183 research outputs found

    Design and development of a low-cost hybrid wheeled-leg for an agricultural robot : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University, Manawatū Campus, Palmerson North, New Zealand

    Get PDF
    The following Figures are re-used with the publishers' permission: 9a, 11c, 13b, 14a, 16a, 19. These Figures are re-used with permission from IEEE: 10a ©2005 IEEE; 10b ©2008 IEEE; 11b ©2011 IEEE; 12a ©2010 IEEE; 13a ©2015 IEEE; 13c ©2010 IEEE; 14b ©2013 IEEE; 14c ©2010 IEEE; 15 & 22 ©2016 IEEE; 16b ©2017 IEEE; 18a, b &c ©2005 IEEE; 20a & b ©2011 IEEE; 21 ©2009 IEEE; 23 ©2016 IEEE. Other Figures are either in the public domain, or re-used under a Creative Commons license.Currently, New Zealand is financially dependent on its agricultural industry quite heavily. However, the agricultural sector faces several problems such as labour shortages, environmental issues and increasing costs. In other industries, robotics and automation have been used to combat these issues successfully. Yet, in agriculture, robotics and automation have only been adopted in horticulture but not in pastoral farming (dairy, sheep, and cattle). This is because the tasks and terrain in horticultural are well defined and structured, whereas, in pastoral farming, the terrain and tasks are unstructured and dynamic. The locomotion used by current horticulture robots is either not capable of operating in unstructured terrain or are inefficient. Therefore, pastoral farming will need to adopt new forms of locomotion in automation platforms. In this thesis, it is proposed that hybrid wheel-leg locomotion will enable robots to operate in unstructured and dynamic environments. With this in mind, a low-cost prototype hybrid wheeled leg has been designed and built. The leg has been designed to specifications which were developed based on the tasks that a multipurpose horticultural and pastoral farming robot is expected to do. A joint actuator is extremely influential towards the performance of any robotic leg. Due to the unstructured terrain, in which the leg will operate, it was concluded, that a mechanically compliant actuator is required. Because of the prohibitive cost of commercially available actuators, a prototype high torque, low-cost mechanically compliant actuator was designed and built to meet the specified torque requirements. This was in addition to the design and fabrication of the leg itself. Once the leg was assembled, the sensors, actuators and the motor were interfaced with ROS™ (Robot Operating System). ROS makes it easy to coherently control each leg's DOF (Degrees of Freedom) and makes it easy to combine and control multiple legs into a robot. Testing of the leg produced very encouraging results, but there were two issues with the performance of the actuator. The first issue is due to the poor implementation of the position control algorithm that came standard with the actuator motor driver. The problem can be resolved through software or the purchase of a different motor driver. The second issue is that the actuator only outputs 23 Nm of torque, but the motor used is rated at 50 Nm. This is due to the cheap drill motor used which is from an unknown brand; it is hoped that a more powerful drill motor from a well known reputable brand will be able to output its rated torque

    A Multi-Modality Mobility Concept for a Small Package Delivery UAV

    Get PDF
    This paper will discuss a different approach to the typical notional small package delivery drone concept. Most delivery drone concepts employ a point-to-point aerial delivery CONOPS (Concept of Operations) from a warehouse directly to the front or back yards of a customers residence or a commercial office space. Instead, the proposed approach is somewhat analogous to current postal deliveries: a small aerial vehicle flies from a warehouse to designated neighborhood VTOL (Vertical Take-Off and Landing) landing spots where the aerial vehicle then converts to a "roadable" (ground-mobility) vehicle that then transits on sidewalks and/or bicycle paths till it arrives to the residence/office drop-off points. This concept and associated platform or vehicle will be referred in this paper as MICHAEL (Multimodal Intra-City Hauling and Aerial-Effected Logistics) concept. It is suggested that the MICHAEL concept potentially results in a more community friendly "delivery drone" approach

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Conceptual design of a Manned-Unmanned Lunar Explorer /MULE/

    Get PDF
    Manned-unmanned lunar explorer systems desig

    Sabertooth: A High Mobility Quadrupedal Robot Platform

    Get PDF
    Team Sabertooth aimed to design and realize an innovative high mobility, quadrupedal robot capable of delivering a payload over terrain impassable by wheeled vehicles at a speed of 5fps. The robot is designed to ascend and descend stairs. The robot uses a spring system in each of its legs for energy efficient locomotion. The 4\u27x3\u27x3\u27 freestanding four legged robot weighs approximately 300lbs with an additional payload capacity of 30lbs. The passive two degree of freedom body joint allows flexibility in terms of robot motion for going around tight corners and ascending stairs. The system integrates sensors for staircase recognition, obstacle avoidance, and distance calculation. A distributed control and software architecture is used for world mapping, path planning and motion control

    Sabertooth: A High Mobility Quadrupedal Robot Platform

    Get PDF
    Team Sabertooth aimed to design and realize an innovative high mobility, quadrupedal robot platform capable of delivering a payload over terrain otherwise impassable by wheeled vehicles at a speed of 5 feet per second. The robot uses a spring system in each of its legs for energy efficient locomotion. The 4ft x 3ft x 3ft freestanding four legged robot weighs approximately 300 pounds with an additional payload capacity of 30 pounds. An important feature of the robot is the passive, two degree of freedom body joint which allows flexibility in terms of robot motions for going around tight corners and ascending stairs. A distributed control and software architecture is used for world mapping, path planning and motion control

    Super Ball Bot - Structures for Planetary Landing and Exploration

    Get PDF
    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals for our solar system. Ideally teams of dozens or even hundreds of small, collapsable robots, weighing only a few kilograms a piece, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such teams will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing many lightweight conventional robots is difficult with conventional technology. Current robot designs are delicate, requiring combinations of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we propose to develop a radically different robot based on a "tensegrity" built purely upon tensile and compression elements. These robots can be light-weight, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and are easy to collapse and uncollapse. We believe tensegrity robot technology can play a critical role in future planetary exploration

    Design and computational aspects of compliant tensegrity robots

    Get PDF

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development
    corecore