205 research outputs found

    A Modified Signal Feed-Through Pulsed Flip-Flop for Low Power Applications

    Get PDF
    In this paper a modified signal feed-through pulsed flip-flop has been presented for low power applications. Signal feed-through flip-flop uses a pass transistor to feed input data directly to the output. Feed through transistor and feedback signals have been modified for delay, static and dynamic power reduction. HSPICE simulation shows 22% reduction in leakage power and 8% of dynamic power. Delay has been reduced by 14% using TSMC 90nm technology parameters. The proposed pulsed flip-flop has the lowest PDP (Power Delay Product) among other pulsed flip-flops discussed

    CMOS VLSI correlator design for radio-astronomical signal processing : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Auckland, New Zealand

    Get PDF
    Multi-element radio telescopes employ methods of indirect imaging to capture the image of the sky. These methods are in contrast to direct imaging methods whereby the image is constructed from sensor measurements directly and involve extensive signal processing on antenna signals. The Square Kilometre Array, or the SKA, is a future radio telescope of this type that, once built, will become the largest telescope in the world. The unprecedented scale of the SKA requires novel solutions to be developed for its signal processing pipeline one of the most resource-consuming parts of which is the correlator. The SKA uses the FX correlator construction that consists of two parts: the F part that translates antenna signals into frequency domain and the X part that cross-correlates these signals between each other. This research focuses on the integrated circuit design and VLSI implementation issues of the X part of a very large FX correlator in 28 nm and 130 nm CMOS. The correlator’s main processing operation is the complex multiply-accumulation (CMAC) for which custom 28 nm CMAC designs are presented and evaluated. Performance of various memories inside the correlator also affects overall efficiency, and input-buffered and output-buffered approaches are considered with the goal of improving upon it. For output-buffered designs, custom memory control circuits have been designed and prototyped in 130 nm that improve upon eDRAM by taking advantage of sequential access patterns. For the input-buffered architecture, a new scheme is proposed that decreases the usage of the input-buffer memory by a third by making use of multiple accumulators in every CMAC. Because cross-correlation is a very data-intensive process, high-performance SerDes I/O is essential to any practical ASIC implementation. On the I/O design, the 28 nm full-rate transmitter delivering 15 Gbps per lane is presented. This design consists of the scrambler, the serialiser, the digital VCO with analog fine-tuning and the SST driver including features of a 4-tap FFE, impedance tuning and amplitude tuning

    Low Power Explicit Pulse Triggered Flip-Flop Design Based On A Pass Transistor

    Full text link
    In VLSI system design, power consumption is the ambitious issue for the past respective years. Advanced IC fabrication technology grants the use of nano scaled devices, so the power dissipation becomes major problem in the designing of VLSI chips. In this paper we present, a low-power flip-flop (FF) design featuring an explicit type pulse-triggered structure and a modified true single phase clock latch based on a signal feed-through scheme using pass transistor. The offered design successfully figure out the long discharging path problem in conventional explicit type pulse-triggered FF (P-FF) designs and achieves better power performance by consuming low power. The proposed design also significantly reduces delay time, set-up time and hold time. Simulation results based on TMC 180nm CMOS technology reveal that the proposed design features the best power and delay performance in several FF designs under comparison

    A Novel Approach For Design Of Pulse Triggered Flip-Flop To Enhance Speed And Power

    Get PDF
    In VLSI Technology, flip-flops contribute a significant portion of chip area and power consumption to overall system design. Pulse triggered flip-flops (P-FF) have single latch and hence simpler in circuit complexity. Use of Explicit type design for P-FF gives the speed advantage. This paper presents various Pulse triggered Flip-flop (P-FF) designs and various techniques to achieve a better design in terms of power consumption and speed. Introduction of simple pass transistor in latch design can be used to speed up data transition. Dual edge triggering can be adopted as it consumes less power as compared to single edge triggering. Also conditional discharge technique can be used to reduce switching activity. The work is done in tanner tool software. DOI: 10.17762/ijritcc2321-8169.15025

    DESIGN OF LOW POWER PULSE TRIGGERED FLIP FLOP USING CONDITIONAL PULSE- ENHANCEMENT SCHEME

    Full text link
    Volume 2 Issue 1 (January 2014

    An Area Efficient Pulse Triggered Flipflop Design under 90nm CMOS Technology

    Get PDF
    The choice of flip-flop technologies is an essential importance in design of VLSI integrated circuits for high speed and high performance CMOS circuits. The main objective of this project is to design an area efficient Low-Power Pulse- Triggered flip-flop. It is important to reduce the power dissipation in both clock distribution networks and flip-flops. The comparison of low power pulse triggered flip-flops such as Ep-DCO, MHLFF, ACFF, Ip-DCO, conditional enhancement scheme and signal feed through scheme. Logics are carried out and the best power-performance is obtained. Here simulations are done under 90nm technology and the results are tabulated below. In that signal feed through scheme is showing better output than the other flip-flops compared here

    High Performance Low Power Dual Edge Triggered Static D Flip-Flop

    Get PDF
    In this paper a low-power double-edge triggered static flip-flop (DETSFF) suitable for low-power and high performance applications is presented. The designed DETFF is verified at gpdk 180nm-1.8V CMOS technology. Comparison with some of the latest DETFFs shows that the proposed DETSFF can achieve the lowest power consumption, lowest clock to Q delay and thus Power-delay-product (PDP). Moreover, the proposed DETSFF comprises of only 15 transistors hence require lesser number of transistors and thus requires lesser overall silicon area.DOI:http://dx.doi.org/10.11591/ijece.v3i5.316

    Effect of clock gating in conditional pulse enhancement flip-flop for low power applications

    Get PDF
    Flip-Flops (FFs) play a fundamental role in digital designs. A clock system consumes above 25% of total system power. The use of pulse-triggered flip-flops (P-FFs) in digital design provides better performance than conventional flip-flop designs. This paper presents the design of a new power-efficient implicit pulse-triggered flip-flop suitable for low power applications. This flip-flop architecture is embedded with two key features. Firstly, the enhancement in width and height of triggering pulses during specific conditions gives a solution for the longest discharging path problem in existing P-FFs. Secondly, the clock gating concept reduces unwanted switching activities at sleep/idle mode of operation and thereby reducing dynamic power consumption. The post-layout simulation results in cadence software based on CMOS 90-nm technology shows that the proposed design features less power dissipation and better power delay performance (PDP) when compared with conventional P-FFs. Its maximum power saving against conventional designs is up to 30.65%

    Power and Delay Analysis of Flip Flop Using Pulse Control Method

    Get PDF
    The past few years, increasing difficulty in integration can be solved by low power, which is very important and also choosing flip-flop solves the challenges like low power. In this paper, we design and compare the power problem of various indirect pulse triggered flip flop are examined. It can be attained by reconstructing the lower part of Single-ended Conditional Capture Energy Recovery (SCCER) design and by employing the control pulse scheme. The results after the simulation derives transistor count and power required are significantly reduced in the proposed design over existing design

    Robust Circuit Design for Low-Voltage VLSI.

    Full text link
    Voltage scaling is an effective way to reduce the overall power consumption, but the major challenges in low voltage operations include performance degradation and reliability issues due to PVT variations. This dissertation discusses three key circuit components that are critical in low-voltage VLSI. Level converters must be a reliable interface between two voltage domains, but the reduced on/off-current ratio makes it extremely difficult to achieve robust conversions at low voltages. Two static designs are proposed: LC2 adopts a novel pulsed-operation and modulates its pull-up strength depending on its state. A 3-sigma robustness is guaranteed using a current margin plot; SLC inherently reduces the contention by diode-insertion. Improvements in performance, power, and robustness are measured from 130nm CMOS test chips. SRAM is a major bottleneck in voltage-scaling due to its inherent ratioed-bitcell design. The proposed 7T SRAM alleviates the area overhead incurred by 8T bitcells and provides robust operation down to 0.32V in 180nm CMOS test chips with 3.35fW/bit leakage. Auto-Shut-Off provides a 6.8x READ energy reduction, and its innate Quasi-Static READ has been demonstrated which shows a much improved READ error rate. A use of PMOS Pass-Gate improves the half-select robustness by directly modulating the device strength through bitline voltage. Clocked sequential elements, flip-flops in short, are ubiquitous in today’s digital systems. The proposed S2CFF is static, single-phase, contention-free, and has the same number of devices as in TGFF. It shows a 40% power reduction as well as robust low-voltage operations in fabricated 45nm SOI test chips. Its simple hold-time path and the 3.4x improvement in 3-sigma hold-time is presented. A new on-chip flip-flop testing harness is also proposed, and measured hold-time variations of flip-flops are presented.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111525/1/yejoong_1.pd
    corecore