12 research outputs found

    Low Power CMOS Chopper Preamplifier Based on Source-Degeneration Transconductors

    Get PDF
    This paper describes the design of a low-power, low-noise flicker CMOS chopper preamplifier for sensor signal conditioning. The core amplifier and the Gm-C output low pass filter of the proposed fully differential preamplifier are based on a source degeneration transconductor. The circuit was designed in a standard 0.18µm CMOS process with 1.8V supply voltage. It shows 42dB gain, 1 kHz bandwidth and a total power consumption of 84 µW. The proposed configuration achieves a noise efficiency factor of 4.6 and a total input-referred noise of 560 nVrms integrated from 0.1 to 1 kHz

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    Very large time constant Gm-C Filters

    Get PDF
    In this study a set of tools for the design of fully integrated transconductor-capacitor (Gm-C) filters, with very large time constants and current consumption under one micro-Ampere are presented. The selected application is a 2nd order bandpass-filter-amplifier, with a gain of 400 from 0.5 to 7Hz, carrying out the signal conditioning of a piezoelectric accelerometer which is part of an implantable cardiac pacemaker. The main challenge is to achieve very large time constants, without using any discrete external component. The chosen circuit technique to fulfill the requirement is series-parallel current division applied to standard symmetrical transconductors (OTAs). These circuits have demonstrated to be an excellent solution regarding their occupied area, power consumption, noise, linearity, and particularly offset. OTAs as low as 33pS -equivalent to a 30G resistor-, with up to 1V linear range, and input referred offset of a few mV, were designed, fabricated in a standard 0.8 micron CMOS technology, and tested. The application requires the series-parallel association of a large number of transistors, and the use of bias currents as low as a few pico-Amperes, which is not very common in analog integrated circuits. In this case the designer should employ maximum care in the selection of the transistor models to be used. A central aspect of this thesis was also to evaluate and develop noise and offset estimation models which was not obvious in the very beginning of the research. In the first two chapters an introduction to the target application is presented, and several MOS transistor characteristics in terms of the inversion coefficient -using the ACM transistor model- are evaluated. In chapter 3 it is discussed whether the usual flicker and thermal noise models are consistent regarding series-parallel association, and adequately represent the expected noise behavior under different bias conditions. A consistent, physics-based, one-equation-all-regions model for flicker noise in the MOS transistor is then presented. Several noise measurements are included demonstrating that the new model accurately fits widely different bias situations. A new model for mismatch offset in MOS transistors is presented, as a corollary of the flicker noise analysis. Finally, the correlation between flicker noise and mismatch offset, that can be seen as a DC noise, is shown. In chapter 4, the design of OTAs with an extended linear range, and very low transconductance, using series-parallel current division is presented. Precise tools are introduced for the estimation of noise and mismatch offset in series-parallel current mirrors, that are shown to help in the reduction of inaccuracies in the copy of currents with a large copy factor. The design and measurement of several OTA examples are presented. In chapter 5, the developed tools, and the OTAs shown, are employed in the design of the above mentioned filter for the piezoelectric accelerometer. A general methodology for the design of Gm-C filters with similar characteristics is established. The filter was fabricated and tested, successfully operating with a total power consumption of 233nA, up to a 2V power supply, with an input noise and mismatch offset of 2-4 Vrms, and 18 V respectively. To summarize the main results obtained were: The development of a new flicker noise model, the study of the effect of mismatch regarding series-parallel association, a new design methodology for OTAs and Gm-C filters. It is our hope that this constitutes a helpful set of tools for the circuit designer.En esta tesis se presenta un conjunto de herramientas para el diseño de circuitos integrados que implementan filtros transconductor-capacitor (Gm-C), de muy altas constantes de tiempo, con bajo ruido, y consumo de corriente por debajo del micro-Ampere. Como ejemplo de aplicación se toma un amplificador-pasabanda 2º orden, de ganancia 400 en la banda de 0.5 a 7Hz, que realiza el acondicionamiento de señal de un acelerómetro piezoeléctrico a ser empleado en un marcapasos implantable. El principal desafío es realizar en dicho filtro de tiempo continuo, muy altas constantes de tiempo sin usar componentes externos. La técnica elegida para alcanzar tal objetivo es la división serie-paralelo de corriente en transconductores (OTAs) simétricos estándar. Estos circuitos demostraron ser una excelente solución en cuanto al área ocupada, su consumo, ruido, linealidad, y en particular offset. Se diseñaron, fabricaron, y midieron, OTAs hasta 33pS -equivalente a una resistencia de 30G -, con hasta 1V de rango de lineal, y offset a la entrada de algunos mV, utilizando una tecnología CMOS de 0.8 micras de largo mínimo de canal. La aplicación requiere la asociación serie-paralelo de un gran número de transistores, y polarización con corrientes de hasta pico-Amperes, lo que constituye una situación poco frecuente en circuitos integrados analógicos. En este marco el diseñador debe elegir los modelos de transistor con sumo cuidado. Un aspecto central de esta tesis es también, el estudio y presentación de modelos adecuados de ruido y offset, que no resultan obvios al principio. En los primeros dos capítulos se realiza una introducción y se revisa, utilizando el modelo ACM, diferentes características del transistor MOS en función del nivel de inversión. En el capítulo 3 revisa la pertinencia y consistencia frente a la asociación serie-paralelo, de los modelos usuales de ruido de flicker o 1/f, y térmico. Luego se presenta, incluyendo medidas, un nuevo modelo físico, consistente, simple, y válido en todas las regiones de operación del transistor MOS, para el ruido de flicker. Como corolario a este estudio se presenta un nuevo modelo para estimar el desapareo entre transistores, en función no solo de la geometría, pero también de la polarización. Se demuestra la correlación, debido a su origen físico análogo, entre el ruido de flicker y el offset por desapareo que puede ser visto como un ruido en DC. En el capítulo 4 se presenta el diseño de OTAs con rango de linealidad extendido, y muy baja transconductancia, utilizando división serie-paralelo de corriente. Se presentan herramientas precisas para la estimación de offset y ruido y se demuestra la utilidad de la técnica para reducir el offset en espejos de corriente. Se presenta el diseño y medida de diversos OTAs. En el capítulo 5, las herramientas desarrolladas, y los OTAs presentados, son empleados en el diseño del filtro descripto para un acelerómetro piezoeléctrico. Se establece una metodología general para el diseño de filtros Gm-C con características similares. El filtro se fabricó y midió, operando en forma satisfactoria, con un consumo total de 230nA y hasta los 2V de tensión de alimentación, con ruido y offset a la entrada de tan solo 2-4 Vrms, y 18 V respectivamente. El desarrollo de un nuevo modelo de ruido 1/f para el transistor MOS, el estudio de la influencia del offset frente a la asociación serie-paralelo y su aplicación en OTAs, la metodología de diseño empleada, la demostración del uso de técnicas novedosas en una aplicación como la elegida que tiene relevancia tecnológica e interés académico; esperamos que todo ello constituya una contribución valiosa para la comunidad científica en microelectrónica y un conjunto de herramientas de utilidad para el diseño de circuitos

    Design of a CMOS chopper instrumentation amplifier with rail-to-rail input and output ranges

    Get PDF
    This thesis deals with the design of a current feedback instrumentation amplifier, optimized for the readout of thermal sensors. This topology stands out for its excellent CMRR and the predisposition to feature low frequency error reduction techniques. Versatility is a main target for this work: 1 kHz bandwidth and Rail-To-Rail input common mode range allow the readout of a wide variety of sensors. Chopper modulation is used to reduce offset and flicker noise, achieving a 19 nV/sqrt(Hz) RTI noise density and a flicker corner frequency of less than 10 mHz. A low total output noise power is achieved as well, reaching an ENOB of 12 bits with less than 350 µA current consumption. The peculiar issue for this architecture, that is gain error, is solved by means of Port Swapping technique, together with an input Common Mode Equalization. Chopped offset and Port Swapping ripple are completely filtered away by a third order Butterworth State Variable low pass filter, implemented with Gm-C integrators

    CMOS low voltage preamplifier based on 1/F noise cancellation

    Get PDF
    Noise in CMOS integrated circuits -- Noise sources in MOSFET transistors- -- Low noise techniques -- Chopper stabilization technique -- A CHS behavior model in MATLAB/SIMULINK -- Supplemental analysis of CHS -- Low voltage operation & elementary circuits -- Voltage requirements of analog circuits -- Basic circuits and functions -- Implementation of the CHS modules -- Noise in cascaded stages -- Modulators -- Selective amplifier -- Automatic tuning & machine oscillator -- Simulation results and experimental prototype

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply

    Capacitively-Coupled Chopper Amplifiers

    Full text link

    Biomimetic cochlea filters : from modelling, design to analogue VLSI implementation

    Get PDF
    This thesis presents a novel biomimetic cochlea filter which closely resembles the biological cochlea behaviour. The filter is highly feasible for analogue very-large-scale integration (VLSI) circuits, which leads to a micro-watt-power and millimetre-sized hardware implementation. By virtue of such features, the presented filter contributes to a solid foundation for future biologically-inspired audio signal processors. Unlike existing works, the presented filter is developed by taking direct inspirations from the physiologically measured results of the biological cochlea. Since the biological cochlea has prominently different characteristics of frequency response from low to high frequencies, the biomimetic cochlea filter is built by cascading three sub-filters accordingly: a 2nd-order bandpass filter for the constant gentle low-frequency response, a 2nd-order tunable low-pass filter for the variable and selective centre frequency response and a 5th-order elliptic filter for the ultra-steep roll-off at stop-band. As a proof of concept, a biomimetic cochlea filter bank is built to process audio signals, which demonstrates the highly discriminative spectral decomposition and high-resolution time-frequency analysis capabilities similar to the biological cochlea. The filter has simple representation in the Laplace domain which leads to a convenient analogue circuit realisation. A floating-active-inductor circuit cell is developed to build the corresponding RLC ladder for each of the three sub-filters. The circuits are designed based on complementary metal-oxide-semiconductor (CMOS) transistors for VLSI implementation. Non-ideal factors of CMOS transistors including parasitics, noise and mismatches are extensively analysed and consciously considered in the circuit design. An analogue VLSI chip is successfully fabricated using 0.35μ m CMOS process. The chip measurements demonstrate that the centre frequency response of the filter has about 20 dB wide gain tuning range and a high quality factor reaching maximally over 19. The filter has a 20 dB/decade constant gentle low-frequency tail and an over 300 dB/decade sharp stop-band roll-off slope. The measured results agree with the filter model expectations and are comparable with the biological cochlea characteristics. Each filter channel consumes as low as 59.5 ~90μ Wpower and occupies only 0.9 mm2 area. Besides, the biomimetic cochlea filter chip is characterised from a wide range of angles and the experimental results cover not only the auditory filter specifications but also the integrated circuit design considerations. Furthermore, following the progressive development of the acoustic resonator based on microelectro- mechanical systems (MEMS) technology, a MEMS-CMOS implementation of the proposed filter becomes possible in the future. A key challenge for such implementation is the low sensing capacitance of the MEMS resonator which suffers significantly from sensitivity degradation due to the parasitic capacitance. A novel MEMS capacitive interface circuit chip is additionally developed to solve this issue. As shown in the chip results, the interface circuit is able to cancel the parasitic capacitance and increase the sensitivity of capacitive sensors by 35 dB without consuming any extra power. Besides, the chopper-stabilisation technique is employed which effectively reduces the circuit flicker noise and offsets. Due to these features, the interface circuit chip is capable of converting a 7.5 fF capacitance change of a 1-Volt-biased 0.5 pF capacitive sensor pair into a 0.745 V signal-conditioned output while consuming only 165.2μ W power
    corecore