22,323 research outputs found

    The stochastic lot-sizing problem with quantity discounts

    Get PDF
    This paper addresses the stochastic lot-sizing problem with quantity discounts. In particular, we examine the uncapacitated finite-period economic lot-sizing problem in which the parameters in each period are random and discrete. When an order is placed, a fixed cost is incurred and an all-unit quantity discount is awarded based on the quantity ordered. The lead time is zero and the order is delivered immediately. First we study the case with overstocks by which the excess inventory incurs a holding cost. The objective in this case is to minimize the expected total cost including ordering and holding costs. The stochastic dynamics is modeled with a scenario tree. We characterize properties of the optimal policy and propose a polynomial time algorithm with complexity O ( n 3 ) for single discount level, where n is the number of nodes in the scenario tree. We extend the results to cases allowing stockout and multi-discount levels. Numerical experiments are conducted to evaluate the performance of the algorithm and to gain the man- agement insights

    On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times

    Get PDF
    Several mixed integer programming formulations have been proposed for modeling capacitated multi-level lot sizing problems with setup times. These formulations include the so-called facility location formulation, the shortest route formulation, and the inventory and lot sizing formulation with (l,S) inequalities. In this paper, we demonstrate the equivalence of these formulations when the integrality requirement is relaxed for any subset of binary setup decision variables. This equivalence has significant implications for decomposition-based methods since same optimal solution values are obtained no matter which formulation is used. In particular, we discuss the relax-and-fix method, a decomposition-based heuristic used for the efficient solution of hard lot sizing problems. Computational tests allow us to compare the effectiveness of different formulations using benchmark problems. The choice of formulation directly affects the required computational effort, and our results therefore provide guidelines on choosing an effective formulation during the development of heuristic-based solution procedures

    Stochastic lot sizing problems under monopoly

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 2009.Thesis (Master's) -- Bilkent University, 2009.Includes bibliographical references leaves 48-49.In this thesis, we study stochastic lot sizing problems under monopoly. We consider production planning of a single item using uncapacitated resources over a multi-period time horizon. The demand uncertainty is modeled via a scenario tree structure. Each node of the tree corresponds to a scenario of demand realization with an associated probability. We first consider the stochastic lot sizing problem under monopoly (SLS), which addresses the period based production plan of a manufacturer with uncertain demands and a monopolistic supplier. We propose an exact dynamic programming algorithm to solve the SLS problem in polynomial time. The second problem we consider, the stochastic lot sizing problem with extra ordering (SLSE), is based on two-stage stochastic programming. In addition to the period based production decision variables of the SLS model, there exist scenario based extra ordering decision variables in the problem setting of SLSE. We develop two families of valid inequalities for the feasible region of the introduced SLSE model. The required separation algorithms of both valid inequalities are presented along with their implementations with branch-and-cut algorithm in solving SLSE. An extensive computational analysis with branch-and-cut algorithms shows the effectiveness of these inequalities.Yanıkoğlu, İhsanM.S

    Worst case analysis for a general class of on-line lot-sizing heuristics.

    Get PDF
    In this paper we analyze the worst case performance of heuristics for the classical economic lot-sizing problem with time-invariant cost parameters. We consider a general class of on-line heuristics that is often applied in a rolling horizon environment. We develop a procedure to systematically construct worst case instances for a fixed time horizon and use it to derive worst case problem instances for an infinite time horizon. Our analysis shows that any on-line heuristic has a worst case ratio of at least 2. Furthermore, we show how the results can be used to construct heuristics with optimal worst case performance for small model horizons.

    A computational analysis of lower bounds for big bucket production planning problems

    Get PDF
    In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research

    Breaking Through: University Of New Hampshire Stormwater Center 2016 Report

    Get PDF

    Single item lot-sizing with non-decreasing capacities

    Get PDF
    We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies i) and ii). The formulation is based on mixing set relaxations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and effectiveness of this improved LP formulation on a new test instances, including instances with and without Wagner-Whitin costs, and with both non-decreasing and arbitrary capacities over time.lot-sizing, mixing set relaxation, compact reformulation, production planning, mixed integer programming

    Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times

    Get PDF
    We present new lower bounds for the Capacitated Lot Sizing Problem with Set Up Times. We improve the lower bound obtained by the textbook Dantzig-Wolfe decomposition where the capacity constraints are the linking constraints. In our approach, Dantzig-Wolfe decomposition is applied to the network reformulation of the problem. The demand constraints are the linking constraints and the problem decomposes into subproblems per period containing the capacity and set up constraints. We propose a customized branch-and-bound algorithm for solving the subproblem based on its similarities with the Linear Multiple Choice Knapsack Problem. Further we present a Lagrange Relaxation algorithm for finding this lower bound. To the best of our knowledge, this is the first time that computational results are presented for this decomposition and a comparison of our lower bound to other lower bounds proposed in the literature indicates its high quality.Lagrange relaxation;Dantzig-Wolfe decomposition;capacitated lot sizing;lower bounds

    On alternative mixed integer programming formulations and LP-based heuristics for lot-sizing with setup times

    Get PDF
    We address the multi-item, capacitated lot-sizing problem (CLSP) encountered in environments where demand is dynamic and to be met on time. Items compete for a limited capacity resource, which requires a setup for each lot of items to be produced causing unproductive time but no direct costs. The problem belongs to a class of problems that are difcult to solve. Even the feasibility problem becomes combinatorial when setup times are considered. This difculty in reaching optimality and the practical relevance of CLSP make it important to design and analyse heuristics to nd good solutions that can be implemented in practice. We consider certain mixed integer programming formulations of the problem and develop heuristics including a curtailed branch and bound, for rounding the setup variables in the LP solution of the tighter formulations. We report our computational results for a class of instances taken from literature
    corecore