieved highest goodput than the majority of ContikiMAC’s

channel check rate configurations. Moreover, CADC’s goodput performance was

comparable to ContikiMAC’s highest channel check rate configuration.

6.6.2.2 Packet Loss

During test-bed experiments, traffic sources were CBR and UDP protocol was

used for packet transmissions (no packet retransmissions by the applications and

thus duplicate packets). Therefore, goodput represents the number of successfully

received packets at the base station.Taking the above under consideration, packet

losses can be calculated by subtracting goodput from the total number of packets

transmitted.
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Figure 6.33 illustrates goodput as % ratio of successfully received packets.

From this figure, the %packet loss for each scheme can also be estimated as: %

− goodput. Additionally, the length of each packet transmission in total packets

transmitted is described in detailed during subsection 6.6.1 and thus more detailed

information such as the precise number of packets lost can be easily estimated as:

%packet loss× transmission length
100

(6.4)

Further studying packet loss during test-bed experiments, it is shown that

CADC achieved lower packet losses than the majority of ContikiMAC’s channel

check rate configurations. Furthermore, CADC’s performance in terms of packet

loss was comparable to ContikiMAC’s highest channel check rate configuration

(ContikiMAC’s highest channel check configuration demonstrated the lowest packet

losses).

On the contrary to the simulations, during test-bed experiments packet loss

during round-trip traffic scenarios was evaluated in order to enhance the analysis

of CADC. For the measurement of round-trip packet losses ping6 with differ-

ent transmission intervals was used. The choice of ping6’s transmission intervals

should represent both heavy and low traffic scenarios. Therefore two packet trans-

mission intervals were used: 1 packet every second (low traffic) and 1 packet every

200ms (heavy traffic). The ICMP payload in each packet was 64 bytes.

Figure 6.36 illustrates how packet loss increases for the different distance in

hops during heavy and low traffic scenarios accordingly. Further studying the

above figures shows that during high traffic, CADC always had some packet losses.

As mentioned in the previous section, during high traffic packets can be lost dur-

ing the channel check rate adaptation periods of CADC. The proposed protocol

achieved no packet losses during low traffic, while it’s packet loss during high traffic

experiments was the second lowest after ContikiMAC’s configuration with a CCR

of 64. Overall, CADC demonstrated the same behaviour in both uni-directional

and bi-directional traffic while it demonstrated a comparable to ContikiMAC’s

best configuration (in terms of packet losses) performance.

6.6.2.3 Packet Delay

On the contrary to simulators where usually most of the nodes have synchronised

clocks, one of the most accurate ways to measure packet delay in testbeds with

non synchronised clocks is by measuring the round trip time of a packet. In our

testbed, “ping6” was used for the measurement of the round-trip times. Numerous

pings were conducted from a linux PC connected to the WSN towards individual
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Figure 6.36: percentage of round trip packet loss during heavy and low traffic over
different channel check rate and distance in hops (categories with 0 loss are not
presented for clarity)

nodes. In order to show the round-trip delay in both heavy traffic and low traffic

scenarios, two packet transmission intervals where used: 1 packet every second

and 1 packet every 200ms. The ICMP payload for each packet was 64 bytes.

It is worthy to mention that packet intervals of 200 ms during pings cannot

be directly compared to the packet intervals used for the goodput measurements

since the traffic patterns are different (ping is bi-directional traffic).

Figure 6.37 illustrates how distance in hops affects the round-trip packet delay

during heavy and low traffic scenarios accordingly. By further studying the above

figures, it can be observed that higher configurations of channel check rate for

ContikiMAC exhibited lower delay times. Moreover, during the low traffic scen-

arios, the difference between the delay times between the different configurations

was not as noticeable as in the high traffic experiments. During low traffic, differ-

ent channel check configurations of ContikiMAC demonstrated small differences

between the delay times. The largest difference observed in this experiments was

between ContikiMac’s channel check configurations of 64 and 8 in which there was

an approximately 100% increase in the round-trip times. On the contrary, dur-

ing the high traffic experiments, this difference increased to approximately 500%.

This can be explained if we take under consideration that higher channel check

rate configurations allow the nodes for a larger number of packet transmissions

every second (a detailed explanation of channel check rate and its relation to packet

transmissions can be seen in section 6.3). This results in higher badnwidth for

each link and thus packets queues build up slower.
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Figure 6.37: Round trip packet delay during heavy and low traffic over different
channel check rate and distance in hops

In contrast to ContikiMAC, CADC demonstrated lower delay during experi-

ments with high traffic load. Furthermore, the round-trip delay did not always

increase between experiments with different distance between the source and the

base station. Both of the above observations can be explained if we take under

consideration the nature of the protocol. CADC adjust its channel check rate

based on traffic requirements. Consequently, higher traffic in the network will res-

ult in a higher channel check rate adjustment which in turn is responsible for the

lower delay times. Similarly to this, longer distances result in an increased number

of transmissions per packet and thus higher interference. In the high traffic exper-

iments, CADC successfully achieved the lowest possible round-trip delay similarly

to the ContikiMAC’s configuration with a channel check rate of 64. Addition-

ally, during low traffic experiments, CADC achieved some of the lowest round-trip

delay times.

As described in section 6.3, CADC does not require any node synchronisation

and thus it can adapt to any traffic changes very fast. 6.38 shows in detail the per

second delay of CADC in a 2 hop experiment. This figure illustrates how CADC

reacts to high traffic conditions and how it adapts its channel check rate. During

this experiment, it is observed that delay times kept increasing until CADC’s con-

gestion avoidance algorithm kicked in. After detecting congestion, CADC required

approximately 2 seconds to initially adapt the channel check rates of the nodes.

It is worthy to mention that since the traffic was bi-directional, every node in the

traffic path would adapt its channel check rate and thus this is the highest possible

adaptation time for a distance of two hops (longer distances in hops would require

higher adaptation times).
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Figure 6.38: CADC round trip delay over time in seconds (2 hops distance - 0.2
sec interval between consequent ping packets)

Moreover, during high traffic and intense congestion CADC may perform more

than one adaptations to the channel check rate which in turn will result in over

all longer adaptation times. This can be justified if we further analyse a small

increase in the delay times between 6.2 and 7.2 second of our experiment. The

later inconsistency in the delay times was caused due to some changes in the

configured channel check rates. CADC possibly identified that its current channel

check rate configuration was higher than the required and decreased the channel

check rate. This in turn led to some congestion (channel check rate should be

powers of 2. When the channel check rate is high 1 step changes may lead to

significant changes in the performance) and thus the channel check rate was again

increased. If we further study this it is visible that this time it took only 0.5

second to adapt the channel check rates at the nodes.

6.6.2.4 Energy Consumption

In Figure 6.39, the per second energy consumption when the network is idle can

be seen. In this figure it is visible that higher channel check rate configurations

in ContikiMAC lead to higher energy consumption. When configured the network

with ContikiMAC and a channel check rate of 64 had 3.35 times higher energy

consumption from its channel check configuration of 8. Since channel check rate

is pre-configured in ContikiMAC, lower cycle configurations can significantly in-

crease the life-time of a WSN. When the network was idle CADC achieved the

minimum posible energy consumption similarly to ContikiMAC’s configuration

with a channel check rate of 8. During these measurements, even though there



CHAPTER 6. CADC: CONGESTION AWARE DUTY CYCLE MAC 186

0 

0.0005 

0.001 

0.0015 

0.002 

0.0025 

0.003 

8 16 32 64 

CADC ContikiMAC 

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 i
n
 J

o
u
le

 

Channel check rate (Hz) 

Average of RX/Idle Listen Average of TX Average of MCU/IRQ 

Figure 6.39: Per second energy consumption when network is idle

was no traffic generated from the nodes some packets such as RPL control mes-

sages and energy consumption measurment packets were still transmitted through

the network. If there was no traffic at the network the above results would have

shown an even larger difference in the energy consumption between the different

permutations of ContikiMAC.

Figure 6.40 and Figure 6.41 shows the average energy consumption of the

network for a 100 transmitted packets at the sources and the average energy

consumption of the network per successfully received packet at the base station

accordingly. Studying the above figures, it can be observed that higher chan-

nel check rates does not necessarily lead to higher energy consumption when the

network is active. Moreover, when the same amount of packets injected in the

network with different inter packet transmission intervals the energy consumption

between the different permutations was significantly affected. These figures show

that fixed duty cycle protocols with pre-configured cycle times can not achieve

the best energy consumption when the traffic parameters and patterns vary. On

the contrary, CADC achieved significantly lower energy consumption in every ex-

periment. CADC’s energy consumption was approximately half as much as Con-

tikiMAC’s lowest achieved energy consumption. This performance of CADC can

be explained if we take under consideration that CADC nodes operate in the min-

imum energy consumption and only the nodes that participate in a traffic flow will

increase their cycles. When the transmission ends CADC nodes will readjust their

cycles to the minimum value. This mechanism of CADC incorporates both the

advantages of low channel check rate when the network is idle and the advantages

of higher channel check rates during various traffic rates.
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Figure 6.40: Average energy consumption for 100 transmitted from the sources
packets
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transmitted from the sources packets
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Figure 6.42: Network’s, per packet average energy consumption over inter packet
transmission interval

Figure 6.42 shows in detail how energy consumption is affected for the various

packet transmission intervals. In the case of ContikiMAC, lower transmission rates

(larger intervals between packets) resulted in lower energy consumption. Higher

transmission rates have a higher probability for collisions since packets transmis-

sions are closer to each other. Collisions in turn result in retransmission of packets

and thus more energy is consumed. On the other hand, CADC demonstrated more

stable energy consumption between the different transmission rates. By dynam-

ically adjusting the channel check rates based on the traffic parameters, optimal

energy consumption can be achieved and thus CADC can always deliver a close

to ideal performance in terms of energy consumption.

Figure 6.43, illustrates energy consumption versus distance in hops. Both

CADC and ContikiMAC had higher energy consumption when the distance between

the source and the destination increased. This is expected since when the distance

increases each packet requires more transmissions to reach the destination. It is

worthy to mention that compared to CADC, ContikiMAC was much more affected

when the distance increased. This phenomenon can be explained if we consider

the connection between channel check rate and the duration of each packets trans-

mission. As explained in section 6.2 when the channel check rate increases, packet

train duration decreases. In CADC only the nodes in the traffic path adjust their

channel check rates. Nodes outsides the path will keep operating in their de-

fault (lowest) channel check rate. This will result in partial incapability of packet

hearing in nodes outside the traffic path since nodes with higher channel check

rates will transmit packets for a smaller amount of time than the amount of time

required by the nodes with lower channel check rates. Therefore non related to
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Figure 6.43: Network’s, per packet average energy consumption over distance in
hops

the traffic path nodes will not consume as much energy listening to packets not

destined to them.

6.6.2.5 Memory Requirements

Table 6.4 shows the code and memory footprints for both protocols compiled with

SDCC. The numbers in this table represent the combined RDC and MAC size

for the two configurations under investigation. It can be observed that CADC

requires approximately 2kb extra memory than the default Contiki configuration,

which uses CSMA with ContikiMAC at the MAC and RDC layer respectively.

This was expected since CADC incorporates many more functionalities in order

to precisely calculate, adapt and co-ordinate cycle times.

Table 6.4: Protocol code and memory footprints in bytes using SDCC

ContikiMAC

+ CSMA CADC

In Flash

CODE 7576 9426

CONST 58 58

In RAM

XRAM 433 508

DATA 0 0
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6.6.2.6 Test-bed Analysis

In the previous sections, the performance of a WSN configured with static DC

protocol as well as with dynamic has been analysed in terms of goodput, energy

consumption and delay. The above analysis has shown that the trade off between

energy consumption and performance is significant when a static DC algorithm is

used in the network. When the network is idle and configured with a static DC

protocol (ContikiMAC), there is a large diversity between the energy consumption

of the various channel check rate configurations. During these experiments, when

the network was configured with a channel check rate of 64, a 350% rise in the

energy consumption was observed compared to its channel check rate 8 configur-

ation. Based on that, it is easy to conclude that a primarily idle WSN can extend

its life-span considerably when configured with lower channel check rate.

On the contrary, during network activity periods, the lowest channel check rate

configuration did not achieve lower energy consumption. Studying Figure 6.40 and

Figure 6.41 it is shown that for various transmission rates and distances in hops,

different channel check rate configurations achieved the lowest energy consump-

tion. As discussed in section 6.2, this observation can be explained if we consider

that higher channel check rates lead to higher bandwidth. Based on the above, in

order to achieve the best performance with the lowest energy consumption nodes

should be frequently reconfigured based on traffic requirements. The decision of

the optimal duty cycle for a sensor network can be even harder in 6LoWPAN where

the communication patterns are arbitrary and multiple different applications may

be operating at same WSN (different packet sizes, bandwidth requirements and

destination nodes).

The majority of the above problems can be solved if the network is configured

to operate with a dynamic DC algorithm. Dynamic duty cycle protocols can adjust

the network’s channel check rate based on traffic requirements and therefore min-

imise energy consumption while maintaining high goodput and low delay times.

In this study, as a solution to the above mentioned problems, we proposed CADC.

Extensive test-bed experiments demonstrated that CADC can successfully adjust

channel check rates, achieving the lowest energy consumption and round trip delay

times while maintaining goodput at a level close to the maximum achievable.

6.7 Simulation Vs Testbed

In this research study, simulations aimed in the evaluation of the proposed schemes

against other, previously designed implementations. The aim of test-bed exper-

iments was the evaluation of the suggested schemes in real hardware and the
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confirmation of the simulation results. Generally, as described in section 3.3 hard-

ware level simulated motes can produce more accurate results and informations

about the low-level software such as device drivers. More specifically this type

of COOJA motes uses exactly the same firmware that a real hardware device of

the same type would. Therefore when this type of motes used for simulations in

COOJA; results will be as close to a real test-bed as possible.

Due to various reasons such as radio interference (during test-bed experiments,

the interference was significantly higher), signal reflection and others (discussed in

detail in section 3.10), simulation experiments cannot perfectly achieve identical

to test-bed experiments results. A significant reason behind this is the differ-

ent hardware used for the test-bed and for the simulation experiments (hardware

simulated). Additionally, in our case except the environmental conditions, there

are some additional characteristics related to hardware restrictions affecting the

test-bed results. These characteristics are mainly code optimisations and modifica-

tions for the functionality of Contiki OS and the proposed algorithms in Sensinode

devices. These code optimisations are summarised in the remainder of this section.

By default, the official port of Contiki for devices with the cc24xx MCU and

thus our Sensinode devices include some stack optimisations such as reduction of

the maximum possible stack depth by reducing the maximum number of callback

functions (callback functions in Contiki OS can also be referred as blocking call-

backs. This type of callback function is called before the end of the execution of the

current function). Detailed information about the default CC24xx optimisations

in Contiki can be found in [145].

Due to stack overflows and memory constrains, ContikiMAC the default duty

cycle protocol in Contiki OS is not functional in the official Contiki port for

Sensinode devices. Duty cycle is one of the most important functionalities in

a self powered WSN. Additionally, a big part of this research is based on how

duty cycle affects the operation of WSN and thus congestion control algorithms

designed for non duty cycling WSN. Therefore additional optimisations and modi-

fications were made to Contiki as part of this research study in order to achieve

a fully functional, duty cycling WSN with our Sensinode devices. These code

optimisations include:

• Conversion of variables to Static type. In 8051 MCU the stack is independent

and it is 256 bytes. Static variables does not get stored in the stack while

Local variables do. Therefore significant amount of bytes can be prevented

from getting in the stack.

• Contiki has numerous timer modules. Some of them can be used in interrupt

contexts (r-timer ). R-timer is a hardware timer and used by contiki’s duty
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cycle algorithms for timing precision (through interrupts DC functions can be

called exactly when the timer expires). Since the stack in Sensinode devices

is limited, such an approach can result in stack overflows which in turn

leads to node crashes (Stack is already very high when the timer expires and

the interrupt calls other functions related to duty cycle). In order to prevent

that, a stack control check has been added to the r-timers (interupt) callback

function. When the timers expired and the interrupt function is called, the

stack control check is performed. If the stack does not have enough space to

acomodate the duty cycle routines (node will crash), the procedure will be

delayed for µSec till there is enough space in the stack.

• Contiki’s clock module is platform dependent and is implemented in the file

clock.c. Since the clock module handles the system time, the clock module

implementation usually also handles the notifications to the etimer library

when it is time to check for expired event timers. Instead of checking the ex-

pired event from withing the clocks interrupt function, a flag is set. Expired

event timers are handled by the main function. This way no unexpected

callbacks can occur and thus no stack overflows.

Detailed information and actual codes related to Contikis stack optimisations

and modifications can be found in Appendix D.

Furthermore, CADC was configured with a minimum channel check rate of

four during the simulation experiments. Based on the simulation results, when

the network was configured with a channel check rate of four the results was not

significantly contributing any additional results of importance for the evaluation

of CADC. Therefore, CADC was configured with a minimum channel check rate

of eight during the test-bed experiments. This in turn can result in lower converge

times during test-bed experiments. As shown in Figure 6.38, CADC has very fast

adaptation times and thus the differences in the performance of CADC due to

different minimum channel check rate configurations will not lead to inconsistency

or noticeable differences in the performance.

Except the above mentioned environmental, hardware and configuration dif-

ferences; the design of test-bed experiments was different from the simulations.

Parameters such as source nodes, destination, transmission rate and number of

packets to be transmitted by the sources were pre-configured during simulations

whereas in real test-bed experiments nodes could dynamically receive the config-

uration for each packet transmission. In reality, exactly the same as the one used

during test-bed experiments could be used during simulations (Network simulator

communicate with the base station through a border router node). A simulation

design like this have significant draw-backs. Firstly, based on the load of simulated
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nodes, COOJA will operate in different non-real simulation speed. For example

COOJA simulator may need 10 real life seconds in order to simulate 1 second of ex-

periment. Taking this under consideration, real-time communication between the

simulator and the real PC would be almost impossible. Therefore, there is a very

high risk of inaccurate measurements and thus results. Additionally, a simulation

design similar to test-bed would render simulation automation impossible (a user

must select the active configuration before each experiment) and thus gathering

the same amount of experimental data would require many additional months of

experiments. As a conclusion, it is not wise to use the exact same network design

in both simulations and test-bed experiments.

Even though there are notable differences between simulations and test-bed,

the parameters important for our experiments remained the same in both simu-

lations and real hardware experiments (algorithms, transmission rates, duty cycle

values, distance in hops, etcetera). Since the aim of this study is not the evaluation

of COOJA simulator, the implementation methods used and the experiments con-

ducted are sufficient for the evaluation of CADC and the rest of the duty cycle

schemes.

6.7.1 Goodput

Figure 6.44 demonstrate CADC’s goodput in an easy to compare simulation and

testbed format. All the non common information between test-bed and simula-

tions have been removed from these figures. By comparing this two figures it is

visible that overall CADC demonstrated the same behaviour between simulation

and testbed experiments. The testbed experiments performed after the simula-

tions. Through the simulations, it was observed that some configurations such

as packet transmission intervals above 250 ms and channel check rate below 8

are not contributing any extra -significant results to the experiments. Therefore,

in order to reduce the number of configuration permutations during the test-bed

experiments and focus on the more significant results, these configurations were

excluded.

During simulations, CADC’s minimum channel check rate configuration was

set to 4 while the same value was set to 8 during the test-bed experiments. Having

a lower threshold for the minimum channel check rate, in some cases it may result

in more CADC state changes till the scheme settles in the optimal channel check

rate. This in turn will result in slightly lower goodput. On the contrary, the results

obtained through simulations was slightly better for CADC. Additionally, during

test-bed experiments, it was observed that distance in hops had a greater impact to

both CADC’s and ContikiMAC’s goodput. When the distance was two hops, both
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simulation and test-bed demonstrated similar goodput. On the other hand, when

the distance increased to four hops a performance gap is visible between hardware

and simulation results. More specifically, during the test-bed experiments, when

the distance was four hops and the inter packet transmission rate at the sources

was 62.5 ms, CADC had 70% of the transmitted packets succesfully trceived while

ContikiMAC configured with a channel check rate of 64 had 78%. With the same

network configuration, during simulations CADC had 85% of the transmitted

packets succesfully trceived while ContikiMAC achieved 100%. Similar to test-

bed’s loss for the distance of 4 hops is observed for distances of 5 - 6 hops during

simulations.

There are various reasons behind these differences between simulation and

testbed. One of the most important reasons is the environment. In simulation

experiments the radio is configured to operate without any “outside” interference

(from factors that are not related to the experiment). On the contrary, during test

bed experiments and especially when the test-bed is set up indoors, the “outside”

interference can be unpredictable and affect the results. Moreover, even though

the same scenarios were tested in both simulations and test-bed, the network

topology was not the same. As demonstrated previously, line topology simulation

experiments included nodes in a line and each node was neighbour only with

its parent and child nodes (low interference). During test-bed experiments the

topology was consisted by 15 nodes randomly deployed and mostly in range of each

other. Therefore, during test bed experiments the interference was significantly

higher when the distance increased in hops. In order to further explain this it

is necessary to understand that even though the distance was the same in hops,

the network density and thus the radio interference was significantly higher. For

example, when the distance was 4 hops each node could interfere only with 1

other node (it’s parent node transmission) during the simulations but this number

was increased to 3 at the testbed experiments (all the nodes between the source

and the destination). Additionally, for the measurement of energy consumption

additional traffic had to be transmitted through the network. In some cases this

additional traffic could affect the performance of the schemes in terms of goodput

(not always possible to perfectly gather the goodput results during the idle time

between the energy measurement periods).

Additionally, during line topology simulations each node had only one parent

node. Therefore the networks topology could not change. On the contrary, dur-

ing test-bed experiments nodes had multiple neighbour nodes and thus routing

options. Taking under consideration the unstable nature of RPL, routing paths

could change dynamically during the experiments (the longest the path between the

source and the destination, the more this phenomenon can be observed). This in
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turn could affect the test-bed experiments since switching traffic paths may result

in some packet losses or even temporary unavailability.

Figure 6.44: Goodput during simulations (line topology)

Figure 6.45: Goodput during test-bed experiments

Except the above mentioned environmental and design differences between sim-

ulations and test-bed, there were hardware and OS differences as well. The simu-

lated motes were tmotesky while the ones used during the test-bed were Sensinode.

Different hardware can behave differently even when the same codes are executed.

Some examples of the differences between the simulated and the real nodes were

discussed previously (in section 3.6 discussed the different energy consumptions

while different random number generators where discussed in section 5.6).

Finally the code optimisations for the Sensinode devices could have some im-

pact on the goodput. For example, both the modifications in Contiki’s clock and
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in Contiki’s r-timer could result in delayed (µSec) packet receptions. If we further

analyse this stack optimisations, the stack control check modifications in r-timers

interrupt function could even lead to packet losses in some cases. To explain this

in detail, lets assume the duty cycle’s algorithm timer expires and the radio must

turn on to scan for incoming packet transmissions. If the stack is too high, turning

on the radio will be delayed by µSec. Even though such a small delays would not

affect the packet reception in reality, if the stack levels happens to be high con-

sequently; it is possible that the node may skip a whole cycle (this is possible only

for high CCR configurations such as 64, where cycles can be as small as 15ms).

6.7.2 Packet Loss

Since the total number of transmitted packets was the same between the experi-

ments and the traffic sources were UDP, it is easy to conclude that the schemes

with the highest goodput had also the lowest packet loss. For the majority of

the experiments, the packet loss performance of the schemes is linked with their

performance in terms of goodput.

Similarly to the goodput analysis, CADC achieved the second lowest packet

loss after ContikiMAC’s configuration with a channel check rate of 64. Addition-

ally, it is worthy to mention that distance in hops had a greater impact to both

CADC’s and ContikiMAC’s packet loss. When the distance was two hops, both

simulation and test-bed demonstrated similar goodput. On the other hand, when

the distance increased to four hops a performance gap is visible between hardware

and simulation results. More specifically, during the test-bed experiments, when

the distance was four hops and the inter packet transmission rate at the sources

was 62.5 ms, CADC suffered an approximately 30% packet loss while ContikiMAC

configured with a channel check rate of 64 suffered an aproximately 22% loss. With

the same network configuration, during simulations CADC’s packet loss was only

15% while ContikiMAC’s (64 CCR) loss was 0. This high loss is observed for

distances of 5 - 6 hops during simulations.

The reasons behind this are: the environment, the topology, the starting chan-

nel check rate and the code optimisations used during the test-bed experiments

(more details can be found in subsection 6.7.1).

In order to verify how much the various traffic patterns affect the schemes;

additional experiments with bi-directional traffic have been conducted. In this

experiments, ping6 was sued for the generation of bi-directional traffic. Moreover,

different ping6 intervals have been tested in order to generate various traffic rates.

During these experiments, Both CADC and ContikiMAC demonstrated the

same behaviour as the one with uni-directional traffic. CADC in most cases
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achieved the second lowest loss after ContikiMAC (CCR 64) during high traffic

experiments. During high traffic, it is note worthy that for the distances of 1 and

2 hops ContikiMAC’s configuration of 32 channel check rate achieved lower loss

than CADC as well. The main reason behind this lies in CADC’s adjustment to

the optimal channel check rate. When the distance is only 1 or 2 hops the inter-

ference is lower and thus CADC does not need to adjust it’s channel check rate to

a very high value. More specifically, through CADC’s results it is highly possible

that the algorithm did not settle in one channel check rate when the distance was

2 hops. For example, CADC originally increased the channel check rate to 32

but this channel check rate was judged as an over-configuration by the algorithm.

Therefore CADC decreased the channel check rate to 16 but this configuration

was low for the load of traffic in the network and thus the algorithm increased

again to 32 in order to drain the queues. Since the channel check rate can be

only powers of 2, this behaviour is expected. The current duty cycle decrease

algorithm of CADC is configured to operate in this manner in order to minimise

energy consumption (bouncing between two channel check rates when needed). On

the other hand this may cost some goodput by causing some additional packet

losses. If it is required from the networks design, CADC can be configured with a

less sensitive duty cycle reduction algorithm (reduce only when absolutely needed)

and thus prevent scenarios like the above mentioned.

6.7.3 Packet Delay

During simulations, packet delay was measured as the average time needed by each

packet to reach the destination. In our testbed, “ping6” was used for the meas-

urement of the round-trip times. Even though both CADC and ContikiMAC are

designed to operate with various traffic patterns (uni-directional / bi-directional),

a direct comparison between the one-way delay times during the simulations and

the round-trip times during test-bed cannot be made. This is because protocols

may operate slightly different during bi-directional traffic and the interference at

the nodes is much higher (each packet is transmitted two times by each node).

Even though, the main objective of the test-bed experiments was validate the

performance of the protocols in a real environment. Figure 6.46 illustrates the

packet delay during simulations filtered with parameters similar to the one’s used

during the test-bed experiments.
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Figure 6.46: Packet delay for different distance in hops with various channel check
rate configurations (simulation)

Comparing the above figure with Figure 6.37 (testbed delay), it can be observed

that when the distance increased delay increased as well. During test-bed exper-

iments, ContikiMAC demonstrated a similar to the simulations performance. It

is worthy to mention that a very high rise in the delay times is observed, when

the distance increased to four hops in test-bed experiments. The reasons behind

this are the same as the reasons described in section 6.7): the environment, the

topology, the starting channel check rate and the code optimisations used during

the test-bed experiments.

On the contrary to the simulation experiments where CADC had the second

lowest delay after ContikiMAC’s configuration with a channel check rate of 64;

CADC demonstrated one of the lowest delay during test-bed experiments (hi

traffic), similar to ContikiMAC’s highest configuration. Studying Figure 6.1 this

decrease in CADC’s delay times can be explained. During simulations experi-

ments, traffic was uni-directionsl. This in turn may lead to different channel check

configurations between the nodes and thus higher delay times. To be more precise,

some of the nodes may have lower channel check rates and thus transmit less pack-

ets per second. Therefore the packet queues at these nodes may built up which

in turn increases the delay times. On the contrary, During test-bed experiments

the traffic was bi-directional. This led to the same channel check configuration at

every node in the traffic path and thus lower delay times.

The above described behaviour of CADC can be distinguished easier during

low traffic scenarios ( Figure 6.37). When the traffic was low, it can be observed

that CADC demonstrated delay times similar to other -lower channel check config-

urations of ContikiMAC (CADC’s optimal channel check rate was not the highest

configuration during that scenarios).

Overall, simulation and test-bed experiments demonstrated that both CADC

and ContikiMAC can successfully operate with low delay times in both uni and
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bi directional traffic scenarios.

6.7.4 Energy Consumption

6.7.4.1 When Network is Idle

Figure 6.24 and Figure 6.39 illustrate the energy consumption when the network is

idle during simulations and test-bed experiments accordingly. Studying the above

figures, it can be observed that Sensinode (used for test-bed experiments) had much

higher energy consumption in every network configuration. It is also notable that

the energy consumption due to radio TX, RX/idle listen is similar in both test-

bed and simulation results. On the contrary the MCU related energy consumption

is on a totally different scale between test-bed and simulation experiments. To

be more precise the MCU energy consumption was 116 times higher during test-

bed experiments. This difference is mainly caused by the different hardware used

during simulations and test-bed experiments. Table 6.5 demonstrates the energy

consumption for the different platforms. Studying this table, it can be observed

that the energy consumption for the different radio states is similar in both Tmot-

esky and Sensinode. On the other hand, the energy consumption for the different

MCU states is by far greater in Sensinode.

Additionally, during test-bed experiments, nodes were transmitting packet

periodically in order to gather the information related with the energy consump-

tion at each node (more details can be found in section 3.11). The presence of

these packets in the network can also be a reason for small variations in the energy

consumption between test-bed and simulation experiments.

Running experiments with different sensor nodes and using periodical packets

for energy measurement can justify the difference in energy consumption between

test-bed and simulation results.

Table 6.5: Energy consumption for the different platmforms

Tmotesky (simulations) Sensinode (test-bed)

Joule/sec Joule/sec

TX 0.04959 0.0582

RX/Idle listen 0.056145 0.0576 (MCU/IRQ)

MCU 0.00156(MCU-hi)

0.00000812(MCU-LPM)

0.0171

Even though there were noticeable differences in energy consumption, both
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ContikiMAC and CADC demonstrated the same behaviour and energy consump-

tion patterns between simulations and test-bed experiments. CADC achieved the

best performance by having the minimum possible energy consumption (same as

ContikiMAC’s configuration with the lowest channel check rate).

6.7.4.2 Network is Active

In order to achieve a more detailed comparison between test-bed and simula-

tions Figure 6.47 illustrates only the common with the test-bed data, of how dis-

tance in hops affects energy consumption. Comparing the above figure with Fig-

ure 6.43 (same experiments test-bed), it can be observed that during simulations,

distance in hops affected energy consumption much less than in test-bed experi-

ments. This performance difference related to distance in hops; is caused due to

the environment, topology and the code optimisations used during the test-bed

experiments (more details can be found in subsection 6.7.1).

Moreover, a big difference can be observed in the performance of ContikiMAC

configured with a channel check rate of 64. Furthermore, it is observed that the

energy consumption per successfully received packet was higher in the simulations.

Based on the energy consumption difference between Sensinode and Tmotesky,

simulation should have had lower energy consumption per successfully received

packet compared to their corresponding configuration on test-bed. The cause of

this observation can also be blamed for ContikiMAC’s (with channel check rate of

64) noticeable performance difference.

During test-bed experiments, energy consumption was measured periodically.

Usually, packet transmissions were happening between the periodic energy meas-

urements. As a consequence, during test-bed experiments, only the network activ-

ity periods were measured. On the contrary, simulations were configured to last

10 minutes (in order to achieve automation). This in turn resulted in measuring a

significant amount of idle time in every simulation experiment (this amount of idle

time was larger for higher channel check rate configurations). Therefore, energy

measurement data for the simulations include mixed data (idle time and high net-

work activity) which in turn is responsible for the two abnormalities described in

the previous paragraph. Other less significant factors contributing to the energy

variation between simulation and testbed experiments include:

• During test-bed experiments, MCU had significantly higher energy consump-

tion. This in turn contributes to a less visible energy consumption difference

between the various configurations of ContikiMAC.

• When the stack is in dangerous levels (possibility of stack overflow and thus

node crash), turning on the radio will be slightly delayed. This phenomenon
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Figure 6.47: Per packet energy consumption over distance in hops (simulation)

is usually more frequent during high channel check rate configurations and

consequent occurrences thereof may result in missing a whole cycle.

It is worthy to mention that the above parameters affecting the energy con-

sumption measurements apply to all energy measurements and thus similar differ-

ences in the performance can be observed in every energy consumption comparison

between simulations and test-bed.

Overall, both ContikiMAC and CADC demonstrated the same behaviour pat-

terns in both simulations and test-bed experiments. In both cases when the

distance in hops increased so did the energy consumption while larger intervals

between packet transmissions resulted in lower energy consumption. Furthermore,

lower channel check rates do not result in lower energy consumption when the net-

work is active. CADC achieved the lowest energy consumption and the most stable

behaviour in every network configuration (compared to every channel check rate

configuration of ContikiMAC).

6.7.5 Memory Requirements

Analysing Table 6.2 and Table 6.4, it can be observed that CADC was larger

than ContikiMAC with CSMA by 900 bytes for the Tmotesky platform while the

difference increased to 2kb when the Sensinode platform was used. In general,

the size of the executables produced for the Sensinode platform was significantly

larger (5.3 KB more for ContikiMAC/CSMA and 6.4 KB more for CADC). This

can explain why the difference, in terms of memory, between ContikiMAC and

CADC increased for the Sensinode platform.
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There are two main reasons leading to the significantly larger code size for the

Sensinode platform.

1. The compiler used by Sensinode (for 8051 architectures) is SDCC. On the

contrary, Tmotesky use MSP430-GCC for the compilation of the codes. Dif-

ferent compilers can perform their compilation tasks slightly differently and

thus various compilers have a different degree of code optimisation. This

can result in various executable sizes for the same code.

2. Sensinode have a 8051 MCU which is 8 bit architecture. Compared to this

Tmotesky use a 16 bit MCU. Joseph Yiu and Andrew Frame investigated

if 8bit, 16bit or 32bit MCUs are the best option for designs requiring small

program code size in [151]. This study shown that the 32bit architecture had

considerably smaller code size than both the 16bit and 8bit architectures.

More precisely, the code size of 8bit architectures was significantly larger

while 16bit architecture produced a code size close to that of the 32bit ar-

chitecture. In reality, although some 8bit processor instructions are one byte

in length, many instructions are actually two bytes or even three bytes long.

In most applications it is necessary to process 16bit or larger data. For

example, in an 8bit architecture, the integer data type is 16bit. Therefore,

every time an integer or a C library function that supports an integer is used,

16bit data is being processed. This processing requires a long sequence of

instructions for an 8bit architecture.

6.7.6 Limitations

A great number of simulation and test-bed experiments have been conducted in

this thesis for the evaluation of CADC. In both simulation and test-bed experi-

ments, CADC demonstrated similar behavior and it is demonstrated that it can

significantly improve the performance of the WSN and reduce the energy con-

sumption. Some limitations in the evaluation of CADC follow:

1. Topologies. In this thesis, two topologies were used for the evaluation of

CADC Line and random topology. Therefore, CADC has not been evaluated

under other WSN topologies. CADC nodes operate independently without

the need of synchronisation. Additionally, CADC propagates congestion in-

formation in a hop-by-hop fashion by encapsulating the information in the

header of each out-going packet. Moreover, WSN traffic patterns are sig-

nificantly more limited than traditional networks. Taking the above under

consideration, it can be concluded that for the majority of WSN topologies,
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the performance of CADC will not be significantly affected. More experi-

ments and detailed analysis of CADC under different network topologies will

be performed in the future.

2. Source traffic. In the majority of the experiments sources were transmit-

ting in a constant bit rate (CBR). Therefore, the behavior of CADC has

not been evaluated under sources transmitting in varied bit rates. CADC’s

design, is focused on fast adaptations to traffic changes. CADC nodes does

not need synchronisation or any other time consuming process before duty

cycle adaptations. Figure 6.38 demonstrates CADC’s adaptation times.

Even though CADC is designed for traffic changes and VBR traffic rates

will not significantly affect its behaviour, we can predict that its packet

losses due to cycle adaptation times will increase. Experiments studying the

behavior of CADC in VBR environments will be conducted as part of the

future work.

3. CADC CCR limitations. During both simulation and testbed experi-

ments, CADC was configured with a maximum and a minimum CCR. The

maximum CCR during the experiments was 64. This can explain why dur-

ing this research study we always compared CADC’s performance with the

performance of ContikiMAC configured with a CCR of 64. In the majority

of the experiments, CADC demonstrated a similar performance (in terms of

goodput) with ContikiMAC with a 64 CCR. In these cases, CADC achieved

the best possible good put performance since its maximum CCR configur-

ation was 64. If CADC’s upper CCR limit was set to a higher value, it’s

goodput would have possibly surpassed ContikiMAC with a CCR of 64.

On the other hand this would have been an unfair comparison between a

dynamic and a static MAC and thus it was not evaluated in this thesis.

4. Behaviour of the sink. During simulation and testbed experiments, it

was observed that when the traffic is uni-directional, the sink will not trig-

ger the duty cycle reduction algorithm. This is basically happening due

to CADC’s nature. CADC measure the traffic parameters based on packet

transmissions. Since sink will never transmit a packet in a uni-directional

traffic scenario, it will never enter the over duty cycle state and thus reduce

its CCR. This will result in sink nodes reducing their CCR only when they

become inactive. This does not have a big impact on CADC’s perform-

ance since nodes with higher CCR can always receive packet from nodes

with lower CCR. Additionally, the sink usually operates as a gateway node

(connects WSN with the traditional networks) and thus it is always connec-
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ted to a power source (connected to a PC in order to forward the traffic to

the traditional network). This can easily be overcome by having the sink

update CCR based on a timer or the received transmissions instead of the

transmitted packets.

6.8 Summary and Discussions

Through simulations and test-bed experiments, this chapter has detailed analyse

the impact of duty cycles on the performance of WSNs. Based on the experimental

results, higher cycles will result in higher energy consumption when the network

is idle. This is not always the case during network activity. Based on the load of

traffic in the network, the different duty cycles demonstrated varied performance

in terms of goodput, packet loss and energy consumption. Therefore, in order to

achieve the optimal performance; a WSN must be reconfigured (reprogrammed)

whenever the traffic characteristics change. Frequent reprogramming in large scale

sensor network implementations is difficult and energy consuming (in case over the

air reprogramming). The decision of the optimal duty cycle for a sensor network

can be even harder in 6LoWPAN where the communication patterns are arbit-

rary and multiple different applications may be operating at same WSN (different

packet sizes, bandwidth requirements and destination nodes).

With the use of dynamic duty cycle schemes, the majority of the above prob-

lems can be solved. Dynamic duty cycle protocols can adjust the network’s channel

check rate based on traffic requirements and therefore minimise energy consump-

tion while maintaining high goodput and low delay times. In this study, as a solu-

tion to the above mentioned problems, we proposed CADC. CADC is designed

as a standalone MAC layer, and thus it is easy to combine with different routing

protocols under various topologies. Therefore, CADC is independent of network

topology, routing protocol. Furthermore, CADC is protocol independent and can

be used with various WSN applications with different traffic requirements. Addi-

tionally, CADC can successfully detect and confront congestion while it forward’s

packets based on their priority. Moreover, CADC is the first dynamic duty cycle

protocol implemented for Contiki OS as well as one of the first schemes designed

based on the arbitrary traffic characteristics of IPv6 WSN. Even though CADC is

designed for IPv6 and 6LoWPAN networks, been designed as a stand alone MAC

scheme and can easily be transferred to any WSN architecture (various protocol

stacks).

Over 10000 simulations experiments and 700 test-bed experiments have been

conducted for the evaluation of CADC. Through these experiments, it is demon-

strated that CADC successfully adapted its cycle based on traffic patterns in every
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traffic scenario. Furthermore, CADC does not require any time synchronisation

algorithms to operate at the nodes and does not use any additional packets for

the exchange of information between the nodes (no overhead). Overall, CADC

achieved the lowest energy consumption, very low packet delay times and packet

loss. Moreover, Results indicate that CADC’s goodput was better than other dy-

namic duty cycle schemes and comparable to the highest goodput observed among

the static duty cycle configurations.

Finally, CADC constitutes a very stable new proposal for the dynamical ad-

justment of duty cycles at the nodes. In the future this work can be used as a

reference for future MAC protocol architecture aiming in high performance with

low energy consumption algorithms.



Chapter 7

Conclusions and Future Work

This thesis focuses on research into congestion control in duty cycle 6LoWPAN

networks. In this chapter, a summary of the completed work is given in section 7.1

and potential future work is described in section 7.2.

7.1 Conclusions

Wireless sensor Networks (WSN) have evolved from the idea that small wireless

sensor devices can be used for the collection of information from the physical en-

vironment. A wireless sensor deployment usually consists of spatially distributed

autonomous sensors monitoring their surrounding environment. Collected data

traverse the network towards sink nodes in a multi-hop fashion. Modern sensor

networks usually make use of bi-directional communication links which in turn

allows additional control of the sensors activity. Bi-directional links with the abil-

ity to access nodes individually are usually achieved through sensor architectures

such as IPv6 over Low power Wireless Personal Area Networks (6LoWPAN ) as

each node has its own IP address. This has led to the increased popularity of IPv6

and related specifications by the WSN community. In general, congestion occurs

when offered traffic load exceeds available capacity to the degree that quality of

service deteriorates. In WSN, congestion can cause a plethora of malfunctions

such as packet loss, increased delays, lower throughput and energy inefficiency,

potentially resulting in a reduced deployment lifetime and under-performing ap-

plications. Furthermore, it has been shown that idle radio listening is a major

source of energy consumption and thus low-power wireless devices must keep their

radio transceivers off for energy saving. This has driven the WSN community into

developing power saving MAC protocols with Radio Duty Cycling (RDC).

In literature there is a great number of congestion control schemes. However,

careful study of previous work reveals that RDC schemes are often neglected dur-

206
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ing the design and evaluation of congestion control algorithms. Additionally, most

of the existing congestion control schemes are tailored to specific routing patterns

and thus are not suitable for 6LoWPAN networks. In order to demonstrate the

importance of duty cycles, chapter 4 contains an evaluation of previously sugges-

ted congestion mechanisms in IPv6 and 6LoWPAN network configured with and

without duty cycle. To address the problem of congestion, two novel congestion

control schemes have been proposed in this thesis:

1. DCCC6 a new Duty Cycle-Aware Congestion Control scheme for 6LoWPAN

Networks. DCCC6 performs congestion detection based on a dynamic buffer.

When congestion is detected, parent nodes will inform the nodes contribut-

ing to congestion resulting in a local rate adaptation and thus congestion

mitigation. The rate adaptation algorithm implemented by DCCC6 aims

for local fairness between neighbour nodes. The child notification procedure

will be decided by DCCC6 and will be different when the nodes are duty

cycling. When the nodes are duty cycling the child notification will be made

through unicast frames. On the contrary broadcast frames will be used for

congestion notification when the network is not duty cycling.

The performance analysis is presented in chapter 5. Both simulations and

test-bed experiments have been conducted for the evaluation of DCCC6.

Additionally, experiments dedicated to the comparison between simulation

and test-bed experiments have been carried out. Results analysis has shown

that DCCC6’s performance was better than previous works in terms of good-

put and packet loss. DCCC6 also achieved the lowest energy consumption

per successfully transmitted packet. Moreover, the overall energy consump-

tion, delay and fairness levels were also competitive when compared to other

schemes.

2. CADC a new Congestion Aware Duty Cycle MAC. In order to achieve fast

adaptation times with precision, CADC measures congestion levels based

on node activity. The congestion level sampling rate is higher when traffic

increases. When nodes are idle, there is no possibility of congestion occur-

ring and thus sampling stops. CADC nodes, measure their queue occupancy

periodically (every few packet transmissions). As well as that, nodes will

keep records and monitor the status of packet transmissions in order to

identify the cause of congestion. Two queue thresholds “low” and “high”

are implemented at each CADC node. Nodes are considered to be in a light

congested state if queue occupancy exceeds the low queue threshold and in

heavy congestion state when queue occupancy exceeds the high threshold.

Additionally, a transmission threshold is applied to the measured packet
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statistics in order to identify the cause of congestion. When a node in-

creases its channel check rate, layer 2 frame transmission rate will also be

increased. This in turn can contribute to continuous congestion even after

a channel check rate increase (a scenario capable of causing a phenomenon

like the above mentioned can be: adjustment of the channel check rate for

both children and parent nodes at the same time). In order to prevent this,

nodes also measure the number of incoming packets in addition to queue oc-

cupancy and packet transmission status ratios. The aforementioned metrics

are then combined in order to reconfigure node channel check rates.

CADC’s dynamic CCR adaptation is designed to achieve energy efficiency,

high performance, scalability and very fast adaptiion times without the need

of a clock synchronisation algorithm between nodes. Moreover, CADC is

independent of network topology, routing protocol and the application at

each node. Furthermore, CADC is the first dynamic duty cycle protocol

designed based on the arbitrary traffic characteristics of 6LoWPAN. Even

though CADC is designed for IPv6 and 6LoWPAN networks, it is designed

as a stand alone MAC scheme and can easily be transfered to any WSN

architecture (various protocol stacks).

The performance analysis of CADC contains over 10000 simulations ex-

periments and 700 test-bed experiments. Through these experiments, it is

demonstrated that CADC successfully adapted its cycle under any network

configuration tested. Overall, CADC achieved the lowest energy consump-

tion, lowest packet loss and very competitive delay times, compared to both

other dynamic duty cycle schemes and static duty cycle configurations. Fur-

thermore, results indicate that CADC achieved a higher goodput than other

dynamic duty cycle schemes while it can be compared to the highest goodput

observed among the static duty cycle configurations.

The schemes proposed in this research study, are the first congestion control

work ever implemented in Contiki OS (at the time of writing). Contiki OS has seen

an immense growth during the last years and thus our work is an important contri-

bution to the Contiki OS research community and an example for future network

mechanism architects. 6LoWPAN is believed to be the future of WSN (connecting

every object with the Internet: “The Internet of Things”). Since the majority of

the implemented congestion control schemes are not tailored based on the unique

characteristics of IPv6 and 6LoWPAN networks, there is a great need for the de-

velopment of congestion control mechanisms designed for this type of networks.

The proposed schemes are some of the first works that consider the existence of

duty cycle in the network and are tailored for the unique characteristics of IPv6
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6LoWPAN networks. Therefore, the proposed schemes are a valuable contribution

to the WSN research community and a significant step towards the development

of duty cycle, IPv6 ready and congestion/traffic aware MAC protocols.

7.2 Future Work

Recommendations for future work are presented here based on the discussions

from the previous chapters and illustrations of potential applications of DCCC6

and CADC in a wider aspect.

• To investigate the performance of DCCC6 and CADC with QoS, energy and

congestion aware routing protocols.

• To assess the performance of DCCC6 and CADC when there is node mobility

in the network and extend the proposed schemes accordingly.

• Investigate the performance of DCCC6 and CADC with different sensor

node hardware, such as platforms that COOJA can simulate and conduct a

detailed comparison of COOJA simulator and related real hardware test-bed.

• To explore the feasibility of combining CADC with DCCC6 or another MAC

layer rate adaptation scheme.

• To extend DCCC6 and CADC schemes to include packet priority transmis-

sion mechanisms. A weight function will be applied to each packet and thus

packets will not be transmitted in FIFO order, but based on their priority.

• To explore the feasibility of dynamic transmission synchronisation in CADC.

Nodes should keep records of their parent nodes previous wake up times and

avoid unnecessary packet transmissions at the RDC layer (similar scheme is

implemented in ContikiMAC).

• To further investigate the possibility of extending CADC with a MAC recog-

nition mechanism. This mechanism should be able to detect the underlying

MAC/RDC layer used by neighbour nodes (based on the transmission pat-

terns or use of reserved bits in 802.15.4 header). This can result in a dual

MAC layer configuration in the network and possibly better performance.

Self powered nodes will operate with CADC for energy saving while the rest

of the nodes can operate without duty cycle (e.g. nullRDC or an extended

version of CADC) in order to increased bandwidth and reduce the collision

occurrence (packet train transmissions significantly contribute to collision

occurrence).
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Appendix A

Data Collection at the Base

Station

In this Chapter, the process and the format of data collected will be explained.

Sample of flow specific data collected by the UDP server:

<1331306022.646627 > 2 bytes [00242]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.678624 > 2 bytes [00243]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.722616 > 2 bytes [00244]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.770619 > 2 bytes [00245]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.818620 > 2 bytes [00246]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.874635 > 2 bytes [00247]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.914746 > 2 bytes [00248]
from [2001:630:301:6453:215:2000:2:2147]:1027

<1331306022.958658 > 2 bytes [00249]
from [2001:630:301:6453:215:2000:2:2147]:1027

2001:630:301:6453:215:2000:2:2147 74
2001:630:301:6453:215:2000:2:18 ca 95

******** NEW CONGESTION EXECUTION ********

where the first field (< 1331306022.646627 >) is the time of reception, the

second field (2 bytes) is the size of the data from the application, the third field

([00246]) is the contents of the data which is also a sequence number generated

from the application at sensor nodes and the last two fields ([2001 : 630 : 301 :

6453 : 215 : 2000 : 2 : 2147] : 1027) are the packet’s source address and port

number.
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Moreover, when requested packet flows and thus the experiment ends; two

lines showing the number of packets received from each source is printed followed

by a line signaling the beginning of a new experiment run. This way, multiple

experiments can be saved in the same file without trouble to distinguish the results

between them.

Sample of periodic data collected by the UDP server:

<1330515978.762626 > 20 bytes (seq:cpuh:irq:tx:rx)
| 107:5171189:1181510:832069:639214
| from [2001:630:301:6453:215:2000:2:2159]:1028

<1330515979.258602 > 20 bytes (seq:cpuh:irq:tx:rx)
| 107:2864707:1155133:255345:222854
| from [2001:630:301:6453:215:2000:2:18 ca ]:1028

<1330515980.766605 > 20 bytes (seq:cpuh:irq:tx:rx)
| 107:2843220:1178512:328676:555923
| from [2001:630:301:6453:215:2000:2:210e]:1028

<1330516014.638611 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:4193694:1243937:743822:733225
| from [2001:630:301:6453:215:2000:2:19 b1 ]:1028

<1330516019.78625 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:3125058:1207536:305312:798091
| from [2001:630:301:6453:215:2000:2:1809]:1028

<1330516019.462607 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:2538966:1199609:28949:598573
| from [2001:630:301:6453:215:2000:2:18 b9 ]:1028

<1330516020.606617 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:4108486:1188302:198611:566071
| from [2001:630:301:6453:215:2000:2:1947]:1028

<1330516027.346610 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:3358688:1186318:591719:632757
| from [2001:630:301:6453:215:2000:2:1 a29 ]:1028

<1330516029.542607 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:4294329:1242582:450511:617341
| from [2001:630:301:6453:215:2000:2:2147]:1028

<1330516031.86611 > 20 bytes (seq:cpuh:irq:tx:rx)
| 108:2719852:1182352:193885:508307
| from [2001:630:301:6453:215:200:2:18 b1 ]:1028

Where the first field (< 1330515978.762626 >) is the time of reception, the

second field (20 bytes) is the size of the data from the application, the third field

(107 5171189 1181510 832069 639214) is the contents of the data. In this type of

messages, the data received are the time spend at each of the CPU-hi, IRQ, radio

RX and radio TX states of the sensor nodes. Finally, ([2001 : 630 : 301 : 6453 :

215 : 2000 : 2 : 2147] : 1027) are the packet’s source address and port number.

In general, it is very hard to synchronise the clocks in different devices such

as sensor nodes. Consequently, during the test-bed experiments, ping6 and thus
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round-trip delay was measured. In order to measure round trip delay with different

traffic loads the command:

ping6 -i <packet transmission interval > <IPv6 address >

was used. The argument -i specifies the interval between the consequent packet

transmissions. An example of ping6 used for the measurement of round trip delay

in our test-bed is presented:

PING 2001:630:301:6453:215:2000:2:19 b1 56 data bytes

64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=1 ttl =64 time =25.2 ms

64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=2 ttl =64 time =23.9 ms

64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=3 ttl =64 time =21.9 ms
64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=4 ttl =64 time =24.0 ms

64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=5 ttl =64 time =22.9 ms

64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=6 ttl =64 time =25.9 ms

64 bytes from 2001:630:301:6453:215:2000:2:19 b1:
icmp\_seq=7 ttl =64 time =23.9 ms

--- 2001:630:301:6453:215:2000:2:19 b1 ping statistics ---
7 packets transmitted , 7 received , 0\% packet loss , time 6009ms
rtt min/avg/max/mdev = 21.928/23.985/25.929/1.244 ms

After the collection of the desired data, a Linux shell script was used for the

extraction and the formating of the data in one file. This file was the inserted to

Microsoft Excel and processed with the use of pivot tables.



Appendix B

Test-bed Tools

Some tools, essential for the debugging and information gathering from the test-

bed will be described in this Chapter. These tools are:

• Bootloader, booty: nano-usb-programmer (the software used for loading

the firmware to sensor devices) cannot work on OS X and will only work in

slow mode on Linux. Operating in slow mode in Linux can take a significant

amount of time in order to programm sensor devices and thus it is not

practical for loading firmware to a large number of nodes.

In order to program from linux or OS X, bootty and bootloader can be used.

For these programmes a working SDCC compiler is required on the PC, with

libraries built for model-small. SDCC build instructions can provide more

information about the SDCC models [152].

The bootloader has two parts:

bootty is the embedded part. This part is loaded to the sensors. ball is the

host part. This is what you run on your PC.

After booty is loaded to the sensors (with nano-usb-programmer), ball can

be used from Linux to load any firmware to the sensor device. This can be

done with the command:

./ball -s -W -f <contiki -image.ihx > <device name >

Where device name will be the Port in which the device is connected to.

How this works in detail follows: When a sensor is carrying bootty, as soon

as it’s turned on it will start with the bootloader.
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If you wait for 10 seconds, the bootloader will jump to the application (con-

tiki in our case). Pressing Button 1 will jump to the application directly

- no need to wait. Pressing Button 2 will suspend the timer. Led 2 will

toggle when pressed, to confirm that the timer got suspended. Pressing it

again will NOT resume the timer. Suspending the timer gives the time to

do processes such as read mac and upload external images. Press Button 1

will result into jumping to the application sitting in the internal flash.

What are the advantages and disadvantages of using booty and bootloader.

Disadvantages:

1. Having bootloader at sensors consumes some memory. Therefore, less

space for the applications is left at the sensors.

Advantages:

1. Nodes can now be programmed with ease from any operating system.

2. Multiple images can now be loaded at the external flash of the sensor

(Sensinode devices have 2MB of external flash. This means that over

15 images can be loaded to each sensor device) and switching between

different images can now be done by rebooting the devices.

3. Combining booty with an auto sensor programming script, can result

in flashing multiple devices at the same time.

Booty and bootloader can be found as an open source project at [153].

• Auto sensor programming script: If the sensor devices have been loaded

with bootloader, this script can be used for the configuration of the devices

and the automation of the image loading at sensors and developed in Lough-

borough University.

The script used for the automated flashing of multiple devices is:

#!/bin/bash

# $1 must be the full path to the
#file to be loaded on sensinode minus (-number.ihx)
#for example if the files are testbed -0.ihx
#... testbed -4.ihx $1 must end in testbed
# $2 must be the total number of images
#to be uploaded in the node

for file in /dev/ttyUSB*
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do

./ball -m -s $file
if [ $? -ne 0 ]
then

echo "read mac failed"
exit 1
fi

./ball -T 0 -s $file
if [ $? -ne 0 ]
then

echo "delete register failed"
exit 1
fi

./ball -F -s $file
if [ $? -ne 0 ]
then

echo "format failed"
exit 1
fi

./ball -W -f $1 -0. ihx -s $file
if [ $? -ne 0 ]
then

echo "error uploading image"
exit 1
fi

for (( i = 0; i < $2; i++ ))
do

./ball -w $i -f $1 -$i.ihx -s $file
if [ $? -ne 0 ]
then

echo "error writing image : $1 to external flash"
exit 1

fi
done

done

This script first reads the mac address of the connected through the serial

port device. If there is no mac address the script terminates. Then the script

attempts to write the to the status register. If writing to the status register

fails the script terminates. Next the scripts attempt to erase the contents of

the flash memory. Similarly to the previous checks the script will Terminate

in case of error. Finally, the script will attempt to write the input file to the

flash and multiple other images (taken as an input) to the external flash. If

any of the writing procedures fail, the script will terminate and return an

error.

• Energy scan: Energy scan is a built in tool of Contiki OS (can be found

in /examples/sensinode/ directory). When uploaded in a sensor node, the

node will sample all of the 802.15.4 channels (11 - 26) and return the highest

RSSI value measured during the channel sampling process.



APPENDIX B. TEST-BED TOOLS 232

A node configured with energy scan will print in the terminal an output as

the one sheen below:

===============
11 [-49]: ##
12 [-49]: ##
13 [-49]: ##
14 [-23]: ############################
15 [-49]: ##
16 [-49]: ##
17 [-36]: ###############
18 [-48]: ###
19 [-42]: #########
20 [-49]: ##
21 [-48]: ###
22 [-48]: ###
23 [-49]: ##
24 [-49]: ##
25 [-48]: ###
26 [-49]: ##
===============
11 [-49]: ##
12 [-49]: ##
13 [-49]: ##
14 [-49]: ##
15 [-49]: ##
16 [-49]: ##
17 [-35]: ################
18 [ -7]: ############################################
19 [-29]: ######################
20 [-49]: ##
21 [-49]: ##
22 [-48]: ###
23 [-49]: ##
24 [-49]: ##
25 [-49]: ##
26 [-49]: ##
===============
11 [-48]: ###
12 [-15]: ####################################
13 [-49]: ##
14 [-49]: ##
15 [-49]: ##
16 [-44]: #######
17 [-49]: ##
18 [-48]: ###
19 [-48]: ###
20 [-49]: ##
21 [-48]: ###
22 [-48]: ###
23 [-49]: ##
24 [-49]: ##
25 [-48]: ###
26 [-49]: ##
===============

Where the first number represents the channel, the negative number within

squared brackets represents the RSSI value measured and the hashes repres-

ent how busy each channel was.

• Packet sniffer and Wireshark: Sniffer is Contiki OS built-in tool for
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CC24XX ports. It’s purpose is to capture all the traffic in the medium.

A sniffer node captures all the traffic from the radio medium (sniffer is

configured to capture traffic from a specific 802.15.4 channel and thus cannot

capture 802.15.4 traffic from every channel) and pipe it down the serial line.

Sniffer nodes does not participate in the network and can be connected to

any PC.

The functionality is controlled by the ‘CC2430 RF CONF HEXDUMP’ define.

This define can be configured from contiki-conf.h or from the local project-

conf.h of the sniffer directory.

When you set this define to 1, the radio driver will output hexdumps for all

traffic.

In order to perform a live network analysis, the traffic must be directed

to Wireshark in real-time. Text2pcap (converts a plain text file to pcap

format) cannot do this conversion in real-time. In the official Contiki OS

for CC243XX devices another tool with the name of n601-cap is included

to perform this task. This tool can be downloaded at [153] by searching for

tools in Contiki OS for CC24XX platforms. N601-cap reads a hexdump and

pipes it to Wireshark. The hexdump can come from stdin or it can come

directly from a serial line. Communication with Wireshark happens via a

FIFO pipe [107].

How n601-cap works:

First n601-cap should be downloaded. Then user must enter the directory

with the command cd n601-cap (assuming it is downloaded to the directory

the user is currently at). The command ‘make’ should then be invoked in

order to make the executables. Then the executable should be used as shown

below:

./n601 -cap -d /dev/ttyUSBx

Where the -d argument indicates that the device is connected to /dev/tty-

USBx interface. X in USBx should be replaced with the actual USB number

where your device is connected.

If permission for execution is denied, the above command should be used

with Sudo (administrator rights).

All the procedures are now set and traffic can be directed in Wireshark by:

go to Capture − > Options and manually type /tmp/n601 in the interface

box. Alternatively, Wireshark can be invoked from the command line by

typing:
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wireshark -k -i /tmp/n601

• Viztool: this tool have been developed in Loughborough University and

can be found at http://nets/gitweb/ (for users that already have permis-

sions). The purpose of this tool is to collect routing information from nodes

in a RPL and 6LoWPAN network and demonstrate this information in an

easy to read format.

Someone has to first download viztool from the previously mentioned dir-

ectory and make the project. After making the project, viztool is ready to

be used. The command:

./ viztool <IPv6 address >

will request all the information saved in the routing table of the node with the

<IPv6 address> address used as the viztool input argument. Additionally, if

the requested node (viztool input address) has any route entries in it’s routing

table; viztool will request the same information from these entries. Therefore

using the IPv6 address of the RPL route node as an input argument for

viztool, will result in retrieving the above mentioned information from every

node in the network (assuming there is only one RPL DODAG).

When viztool receives the requested information, it generates a Dot [154]

file. Using the command:

dot -Tpdf -0 <name of the dot file generated by viztool >

dot will automatically generate two pdf files. One of them, represents the

routing tree while the other represents a link layer map (which nodes are in

transmission range of each other).



Appendix C

Simulation Automations and

Result Mining

In this Chapter, detailed information about the automation of experiments in

COOJA simulator will be presented.

By default, COOJA can perform simulations ether through a graphical in-

terface or the terminal. Performing network simulations through the graphical

interface; allows user to monitor the networks behaviour during simulation time.

Even though this is very convenient for debugging purposes, it can take signific-

antly longer than simulating without graphical interface. Additionally, COOJA

provides a built in automation script (only for executions through terminal) which

is capable of repeating the same experiment multiple times. This script can be

found in:

/contikiXXX/tools/cooja/contiki_tests

directory. Running COOJA simulations repeatedly can be achieved using the

command:

bash RUN_REPEATED <Number of repeats > <COOJA simulator file >

Using the RUN REPEATED script of COOJA can significantly reduce the

amount of time required to perform a gret number of simulations. The draw back

of this approach is that it does not allow any modifications in the Contiki codes

executed by COOJA during the simulation repeats. To achieve that and thus

totally automate COOJA (reconfigure the simulated nodes with different paramet-

ers between the simulation iterations), a number of modifications -additions are

required. This required changes are presented below:

1. First the RUN REPEATED script of COOJA will have to be modified in

order to export in the Linix a variable representing which simulation irrit-

ation COOJA is currently in. Moreover, the script should be modified to

recompile all the files in Contiki before each simulation repeat (traditionally

235
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if there are no files changed, COOJA will not recompile Contiki). The mod-

ified to achieve the above mentioned characteristics script of COOJA can be

seen below:

#!/bin/bash

AUTO_CONF=cooja -conf.h

# Usage
if [ $# -eq 2 ]; then

REPEATS=$1
TEST=$2

else
echo "Usage: $0 <nr_repeats > <test >"
echo "Example: $0 10 cooja_helloworld"
exit 1

fi

# Locate Contiki/COOJA
if [ -z "$CONTIKI" ]; then

if [ -z "$CONTIKI_HOME" ]; then
CONTIKI_HOME =../../..

fi
CONTIKI=$CONTIKI_HOME

fi

# Clean up
rm -f *.log *. cooja_log
rm -fr se obj_cooja
rm -f symbols.c symbols.h

# Compile COOJA
echo ">>>>>>> Building COOJA <<<<<<<<"
(cd $CONTIKI/tools/cooja && ant clean && ant jar)
if [ "$?" != "0" ]; then

echo "Compilation of COOJA failed"
exit 1

fi

# Run tests
export BOX_NUM=‘expr substr \‘hostname\‘ 2 1‘
SRC_DIR=$(dirname "$TEST")
TEST_NAME=$(basename "$TEST")
mkdir -p $TEST -$BOX_NUM
for COUNTER in ‘seq 1 $REPEATS ‘;
do

echo ">>>>>>> Test $COUNTER/$REPEATS: \
$TEST -$COUNTER.log <<<<<<<<"

export COUNTER=$COUNTER
echo ">>>>>>> touch -c $SRC_DIR/$AUTO_CONF <<<<<<<<"
touch -c $SRC_DIR/$AUTO_CONF
bash RUN_TEST $TEST RUN_REPEATED_LAST.log
mv $TEST.log $TEST -$BOX_NUM -$COUNTER.log
mv $TEST -$BOX_NUM -$COUNTER.log $TEST -$BOX_NUM

done

echo
cat RUN_REPEATED_LAST.log
cd $SRC_DIR
tar zcf $TEST_NAME -$BOX_NUM.tar.gz $TEST_NAME -$BOX_NUM
cd -
echo
echo ">>>>>>> DONE! Test logs stored \
in $TEST -[1- $REPEATS ].log <<<<<<<<"
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2. The projects makefile has to be modified to pass the previously exported by

COOJA (and the virtual PC’s that the simulations will be executed at. In

our case this is handled by “BOX NUM”), number of experiment repeat in

Contiki. This can be achieved by adding the in the beginning of the projects

makefile:

ifdef COOJA
DEFINES += PROJECT_CONF_H =\"project -conf.h\",COOJA=$(COOJA)
ifdef COUNTER

DEFINES += COUNTER=$(COUNTER)
endif
ifdef BOX_NUM

DEFINES += BOX_NUM=$(BOX_NUM)
endif

else
DEFINES += PROJECT_CONF_H =\" project -conf.h\"

endif

A cooja-conf.h file has to be created. This file will be responsible of recon-

figuring the nodes between each COOJA run. The reconfiguration is based

in the previously exported by cooja number of simulation repeat. An ex-

ample of a cooja-conf.h file can be seen below (and the one used during our

simulations):

/* activate configuration for automated experiments */
#define EXPERIMENT 1

#define PACKETS_TO_SEND 500 /* Stop seeding after 500 packets */

/* What algorithm will each box run */
#if BOX_NUM == 1
#undef NETSTACK_CONF_MAC
#undef NETSTACK_CONF_RDC
#define NETSTACK_CONF_MAC CADC_driver
#define NETSTACK_CONF_RDC CADCrdc_driver
#define MAC_USED 0
#elif BOX_NUM == 2
#undef NETSTACK_CONF_MAC
#undef NETSTACK_CONF_RDC
#define NETSTACK_CONF_MAC beam_driver
#define NETSTACK_CONF_RDC beamrdc_driver
#define MAC_USED 0
#elif BOX_NUM == 3
#undef NETSTACK_CONF_MAC
#undef NETSTACK_CONF_RDC
#define NETSTACK_CONF_MAC csma_driver
#define NETSTACK_CONF_RDC contikimac_driver
#define MAC_USED 1
#elif BOX_NUM == 4
#undef NETSTACK_CONF_MAC
#undef NETSTACK_CONF_RDC
#define NETSTACK_CONF_MAC csma_driver
#define NETSTACK_CONF_RDC cxmac_driver
#define MAC_USED 1
#else
#undef NETSTACK_CONF_MAC
#undef NETSTACK_CONF_RDC
#define NETSTACK_CONF_MAC csma_driver
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#define NETSTACK_CONF_RDC lpp_driver
#define MAC_USED 1
#endif

#define DIVISOR 12
/* Convert the cooja script ’s
$COUNTER to something that makes sense */
#ifdef COUNTER
#define CONF (( COUNTER - 1) % DIVISOR)
#else
#define CONF 0
#endif

/* What delay will each box use */
#if (CONF % 4 == 0)
#define SIM_CONF_SEND_INTERVAL 64
#define SEND_INTERVAL 64
#elif (CONF % 4 == 1)
#define SIM_CONF_SEND_INTERVAL 32
#define SEND_INTERVAL 32
#elif (CONF % 4 == 2)
#define SIM_CONF_SEND_INTERVAL 16
#define SEND_INTERVAL 16
#elif (CONF % 4 == 3)
#define SIM_CONF_SEND_INTERVAL 8
#define SEND_INTERVAL 8
#endif

/* number 1 is the server we dont need it*/
#define NEW_SOURCE ((( COUNTER -1) % 9) + 2)

#if MAC_USED
/* Pairwise configurations: 5 per RDC */
#define PAIR ((COUNTER -1) % 5)

#if PAIR ==0
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 4
#elif PAIR ==1
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 8
#elif PAIR ==2
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 16
#elif PAIR ==3
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 32
#else
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 64
#endif
#else
#define PAIR ((COUNTER -1) % 2/*3*/)
#if PAIR ==0
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 4
/*#elif PAIR ==1*/
#else
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 8
/*
#else
#undef NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE
#define NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE 16
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*/
#endif
#endif

This file will change the MAC and RDC layer as well as the inter packet

transmission interval and the channel check rate used by the protocols in

each simulation run.

3. Some codes in Java script must be written and imported in COOJA’s Contiki

test editor module in order to automatically collect and save (preferable in

an easy to manage format) all of the required results from each experiment.

A Java script example used during our simulation experiments can be seen

below:

TIMEOUT (600000 , log.testOK ());

function Network () {
var n = new Array (); /* Nodes */
var p = new Array (); /* Packets */

this.add = function(node) {
n.push(node);

}

this.newPacket = function(packet) {
p.push(packet );

}

this.getPacketSentTime = function(id) {
var foo = parseInt(id);
for(i = 0; i < p.length; i++) {

if(p[i]. getID() == foo) {
return p[i]. getSent ();

}
}

}

this.report = function () {
n.sort(sortID );
for(i = 0; i < n.length; i++) {

n[i]. print ();
}

}

this.getByID = function(id) {
for(i = 0; i < n.length; i++) {

if(n[i]. getID() == id) {
return n[i];

}
}

}

function sortID(a, b) {
return a.getID () - b.getID ();

}
}

function Node(id, t) {
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var id = id;
/* var type;*/
var packet_delay_tot = 0;

this.rx = 0;
this.tx = 0;
//this.degree = 0;
this.eCPU = 0;
this.eIRQ = 0;
this.eLPM = 0;
this.eRX = 0;
this.eTX = 0;
this.highest = 0;
this.mac = 0;
this.interval = 0;
this.channelcheck = 0;
this.experiment = 0;
this.rdc = 0;

/* this.getType = function () {
return type;

}*/

this.getID = function () {
return id;

}

this.delay_incr = function(t) {
packet_delay_tot += t;

}

this.print = function () {
log.log(this.experiment + ";" + id + ";"
+ this.mac + ";" + this.rdc + ";" +
this.channelcheck + ";" + this.interval + ";");

log.log(this.rx + ";" + this.tx + ";");
log.log(this.eCPU + ";" + this.eIRQ + ";"
+ this.eLPM + ";" + this.eRX + ";" + this.eTX + ";");

log.log(this.getAvgPacketDelay () + "\n");
}

this.updateHopCount = function(ttl) {
hops = 64 - ttl + 1;
if(hops < hc) { hc = hops; }

}

this.getAvgPacketDelay = function () {
if(this.rx == 0) {

return 0;
} else {

return (packet_delay_tot/this.rx /1000000);
}

}
}

function Packet(i, s) {
var id = parseInt(i);
var sent = s;

this.getID = function () {
return id;
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}

this.getSent = function () {
return sent;

}
}

net = new Network ();
sim = mote.getSimulation ();

for(i = 0; i < sim.getMotesCount (); i++) {
us = sim.getMote(i);
n = new Node(us.getID () , us.getType (). getDescription ());
net.add(n);

}

while (1) {
/* Yield -ish */
SEMAPHORE_SIM.release ();
SEMAPHORE_SCRIPT.acquire ();
if (SHUTDOWN) { net.report (); SCRIPT_KILL (); }
if (TIMEOUT) { net.report (); SCRIPT_TIMEOUT (); }
msg = new java.lang.String(msg);
node.setMoteMsg(mote , msg);

n = net.getByID(mote.getID ());
msgArray = msg.split(’ ’);
if(msgArray [0]. equals("DATA1")) {

p = new Packet(msgArray [1], time);
n.tx++;
net.newPacket(p);

} else if(msgArray [0]. equals("DATA2")) {
n.rx++;

/* Packet Arrival Delay */
t_diff = time - net.getPacketSentTime(msgArray [2]);
n.delay_incr(t_diff );

} else if(msgArray [0]. equals("Periodic:")) {
n.eCPU = msgArray [1];
n.eIRQ = msgArray [2];
n.eLPM = msgArray [3];
n.eRX = msgArray [4];
n.eTX = msgArray [5];

} else if(msgArray [0]. equals("Conf:")) {
/* Algorithm - Counter - Messages
- Period - RDC - Energy */

n.mac = msgArray [1];
n.channelcheck = msgArray [2];
n.interval = msgArray [3];
n.experiment = msgArray [4];
n.rdc = msgArray [5];

}
}

It is worthy to mention that the above Java script reads the first word

printed by each node’s printf function and based on that saves the desired

information for each node. When the simulation ends, the Java script will

print and save in a log file all the information gathered during the simulation

run. The output will be one line for each simulated node.
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Sensinode - CC2430 Constrains

and Code Optimisations

During section 6.7 and section 3.10 lots of the hardware specific constrains were

discussed. This Chapter will describe in detail the majority of code optimisations

required in order to have a fully functional, IPv6 and 6LoWPAN ready; Contiki

for Sensinode devices.

First why 15 nodes were used during the test-bed experiments will be explained

while a general discussion describing why architectures based on 8051 MCU need

this stack optimisations will follow. Since this research study’s focus is not Con-

tiki’s code optimisation, only the related to duty cycle and this research optimisa-

tions will be presented afterwards. The remainder of Contiki’s optimisations for

8051 MCU based architectures and thus Sensinode can be found in [145].

Information such as static variables are saved in RAM in 8051 MCU. Therefore

all routing tables will be saved in the SRAM in our sensor nodes. CC24XX which

is used by our sensor nodes, is based on 8051 MCU and has 8KB of RAM. During

our experiments, when we increased the size of the routing and neighbor table to

contain more than 15 entries, the size of the information could not fit in the 8KB

of SRAM and thus the hardware could not function. This lead us into conducting

test-bed experiments with up to 15 nodes.

Section 3.4 explains in detail the 8051 MCU and it’s memory spaces. The fast

access read/write data memory 256 Bytes in 8051 MCU used by CC24XX SOC;

is used as the machine stack. The main purpose of the machine stack is to keep

track of the point to which each active subroutine should return control when it

finishes executing. An active subroutine is one that has been called but is yet

to complete execution after which control should be handed back to the point of

call. Such activations of subroutines may be nested to any level (recursive as a

special case), hence the stack. The most important (related to our project) of the
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program’s information that need to be stored in the stack follows:

• The return address. When a subroutine is called, the location (address)

of the instruction at which it can later resume the execution is saved in the

stack.

• Local data storage. A subroutine frequently needs memory space for

storing the values of local variables, the variables that are known only within

the active subroutine and do not retain values after it returns.

• Parameter passing. Subroutines often require that values for parameters

be supplied to them by the code which calls them, and it is not uncommon

that space for these parameters may be laid out in the call stack.

• Evaluation stack. Operands for arithmetic or logical operations are most

often placed into registers and operated on the stack.

Taking the above under consideration it is easy to say that the more function

calls the more space required in the stack. If the space of the information that need

to be stored in the stack exceed the stacks capacity; in most cases the hardware

will stop working or even crash.

8051 based MCUs have only 256 byte of stack. If a program requires many

nested function calls (When Contiki OS is configured with IPv6 this is the case),

256 bytes of stack may not be enough. Therefore, stack optimisations in the codes

must be performed in order to avoid potential crashes at the nodes. The stack

optimisations related to this project follows:

• A great number of local variables within multiple functions in Contiki have

been redefined as static. This forces this variables to be saved in the external

RAM of 8051 MCU and thus we avoid saving them in the stack. It is worthy

to mention, that for multiple architectures such as the ones based on MSP430

this approach would have the opposite effect. Architectures such as the ones

based on MSP430 use the non used by the program RAM as their stack.

Therefore saving variables on the RAM will result in a smaller stack.

• Modified the clock interrupt. By changing the value of CLOCK CONF ACCURATE

to 0 (can be found in platform/sensinode/ contiki-conf.h) the the clock in-

terrupt will now directly call the related functions. Instead a flag will be

set and the required functions will be called by main. The related to this

modifications codes follows:

/* *********** In contiki -sensinode -main.c file ****** */
.
.
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.
/* *********** Various unrelated codes ****** */
.
.
.
while (1) {

do {
/* Reset watchdog and handle polls and events */
watchdog_periodic ();

/**/
#if !CLOCK_CONF_ACCURATE

if(sleep_flag) {
if(etimer_pending () &&

(etimer_next_expiration_time ()
- count - 1) > MAX_TICKS)

{ /*core/sys/etimer.c*/
etimer_request_poll ();

}
sleep_flag = 0;

}
#endif.
.
.
.
/* *********** Various unrelated codes ****** */
.
.
.
/* *********** In clock.c file ****** */
#include <stdio.h> /*for debug printf */
#include "sys/clock.h"
#include "sys/etimer.h"
#include "cc2430_sfr.h"
#include "sys/energest.h"

/* Sleep timer runs on the 32k RC osc. */
/* One clock tick is 7.8 ms */
#define TICK_VAL (32768/128) /* 256 */

/* Used in sleep timer interrupt for
calculating the next interrupt time */

static unsigned long timer_value;
/* starts calculating the ticks right after reset*/
#if CLOCK_CONF_ACCURATE
static volatile __data clock_time_t count = 0;
#else
volatile __data clock_time_t count = 0;
/* accurate clock is stack hungry */
volatile __bit sleep_flag;
#endif
/* calculates seconds */
static volatile __data clock_time_t seconds = 0;
.
.
.
/* *********** Various unrelated codes ****** */
.
.
.
void clock_ISR( void ) __interrupt (ST_VECTOR)
{

IEN0_EA = 0; /* interrupt disable */
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ENERGEST_ON(ENERGEST_TYPE_IRQ );

/*
* If the Sleep timer throws an interrupt
while we are powering down to

* PM1 , we need to abort the power down.
Clear SLEEP.MODE , this will signal

* main() to abort the PM1 transition
*/

SLEEP &= 0xFC;

/* When using the cooperative
scheduler the timer 2 ISR is only
required to increment the RTOS
tick count. */

/*Read value of the ST0 ,ST1 ,ST2 and
then add TICK_VAL and write it back.
Next interrupt occurs after the
current time + TICK_VAL */

timer_value = ST0;
timer_value += (( unsigned long int)ST1) << 8;
timer_value += (( unsigned long int)ST2) << 16;
timer_value += TICK_VAL;
ST2 = (unsigned char) (timer_value >> 16);
ST1 = (unsigned char) (timer_value >> 8);
ST0 = (unsigned char) timer_value;

++ count;

/* Make sure the CLOCK_CONF_SECOND is a power of two ,
to ensure that the modulo operation below becomes
a logical and not an expensive divide.
Algorithm from Wikipedia:

http ://en.wikipedia.org/wiki/Power_of_two */
#if (CLOCK_CONF_SECOND & (CLOCK_CONF_SECOND - 1)) != 0
#error CLOCK_CONF_SECOND must be a power of two
#(i.e., 1, 2, 4, 8, 16, 32, 64, ...).
#error Change CLOCK_CONF_SECOND in contiki -conf.h.
#endif

if(count % CLOCK_CONF_SECOND == 0) {
++ seconds;

}

#if CLOCK_CONF_ACCURATE
if(etimer_pending () &&

(etimer_next_expiration_time () - count - 1) > MAX_TICKS)
{ /*core/sys/etimer.c*/

etimer_request_poll ();
}

#else
sleep_flag = 1;

#endif

IRCON &= ~STIF;
/* IRCON.STIF=Sleep timer interrupt flag.
* This flag called this interrupt
* func , now reset it*/
ENERGEST_OFF(ENERGEST_TYPE_IRQ );
IEN0_EA = 1; /* interrupt enable */

}

• Modified the r-timer interrupt. The r-timer interrupt is used by ContikiMAC
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(and some other duty cycling schemes) in order to accurately wake up the

radio. If the stack is high there is a high possibility for stack overflow when

the related to the interrupt function calls invoked. Therefore, the interrupt

function have been modified to first perform a stack check. If there is a risk

of stack overflow, the execution of the related to the interrupt function calls

is rescheduled (for microseconds). The related to this modifications codes

follows:

/* *********** rtimer -arch.c file ****** */
.
.
.
/* *********** Various unrelated codes ****** */
.
.
.
void cc2430_timer_1_ISR(void) __interrupt (T1_VECTOR)
{

IEN1_T1IE = 0; /* Ignore Timer 1 Interrupts */
ENERGEST_ON(ENERGEST_TYPE_IRQ );
/* No more interrupts from Channel 1 till next
* rtimer_arch_schedule () call.
* Setting the mask will instantly
* generate an interrupt so we clear the
* flag first. */

T1CTL &= ~( CH1IF);
T1CCTL1 &= ~T1IM;

if(SP <0xa0) {
rtimer_run_next ();

} else {
rtimer_arch_schedule (0);

}

ENERGEST_OFF(ENERGEST_TYPE_IRQ );
IEN1_T1IE = 1; /* Acknowledge Timer 1 Interrupts */

}
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CADC 802.15.4 Packet Framer

Modifications

Subsection 6.3.3 described in detail that for the propagation of channel check

rate information, CADC uses the 3 reserved bits of the FCF field in the 802.15.4

frame header. Before each unicast transmission, nodes will set a flag in the 3 bit

field. Through that flag, a node can calculate the channel check rate at its child

nodes. In order to succeed doing this, we first created a new attribute related to

congestions indication in Contikis packet buffer:

enum {
/* *********** packetbuf.c file ****** */
.
.
.
/* *********** Various unrelated codes ****** */
.
.
.

PACKETBUF_ATTR_NONE ,

/* Scope 0 attributes: used only on the local node. */
PACKETBUF_ATTR_CHANNEL ,
PACKETBUF_ATTR_NETWORK_ID ,
PACKETBUF_ATTR_LINK_QUALITY ,
PACKETBUF_ATTR_RSSI ,
PACKETBUF_ATTR_TIMESTAMP ,
PACKETBUF_ATTR_RADIO_TXPOWER ,
PACKETBUF_ATTR_LISTEN_TIME ,
PACKETBUF_ATTR_TRANSMIT_TIME ,
PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS ,
PACKETBUF_ATTR_MAC_SEQNO ,
PACKETBUF_ATTR_MAC_ACK ,

/* Scope 1 attributes: used between two neighbours only. */
PACKETBUF_ATTR_RELIABLE ,
PACKETBUF_ATTR_PACKET_ID ,
PACKETBUF_ATTR_PACKET_TYPE ,
PACKETBUF_ATTR_REXMIT ,
PACKETBUF_ATTR_MAX_REXMIT ,
PACKETBUF_ATTR_NUM_REXMIT ,
PACKETBUF_ATTR_PENDING ,

247
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/***** Congestion attribute ********** */
PACKETBUF_ATTR_CONGESTION ,

/* Scope 2 attributes: used between end -to -end nodes. */
PACKETBUF_ATTR_HOPS ,
PACKETBUF_ATTR_TTL ,
PACKETBUF_ATTR_EPACKET_ID ,
PACKETBUF_ATTR_EPACKET_TYPE ,
PACKETBUF_ATTR_ERELIABLE ,

/* These must be last */
PACKETBUF_ADDR_SENDER ,
PACKETBUF_ADDR_RECEIVER ,
PACKETBUF_ADDR_ESENDER ,
PACKETBUF_ADDR_ERECEIVER ,

PACKETBUF_ATTR_MAX
};

The congestion attribute of Contiki’s packet buffer is updated by the MAC

layer before a packet transmission and RDC when a packet is received.

The files related with 802.15.4 framer had to be modified as well in order

to successfully save in the packets header the information carried in of PACKET-

BUF ATTR CONGESTION. The codes related to the modification of the 802.15.4

framer are:

/* *********** frame802154.c file ****** */
.
.
.
/* *********** Various unrelated codes ****** */
.
.
.
uint8_t frame802154_create
(frame802154_t *p, uint8_t *buf , uint8_t buf_len ){

int c;
uint8_t *tx_frame_buffer;
uint8_t pos;

field_len(p, &flen);

if(3 + flen.dest_pid_len + flen.dest_addr_len +
flen.src_pid_len + flen.src_addr_len
+ flen.aux_sec_len > buf_len) {

/* Too little space for headers. */
return 0;

}

/* OK , now we have field lengths. Time to actually construct */
/* the outgoing frame , and store it in tx_frame_buffer */
tx_frame_buffer = buf;
tx_frame_buffer [0] = (p->fcf.frame_type & 7) |

((p->fcf.security_enabled & 1) << 3) |
((p->fcf.frame_pending & 1) << 4) |
((p->fcf.ack_required & 1) << 5) |
((p->fcf.panid_compression & 1) << 6);

tx_frame_buffer [1] = ((p->fcf.dest_addr_mode & 3) << 2) |
((p->fcf.frame_version & 3) << 4) |
((p->fcf.src_addr_mode & 3) << 6) |
(( packetbuf_attr(PACKETBUF_ATTR_CONGESTION) & 3));
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/* sequence number */
tx_frame_buffer [2] = p->seq;
pos = 3;

.

.

.
/* *********** Various unrelated codes ****** */
.
.
.
uint8_t
frame802154_parse(uint8_t *data , uint8_t len , frame802154_t *pf)
{

uint8_t *p;
uint8_t c;

if(len < 3) {
return 0;

}

p = data;

memset (&fcf , 0, sizeof(fcf ));
/* decode the FCF */
fcf.frame_type = p[0] & 7;
fcf.security_enabled = (p[0] >> 3) & 1;
fcf.frame_pending = (p[0] >> 4) & 1;
fcf.ack_required = (p[0] >> 5) & 1;
fcf.panid_compression = (p[0] >> 6) & 1;

fcf.dest_addr_mode = (p[1] >> 2) & 3;
fcf.frame_version = (p[1] >> 4) & 3;
fcf.src_addr_mode = (p[1] >> 6) & 3;

packetbuf_set_attr(PACKETBUF_ATTR_CONGESTION , (p[1] & 3));

/* copy fcf and seqNum */
memcpy (&pf ->fcf , &fcf , sizeof(frame802154_fcf_t ));
pf ->seq = p[2];
p += 3; /* Skip first three bytes */

/* Destination address , if any */
if(fcf.dest_addr_mode) {

/* Destination PAN */
pf ->dest_pid = p[0] + (p[1] << 8);
p += 2;

.

.

.
/* *********** Various unrelated codes ****** */
.
.
.

It is worthy to mention that the above provided modifications are utilizing

only the 2 out of the 3 available bits in the reserved field of 802.15.4 header. With

a couple of extra lines (extend the current method used to utilize 3 bits) all 3 bits

can be utilized.
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Pseudocodes

F.1 Application Layer Pseudocodes

The application layer used in the majority of the experiments (with small vari-

ations between test-bed and simulations) and some of it’s basic functionalities will

be described in the form of pseudocode as follows:

Algorithm 1 Packet received (application)

1: procedure tcpip handler(void)
2: if !congestion flag && packet contains data then
3: congestion flag = 1
4: inactive flag = 0
5: packet to send← read from received packet
6: packet transmission interval← read from received packet . The

received packet contains all the information required for the autoconfiguration
7: else
8: congestion flag = 0
9: inactive flag = 1

10: seq id = 0
11: unspecify the UDP connection . reset the destination address to 0
12: end if
13: sender addr ← read from received packet
14: end procedure

250
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Algorithm 2 Send packet (application)

1: procedure timeout handler(energy flag)
2: if energy flag then . this function is used for the transmission

of both normal and energy measurement packets. What packet this function
will transmit depends on the energy flag argument

3: calculate energy measurements and use as the application packet pay-
load

4: else
5: use as the application packet payload any information is related to the

measured metrics such as: seq no
6: end if
7: send packet to→sender addr . there is a pre-configured, default
sender addr used by the application before the first packet reception

8: end procedure

Algorithm 3 In application’s process thread

1: Applications infinite loop:
2: while 1 do
3: PROCESS YIELD
4: if packet transmission interval timer ← expired then
5: if inactive flag = 0 then
6: timeout handler(0)
7: if seq id >= packet to send then
8: congestion flag = 0
9: inactive flag = 1

10: seq id = 0
11: unspecify the UDP connection
12: else
13: Start packet transmission interval timer ←

packet transmission interval . Start timer with the requested interval
14: end if
15: end if
16: else if energy timer ← expired then
17: timeout handler(1)
18: else if received packet then
19: tcpip handler
20: end if
21: end while
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F.2 Data collection server Pseudocodes

The data collection server used during the test-bed experiments and some of it’s

basic functionalities will be described in the form of pseudocode as follows:

Algorithm 4 Print statistics for a node

1: procedure dump stats(void)
2: for i = 0, i < MAX NODES,i+ + do
3: if memcmp(nodestats[i].sender,in6addr any,size of IPv6 addres)

then . checks if position is empty
4: return &nodestats[i]
5: return
6: else
7: open stats-file
8: if pointer to stats-file ! = NULL then
9: file print(nodestats[i].sender, nodestats[i].count) . will print

the total amount of packets received by a specific IP address
10: end if
11: end if
12: end for
13: end procedure

Algorithm 5 Save nodes in a table

1: procedure allocate node(struct pointer to IPv6 addres new node)
2: for i = 0, i < MAX NODES,i+ + do
3: if memcmp(nodestats[i].sender,in6addr any,size of IPv6 addres)

then . checks if position is empty
4: memcpy (nodestats[i].sender , new node , size of IPv6 addres ) .

save the new node in the empty position
5: end if
6: end for
7: return 0
8: end procedure



APPENDIX F. PSEUDOCODES 253

Algorithm 6 Search if a node exists in the table

1: procedure find node(struct pointer to IPv6 addres this node)
2: for i = 0, i < MAX NODES,i+ + do
3: if memcmp(nodestats[i].sender,this node,size of IPv6 addres) then .

search if the node is saved in the table
4: return &nodestats[i] . return a pointer to the address that the

requested node is saved
5: end if
6: end for
7: return 0
8: end procedure
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Algorithm 7 Receiving packets and collecting the data

1: procedure collect(void)
2: if packetisreceived then
3: get-time-of-day
4: node = find node()
5: if node then
6: if validpacket then
7: node→ count+ + . increment the packet count for the specific

node
8: end if
9: else if node = allocate node() then

10: if validpacket&& node then
11: node→ count+ + . increment the packet count for the specific

node
12: end if
13: else
14: print error
15: end if
16: if packet == energy packet then
17: open energy-file
18: if pointer to energy-file ! = NULL then
19: file print(energy attributes) . will print in the file all of the

required energy measurements
20: end if
21: else
22: open stats-file
23: if pointer to stats-file ! = NULL then
24: file print(transmission attributes) . will print in the file

information such as the packet payload, seq-no etc.
25: end if
26: end if
27: else
28: wrong read
29: end if
30: return bytes-received
31: end procedure
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F.3 DCCC6 Pseudocodes

Some of the basic functionalities of DCCC6 are described in the form of pseudo-

code:

Algorithm 8 Packet received from upper layers

1: procedure send packet(function pointer to sent, void pointer)
2: increase the sequence number
3: if packet ! = broadcast && no duty cycle then
4: parent node = destination address. when multiple sinks we store the

parent nodes in a table
5: end if
6: if packet queue ! = full then
7: if packet type == reliable then
8: push packet in packet queue . beginning of the queue
9: else

10: add packet in packet queue . end of the queue
11: end if
12: start transmission timer
13: else
14: send packet to lower layer
15: end if
16: end procedure

Algorithm 9 Send congestion notification message

1: procedure congestion notification(void)
2: clear transmission buffer
3: if no duty cycle then
4: destination address = broadcast address
5: else
6: destination address = address of node causing congestion
7: end if
8: congestion notification flag = 1
9: transmit congestion notification packet

10: end procedure
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Algorithm 10 Reduce transmission rates when congestion notification packet is
received

1: procedure reduce rate(void)
2: if rate < max rate then . max rate depends on the duty cycle

configuration
3: rate = max rate
4: end if
5: if rate < min rate then . high value related to the duty cycle

configuration
6: rate = var ∗ sqrt(min rate)/sqrt(rate) . var=controls the slope
7: end if
8: end procedure

Algorithm 11 Increase transmission rates after a successful transmission

1: procedure increase rate(void)
2: if rate > min rate then . min rate depends on the duty cycle

configuration
3: rate = var1 ∗ rate ∗ sqrt(nodesthatinterfere + 1) / (var2 ∗
sqrt(max rate))− sqrt(rate)

4: end if
5: end procedure

Algorithm 12 Refresh table with interference nodes

1: procedure refresh interference(void) . periodically resets the table of
interfere nodes

2: for i = 0,i < table size,increase i do
3: interference table[i] = NULL
4: end for
5: end procedure
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Algorithm 13 Receiving a packet

1: procedure input packet(void)
2: if unicast && congestion notification then
3: reduce rates
4: else if broadcast && congestion notification && from parent node then
5: reduce rate
6: end if
7: if unicast then . measuring child nodes
8: for i = 0,i < max neighbours,increase i do
9: if source address == interference table[i] then

10: exit for loop
11: flag found = 1
12: else
13: save address to the first empty place in interference table
14: end if
15: end for
16: if flag found == 0 then
17: interference counter = 0
18: for i = 0,i < max neighbours,increase i do
19: if interference table[i] ! = NULL then
20: increase interference counter by one
21: end if
22: end for
23: end if
24: if packet queue size > threshold and node childs ! = 0 then
25: send congestion notification packet
26: if threshold < max packet queue size then
27: increase threshold . avoid simultaneous transmissions of

congestion notification packet
28: end if
29: else
30: if threshold > default size then
31: decrease threshold
32: end if
33: end if
34: end if
35: end procedure
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Algorithm 14 Returning the status of the packet transmission

1: procedure Packet sent(void pointer, status , number of transmissions)
2: if state == ok then
3: break
4: else if state == noack then
5: increasetransmissionsby1
6: else if state == collision then
7: increasecollisionsby1
8: end if
9: if state == collision or state == noack then

10: time = channel check interval
11: time = time+ (random number modulo transmissions ∗ time)
12: if transmissions < max transmissions then
13: retransmit the packet after time
14: else
15: drop packet
16: end if
17: else
18: remove successfully transmitted packet
19: end if
20: end procedure
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F.3.1 CADC Pseudocodes

Some of the basic functionalities of DCCC6 are described in the form of pseudo-

code:

Algorithm 15 Reset congestion parameters

1: procedure reset param(void) . reset all of the congestion parameters to
their default values

2: end procedure

Algorithm 16 Update channel check rate and congestion parameters when for-
warding state ends

1: procedure forwarding now(void)
2: reset param()
3: update duty cyle() . this function informs RDC layer for the channel

check rate changes
4: CADC state = DEFAULT STATE
5: end procedure

Algorithm 17 Reset node’s channel check rate back to default when inactive

1: procedure idle state(void pointer)
2: if inactive then . flag shows activity of the node
3: if node is not inactive due to misconfiguration then
4: channel check rate=DEFAULT MINCCR
5: update duty cyle() . this function informs RDC layer for the

channel check rate changes
6: else
7: reset param()
8: end if
9: end if

10: inactive=1
11: reset function timer . this function is executed periodically by a timer
12: end procedure
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Algorithm 18 Packet is received

1: procedure input packet(void)
2: if !broadcast then
3: inactive=0
4: in traffic++
5: broadcast flag=0
6: if packet attribute congestion then
7: CCR CMP()
8: end if
9: else

10: broadcast flag=1
11: end if
12: forward packet to the upper layers
13: end procedure

Algorithm 19 Compares node’s channel check rate with the one received from
child nodes

1: procedure CCR CMP(void)
2: Switchpacket attribute congestion
3: case 1:CCR received=4
4: case 1:CCR received=8
5: case 1:CCR received=16
6: case 4:CCR received=32
7: case 5:CCR received=64
8: EndSwitch
9: if CCR received ¿ highest CCR received then

10: highest CCR received=CCR received
11: end if
12: if CCR received ¿ Current CCR then
13: Current CCR=CCR received
14: Current state=FORWARDING STATE
15: start timer for the execution of forwarding now function
16: end if
17: end procedure
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Algorithm 20 Transmit an unicast packet

1: procedure transmit queued packet(void)
2: if RDC is transmitting then
3: return
4: end if
5: SwitchCurrent CCR
6: case 4:packet attribute congestion=1
7: case 8:packet attribute congestion=2
8: case 16:packet attribute congestion=3
9: case 32:packet attribute congestion=4

10: case 64:packet attribute congestion=5
11: EndSwitch
12: forward packet to the lower layers
13: end procedure

Algorithm 21 CADC state decision

1: procedure node state(void)
2: if packet queue >= hi threshold then
3: if succesfull transmissions <= fail threshold && Current CCR <=

MAX CCR COLLAPSE then
4: state = COLLAPSE STATE
5: else
6: state = CONGESTION STATE
7: end if
8: else if packet queue >= low threshold then
9: if succesfull transmissions > in traffic then

10: state = NORMAL STATE
11: else
12: state = CONGESTION STATE
13: end if
14: else
15: if succesfull transmissions > in traffic && fail transmissions <=

fail threshold && Current CCR > MIN CCR then
16: state = OVER DC STATE
17: else
18: state = NORMAL STATE
19: end if
20: end if
21: reset param()
22: calculate CCR()
23: end procedure
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Algorithm 22 Calculate the new channel check rate based on the state in which
the node is

1: procedure calculate CCR(void)
2: Switchstate
3: case COLLAPSE STATE:
4: Current CCR = Current CCR << 2 . quadruples channel check rate
5: state = FORWARDING STATE
6: start timer for the execution of forwarding now() function
7: case CONGESTION STATE:
8: if Current CCR < MAX CCR then
9: Current CCR = Current CCR << 1 . doubles channel check rate

10: end if
11: state = FORWARDING STATE
12: start timer for the execution of forwarding now() function
13: case OVER DC STATE:
14: if Current CCR ¿ highest CCR received then . cannot reduce more than

the child’s channel check rate
15: Current CCR = Current CCR >> 1
16: update duty cyle() . halves channel check rate
17: end if
18: case NORMAL STATE:
19: Node operates at the optimal channel check rate. Do nothing
20: EndSwitch
21: end procedure
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Algorithm 23 Retrieving the status of a packet’s transmission

1: procedure packet sent(void pointer, integer status, integer number of
transmissions)

2: Switchstatus
3: case OK:
4: succesfull transmissions++
5: case NO ACK:
6: not acknowledged++
7: case COLLISION:
8: collisions++
9: EndSwitch

10: total tranmissions = (collisions + not acknowledged + succes-
full transmissions)

11: if total tranmissions >= NUMBER OF STATECHECK TRANSMISSIONS
&& Current STATE != FORWARDING STATE then

12: node state()
13: end if
14: if (status == COLLISION || status == NO ACK) && packet → trans-

missions > packet → MAX transmissions then
15: drop packet
16: else if status == COLLISION then
17: time = get time() . the value returned depends on the channel check

rate
18: packet → transmissions++
19: if broadcast flag then . broadcast transmissions have always the

maximum transmission duration and thus we should always wait longer
20: time = BC TIME + (random time % (packet → transmissions *

time))
21: broadcast flag = 0
22: else
23: time = time + (random time % (packet → transmissions * time))
24: set packet retransmission timer
25: end if
26: else if status == NO ACK then
27: if Current STATE == FORWARDING STATE then
28: retransmit packet now . stitching technique
29: else
30: packet → transmissions++
31: random time % (packet → transmissions * get time()) . when no

acknowledgment retransmission time window can start from 0
32: end if
33: set packet retransmission timer
34: else
35: drop packet
36: end if
37: end procedure
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Logs of CADC’s Validation

Through Simulation Experiments

In this section, log files from the simulation experiments used for validation of

CADC are presented. The numbers in the first column represent the time in

µSec. The second column shows the Node’s ID (through that we can see what

actions each node performed at each time of the simulation). The third column

contains the message printed by each node. Nodes will periodically print their

queue status as well as the rest of the parameters used by CADC. Figure G.1

illustrates the setup of CADC evaluation experiments in cooja simulator.

The log file of an experiment with low congestion (pact transmission interval

set at 250 ms) follows:

496 ID:2 Rime started with address 0.18.116.2.0.2.2.2
507 ID:2 MAC 00:12:74:02:00:02:02:02

Contiki -2.5 -1700 - g350296a started.
Node id is set to 2.

518 ID:2 CADC CADC -RDC , channel check rate 8 Hz ,
radio channel 26

537 ID:2 Tentative link -local IPv6 address:
fe80 :0000:0000:0000:0212:7402:0002:0202

539 ID:2 Starting ’UDP client process ’
642 ID:1 Rime started with address 0.18.116.1.0.1.1.1
653 ID:1 MAC 00:12:74:01:00:01:01:01

Contiki -2.5 -1700 - g350296a started.
Node id is set to 1.

664 ID:1 CADC CADC -RDC , channel check rate 8 Hz ,
radio channel 26

683 ID:1 Tentative link -local IPv6 address:
fe80 :0000:0000:0000:0212:7401:0001:0101

685 ID:1 Starting ’UDP server process ’
689 ID:1 Conf: CADC 8 16 CADC -RDC
1159 ID:3 Rime started with address 0.18.116.3.0.3.3.3
1170 ID:3 MAC 00:12:74:03:00:03:03:03

Contiki -2.5 -1700 - g350296a started.
Node id is set to 3.

1182 ID:3 CADC CADC -RDC , channel check rate 8 Hz ,
radio channel 26

1200 ID:3 Tentative link -local IPv6 address:

264
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fe80 :0000:0000:0000:0212:7403:0003:0303
1203 ID:3 Starting ’UDP client process ’
22519 ID:3 NORMAL! Qth below levels of congestion
22533 ID:2 NORMAL! Qth below levels of congestion
23897 ID:3 NORMAL! Qth below levels of congestion
23911 ID:2 NORMAL! Qth below levels of congestion
25272 ID:3 NORMAL! Qth below levels of congestion
25286 ID:2 NORMAL! Qth below levels of congestion
26644 ID:3 NORMAL! Qth below levels of congestion
26658 ID:2 NORMAL! Qth below levels of congestion
28022 ID:3 NORMAL! Qth below levels of congestion
28036 ID:2 NORMAL! Qth below levels of congestion
29503 ID:2 NORMAL! Qth below levels of congestion
29519 ID:3 NORMAL! Qth below levels of congestion
31261 ID:2 NORMAL! Qth below levels of congestion
32021 ID:3 NORMAL! Qth below levels of congestion
33207 ID:2 CONGESTION! queue len: 8 Rsucc: 4 /2
33704 ID:2 duty cycle updated to: 16
33723 ID:1 CCR received: 16 higher than operating CCR: 8
34208 ID:3 NORMAL! Qth below levels of congestion
34224 ID:1 duty cycle updated to: 16
34474 ID:2 NORMAL! from congestion Ql > 1 Rserv >1
35378 ID:2 CONGESTION! queue len: 8 Rsucc: 5/2 /* Rserv = 5/(10 -5)

Rfail = 5/2*/*/
35551 ID:1 CCR received: 32 higher than operating CCR: 16
35647 ID:3 NORMAL! Qth below levels of congestion
35875 ID:2 duty cycle updated to: 32
36053 ID:1 duty cycle updated to: 32
36307 ID:2 OVERDC! queue len: 4 Rsucc: 9/2 /* Rserv = 9/(10 -9)*/
36309 ID:2 duty cycle updated to : 16
37152 ID:2 NORMAL! Qth below levels of congestion
37365 ID:3 NORMAL! Qth below levels of congestion
38567 ID:2 OVERDC! queue len: 1 Rsucc: 10/2 /* Rserv > 1 by default */
38568 ID:2 duty cycle updated to : 8
39429 ID:3 NORMAL! Qth below levels of congestion
40793 ID:2 CONGESTION! queue len: 6 Rsucc: 4/2 /* Rserv = 4/(10 -4)*/
41289 ID:2 duty cycle updated to: 16
41554 ID:3 NORMAL! Qth below levels of congestion
42196 ID:2 NORMAL! from congestion Ql > 1 Rserv >1
43042 ID:2 NORMAL! Qth below levels of congestion
43615 ID:3 NORMAL! Qth below levels of congestion
43954 ID:2 NORMAL! Qth below levels of congestion
44863 ID:2 NORMAL! Qth below levels of congestion
45615 ID:3 NORMAL! Qth below levels of congestion
45811 ID:2 NORMAL! Qth below levels of congestion
47192 ID:2 OVERDC! queue len: 1 Rsucc: 9/2 /* Rserv = 9/(10 -9)*/
47193 ID:2 duty cycle updated to : 8
47676 ID:3 NORMAL! Qth below levels of congestion
49292 ID:2 NORMAL! Qth below levels of congestion
49802 ID:3 NORMAL! Qth below levels of congestion
51041 ID:2 CONGESTION! queue len: 7 Rsucc: 5/2 /* Rserv = 5/(10 -5)

Rfail = 5/2*/
51539 ID:2 duty cycle updated to: 16
51990 ID:3 NORMAL! Qth below levels of congestion
52478 ID:2 NORMAL! from congestion Ql > 1 Rserv >1
53298 ID:2 NORMAL! from congestion Ql > 1 Rserv >1
53929 ID:3 NORMAL! Qth below levels of congestion
54196 ID:2 NORMAL! Qth below levels of congestion
55042 ID:2 NORMAL! Qth below levels of congestion
58516 ID:2 node is idel CCR returned to default: 8
60662 ID:1 node is idel CCR returned to default: 8
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The log file of an experiment with heavy congestion (pact transmission interval

set at 62.5 ms) follows:

496 ID:2 Rime started with address 0.18.116.2.0.2.2.2
507 ID:2 MAC 00:12:74:02:00:02:02:02

Contiki -2.5 -1700 - g350296a started.
Node id is set to 2.

518 ID:2 CADC CADC -RDC , channel check rate 8 Hz ,
radio channel 26

537 ID:2 Tentative link -local IPv6 address:
fe80 :0000:0000:0000:0212:7402:0002:0202

539 ID:2 Starting ’UDP client process ’
642 ID:1 Rime started with address 0.18.116.1.0.1.1.1
653 ID:1 MAC 00:12:74:01:00:01:01:01

Contiki -2.5 -1700 - g350296a started.
Node id is set to 1.

664 ID:1 CADC CADC -RDC , channel check rate 8 Hz ,
radio channel 26

683 ID:1 Tentative link -local IPv6 address:
fe80 :0000:0000:0000:0212:7401:0001:0101

685 ID:1 Starting ’UDP server process ’
689 ID:1 Conf: CADC 8 16 CADC -RDC
1159 ID:3 Rime started with address 0.18.116.3.0.3.3.3
1170 ID:3 MAC 00:12:74:03:00:03:03:03

Contiki -2.5 -1700 - g350296a started.
Node id is set to 3.

1182 ID:3 CADC CADC -RDC , channel check rate 8 Hz ,
radio channel 26

1200 ID:3 Tentative link -local IPv6 address:
fe80 :0000:0000:0000:0212:7403:0003:0303

1203 ID:3 Starting ’UDP client process ’
22923 ID:2 NORMAL! Qth below levels of congestion
23149 ID:3 CONGESTION! queue len: 7 Rsucc: 10 /2
23399 ID:2 CCR received: 16 higher than operating CCR: 8
23464 ID:1 CCR received: 16 higher than operating CCR: 8
23653 ID:3 duty cycle updated to: 16
23901 ID:2 duty cycle updated to: 16
23967 ID:1 duty cycle updated to: 16
24839 ID:2 CONGESTION! queue len: 8 Rsucc: 3/2 /* Rserv = 3/(10 -3)*/
24957 ID:1 CCR received: 32 higher than operating CCR: 16
25022 ID:3 COLLAPSE! queue len: 10 Rsucc: 2/2 /* Rserv = 2/(10 -2)*/
25151 ID:2 CCR received: 64 higher than operating CCR: 32
25418 ID:1 CCR received: 64 higher than operating CCR: 32
25528 ID:3 duty cycle updated to: 64
25649 ID:2 duty cycle updated to: 64
25893 ID:3 NORMAL! from congestion Ql > 1 Rserv >1
25916 ID:2 NORMAL! from congestion Ql > 1 Rserv >1
25920 ID:1 duty cycle updated to: 64
26152 ID:2 CONGESTION! queue len: 8 Rsucc: 5/2 /* Rserv = 5/(10 -5)*/
26155 ID:2 NORMAL STEP2! already at max CCR
26195 ID:3 NORMAL! Qth below levels of congestion
26396 ID:2 CONGESTION! queue len: 8 Rsucc: 5/2 /* Rserv = 5/(10 -5)*/
26399 ID:2 NORMAL STEP2! already at max CCR
26488 ID:3 NORMAL! Qth below levels of congestion
26646 ID:2 NORMAL! from congestion Ql > 1 Rserv >1
26901 ID:2 NORMAL! Qth below levels of congestion
27000 ID:3 NORMAL! Qth below levels of congestion
27244 ID:2 NORMAL! Qth below levels of congestion
27258 ID:3 NORMAL! Qth below levels of congestion
27473 ID:2 NORMAL! Qth below levels of congestion
27704 ID:2 NORMAL! Qth below levels of congestion
27868 ID:3 OVERDC! queue len: 1 Rsucc: 10/2 /* Rserv >1 by default */
27870 ID:3 duty cycle updated to : 32
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27932 ID:2 NORMAL! Qth below levels of congestion
28318 ID:2 OVERDC! queue len: 1 Rsucc: 9/2 /* Rserv = 9/(10 -9)*/
28319 ID:2 duty cycle updated to : 32
28569 ID:3 OVERDC! queue len: 1 Rsucc: 10/2 /* Rserv >1 by default */
28570 ID:3 duty cycle updated to : 16
28990 ID:2 OVERDC! queue len: 1 Rsucc: 10/2 /* Rserv >1 by default */
28991 ID:2 duty cycle updated to : 16
29287 ID:3 NORMAL! Qth below levels of congestion
30065 ID:2 NORMAL! Qth below levels of congestion
30601 ID:3 OVERDC! queue len: 3 Rsucc: 10/2 /* Rserv >1 by default */
30602 ID:3 duty cycle updated to : 8
30911 ID:2 NORMAL! Qth below levels of congestion
31845 ID:2 NORMAL! Qth below levels of congestion
32660 ID:2 NORMAL! Qth below levels of congestion
32664 ID:3 COLLAPSE! queue len: 10 Rsucc: 2/2 /* Rserv = 2/(10 -2)*/
32853 ID:2 CCR received: 32 higher than operating CCR: 16
33231 ID:3 duty cycle updated to: 32
33352 ID:2 duty cycle updated to: 32
34006 ID:3 CONGESTION! from collapse Queue_threshold > high && Rsucc >1 /*queue didn ’t drain yet so increase to prevent possible losses */
34073 ID:2 CCR received: 64 higher than operating CCR: 32
34513 ID:3 duty cycle updated to: 64
34571 ID:2 duty cycle updated to: 64
34851 ID:3 NORMAL! from congestion Ql > 1 Rserv >1
35036 ID:2 NORMAL!from over dc received CCR is higher can ’t reduce
35148 ID:3 NORMAL! Qth below levels of congestion
35503 ID:3 CONGESTION! queue len: 6 Rsucc: 4/2 /* Rserv = 4/(10 -4)*/
35506 ID:3 NORMAL STEP2! already at max CCR
35867 ID:3 NORMAL! from congestion Ql > 1 Rserv >1
36068 ID:2 NORMAL!from over dc received CCR is higher can ’t reduce
36143 ID:3 NORMAL! Qth below levels of congestion
36571 ID:3 OVERDC! queue len: 1 Rsucc: 10/2 /* Rserv >1 by default */
36573 ID:3 duty cycle updated to : 32
36852 ID:3 OVERDC! queue len: 1 Rsucc: 10/2 /* Rserv >1 by default */
37018 ID:2 duty cycle updated to : 32
37020 ID:2 NORMAL! Qth below levels of congestion
37211 ID:3 NORMAL! Qth below levels of congestion
37742 ID:3 NORMAL! Qth below levels of congestion
40525 ID:2 node is idle CCR returned to default: 8
41618 ID:3 node is idle CCR returned to default: 8
42662 ID:1 node is idle CCR returned to default: 8
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Figure G.1: Cooja simulator CADC evaluation experiments
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