
Strathprints Institutional Repository

Wu, Tao and Shi, Leyuan and Geunes, Joseph and Akartunali, Kerem (2012) On the equivalence
of strong formulations for capacitated multi-level lot sizing problems with setup times. Journal of
Global Optimization, 53 (4). pp. 615-639. ISSN 0925-5001

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9037603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

On the Equivalence of Strong Formulations for Capacitated

Multi-level Lot Sizing Problems with Setup Times

Tao Wu1, Leyuan Shi1, Joseph Geunes2, Kerem Akartunalı3

1 Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI
53706

2 Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611
3 Department of Management Science, University of Strathclyde, Glasgow G1 1QE, United Kingdom

Abstract

Several mixed integer programming formulations have been proposed for modeling capaci-
tated multi-level lot sizing problems with setup times. These formulations include the so-
called Facility Location formulation, the Shortest Route formulation, and the Inventory and
Lot Sizing formulation with (`, S) inequalities. In this paper, we demonstrate the equivalence
of these formulations when the integrality requirement is relaxed for any subset of binary
setup decision variables. This equivalence has significant implications for decomposition-
based methods since same optimal solution values are obtained no matter which formula-
tion is used. In particular, we discuss the Relax-and-Fix method, a decomposition-based
heuristic used for the efficient solution of hard lot sizing problems. Computational tests
allow us to compare the effectiveness of different formulations using benchmark problems.
The choice of formulation directly affects the required computational effort, and our results
therefore provide guidelines on choosing an effective formulation during the development of
heuristic-based solution procedures.

Key words: Capacitated Multi-level Lot Sizing, Inventory and Lot Sizing, Facility
Location, Shortest Route, Relax-and-Fix.

1. Introduction

The Capacitated Multi-level Lot Sizing Problem with Setup Times (CLST-ML) has
received a great deal of attention in past literature on operations and optimization. Effective
solutions for this problem class play a significant role in the effective utilization of limited
resources in many practical production systems. Various Mixed Integer Programming (MIP)
formulations have been proposed for modeling the CLST-ML in the literature. The three
most prevalent of these formulations are the Inventory and Lot Sizing (ILS) formulation,
the Facility Location (FL) formulation, and the Shortest Route (SR) formulation, originally
proposed by Billington et al. [1983], Krarup and Bilde [1977], and Eppen and Martin [1987],
respectively. Subsequent research has demonstrated important relationships among these
formulations, as well as the advantages and disadvantages of each of these formulations. To

Preprint submitted to Journal of Global Optimization January 22, 2011

the best of our knowledge, the first of these equivalence results was shown by Nemhauser
and Wolsey [1988], who showed the equivalence of the FL and SR formulations for the
Uncapacitated Lot Sizing Problem (ULSP) by showing that the Linear Programming (LP)
relaxations of both formulations are tight (in the sense that the optimal value of the LP
relaxation equals that of the original MIP). Based on these results, they also demonstrated
the equivalence of the LP relaxations of these two formulations in the presence of additional
complicating constraints. Denizel et al. [2008] subsequently showed the equivalence of the LP
relaxations of the FL and SR formulations for the CLST-ML. Akartunalı and Miller [2009]
added (l, S) separation cuts to the ILS formulation, and then showed that this strengthened
version of the formulation provides the same LP lower bounds as the FL and SR formulations
for the CLST-ML. Furthermore, Akartunalı and Miller [2007] compare a wide variety of
different lower bounds for the CLST-ML.

The existing equivalence results in the literature provide assistance and insight into
the best choice of formulation for generating lower bounds on the optimal solution value.
However, a number of exact and heuristic solution methods require the solution of smaller
subproblems in which the integrality requirement is relaxed for a subset of the binary setup
decision variables (such that the associated relaxed variables may take any value between 0
and 1 inclusive). Obviously, the existing equivalence results in the literature do not directly
apply to these subproblems. The objective of this paper is to provide theoretical results to
demonstrate that the ILS with (l, S) inequalities, FL, and SR formulations remain equivalent
for any such subproblems.

The equivalence of these subproblems implies that many prominent decomposition-based
heuristic methods in the lot sizing literature, such as Relax-and-Fix (a time-oriented decom-
position method), will lead to a solution with the same objective function value, no matter
which of these three formulations is utilized. This equivalence may also have useful implica-
tions for the choice of formulation to use within a customized branch-and-bound algorithm.
Clearly, if two formulations provide equivalent lower bounds on objective function value for
a minimization problem (when solving any subproblem in which a common subset of binary
variables is fixed and the remaining binary variables are relaxed), we should choose the one
whose LP relaxation can be solved the most quickly in order to facilitate fast exploration
of the branch and bound tree. If a feasible solution (upper bound) is also generated at
each node via some heuristic, and if such a heuristic uses an LP relaxation as its starting
point (as in, e.g., an LP rounding approach or a Relax-and-Fix approach), then the for-
mulation that produces the heuristic solution the fastest should be selected (assuming the
different formulations lead to the same heuristic solution value, as we later show occurs for
the Relax-and-Fix heuristic). While solving separate relaxations may duplicate some effort,
a customized parallel implementation may enable overcoming this limitation.

The equivalence of these three formulations might also have useful implications for a
branch-and-cut method. This is because a cutting plane generated for one formulation
might be directly projected to the place of another formulation. The equivalency continues
to hold for the two formulations with cutting planes, and then the above procedure is still
applicable. For example, a cutting plane for the S-ILS formulation can be exactly expressed
for the FL and SR formulations. In other words, no matter what cutting planes have been

2

generated using the S-ILS formulation, a corresponding equivalent formulation for FL and
SR can be easily found using the relationships of decision variables in these formulations.

In this paper, we will use the Relax-and-Fix heuristic method as an example heuris-
tic approach that permits computationally demonstrating the equivalence of the three for-
mulations. The Relax-and-Fix heuristic is a priority-oriented method in general, and a
time-oriented decomposition method in the case of lot sizing. It is a relatively simple and
straightforward approach for decomposing the original large-scale Mixed Integer Linear Pro-
gramming (MILP) lot-sizing problem into several smaller MILP problems by restricting the
binary variables in certain time periods, and relaxing the binary variables so they are con-
tinuous in the remaining periods. In the early stages of such an algorithmic approach, only
the binary variables in the first “time windows” are treated as binary variables, and all other
binary variables are relaxed so as to be continuous. These “time windows” correspond to
time intervals spanning several contiguous periods (e.g., a time interval from period 1 to
period 4 is a time window). This permits solving a smaller problem (with fewer “compli-
cating” binary variables) using an MILP solver, and using the resulting solution to fix the
binary variables within the window. The next time window is then processed in the same
manner, and so on, until the last time window is completed. The Relax-and-Fix heuristic
has been implemented in a number of past works, including Belvaux and Wolsey [2000],
Stadtler [2003], Mercé and Fontan [2003], Absi and Kedad-Sidhoum [2007], Akartunalı and
Miller [2009], Sahling et al. [2009], and Wu et al. [2010], to name a few.

Because of the equivalent solution quality produced by these formulations, computa-
tional time becomes a key factor in choosing a problem formulation. To characterize the
efficiency of the formulations in generating lower and upper bounds, we will compare the
resulting computational performance in generating heuristic solutions using Relax-and-Fix.
Our experimental tests were conducted on the data sets provided by Stadtler [2003] in order
to provide guidance on the choice among the ILS with (`, S) inequalities, FL, and SR formu-
lations. These computational results show that the preference order of formulations consists
of ILS with (`, S) inequalities, FL, and then SR, when a Relax-and-Fix algorithm is imple-
mented. The theoretical and empirical results presented in this paper play a significant role
in model formulation choice, and provide direction on the development of heuristic-based
solution procedures.

The remainder of this paper is organized as follows: In Section 2, we provide three
prominent model formulations for the CLST-ML and discuss the strengths and weaknesses
of each modeling approach. In Section 3, we provide results on the equivalence of the ILS
with (`, S) inequalities, FL, and SR formulations for the continuous relaxation in which some
common subset of binary setup decision variables is permitted to take continuous values
(and the remaining setup variables must take binary values). In Section 4, equivalence
results pertaining to heuristic methods are analyzed, with the Relax-and-Fix method used
as an example. In Section 5, we present computational results obtained using a number of
previously published data sets. Finally, we conclude with future directions in Section 6.

3

2. Problem Model Formulations

In this section we present three well-known formulations for CLST-ML. The following
assumptions are employed in our model. Setup times and costs are non-sequence dependent,
the possibility of setup carryover between periods is neglected, and shortages and non-zero
initial inventories are not permitted. All other production costs are assumed to be time-
invariant and linear in production output; therefore they are omitted. Note that this is for
formulation simplicity and our results remain valid as long as the production costs remain
linear. Setup costs and holding costs are also assumed to be time-invariant; this assumption
is for the sake of expositional simplicity, and the theoretical results in this paper would be
also valid in the case of time-varying setup and holding costs. We also assume that end items
do not have any successors, and only end items have external demands. We first present the
notation we will use before providing specific problem formulations.

Indices and index sets:

T number of time periods in the planning horizon.
M number of production resources or machines.
I number of items (subassemblies and/or end items).
IE number of end items.
q, p, t interchangeable time period indices, q, p, t ∈ {1, . . . , T}.
m index for machines, m=1,. . . ,M .
i, j item indices, i, j ∈ {1, . . . , I}. If i, j ∈ {1, . . . , IE}, then this corresponds to an end

item. If i, j ∈ {IE + 1, . . . , I}, then this corresponds to an non-end item.
ηi set of immediate successors of item i.

Parameters:

sci setup cost for producing a lot of item i.
hci inventory holding cost for one unit of item i remaining at the

end of a period.
eci echelon inventory holding cost for one unit of item i remaining

at the end of a period.
stim setup time required for producing item i on machine m.
aim production time required to produce a unit of item i on machine m.
gdit gross demand for item i in period t.
gditp total gross demand for item i from period t to period p.
edit echelon demand for item i in period t.
editp total echelon demand for item i from period t to period p.
rij number of units of item i needed to produce one unit of the immediate successor

item j, and rij = 0 when i = j
Cmt available capacity of machine m in period t.
BMit maximum number of units of item i that can be produced in period t.

4

Variables:

xit number of units of item i produced in period t.
sit inventory of item i at the end of period t.
eit echelon inventory of item i at the end of period t.
yit binary setup decision variables (yit = 1 if production is setup for

item i in period t, and 0 otherwise).
uitp number of units of item i produced in period t to satisfy demand in

period p (t≤ p).
witp percentage of production of item i in period t (t ≤ p) used to satisfy accumulated

demand for item i from period t to period p.

2.1. The Inventory and Lot Sizing Formulation

Several model formulations yielding different formulation sizes and relaxation lower
bounds have been proposed for CLST-ML. We start with the model formulation of Billing-
ton et al. [1983], which is referred to as the ILS formulation because of the use of explicit
inventory variables. The formulation for the CLST-ML problem is given as follows.

ILS:

min
I∑
i=1

T∑
t=1

sci · yit +
I∑
i=1

T∑
t=1

hci · sit (1)

Subject to:

xit + si(t−1) = gdit + sit ∀ i = 1, . . . , IE, t = 1, . . . , T, (2)

xit + si(t−1) = gdit +
∑
j∈ηi

rij · xjt + sit ∀ i = IE + 1, . . . , I, t = 1, . . . , T, (3)∑I
i=1 aim · xit +

∑I
i=1 stim · yit ≤ Cmt ∀m = 1, . . . ,M, t = 1, . . . , T, (4)

xit ≤ BMit · yit ∀ i = 1, . . . , I, t = 1, . . . , T, (5)

xit ≥ 0, sit ≥ 0, si0 = 0, yit ∈ {0, 1} ∀ i = 1, . . . , I, t = 1, . . . , T. (6)

The objective function minimizes total setup and holding costs during the planning
horizon. Constraints (2) and (3) ensure demand satisfaction in all periods for end- and
non-end items, respectively. Constraints (4) enforce capacity requirements. Constraint
set (5) ensures that no production occurs for item i in period t unless the correspond-
ing binary setup variable, yit, takes a value of 1, in which case the amount of production
is limited only by the value of BMit. Here, BMit can be defined formally as BMit =

min
(∑

j∈ηi rij · gdjtT ,
Cmt−stim

aim

)
, for i = 1, . . . , I and t = 1, . . . , T . The BMit values are

defined in the same way for each of the following formulations. Constraints (6) enforce the
binary and nonnegative requirements for different variables.

The model size corresponding to the ILS formulation is relatively modest, implying that
its LP relaxation is readily solvable for problem instances with a few hundred items over a
large planning interval. However, the time required for proving the optimality of a given

5

solution is often prohibitive because the integrality gap associated with the LP relaxation
is typically very large. Furthermore, the poor lower bound provided by the LP relaxation
usually will not be adequate to guide the search for good feasible solutions in the branch-
and-bound phase of a standard MIP solver. Consequently, strong inequalities need to be
added to the model to provide a tighter lower bound. Among the inequalities proposed in
previous research, the (`, S) inequalities proposed by Barany et al. [1984] are very efficient
in improving the lower bound. By defining echelon demand parameters edit and echelon
stock variables eit, where edit = gdit +

∑
j∈ηi rij · edjt and eit = sit +

∑
j∈ηi rij · ejt for

t = 1, . . . , T and i = IE + 1, . . . I, respectively, and edit = gdit and eit = sit for t = 1, . . . , T
and i = 1, . . . , IE, respectively, the (`, S) inequalities can be written as∑

t∈S

xit ≤
∑
t∈S

edit` · yit + ei`. ∀ i = 1, . . . , I, ` = 1, . . . , T, S ⊆ [1, `]. (7)

We refer to the ILS formulation with the (`, S) inequalities as S-ILS throughout the rest
of the paper. Although the number of (`, S) inequalities increases exponentially in T , a
polynomial-time separation algorithm was provided by Barany et al. [1984]. The (`, S)
separation algorithm is stated as follows. In the algorithm, a prime symbol (′) denotes the
value of the corresponding variable in the solution; for example, x′it denotes the value of xit
in the problem solution.

Algorithm 1: The (`, S) Separation Algorithm (Barany et al. [1984])

Set noviolation = 0 ;
repeat

Solve the LP relaxation of ILS, and obtain the solution values x′it, y
′
it, and e′it

(∀ i = 1, . . . , I, t = 1, . . . , T) ;
for i = 1, ..., I do

for ` = 1, ..., T do
Initialize S = ∅ ;
for t = 1, ..., ` do

if x′it > edit,` · y′it then
S = S ∪ t ;

if x′it > edit,` · y′it then
Set noviolation = noviolation +1 and add the violated (`, S)
inequalities into ILS ;

until noviolation 6= 0 ;

2.2. The Facility Location Formulation

The FL formulation was originally proposed for single-item problems by Krarup and
Bilde [1977] and is given as follows.

6

FL:

min
I∑
i=1

T∑
t=1

sci · yit +
I∑
i=1

T∑
t=1

T∑
p=t

eci · (p− t) · uitp (8)

Subject to:

p∑
t=1

uitp = edip ∀ i = 1, . . . , I, p = 1, . . . , T, (9)

si,t−1 +
T∑
p=t

uitp = gdit +
∑
j∈ηi

T∑
p=t

rijujtp + sit ∀ i = IE + 1, . . . , I, (10)

t = 1, . . . , T,

uitp ≤ edipyit ∀ i = 1, . . . , I, t = 1, . . . , T, (11)

p = t, . . . , T.
I∑
i=1

T∑
p=t

aimuitp +
I∑
i=1

stimyit ≤ Cmt ∀m = 1, . . . ,M, (12)

t = 1, . . . , T,
T∑
p=t

uitp ≤ BMityit ∀ i = 1, . . . , I, t = 1, . . . , T, (13)

uitp ≥ 0, sit ≥ 0, si0 = 0, yit ∈ {0, 1} ∀ i = 1, . . . , I, t = 1, . . . , T, (14)

p = t, . . . , T.

Here, Constraints (9) ensure demand satisfaction in all periods for all items. Constraints
(10) make sure that all predecessor items are available in the period of production for a
corresponding production lot. Constraints (11) correspond to setup forcing constraints,
while Constraint set (12) enforces production capacity limits. Constraints (13) ensure that
the total amount of production is less than or equal to a sufficiently large value, and that a
setup is performed in period t for item i if any demand is satisfied using the corresponding
production. Observe that either of the constraint sets (11) and (13) may be dropped from
the MILP formulation, and the remaining formulation provides a correct statement of the
problem. However, the LP relaxation lower bound of the formulation is stronger if both
of the constraints are included. Constraints (14) enforce the binary and nonnegativity
requirements for different variables. We note that this FL formulation (as well as the SR
formulation in the following subsection) is often presented in the literature without explicit
inventory (sit) variables, as these may be substituted out of the problem.

2.3. The Shortest Route Formulation

Improved model formulations based on the SR representation have been proposed by
Eppen and Martin [1987] for the single-level case and extended by Tempelmeier and Helber
[1994] to the multi-level case. The attractiveness of the SR model stems from the fact that
its LP relaxation yields strong lower bounds. The SR formulation is given as follows.

SR:
7

min
I∑
i=1

T∑
t=1

T∑
p=t

{
p∑
q=t

eci · (q − t) · ediq

}
· witp +

I∑
i=1

T∑
t=1

sci · yit (15)

Subject to:

T∑
p=1

wi1p = 1 ∀ i = 1, ..., I, (16)

t−1∑
q=1

wiq(t−1) =
T∑
p=t

witp ∀ i = 1, ..., I, t = 2, ..., T, (17)

t∑
q=1

T∑
p=q

ediqp · wiqp =
t∑

q=1

gdiq +
∑
j∈ηi

t∑
q=1

T∑
p=q

rij · edjqp · wjqp + sit

∀ t = 1, ..., T, i = IE + 1, ..., I, (18)

T∑
p=t

witp ≤ yit ∀ i = 1, ..., I, t = 1, ..., T, (19)

I∑
i=1

T∑
p=t

aim · editp · witp +
I∑
i=1

stim · yit ≤ Cmt ∀m = 1, . . . ,M, t = 1, . . . , T, (20)

T∑
p=t

T∑
q=p

witq · edip ≤ BMit · yit ∀ i = 1, . . . , I, t = 1, . . . , T, (21)

witp ≥ 0, sit ≥ 0, yit ∈ {0, 1} ∀ i = 1, . . . , I, t = 1, . . . , T. (22)

Here, Constraints (16) and (17) ensure demand satisfaction in every period for all items.
Constraints (18) make sure that all predecessor items are available in the period of produc-
tion of a corresponding production lot. Constraints (19) are setup forcing constraints, and
Constraints (20) enforce capacity limits. As in the previous FL formulation, Constraint set
(21) is not required for a correct MILP formulation of the problem, but serves to improve
the quality of the LP relaxation. This constraint set ensures that total production does not
exceed some big value if a setup is performed, and that no corresponding production occurs
if the associated binary setup variable equals zero. Constraints (22) enforce the binary and
nonnegativity requirements for different variables.

3. Equivalence of Strong Formulations

This section presents equivalence results for the various formulations we have discussed,
as well as for certain variations of these formulations. Akartunalı and Miller [2009] proved
that the LP relaxations of S-ILS, FL, and SR yield the same lower bound for the CLST-ML
problem. To the best of our knowledge, no other theoretical results have been demonstrated
on their relationships. However, in our preliminary experiments, when we compared the

8

results of the Relax-and-Fix algorithm using either S-ILS, FL, or SR, we found that the
heuristic results were independent of the formulation used. A closer examination revealed
that it was not a coincidence that the different formulations yielded the same heuristic
solutions. This is because the formulations are equivalent when any common subset of the
binary setup decision variables (yit) is relaxed to be continuous.

Before presenting the main results of this section, we introduce some notation that will
help in our exposition. First we define the following two constraints in order to be able
to state the FL and SR formulations in spaces that include the production variable (x)
dimension:

xit =
T∑
p=t

uitp ∀ t = 1, . . . , T, i = 1, . . . , I. (23)

xit =
T∑
p=t

editpwitp ∀ t = 1, . . . , T, i = 1, . . . , I. (24)

Next, we define the feasible region associated with each formulation and the corresponding
decision problem as follows:

PS−ILS = {(x, y, s)|(2)− (7)} ZS−ILS = min{(1)|(x, y, s) ∈ PS−ILS}
PFL = {(x, y, s, u)|(9)− (14), (23)} ZFL = min{(8)|(x, y, s, u) ∈ PFL}
PSR = {(x, y, s, w)|(16)− (22), (24)} ZSR = min{(15)|(x, y, s, w) ∈ PSR}

Note that we will use the superscript LP to indicate the LP relaxation of a feasible region
or problem, and the superscript SUB to indicate a feasible region for a subproblem (or the
subproblem itself) in which only a subset of setup decision binary variables is relaxed to be
continuous. That is, PLP

S−ILS refers to the feasible region of S-ILS when the binary variables
are relaxed, and P SUB

FL refers to the feasible region of a subproblem of FL in which a subset of
the binary variables is restricted to be binary, and the remaining binary variables are relaxed
to be continuous. For a clearer presentation, we additionally employ the following definitions.

Definition 1: Let A ⊆ {(x, z) ∈ Rn × Rm}; the projection of A onto the space x ∈ Rn,
denoted by projx(A), is the set {x ∈ Rn : ∃z ∈ Rm, (x, z) ∈ A}.

In this definition, A is a subset of the Euclidean space, including polyhedra and mixed-
integer sets, and A can be any of the previously defined feasible regions, e.g., A may corre-
spond to PFL. In addition, the projection of PFL onto the space of the SR formulation is
denoted by projx,y,s,w(PFL).

As mentioned earlier, we have the following result from the literature.

Proposition 1. (Akartunalı and Miller [2009]) ZLP
S−ILS = ZLP

FL = ZLP
SR .

Next, we consider the special case in which a subset R ⊆ I × T exists for which the
corresponding y variables are fixed to specific binary values, and we propose the following.

Proposition 2. When a subset R of y variables is fixed, ZLP
S−ILS = ZLP

FL remains valid.
9

Proof of Proposition 2. Let R = R0 ∪ R1, where the first subset corresponds to y
variables that are fixed to 0, and the second subset corresponds to y variables that are fixed
to 1. We define new decision problems in this case as follows:

Z ′S−ILS = min{(1)|(x, y, s) ∈ PLP
S−ILS ∩ {yit ≤ 0 ∀i, t ∈ R0, yit ≥ 1 ∀i, t ∈ R1}}

Z ′FL = min{(8)|(x, y, s, u) ∈ PLP
FL ∩ {yit ≤ 0 ∀i, t ∈ R0, yit ≥ 1 ∀i, t ∈ R1}}

Next we define, for each of the above problems, the Lagrangean relaxation in which the
the constraints that fix the y variables are relaxed (with corresponding Lagrange multipliers
denoted λ), as follows:

LRS−ILS(λ) = min{(1) +
∑
i,t∈R0

λityit +
∑
i,t∈R1

λit(1− yit)|(x, y, s) ∈ PLP
S−ILS}

LRFL(λ) = min{(8) +
∑
i,t∈R0

λityit +
∑
i,t∈R1

λit(1− yit)|(x, y, s, u) ∈ PLP
FL }

Observe that for a given vector λ, LRS−ILS(λ) = LRFL(λ), which simply follows from
Proposition 1. The two equations below follow from Lagrangian duality:

max
λ≥0

LRS−ILS(λ) = Z ′S−ILS

max
λ≥0

LRFL(λ) = Z ′FL

Since LRS−ILS(λ) = LRFL(λ) for a given λ, this implies Z ′S−ILS = Z ′FL, which concludes
the proof.

Next, we generalize this result to problems in which a subset of y variables is required to
take binary values (and the remaining y variables may be continuous), and we present our
main result.

Theorem 1. ZSUB
S−ILS = ZSUB

FL .

Proof of Theorem 1. We define the following decision problems, where R corresponds
to some subset of the y variables:

Z ′′S−ILS = min{(1)|(x, y, s) ∈ PLP
S−ILS ∩ {yit ∈ {0, 1} ∀i, t ∈ R}}

Z ′′FL = min{(8)|(x, y, s, u) ∈ PLP
FL ∩ {yit ∈ {0, 1} ∀i, t ∈ R}}

Note that for either of these problems, the binary search tree is exactly the same, i.e., each
tree contains the same number of nodes, and each node in a given tree has a corresponding
node in the other tree in which the fixed y variables are the same. Consider any node such
that all variables in R must take values of either 0 or 1. Hence, at any such node we let
R = R0∪R1, where the first subset indicates y variables taking a value of 0, and the second
subset indicates y variables taking a value of 1. We know from Proposition 2 that these
problems are equivalent in either binary search tree, and, therefore, each node of the binary
search tree has a corresponding equivalent node in the other search tree. Hence, we can
conclude that ZSUB

S−ILS = ZSUB
FL .

10

Corollary 1. ZSUB
S−ILS = ZSUB

FL = ZSUB
SR

The proof of this corollary follows exactly the same logic as the preceding proposition
and theorem and we therefore omit the details.

As having equivalent objective function values for the three formulations does not nec-
essarily imply the equivalence of the feasible sets, we next provide two results that show
the relationship between the feasible sets of the formulations (S-ILS, FL, and SR) when the
integrality requirement is relaxed for any subset of binary setup decision variables.

Theorem 2. proj(x,y,s,e)
(
P SUB
FL

)
⊆ P SUB

S−ILS.

In other words, the projection of P SUB
FL onto the space of S-ILS is a subset of P SUB

S−ILS,
but we do not necessarily have this relationship holding in the opposite direction. We refer
the interested reader to Appendix A for the proof.

Theorem 3. proj(x,y,s,w)
(
P SUB
FL

)
= P SUB

SR .

In other words, the projection of P SUB
FL onto the space of SR is equivalent to P SUB

SR . We
refer the reader to Appendix B for the proof.

4. Equivalence of Strong Formulations for Relax-and-Fix

In this section, we discuss the equivalence of the strong formulations under the Relax-
and-Fix heuristic method. We first provide an illustrative example in order to describe the
method clearly. Consider a 12-period problem with 40 items, which implies a total of 480
binary setup decision variables. Problems involving such a large number of binary variables
are typically difficult to solve optimally, and it is typically difficult to even obtain a good
feasible solution in acceptable time using an MILP solver. In order to reduce the difficulty
and generate a good solution value, the Relax-and-Fix approach only restricts a subset of
the binary decision variables to take values of 0 or 1, and relaxes the remaining subset of
binary variables to take continuous values. In our example, we assume that in the first
iteration only the 160 binary setup decision variables corresponding to the first 4 periods
are restricted to be binary variables, and the remaining 320 binary variables are relaxed
to be continuous. Because this relaxed subproblem has a much smaller number of binary
variables, it is much easier to solve optimally. Once the binary solutions for the first 160
binary variables are determined, they are then fixed. In the second iteration, we then restrict
the next 160 binary variables (corresponding to periods 5 through 8) to binary values, and
only relax the remaining 160 binary variables (corresponding to periods 9 through 12) to be
continuous. A good feasible solution can then be determined using this iterative approach.

To generate a better feasible solution, a variant of the above Relax-and-Fix strategy will
be presented in this paper. We use the previous example to illustrate this variant of the
Relax-and-Fix method. From our prior discussion, we know that in the first iteration, only
the 160 binary setup variables corresponding to the first 4 periods are restricted to binary
values, and these are fixed to the resulting binary values obtained in the first iteration. In
the new strategy, suppose that we do not permanently fix all 160 binary variables, but fix

11

only the 80 binary variables corresponding to the first two periods. In the second iteration,
we then restrict the 160 binary variables corresponding to periods three through six to take
binary values; after this iteration, the 80 binary variables corresponding to periods three
and four are then fixed to their binary solution values. A final solution is achieved by using
this approach iteratively. In the following, we will use a more formal way to describe this
“rolling” heuristic solution method.

4.1. The Relax-and-Fix Algorithm

Before we describe the method formally, we first define two parameters, α and γ; α
defines the number of periods for which binary variables are required to take binary values
in the MILP solution of the restricted problem, and γ is the number of periods for which the
binary variables have been fixed based on the binary solutions at previous iteration(s). In
the above example, α equals 4 and γ equals 2. At each iteration of the algorithm, we need to
solve a small subproblem in which a subset of binary variables is relaxed to be continuous.
To present the subproblem formulation more clearly, we introduce three subsets of the setup
decision variables. The set TF defines the index set of the binary setup variables, yit, that
have been permanently fixed after previous iteration(s); the set TI defines the index set of
binary setup variables that must take binary values in the current iteration, and the set TR
defines the index set of setup variables that may take continuous values between 0 and 1.
The union of the sets TF, TI, and TR corresponds to the full set of setup decision variables.
For those (i, t) pairs in the set TF, we let yFit denote the fixed binary value of yit determined
at a previous iteration. For simplicity, we only discuss the subproblem corresponding to the
FL formulation in the following, which we refer to as FL-SP(TF,TI,TR).

FL-SP(TF,TI,TR):

min
I∑
i=1

T∑
t=1

sci · yit +
I∑
i=1

T∑
t=1

T∑
p=t

eci · (p− t) · uitp (25)

Subject to: (9),(10), (11), (12), (13),

uitp ≥ 0, sit ≥ 0, si0 = 0, ∀ i = 1, . . . , I, t = 1, . . . , T, p = t, . . . , T, (26)

yit = yFit (i, t) ∈ TF,
yit ∈ {0, 1} (i, t) ∈ TI,
0 ≤ yit ≤ 1 (i, t) ∈ TR.

(27)

Using the α and γ values as defined earlier, we can define the relax-and-fix algorithm
using the FL formulation for the subproblems as follows:

Next, we define the feasible region associated with each formulation of subproblem FL-
SP(TF,TI,TR) and the corresponding decision problem as follows:

PFL−SP (TF,TI,TR) = {(x, y, s, u)|(9)− (13), (26), (27)}
ZFL−SP (TF,TI,TR) = min{(1)|(x, y, s, u) ∈ PFL−SP (TF,TI,TR)}

12

Algorithm 2: The Relax-and-Fix Algorithm
iter = 1 ;
repeat

TF = ∅ ;
for i = 1, ..., I and t = 1, ..., (iter − 1)γ do

TF ← (i, t) ;
Fix yit to its value at the prior iteration ;

TI = ∅ ;
for i = 1, ..., I and t = (iter − 1)γ + 1, ..., (iter − 1)γ + α do

TI ← (i, t) ;

TR = ∅ ;
for i = 1, ..., I and t = (iter − 1)γ + α + 1, ..., T do

TR← (i, t) ;

Solve FL-SP(TF,TI,TR) and obtain corresponding yit values ;
iter = iter + 1

until TI = ∅ ;

Using a similar approach, the additional models we have discussed (in addition to the FL
problem formulation) can also be easily formulated as subproblems, and we refer to the corre-
sponding decision subproblem for S-ILS and SR as ZS−ILS−SP (TF,TI,TR) and ZSR−SP (TF,TI,TR),
respectively. We next provide an additional important property associated with the Relax-
and-Fix approach.

Corollary 2. ZFL−SP (TF,TI,TR) = ZS−ILS−SP (TF,TI,TR) = ZSR−SP (TF,TI,TR). Therefore, the
Relax-and-Fix algorithm generates the same upper bound on the objective function value
when it is implemented using S-ILS, FL, or SR.

This follows from Corollary 1. At the first iteration of the Relax-and-Fix algorithm,
we know that the subproblems implemented using these three formulations are equivalent.
Therefore, the solutions that result in terms of the decision variables yit will be equivalent,
and the same values will be fixed no matter which formulation is used. Our results imply
that the subproblems at subsequent iterations will also be equivalent, leading to the same
final upper bound, regardless of formulation.

5. Computational Test Results

We have presented results that demonstrate the equivalence of strong formulations for the
CLST-ML in Sections 3 and 4. However, the computational effort required for solving the
problem is formulation dependent. In this section, we conduct computational experiments
on test instances generated by Tempelmeier and Derstroff [1996] and Stadtler [2003] to show
the differences in computational effort required for the Relax-and-Fix algorithm when using
the S-ILS, FL, and SR formulations, respectively. Meanwhile, to gain a more general sense
of the efficiency associated with these three formulations, computational tests were also

13

performed on the linear programming relaxation using a commercial solver, CPLEX 11.2.
Our experiments were performed on sets A+, B+, C, and D, where A+ contains 72 test
instances, B+ contains 144 test instances, C contains 108 test instances, and D contains 96
test instances. Sets A+ and B+ involve problems with 10 items, 24 periods and 3 machines,
while sets C and D involve problems with 40 items, 16 periods and 6 machines. There is no
setup time for sets A+ and C, but sets B+ and D include positive setup times.

The data sets were constructed using a full factorial design with seven factors:

1. Operations structure: we consider two settings, one of which is a general multi-level
structure, while the other is an assembly structure.

2. Resource assignment : there are two settings, acyclic and cyclic. In the acyclic prob-
lems, no item may use the same machine as one or more of its predecessors, though
such situations are permitted in the cyclic problems. Acyclic problems are generally
more difficult to solve than the corresponding cyclic problems, and we only consider
acyclic problems.

3. Setup time: we consider three settings denoted by 0, 1, and 4, where 0 indicates that
there is no setup time, and 1 and 4 indicate that setup times are required before
producing an item; 1 indicates a slight, or small setup time and 4 indicates a value of
high setup time.

4. Coefficient of demand variation: we consider two settings denoted by 1 and 2, where
1 indicates slight demand variation and 2 indicates sizable variation.

5. Resource utilization: we consider three settings denoted by 1, 2, and 3, where 1 rep-
resents high utilization, 2 represents medium utilization, and 3 corresponds to low
utilization. The original data sets include five settings for resource utilization; we use
only three of these settings here because the remaining two settings are quite similar
to setting 3.

6. TBO : TBO denotes the time between orders, and we consider three settings denoted
as 2, 3 and 4, where 2 indicates a high TBO, 3 indicates a medium TBO, and 4
corresponds to a low TBO.

7. Amplitude of seasonal pattern: we consider three settings denoted by 0, 1, and 2,
where 0 indicates no seasonality for item demands, 1 indicates slight seasonality, and
2 indicates strong seasonality.

More detailed information about the experimental setup can be found in Stadtler [2003].
All of the test instances were run on a PC with an Intel Pentium 4 3.16 GHz processor. The
model formulations and the heuristic algorithm were implemented using GAMS, a high-level
algebraic modeling language. CPLEX 11.2 was used in the computational experiments to
solve linear and mixed integer programming problems.

5.1. Computational Tests on the LP Relaxation

As previously mentioned, an efficient existing separation algorithm exists, which we im-
plemented as a preprocessing procedure to generate cuts for the S-ILS formulation (see
Algorithm 1). To gain the benefits of this algorithm, we have implemented it in the solu-
tion of S-ILS. The computational results listed in Table 1 demonstrate that the number of

14

iterations needed for this algorithm is approximately 15, even for the difficult test instances
within data set C. Given that it can significantly reduce the sizes of MIP lot sizing problems,
spending a little extra computational effort using this algorithm is then recommended.

Table 1: Iteration number of separation algorithm for the full factorial experiment of datasets A+, B+, C
and D.

Utilization TBO Seasonality Demand Var.
Data Sets U1 U2 U3 TBO3 TBO4 S1 S2 D1 D2

A+ 10.29 12.00 15.67 12.14 13.17 12.63 12.88 12.33 12.97
B+ 11.33 13.69 17.54 13.04 15.33 14.21 13.90 14.13 14.25
C 15.50 15.78 16.69 15.28 16.75 15.81 15.22 16.00 15.98
D 15.81 16.06 15.19 14.92 16.46 16.00 15.38 15.45 15.69

Table 2 shows the differences in computational effort required for solving the LP relax-
ation of the S-ILS, FL, and SR formulations, respectively. This table tends to indicate that,
for data sets A+ and B+ of medium sizes, S-ILS is the most efficient formulation with re-
spect to solving the linear programming relaxation, although for data sets C and D of large
size, SR becomes the most efficient formulation. For example, SR requires the least time to
obtain LP relaxation solutions for 80 out of 98 instances within data set D. Although the
data listed in this table shows that SR is efficient, there are a few disadvantages associated
with SR that we need to emphasize. When compared with the other two formulations, SR
is much more sensitive to certain characteristics of lot sizing problem instances. That is,
it can be fairly efficient for solving instances that are not tightly capacitated, but is not
very efficient for solving tightly capacitated constrained lot sizing problems, especially for
problems with high seasonality. Our empirical results indicate that SR is the most efficient
formulation for obtaining LP relaxation solutions for almost all of the test instances with low
capacity utilization (which constitute about one-third of the instances), but not for others.
This can be attributed to the fact that the SR formulation has a zero integrality gap in
the single item uncapacitated case when setup times are zero. Having looser capacities and
smaller setup times makes the problem behave more like an uncapacitated problem. Also,
SR contains a network structure, and this would also help to solve it quickly.

Table 2: Comparisons of linear programming relaxation for data sets A+, B+, C and D.

Solution Time Shortest Time Used By
S-ILS FL SR S-ILS FL SR

A+ 0.19 0.42 0.30 48 0 24
B+ 0.20 0.35 0.25 73 2 69
C 1.83 1.66 1.18 24 14 70
D 1.32 0.80 0.63 2 14 80

15

5.2. Computational Tests for Relax-and-Fix

For data sets A+ and B+, the values of α and γ in the Relax-and-Fix algorithm were set
to 4 and 2, respectively. For data sets C and D, their values were both set to 1. Generally,
it would be preferable to set a comparatively small time limit in the MILP solver when
solving subproblems in the Relax-and-Fix algorithm in order to reduce the computational
time. However, our purpose in conducting our computational tests is to determine which
formulation is more efficient in terms of computational effort. Therefore, we set a compara-
tively larger time limit of 40 minutes for solving subproblems for data sets C and D. With
respect to data set C, we found that many of the subproblems could not be solved to opti-
mality even within 40 minutes. This hinders our ability to effectively find the true difference
in computational effort for the different formulations. Therefore, to better characterize the
difference in computational effort, we used an additional stopping criterion for data set C.
That is, we stop solving a subproblem when the duality gap reaches 1.5%. The duality
gap is calculated as the difference between the best upper and lower bound solution values,
divided by the best upper bound solution value. Comparisons using formulations S-ILS,
FL, and SR are shown in Tables 3, 4, 5, and 6, where computational times are expressed in
minutes. In these tables, U1, U2, and U3 correspond to the utilization profile values 1, 2,
and 3, respectively, and S0, S1, and S2 correspond to the seasonality profile values 0, 1, and
2, respectively. Other abbreviations follow this approach as well.

Computational results for the data sets without setup times, A+ and C, are given in
Tables 3 and 4, where the effects on computational times of the different factors are compared
for each of the formulations, S-ILS, FL, and SR. According to the results shown in Table 3,
we find that for data set A+, the S-ILS formulation is the most efficient, the FL formulation
is the second most efficient, and the SR formulation is the least efficient. This is particularly
true for the test instances with high capacity usage, where the computational time required
for S-ILS is less than half of that required for SR. Except for the test instances with low
capacity usage, we find that S-ILS is better than the other two formulations for the test
instances with low or high TBO, low or high seasonality, and low or high demand variability.
In terms of the average computational time for all test instances for data set A+, the
computational time needed by S-ILS is about 97.6% that of FL and 66.6% that of SR for
the general test instances, while the time required by S-ILS is about 77.3% that of FL and
57.6% that of SR for the assembly test instances. When it comes to data set C, which
contains larger problem sizes, we observe similar results, i.e., the S-ILS formulation is better
than the other formulations with the exception of test instances with low capacity usage,
and the efficiency is more obvious for hard test instances that are highly capacitated.

Computational results for the data sets with positive setup times, B+ and D, are given
in Tables 5 and 6. According to the results for data set B+, S-ILS still appears to be the
best choice on average when using the Relax-and-Fix algorithm. However, the advantages of
S-ILS over the other two formulations are not as obvious for test instances with setup times
when compared to those for test instances without setup times. In terms of the results on
data set D, the computational effort needed for the three formulations is comparable, and
the SR formulation is slightly better than others in the majority of test instances.

The computational effort needed to solve a lot sizing problem is also dependent on the
16

Table 3: Comparisons of Relax-and-Fix for data set A+.

General Assembly
S-ILS-T FL-T SR-T S-ILS-T FL-T SR-T

Utilization U1 (high) 1.15 1.27 2.65 4.58 8.23 13.83
U2 (medium) 1.63 1.70 1.98 5.70 5.86 5.72
U3 (low) 0.95 0.84 0.96 1.94 1.78 1.83

TBO TBO3 (medium) 1.82 1.94 2.80 5.52 7.14 10.36
TBO4 (low) 0.66 0.60 0.92 2.66 3.44 3.83

Demand Var D1 (low) 1.35 1.36 2.01 4.22 5.39 7.48
D2 (high) 1.14 1.18 1.72 3.95 5.19 6.72

Seasonality S0 (low) 1.34 1.26 1.88 3.32 3.52 3.76
S1 (medium) 1.32 1.32 2.01 5.00 6.58 9.89
S2 (high) 1.07 1.23 1.69 3.94 5.76 7.64
Average 1.24 1.27 1.86 4.09 5.29 7.10

In the table, -T corresponds to the computational time associated with a formulation when
the Relax-and-Fix algorithm is implemented.

Table 4: Comparisons of Relax-and-Fix for data set C.

General Assembly
S-ILS-T FL-T SR-T S-ILS-T FL-T SR-T

Utilization U1 (high) 10.38 14.34 23.28 11.37 15.94 24.43
U2 (medium) 12.80 15.42 13.23 17.91 22.94 22.21
U3 (low) 5.38 6.90 3.54 5.87 4.52 4.78

TBO TBO2 (high) 15.55 21.68 21.09 22.18 27.01 29.61
TBO3 (medium) 7.44 9.50 10.65 7.48 9.81 13.76
TBO4 (low) 4.46 6.04 8.31 5.49 6.58 8.05

Demand Var D1 (high) 11.69 16.06 19.25 15.05 18.37 24.15
D2 (low) 6.61 8.38 7.45 8.38 10.56 10.13

Seasonality S0 (low) 7.30 9.82 9.09 6.53 9.09 9.40
S1 (medium) 11.95 13.44 13.54 14.08 18.24 22.43
S2 (high) 9.31 13.95 17.42 14.54 16.07 19.59
Average 9.52 12.22 13.35 11.72 14.47 17.14

characteristics of the problem itself. According to the results shown in the above four
tables, it seems that the capacity usage has a remarkable influence on the computational
time needed for solving problems by Relax-and-Fix. In the case of set D, the computational
time needed for highly capacitated problems is almost ten times the computational time
needed for problems that are not tightly capacitated problems. From our computational

17

Table 5: Comparisons of Relax-and-Fix for data set B+.

General Assembly
S-ILS-T FL-T SR-T S-ILS-T FL-T SR-T

Setup Time Setup1 (low) 1.74 2.04 2.88 4.21 4.85 5.81
Setup4 (high) 1.58 1.63 2.03 3.07 3.14 3.29

Utilization U1 (high) 2.08 2.64 4.07 5.55 6.55 8.39
U2 (medium) 1.77 1.84 2.14 3.73 3.92 3.70
U3 (low) 1.12 1.02 1.16 1.64 1.51 1.56

TBO TBO3 (medium) 2.41 2.79 3.60 4.75 5.18 6.12
TBO4 (low) 0.90 0.88 1.31 2.53 2.80 2.98

Demand Var D1 (high) 1.79 1.91 2.59 3.21 3.54 4.14
D2 (low) 1.53 1.76 2.33 4.07 4.45 4.95

Seasonality S0 (low) 1.59 1.55 2.30 3.53 3.59 4.08
S1 (medium) 1.68 1.84 2.44 1.68 1.84 2.44
S2 (high) 1.71 2.12 2.63 3.47 4.08 5.05
Average 1.66 1.83 2.46 3.64 3.99 4.55

Table 6: Comparisons of Relax-and-Fix for data set D.

General Assembly
S-ILS-T FL-T SR-T S-ILS-T FL-T SR-T

Setup Time Setup1 (low) 38.79 42.63 40.25 15.64 17.18 15.48
Setup4 (high) 26.00 27.88 24.08 5.16 4.90 4.40

Utilization U1 (high) 59.75 70.50 70.44 23.21 25.56 22.66
U2 (medium) 26.63 26.50 19.88 6.52 6.03 5.86
U3 (low) 10.81 8.75 6.19 1.46 1.53 1.30

TBO TBO3 (medium) 39.25 43.25 37.29 12.94 13.54 12.65
TBO4 (low) 25.54 27.25 27.04 7.85 8.54 7.23

Demand Var D1 (high) 37.46 41.33 37.79 10.50 10.22 8.77
D2 (low) 27.33 29.17 26.54 10.29 11.86 11.11

Seasonality S1 (medium) 32.38 35.38 32.19 11.17 11.32 10.49
S2 (high) 32.42 35.13 32.17 9.63 10.76 9.39
Average 32.40 35.25 32.15 10.40 11.04 9.94

results, we observe that the reason S-ILS works comparatively better than the other two
formulations (for the tightly capacitated problems) is because the solution procedure for
S-ILS is able to generated substantially more nodes than the other two formulations. The
advantage of the node-generation speed of S-ILS over the other two formulations is less
noticeable in the case of medium and low capacity utilization problems, and therefore its

18

performance is closer to the performance of the other two formulations.
The TBO and demand variance also have a significant effect on computational time. For

example, the computational time needed for the test instances with high and medium values
of TBO is approximately two to three times more than the test instances with low values of
TBO. In contrast, the influence of seasonality on solution time is less noticeable.

Table 7: More comparisons of Relax-and-Fix for data set A+, B+, C and D.

Solution Time Shortest Time Used By
S-ILS FL SR S-ILS FL SR

A+ 2.66 3.28 4.48 43 19 10
B+ 2.65 2.91 3.50 75 49 20
C 10.62 13.34 15.24 64 19 25
D 21.40 23.15 21.05 33 14 49

To validate whether the above results are exceptionally influenced by only a few problem
instances, Table 7 shows the number of instances that are solved the most quickly by each
formulation (S-ILS, FL, or SR) when the Relax-and-Fix heuristic is implemented. The infor-
mation in this table shows that, on average, S-ILS outperforms the other two formulations.

5.3. Computational Tests Using CPLEX Directly

To gauge the performance of each of the three aforementioned formulations in an exact
solution algorithm, we tested all 420 instances using an MIP solver, CPLEX 11.2, with
default settings. For data sets A+ and B+, the limit of solution time was set to 15 minutes,
while the limit was set to 30 minutes for data sets C and D due to their complexity.

Table 8: Comparisons of CPLEX for data sets A+, B+, C and D.

Duality Gaps Best Solutions Found By
S-ILS FL SR S-ILS FL SR

A+ 16.44% 16.90% 17.39% 37 18 17
B+ 15.24% 15.80% 16.29% 75 40 29
C 13.34% 14.31% 14.25% 60 24 24
D 13.88% 15.03% 16.43% 32 22 23

* S-ILS, FL and SR obtained the same feasible solution for 19 test instances.

The computational results are given in Table 8, in which the duality gaps and the number
of instances in which the best feasible solution was achieved for each formulation are listed.
To provide a fair comparison of the feasible solutions associated with each formulation, the
lower bound yielded by the LP relaxation was used for calculating the duality gaps, which
were computed as (upper bounds - lower bounds)/lower bounds. According to the results

19

shown in this table, on average, CPLEX achieves the smallest duality gaps for all test sets
when it is implemented using the S-ILS formulation. Meanwhile, the number of instances
in which the best feasible solution was obtained using the S-ILS formulation was 223 out of
the 400 test instances, compared with 123 obtained by FL and 112 obtained by SR. Based
on these results, we recommend that the preference order for using these three formulations
be S-ILS, FL and SR when they are solved directly using CPLEX.

5.4. Complexities of the Formulations

In this subsection, we discuss the key attributes pertaining to these formulations in
greater detail. The number of columns, rows, and non-zeros in a formulation provide an
indication of its size, and also strongly influence how efficiently a problem can be solved
using an MIP solver. To provide guidelines on the relative efficiency associated with the
three formulations, we list their numbers of columns, rows, and non-zeros in Table 9. In
this table, the numbers within parentheses indicate the remaining columns or rows for the
corresponding formulation after running the solver’s pre-solve procedure, while the numbers
to the left of those in parentheses indicate the number of columns or rows before performing
the pre-solve. According to the table, the size of the original S-ILS formulation is smaller
than other two formulations. More specifically, this formulation has a smaller number of
columns, rows, and non-zeros than FL with only one exception for data set D; it also has a
much smaller number of columns and non-zeros than that of SR, even though its number of
rows is larger. Though we cannot conclude that S-ILS must be more efficient than the other
formulations due to this characteristic, this reflects the potential efficiency of S-ILS over the
other two formulations in general, purely in terms of problem size.

Table 9: Comparisons of problem complexities for data sets A+, B+, C and D.

Rows Columns
Sets S-ILS FL SR S-ILS FL SR

A+ 1698 (1627) 3803 (3507) 970 (870) 750 3496 3298
B+ 1944 (1868) 3803 (3510) 970 (878) 737 3502 3296
C 5768 (5486) 7497 (6657) 2600 (2082) 1878 6632 6130
D 6034 (5869) 7497 (6638) 2593 (1959) 1811 6632 6109

Non-zeros NGSpeed
Sets S-ILS FL SR S-ILS FL SR

A+ 27881 (7608) 25345 (21427) 104135 (99057) 13522 3609 4503
B+ 30016 (9372) 25505 (21492) 104295 (101255) 11069 3580 4714
C 94731 (39329) 47805 (39928) 156145 (155396) 1691 796 979
D 98436 (57082) 48465 (40281) 156785 (148653) 638 711 1307

Another significant factor shown in Table 9 is the number of nodes generated (on average
for all test instances) within 2 minutes in the branching process (referred to as NGSpeed),
which indicates the speed of node-generation for each of the formulations. The table shows

20

that the S-ILS formulation has the fastest rate (with the exception in data set D) when
generating nodes using an MIP solver. This shows that S-ILS is more likely to achieve
better solutions, a reflection of the results in the previous subsections.

6. Conclusion

In this paper, we presented theoretical results on the equivalence of three prominent
strong formulations for the CLST-ML when the binary requirement is relaxed on a subset of
variables (as these variables may take continuous values between 0 and 1). These equivalence
results have significant implications for heuristic methods, as certain decomposition-based
heuristics will provide the same upper bound on optimal solution value, regardless of which
formulation is used. Because of these equivalence results, the computational effort associ-
ated with these formulations then becomes the key reason to determine which formulation is
the best choice. We used the Relax-and-Fix method as an example heuristic and conducted
a large number of computational experiments on the data sets A+, B+, C, and D from
Stadtler [2003]. Meanwhile, an exact method was also tested using CPLEX to illustrate
the efficiency associated with each formulation. According to our computational results, the
S-ILS formulation is the most efficient among the three well-known and strong formulations
from the literature, and this is especially true for test instances with high capacity utiliza-
tion. The SR formulation appears to be the least efficient formulation for most of the test
instances, even though we find that it is the most efficient formulation for instances with
low capacity utilization. Because the harder instances with high capacity utilization are
more likely to be found in practice, we recommend a preference sequence of S-ILS, FL, and
SR when implementing a heuristic method that may employ any of these formulations. Fu-
ture work along this line of research may focus on demonstrating the equivalence of strong
formulations for other extensions of lot sizing problems, such as the CLST-ML in which
backlogging, setup carryover, overtime, and/or shortages are permitted.

Appendix A. For simplicity, assuming that (κ) is the index of a set of constraints, we let c.(κ)
denote constraints (κ). We also let ∗ denote the feasible solution for the corresponding variable, or
variable vector.

Proof of Theorem 2. First, let (u∗, y∗, s∗) ∈ PSUBFL be any feasible point from the FL feasible
set. Now, define the following point for all t = 1, ..., T, i = 1, ..., I:

x∗it =

T∑
p=t

u∗itp; e
∗
it =

t∑
q=1

T∑
p=t+1

u∗iqp; s
∗
it =

t∑
q=1

T∑
p=t+1

u∗iqp +
∑
j∈ηi

rij

t∑
q=1

T∑
p=t+1

u∗jqp.

As (u∗, y∗, s∗) is a feasible point from the FL feasible set, we have
t∑

p=1
u∗ipt = edit.

We then have that the following equation is valid:

t∑
p=1

u∗ipt = edit = gdit +
∑
j∈ηi

rij · edjt = gdit +
∑
j∈ηi

rij

t∑
p=1

u∗jpt. (28)

21

As both
t∑

p=1
u∗ipt and

t∑
p=1

u∗jpt can be expressed as follows,

t∑
p=1

u∗ipt =
t−1∑
p=1

u∗ipt + u∗itt =
t−1∑
p=1

u∗ipt +
T∑
p=t

u∗itp −
T∑

p=t+1

u∗itp, (29)

The equations (28) can be rewritten as

T∑
p=t

u∗itp = gdit +
∑
j∈ηi

rij ·
T∑
p=t

u∗jtp +
T∑

q=t+1

u∗itq −
t−1∑
p=1

u∗ipt +
∑
j∈ηi

T∑
q=t+1

riju
∗
jtq −

∑
j∈ηi

t−1∑
p=1

riju
∗
jpt. (30)

Since we know

s∗it − s∗i(t−1) =
T∑

q=t+1

u∗itq −
t−1∑
p=1

u∗ipt +
∑
j∈ηi

T∑
q=t+1

riju
∗
jtq −

∑
j∈ηi

t−1∑
p=1

riju
∗
jpt, (31)

the equations (30) can be simplified to

T∑
p=t

u∗itp = gdit +
∑
j∈ηi

rij ·
T∑
p=t

u∗jtp + s∗it − s∗i(t−1).

Via the relationships between x∗ and u∗, and projecting the above equalities onto the space of
S-ILS, the following equalities can be obtained:

x∗it + s∗i(t−1) = gdit +
∑
j∈ηi

rij · x∗jt + s∗it. (32)

Note that if i is an end item, then rij is zero. The equalities (32) can be expressed as x∗it+s∗i(t−1) =

gdit + s∗it. As a consequence, we have proven that (x∗, y∗, s∗, e∗) satisfies c.(2) ∩ c.(3).
Using the same logic, we can easily prove that (x∗, y∗, s∗, e∗) satisfies c.(3)∩ c.(4)∩ c.(5)∩ c.(6)

by projecting constraints (10), (12), (13), and (14) onto the space of S-ILS, accordingly. To show
that (x∗, y∗, s∗, e∗) satisfies (15), first note that for any given i = 1, ..., I, t = 1, ..., T, p = 1, ..., T ,
u∗itp ≤ edipy

∗
it holds. Then, picking any ` = 1, ..., T and any subset S ⊆ [1, `], we can sum these

inequalities and obtain: ∑
t∈S

∑̀
p=t

u∗itp ≤
∑
t∈S

∑̀
p=t

edipy
∗
it.

Then, since u∗ ≥ 0, the following is valid:

∑
t∈S

∑̀
p=t

u∗itp ≤
∑
t∈S

∑̀
p=t

edipy
∗
it +

∑̀
t=1

t/∈S

T∑
p=`+1

u∗itp.

Then, adding
∑
t∈S

T∑
p=`+1

u∗itp to both sides, we have

∑
t∈S

T∑
p=t

u∗itp ≤
∑
t∈S

∑̀
p=t

edipy
∗
it +

∑̀
t=1

T∑
p=`+1

u∗itp.

22

Now, using the previous transformations, we obtain:∑
t∈S

x∗it ≤
∑
t∈S

∑̀
p=t

edipy
∗
it + e∗i`.

Therefore, (x∗, y∗, s∗, e∗) ∈ PSUBS−ILS . This implies proj(x,y,s,e)P
SUB
FL ⊆ PSUBS−ILS .

Next, we provide two examples that prove proj(x,y,s,u)P
SUB
S−ILS (PSUBFL . Note that for any

(x∗, y∗, s∗, e∗) ∈ PSUBS−ILS such that s∗iT > 0, it is easy to see that
T∑
t=1

x∗it >
T∑
t=1

edit, which is not pos-

sible for PSUBFL due to the summation of constraints (9) over all t = 1, ..., T . More specifically, when
constraints (9) are added together over t = 1, .., T , the summation of the left side of constraints
(9) is equal to the total demand from period 1 to T . This means that s∗iT can be only zero, and
then there is a conflict against the assumption. Hence a point from S-ILS with s∗iT > 0 cannot be
projected on the FL.

For the case in which s∗iT = 0 holds for all i = 1, ..., I, consider the following example.
Example: Consider a problem with only three periods and one item (hence the subscript i

omitted) with demand of (5, 4, 5). Then, x = (8, 2, 4) and y = (1, 0.25, 0.8) is a valid solution for
S-ILS. However, this solution cannot be mapped to FL, since u12 ≤ 3 and hence u22 ≥ 1 > 0.25×2.
Therefore, proj(x,y,s,u)P

SUB
S−ILS (PSUBFL .

Appendix B.

Proof of Theorem 3. This theorem can be proven by showing that projx,y,s,w(PSUBFL) ⊆ PSUBSR

and projx,y,s,u(PSUBSR) ⊆ PSUBFL .
First, we show that projx,y,s,w(PSUBFL) ⊆ PSUBSR by supposing that (x∗, y∗, s∗, u∗) ∈ PSUBFL .

Given the relationships between u∗ and w∗, we know the following equations are valid:

u∗ipt =
T∑
q=t

w∗ipq · edit ∀ i = 1, . . . , I, p = 1, . . . , T, t = p, . . . , T.

Given (x∗, y∗, s∗, u∗) ∈ PSUBFL , the constraints below, derived from (9), are valid.

t∑
p=1

u∗ipt = edit ∀ i = 1, . . . , I, t = 1, . . . , T.

By projecting these constraints onto the space of SR, we have:

t∑
p=1

T∑
q=t

w∗ipq · edit = edit ∀ i = 1, . . . , I, t = 1, . . . , T.

Given the above equations, for t = 1, we know that
T∑
p=1

w∗i1p = 1, ∀ i = 1, . . . , I. For t ∈ [2, T], if

we take the equalities for t = t, and then subtract the equalities for t = t− 1 side by side, we can
obtain the following valid equalities:

t−1∑
q=1

w∗iq,t−1 =

T∑
q=t

w∗itq ∀ i = 1, . . . , I, t = 2, . . . , T.

23

As a consequence, we have shown that (x∗, y∗, s∗, w∗) satisfies c.(16) ∩ c.(17). Similarly, we know
that the following constraints are valid from (10):

s∗i,t−1 +
T∑
p=t

u∗itp = gdit +
∑
j∈ηi

T∑
p=t

riju
∗
jtp + s∗it ∀ i = IE + 1, . . . , I, t = 1, . . . , T.

For any t (t = 1, . . . , T), if we add the equations in Constraints (10) side by side for all t from 1 to
g, then the following equations can be obtained:

T∑
p=1

u∗i1p +
T∑
p=2

u∗i2p + . . .+
T∑
p=t

u∗itp =
t∑

q=1

gdiq +
∑
j∈ηi

rij(
T∑
p=1

u∗j1p +
T∑
p=2

u∗j2p + . . .+
T∑
p=t

u∗jtp) +s∗it,∀ i = IE + 1, . . . , I, t = 1, . . . , T.

After simplification, the above equations can be expressed concisely as follows:

t∑
q=1

T∑
p=q

u∗iqp =

t∑
q=1

gdiq +
∑
j∈ηi

rij(

t∑
q=1

T∑
p=q

u∗jqp) + s∗it, ∀ i = IE + 1, . . . , I, t = 1, . . . , T.

Via the relationships between u∗ and w∗, we have
t∑

q=1

T∑
p=q

u∗iqp =
t∑

q=1

T∑
p=q

ediqp ·w∗iqp, and projecting

the above inequalities onto the space of SR, the equalities below can be obtained.

t∑
q=1

T∑
p=q

ediqp · w∗iqp =

t∑
q=1

gdiq +
∑
j∈ηi

rij(

t∑
q=1

T∑
p=q

ediqp · w∗iqp) + s∗it, ∀ i = IE + 1, . . . , I, t = 1, . . . , T.

Hence, we have shown that (x∗, y∗, s∗, w∗) satisfies c.(18). Again, using the same logic, we can
prove (x∗, y∗, s∗, w∗) satisfies c.(19) ∩ c.(21) ∩ c.(22) by projecting constraints (12), (13), and (14)
onto the space of SR, accordingly.

To prove (x∗, y∗, s∗, w∗) satisfies c.(20), we use the following relationships between u∗ and w∗:

T∑
p=t

u∗itp =
T∑
p=t

T∑
q=p

w∗itq · edip =
T∑
p=t

w∗itp · editp, ∀ i ∈ [1, I], t ∈ [1, T].

Depending on such relationships, if we project c.(12) onto the space of SR, then (x∗, y∗, s∗, w∗)
satisfying c.(20) is obviously true.

Consequently, we have proven that if (x∗, y∗, s∗, u∗) ∈ PSUBFL , then (x∗, y∗, s∗, w∗) ∈ PSUBSR is
guaranteed so that projx,y,s,w(PSUBFL) ⊆ PSUBSR .

Conversely, the above proof process is reversible. If we let (x∗, y∗, s∗, w∗) ∈ PSUBSR , and then
project all constraints within PSUBSR onto the space of FL, we can show that (x∗, y∗, s∗, u∗) ∈ PSUBFL

and projx,y,s,u(PSUBSR) ⊆ PSUBFL . The proof is complete. �

Acknowledgement. This research was supported in part by the National Science Founda-

tion under grant CMMI-00646697, and by the Air Force Office of Scientific Research under grant

FA9550-07-1-0390. The authors are also thankful to two anonymous referees for their suggestions

improving the presentation of the paper.
24

References

[1] Absi N., Kedad-Sidhoum S., 2007. MIP-based heuristics for multi-item capacitated lot-sizing
problem with setup times and shortage costs. RAIRO - Operations Research 41, 171-192.

[2] Akartunalı, K. 2007. Computational methods for big bucket production planning problems:
feasible solutions and strong formulation. Ph.D. Thesis, University of Wisconsin-Madison,
Dept of Industrial Engineering.

[3] Akartunalı, K., Miller, A.J., 2009. A heuristic approach for big bucket multi-level production
planning problems. European Journal of Operational Research 193 (2), 396-411.

[4] Akartunalı K., Miller, A.J., 2007. A computational analysis of lower bounds for big
bucket production planning problems. Available at Optimization Online, http://www.

optimization-online.org/DB_HTML/2007/05/1668.html.

[5] Barany, I., Van Roy, T.J., Wolsey L.A., 1984. Strong formulations for multi-item capacitated
lot-sizing. Management Science 30 (10), 1255-1261.

[6] Belvaux, G., Wolsey L.A., 2000. Bc-prod: A specialized branch-and-cut system for lot-sizing
problems. Management Science 46 (5), 724-738.

[7] Billington, P., J. McClain, L. Thomas. 1983. Mathematical programming approaches to
capacity-constrained MRP systems: Review, formulation and problem reduction. Manage-
ment Science 29 (10), 1126-1141.

[8] Denizel M., Altekin F.T., Sural H., Stadtler H. 2008. Equivalence of the LP relaxations of two
strong formulations for the capacitated lot-sizing problem with setup times. OR Spectrum 30
(4), 773-785.

[9] Eppen, G.D., Martin, R.K., 1987. Solving multi-item capacitated lot-sizing problems using
variable redefinition. Operations Research 35 (6), 832-848.

[10] Florian, M., Lenstra, J.K., Rinnooy Kan, H.G., 1980. Deterministic production planning:
Algorithms and complexity. Management Science 26 (7), 669-679.

[11] Krarup, J., Bilde, O., 1977. Plant location, set covering and economic lotsizes: An O(mn)
algorithm for structured problems. Optimierung bei Graphentheoretischen und Ganzzahligen
Probleme. BirkhauserVerlag, 155-180.

[12] Mercé, C., Fontan, G., 2003. MIP-based heuristics for capacitated lotsizing problems. Inter-
national Journal of Production Economics 85(1) 97-111.

[13] Nemhauser, G.L., Wolsey, L.A., 1988. Integer and combinatorial optimization, John Wiley &
Sons, Inc.

[14] Salomon, M., 1991. Deterministic lot sizing models for production planning, Springer, Inc.

[15] Sahling, F., Buschkühl, L., Tempelmeier, H., and Helber, S., 2009. Solving a multi-level capac-
itated lot sizing problem with multi-period setup carry-over via a fix-and-optimize heuristic,
Computers & Operations Research 36 (9), 2546-2553.

25

[16] Stadtler, H., 1997. Reformulations of the shortest route model for dynamic multi-item multi-
level capaciated lotsizing. OR Spectrum 19 (2), 87-96.

[17] Stadtler, H., 2003. Multilevel lot sizing with setup times and multiple constrained resources:
Internally rolling schedules with lot-sizing windows. Operations Research 51 (3), 487-502.

[18] Tempelmeier H., Derstroff M., 1996. A Lagrangean-based heuristic for dynamic multilevel
multiitem constrained lotsizing with setup times. Management Science 42(5), 738-757.

[19] Tempelmeier, H., Helber S., 1994. A heuristic for dynamic multi-item multi-level capacitated
lotsizing for general product structures. European Journal of Operational Research 75 (2),
296-311.

[20] Wu, T., Shi, L., Duffie, N., 2010. An HNP-MP approach for the capacitated multi-Item lot
sizing problem with setup times. IEEE Transactions on Automation Science and Engineering
7 (3), 500-511.

26

