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Abstract

In this paper we analyze the worst case performance of heuristics for the classical eco-

nomic lot-sizing problem with time-invariant cost parameters. We consider a general class

of on-line heuristics that is often applied in a rolling horizon environment. We develop a

procedure to systematically construct worst case instances for a fixed time horizon and use

it to derive worst case problem instances for an infinite time horizon. Our analysis shows

that any on-line heuristic has a worst case ratio of at least 2. Furthermore, we show how the

results can be used to construct heuristics with optimal worst case performance for small

model horizons.

1 Introduction

The economic lot-sizing (ELS) problem is a well-known problem in inventory management and

is described as follows. Given the (deterministic) demand for a discrete and finite planning

horizon, find a production plan that satisfies demand and minimizes total costs. Costs include
∗Corresponding author.
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setup cost for each time period production takes place and holding cost for each item carried

over from a period to the next period.

Although the ELS problem can be solved in polynomial time, heuristics are often used to

solve the problem. One reason is that exact algorithms (such as the algorithm by Wagner

and Whitin (1958)) are difficult to understand and hence are often not used by practitioners.

Furthermore, heuristics are often applied when the ELS problem needs to be solved in a rolling

horizon environment. In such a situation heuristics may perform better than the Wagner-Whitin

algorithm (see for example Stadtler (2000) and Van den Heuvel and Wagelmans (2005)). In

a rolling horizon environment, lot-sizing heuristics can be considered as on-line algorithms,

because decisions have to be taken while not all future demand information is known (a more

formal definition of on-line heuristic will follow in Section 2).

Two methods are commonly used to measure the performance of heuristics. First, we

have the empirical methods in which a simulation study is performed (see, e.g., Baker (1989),

Fisher et al. (2001) and Simpson (2001)). The difficulty of a simulation study is to construct a

representative testbed. Second, we have analytical methods which can be split into probabilistic

and worst case analysis. Probabilistic methods analyze the expected performance of heuristics

given the distribution of some problem parameters (see Axsäter (1988)). In worst case analysis

one searches for a bound on the relative performance that holds for any problem instance (see

Axsäter (1982), Bitran et al. (1984), Axsäter (1985) and Vachani (1992)).

In this paper we are interested in the worst case performance of heuristics for the ELS

problem. As mentioned above several papers on this subject have appeared in the literature.

Axsäter (1982) and Bitran et al. (1984) analyze the worst case performance of some specific

lot-sizing rules. Vachani (1992) analyzes the worst case performance of seven heuristics, where

also data dependence, such as the length of the time horizon and demand properties (constant

and bounded demand), is taken into account. The paper that is closest to our research is

Axsäter (1985). He shows that all on-line heuristics which use a specific type of decision rule

have worst case ratio at least 2. A nice aspect of this result is that it applies to almost all

popular heuristics.

Our research was motivated by the following natural questions. First, do there exist on-

line heuristics with worst case performance smaller than 2? Second, can we construct problem

instances with large performance ratio for a broader class of on-line heuristics than Axsäter

(1985)? In this paper we will provide a negative answer to the first question and a positive

answer to the second question. We will not only show that there exists no on-line heuristic
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with worst case performance smaller than 2, but we also show that the result can be applied

to a broader range of heuristics. Although this means that we generalize the result of Axsäter

(1985), we would like to emphasize that our approach is (necessarily) completely different than

his. In fact, we believe that the actual contribution of this paper lies not only in the fact that

we provide a worst case problem instance, but also in the description of the systematic way in

which we have searched for this instance. This systematic way also led to the construction of

optimal on-line heuristics for small model horizons.

The remainder of this paper is organized as follows. In Section 2 we formally introduce the

economic lot-sizing problem and we define our class of on-line heuristics by a single property. In

Section 3 we show how to systematically construct problem instances with a high performance

ratio for a fixed time horizon. In Section 4 we present our main result and show that any

on-line lot-sizing heuristic has worst case ratio at least 2. In Section 5 we use the analysis of

Section 3 to construct heuristics with optimal worst case performance for small time horizons.

In Section 6 we discuss several implications of the results. The paper is completed in Section 7

with the conclusion.

2 Definitions, problem formulation and observations

We start this section by describing the ELS problem mathematically. If we use the following

notation

T : model horizon

dt : demand in period t (t = 1, . . . , T )

K : setup cost

h : unit holding cost

xt : production quantity in period t (t = 1, . . . , T )

It : ending inventory in period t (t = 1, . . . , T ),

then the ELS problem can be modeled as

C∗(d, T ) = min
∑T

t=1 (Kδ(xt) + hIt)

s.t. It = It−1 − dt + xt t = 1, . . . , T

xt, It ≥ 0 t = 1, . . . , T

I0 = 0,
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where

δ(x) =





0 for x = 0

1 for x > 0.

First, note that we may assume w.l.o.g. that K = 1, as the objective function only depends on

the ratio K/h. Furthermore, we may assume w.l.o.g. that h = 1. Namely, defining the variables

x′t = hxt, I ′t = hIt and d′t = hdt leads to the model

C∗(d′, T ) = min
∑T

t=1 (δ(x′t) + I ′t)

s.t. I ′t = I ′t−1 − d′t + x′t t = 1, . . . , T

x′t, I ′t ≥ 0 t = 1, . . . , T

I ′0 = 0.

This shows that, when considering the worst case performance of heuristics, it suffices to consider

only problem instances with K = h = 1. This means that a problem instance is completely

defined by a demand sequence d = d1, . . . , dT . Finally, we may also assume w.l.o.g. that d1 > 0

since otherwise this period can be ignored.

Let d be a problem instance and let CH(d) be the cost of a solution generated by some

heuristic H for instance d. We define the performance ratio r(d) of H for instance d as r(d) =

CH(d)/C∗(d), where C∗(d) is the optimal cost for this instance. Furthermore, the worst case

ratio of H is defined as

sup
d∈I

r(d),

where I is the set of all problem instances. From the definitions it follows that the performance

ratio is a measure for a particular problem instance d and the worst case ratio is a measure for

a set of instances. Note that the performance ratio for any instance is a lower bound on the

worst case ratio.

Axsäter (1985) considers a class of on-line heuristics where a setup is made in period n + 1

(with the previous setup in period 1) if

k∑

t=1

atkdt ≤ 1 for k = 2, . . . , n and
n+1∑

t=1

at,n+1dt > 1, (1)

where atk (1 ≤ t ≤ k ≤ T ) are constants that depend on the specific heuristic. After the

setup assignment to period n + 1, this period becomes period 1 and the procedure starts again.

Axsäter (1985) proves that this class of heuristics has a worst case ratio of at least 2 (and

this bound is tight for some heuristics) by considering nine different cases dependent on the

properties of the constants atk.
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As in Axsäter (1985) we consider a complete class of heuristics. Our general class of on-line

heuristics is defined as follows:

Definition 1 On-line lot-sizing heuristics make setup decisions period by period (so previously

made decisions are fixed and cannot be changed) and setup decisions do not depend on future

demand.

The on-line property states that the decisions are made starting in period 1 and in every next

period we decide whether to make a setup or not irrespective of future demand. This generalizes

the class of Axsäter (1985) in two ways. First, instead of the term
∑k

t=1 atkdt in condition (1)

we can have arbitrary functions fk(d1, . . . , dk) changing the condition into fk(d1, . . . , dk) ≤ 0

for k = 2, . . . , n and fn+1(d1, . . . , dn+1) > 0. Second, decisions for the on-line heuristics may

depend on previous setups, whereas in the class of Axsäter (1985) decision only depend on the

current (last) setup period.

The observation that w.l.o.g. K = h = 1 leads to some interesting insights. First, it is clear

that every problem instance has minimal cost at most T : the cost of the trivial lot-for-lot (L4L)

heuristic which has a setup in each period. Because the optimal solution has cost at least 1,

the worst case ratio of L4L is at most T (the instance with d1 = 1 and dt = 0 (t = 2, . . . , T ) has

worst case ratio T ). Furthermore, if dt ≥ p > 0 for all t = 1, . . . , T with p < 1, then the optimal

solution has cost at least p in each period and the worst case ratio of L4L is at most T
Tp = 1

p .

Now look at Table 1 where we reproduced the summary of the worst case analysis on the seven

heuristics by Vachani (1992, p. 805, Table 2). If we look at instances with a finite time horizon

Heuristic T dt = d dt ≤ p, p > 0 dt ≥ p, p ≤ 1

Economic order quantity (EOQ) ∞ 1.059 ∞ ∞
Periodic order quantity (POQ) T 1.059 ∞ ∞
Silver-Meal (SM)

√
T/2

√
2 ≤ w ≤ T 1 ∞ 1

p

Least unit cost (LUC) ∞ 1 ∞ ∞
Part period balancing (PPB) 3T/(T + 2) 3

2 3 3− 2p

Bitran-Magnanti-Yanasse (BMY) 2T/(T + 1) 1 2 2− p

Freeland-Colley (FC)
√

T/2
√

2 ≤ w ≤ T ∞ ∞ 1
p

Table 1: Data dependent worst case ratios (w) of some heuristics

(column 2) and demand bounded from below (column 5), then it follows that in the worst case
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only PPB and BMY perform strictly better than the L4L heuristic. The other five heuristics

perform as bad or even worse than the L4L heuristic on one of the two problem characteristics.

So from a worst case analysis point of view these heuristics perform badly. Note that BMY is

a heuristic with worst case ratio 2.

3 Constructing worst case examples for a finite horizon

Consider some on-line lot-sizing heuristic. In each period the heuristic ‘decides’ to start a new

lot-size or to add the demand to the current lot-size. By this property worst case performance

can be interpreted as a game between a heuristic and an adversary. In each period t the heuristic

‘receives’ some demand dt from the adversary and the heuristic has to ‘decide’ whether to

add demand dt to the current production run (incurring holding cost) or to start a new one

(incurring setup cost). Whereas the heuristic’s objective is to minimize the performance ratio,

the adversary tries to maximize the performance ratio.

3.1 A relaxed mathematical formulation

It is well known that given a demand sequence d = d1, . . . , dT , a solution for the ELS problem

is completely determined by its setup periods (the zero inventory ordering property). So a

production plan can be represented by a vector P ∈ {0, 1}T with Pt = 1 if t is a setup period

and Pt = 0 otherwise. As we may assume w.l.o.g. that demand in period 1 is positive, P1 = 1.

Let P (T ) be the set of all production plans of T periods. Let d = d1, . . . , dT be a demand

sequence and P ∈ P (T ) a production plan. Let C(d, P, t) be the cost of the first t periods for

demand sequence d in production plan P , i.e.,

C(d, P, t) =
t∑

i=1

(Pi + (i− p(i))dt) , (2)

where p(i) is the setup period preceding period i (or period i itself if i is a setup period). Then

the performance ratio for instance d and plan P is defined as

max
t=1,...,T

C(d, P, t)
C∗(d, t)

.

Note that we take the maximum over all periods as every sequence d1, . . . , dt represents a

problem instance for the ELS problem (the adversary can stop at any moment or the demand

beyond period t can be set equal to zero).

Now consider a binary tree of depth T representing the set P (T ) (see Figure 1). In each node
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Figure 1: Representing production plans by a binary tree

of depth t one branch represents a new setup in period t + 1 and the other branch represents

a non-setup period. For example, the path in Figure 1 represents the plan P = {1, 0, 1, 0}.
Note that, given a demand sequence, every heuristic has to choose a path (corresponding to

a production plan) through the binary tree. So the tree reflects that decisions are made on

a period by period basis. Hence the performance ratio R(d, T ) of any heuristic on demand

sequence d of length T equals at least

R∗(d, T ) = min
P∈P (T )

max
t=1,...,T

C(d, P, t)
C∗(d, t)

and the worst case ratio of any heuristic equals at least

W ∗(T ) = max
d∈[0,1]T

R∗(d, T ) = max
d∈[0,1]T

min
P∈P (T )

max
t=1,...,T

C(d, P, t)
C∗(d, t)

(3)

as the worst case ratio is the maximum performance ratio over all problem instances. We only

consider problem instances with demand dt ≤ 1. If we have an instance d with some demands

strictly larger than 1 and if d′ is the instance with demand 1 for these periods, then it is not

difficult to see that R∗(d, T ) = R∗(d′, T ) and hence d can be ignored when evaluating (3).

We note that the above formulation is not a complete description of our original problem.

This can be seen as follows. Assume that we have two demand sequences d1 = [d1, d2, d
1
3] and

d2 = [d1, d2, d
2
3]. Furthermore, assume that the performance ratios for each (partial) production

plan are as shown in Figure 2, where (as in Figure 1) an upper branch represents a setup period.
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Figure 2: Performance ratio for d1 and d2

It follows from the figure that R∗(d1, 3) = R∗(d2, 3) = 3
2 . If d1 and d2 are the only possible

problem instances, then from (3) it follows W ∗(3) = 3
2 . However, the worst case performance

of any on-line heuristic H is 2. Namely, if H generates no setup in period 2, then we give d1
3 in

period 3 leading to performance ratio 2. On the other hand, if H generates a setup in period 2,

then we give d2
3 in period 3 again leading to performance ratio 2. Hence the worst case ratio

equals 2 in this particular case.

The problem of the mathematical formulation is that it is not possible that two branches

arising from the same node have different remaining demand sequences. However, it is possi-

ble in the formulation to have zero demands as the remaining demand sequence, because we

evaluate the performance ratio for all t-period production plans. This means that the problem

formulation leads to lower bounds on the worst case performance of any on-line heuristic.

We have plotted the graph of the function R∗(d, 5) with d2 = 0 and d5 = 1
4 in Figure 3.

It is clear that finding the demand sequence d that optimizes R∗(d, 5) is not a nice concave

maximization problem.

3.2 A special class of production plans

Because equation (3) is hard to analyze, we will consider a further relaxation of the problem.

First we will derive a lower bound on the value R∗(d, T ). Define the set of production plans P i

(i = 1, . . . , T ) as follows

P 1
t =





1 for t = 1,

0 for t = 2, . . . , T,

P i
t =





1 for t = 1 and t = i,

0 for t = 2, . . . , i− 1,
for i = 2, . . . , T.

Note that P i (i = 2, . . . , T ) is a production plan for i periods and P 1 is a plan for T periods.

In Figure 4 production plans P i (i = 1, . . . , 4) are the paths from the root to the leafs in the
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Figure 3: The graph of the function R∗(d, 5) with d2 = 0 and d5 = 1
4

tree. Define

r(d, 1) =
C(d, P 1, T )
C∗(d, T )

and r(d, i) =
C(d, P i, i)
C∗(d, i)

for i = 2, . . . , T

and let

R(d, T ) = min
i=1,...,T

r(d, i).

So the values r(d, i) represent the performance ratios of the leaf nodes in Figure 4 and R(d, T )

is the minimum performance ratio of these nodes.

Lemma 1 For any instance d1, . . . , dT it holds

R(d, T ) ≤ R∗(d, T ).
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Figure 4: Production plans P i (i = 1, . . . , 4) represented by paths in a tree

Proof Let P ∈ P (T ). Then there exists a j for which P j is a subpath of P . But then

r(d, j) ≤ max
i=1,...,T

C(d, P, i)
C∗(d, i)

as the term at the left hand side is contained in the maximum at the right hand side. ¤

Lemma 1 shows that, when using the special set of production plans, we find a lower bound on

the performance ratio for d. The motivation for taking P i (i = 2, . . . , T ) is that one expects

that these plans lead to high costs because in general it is not profitable to have a setup in the

last period. Plan P 1 is needed, because with this plan included, any production plan P has a

plan P i as subplan (and so without P 1 Lemma 1 does not hold). It is clear that for a fixed d

the value R(d, T ) is a lower bound on W ∗(T ). Furthermore, we define the lower bound W (T )

on W ∗(T ) as

W (T ) = max
d∈[0,1]T

R(d, T ) = max
d∈[0,1]T

min
t=1,...,T

r(d, t). (4)

Note that problem (4) is more tractable than problem (3) because the ‘min max’-part is replaced

by a ‘min’-part. We will now derive some properties for a demand sequence that maximizes (4).

Lemma 2 Let d be an instance that maximizes (4). Then the value of dT = 1
T−1 .

Proof First note that dT only occurs in the calculation of r(d, 1) and r(d, T ) because they

contain the terms C(d, P 1, T ) and C∗(d, T ). The holding costs for dT equal (T − 1)dT in plan

P 1. If p ≥ 2 is the setup period preceding period T in the optimal plan P ∗, then the holding

cost in this plan equals (T−p)dT . (If p = 1, then r(d, 1) = 1 and hence W (T ) = 1, which cannot

be optimal.) Increasing dT will increase the performance ratio r(d, 1) = C(d,P 1,T )
C∗(d,T ) . However,

the performance ratio r(d, T ) = C(d,P T ,T )
C∗(d,T ) is decreasing in dT . Therefore, min {r(d, 1), r(d, T )}

is maximized when C(d, P 1, T ) = C(d, P T , T ), i.e., when (T − 1)dT = 1 or dT = 1
T−1 . ¤
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In the remainder of this paper we will assume that dT = 1
T−1 so that r(d, 1) = r(d, T ) and hence

W (T ) = max
d∈[0,1]T

min
i=2,...,T

r(d, i). (5)

Another useful property of an optimal demand sequence can be found in the following lemma.

Lemma 3 Let d be an instance with dj−1 > 0, dj = 0 and 3 ≤ j ≤ T . Then there exists an

instance d′ with R(d′, T ) ≥ R(d, T ) and d′j > 0.

Proof Define an instance d′ with d′2 = 0 and d′t+1 = t−1
t dt for all t < j and d′t = dt for all t > j.

So demand before period j is shifted one period and scaled. Clearly, d′j = j−2
j−1dj−1 > 0. Let

i ≤ j. Then the holding cost for demand d′t+1 (t < i) in P i+1 equals td′t+1 = t t−1
t dt = (t− 1)dt,

which is the holding cost for demand dt in P i. Therefore, C(d′, P i+1, i + 1) = C(d, P i, i) for

i ≤ j. Furthermore, because demand beyond period j is unchanged we also have C(d′, P i, i) =

C(d, P i, i) for i > j.

Let P be the optimal plan for some i-period problem for instance d. Now shift all setup

periods before period j (except for period 1) one period further. We will use this plan for the

(i + 1)-period problem with demand d′ if i < j and for the i-period problem with demand d′ if

i > j. Clearly, the setup costs for both plans are equal. Furthermore, let t < j and let p be the

setup period before period t in plan P . Then the holding cost for demand dt equals (t − p)dt

and the holding cost for demand d′t+1 equals ((t + 1) − (p + 1))d′t = (t − p) t−1
t dt ≤ (t − p)dt.

Using similar arguments one can show that holding cost for d′t equals at most the holding cost

for dt for t > j. Therefore, C∗(d, i) ≥ C∗(d′, i + 1) for i < j and C∗(d, i) ≥ C∗(d′, i) for i > j.

Using the above (in)equalities it follows that

r(d, i) = C(d,P i,i)
C∗(d,i) ≤ C(d′,P i+1,i+1)

C∗(d′,i+1) = r(d′, i + 1) for i < j

r(d, i) = C(d,P i,i)
C∗(d,i) ≤ C(d′,P i,i)

C∗(d′,i) = r(d′, i) for i > j.

Furthermore, r(d, j) ≥ r(d, j−1) because C(d, P j , j) ≥ C(d, P j−1, j−1) and C∗(d, j) = C∗(d, j−
1) since dj = 0. Now the lemma follows because

R(d, T ) = min
i=2,...,T

r(d, i) ≤ min
i=2,...,T

r(d′, i) = R(d′, T ).

¤

The previous lemma shows that if we have an instance with a positive demand period

followed by a zero demand period, then we can find an instance with larger performance ratio

by shifting and scaling all the demand before this zero demand period by one period. Therefore,
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there exists a solution that maximizes (5) and has no positive demands followed by zero demands

(except for the demand in period 1). Let d be a problem instance with dt = 0 for t = 2, . . . , n−1.

For this instance we have r(d, i) = 2 for i = 2, . . . , n− 1 and hence

R(d, T ) = min
i=n,...,T

r(d, i).

Lemma 4 Let d∗ be a local optimal solution of (5) with dt = 0 for t = 2, . . . , n− 1 and dt > 0

for t = n, . . . , T . Then r(d∗, i) = r(d∗, i + 1) for i = n, . . . , T − 1.

Proof Assume that the lemma does not hold and let

r(d∗, u) = min
i=n,...,T

{r(d∗, i)} < max
i=n,...,T

{r(d∗, i)} = r(d, v).

Assume that u < v (the case with u > v can be proven analogously). We will construct an

alternative solution with demand sequence d′ = d∗ + ε such that r(d∗, u) < r(d′, u) ≤ r(d′, v)

and r(d′, i) = r(d∗, i) for i ∈ {n, . . . , T}\{u, v}. This means that the solution is not a local

optimum which is a contradiction.

To achieve this, let ri = r(d∗, i) for i = n, . . . , T , keep the production plans fixed and

consider the equations r(d, i) = ri in the variables dn, . . . , dT−1. So the function r(d, i) is the

ratio of two linear functions (see equation (2)), r(d, i) is defined on the variables dn, . . . , di for

i = n, . . . , T−1 and r(d, T ) is defined on the variables dn, . . . , dT−1. First, note that the optimal

plan P ∗i will not have a setup in period i, because moving the setup from period i to period i−1

will not increase the cost (recall dt ≤ 1). Therefore, r(d, i) is strictly decreasing in di, because

di appears in the denominator and it does not appear in the nominator. Similarly, r(d, T ) is

strictly increasing in dT−1, because dT−1 appears in the nominator with coefficient T − 2.

Now let d′i = d∗i for i = n, . . . , u − 1 and let d′u = d∗u + εu with εu ∈ R such that r(d′, u) >

r(d∗, u). Note that r(d′, i) = ri for i = n, . . . , u−1 and r(d′, i) may be changed for i = u, . . . , T .

Let d′i = d∗i + εi with εi such that r(d′, i) = ri for i = u + 1, . . . , v − 1. Because the function

r(d, i) is strictly decreasing in di, the value d′i = d∗i + εi is uniquely defined by the equation

r(d′, i) = ri for given d′n, . . . , d′i−1 and hence the values εi (i = u + 1, . . . , v − 1) exist. In a

similar way we choose d′i = d∗i +εi for i = v, . . . , T −1 such that r(d′, i) = ri for i = v+1, . . . , T .

Again such values εi (i = v, . . . , T − 1) exist. Namely, start with an arbitrary value of εv. Then

the values εi (i = v + 1, . . . , T − 1) are uniquely determined by the equations r(d′, i) = ri for

i = v + 1, . . . , T − 1. In general we will have that r(d′, T ) 6= rT . This means that the choice of

εv was not right and the right value of εv can be found by binary search since r(d, i) is strictly
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decreasing in di. So summarizing, given an εu, the values εi for i = u+1, . . . , T −1 are uniquely

determined by the equations r(d′, i) = ri for i ∈ {u + 1, . . . , T}\{v}.
Finally, consider the value r(d′, v). If r(d′, v) ≥ r(d∗, v), then we have proved the lemma as

we have found a strictly better solution within an ε-environment which is a contradiction. If

r(d′, v) < r(d∗, v), then we choose εu sufficiently small such that r(d′, v) ≥ r(d′, u) > r(d∗, u)

and again we have found a better solution.

We end the proof with some remarks. First, if period u is not unique, then we can repeat

the above procedure. Second, if there is some d′i < 0 (which is not feasible), then εu must be

chosen sufficiently small such that d′i ≥ 0. Third, it is possible that by the change from d∗ to d′

the optimal production plans will also change. In this case the denominator of r(d′, i) will be

smaller and hence r(d′, i) will be larger which means that the proof still holds. ¤

Let W (n, T ) be the maximum performance ratio of the demand sequence d that satisfies

W (n, T ) = r(d, i) for i = n, . . . , T, dt > 0 for t = n, . . . , T and dt = 0 for t = 2, . . . , n− 1. (6)

Corollary 5 For any model horizon T it holds W (T ) = max
1<n<T

W (n, T ).

Proof Immediate from Lemma 4. ¤

Corollary 5 shows that we can find W (T ) by calculating all values W (n, T ). This means that

we changed the optimization problem (5) into solving the system of equations in (6). In the

following sections we will focus on how to find the values W (n, T ), but first we give two other

corollaries.

Corollary 6 For 1 < n < T we have W (n + 1, T + 1) ≥ W (n, T ).

Proof A T -period instance can be considered as a (T + 1)-period instance with dT+1 = 0.

Apply Lemma 3 to this instance. ¤

Corollary 7 For any model horizon T we have W (T + 1) ≥ W (T ).

Proof Immediate from Corollary 6. ¤

3.3 Finding the optimal demand sequence given the production plans

It follows from the previous section that if we can find the values W (n, T ), then we can find

the value W (T ). The difficulty of finding W (n, T ) is that the optimal production plans and

13



the demand sequence have to be determined simultaneously. For example, a change in the

demand sequence may cause a change in the optimal production plans. In this section we will

derive an approach to calculate a demand sequence that satisfies (6), assuming that the optimal

production plans are known.

Assume that we have a demand sequence with dt = 0 for t = 2, . . . , n − 1. If the optimal

plans are known, then by Lemma 4 a local optimal demand sequence can be found by solving

the system in (6). Given the plans P i and the optimal production plans P ∗i for each horizon i =

n, . . . , T , it follows from (2) that both the nominator and the denominator of r(d, i) = C(d,P i,i)
C(d,P ∗i,i)

are linear functions in the variables dn, . . . , dT−1. Now by ‘cross-multiplying’, system (6) is a

system of multivariate quadratic equations. This is in general a hard problem, because by the

method of repeated substitution one has to find the roots of univariate polynomials of high

degree. Example 1 illustrates this.

Example 1 Consider a problem with T = 5 and n = 3 so that d2 = 0 and d5 = 1
4 . In

Table 2 the production plans, corresponding costs and performance ratios are shown. From

i P i C(d, P i, i) P ∗i C(d, P ∗i, i) r(d, i)

3 {1, 0, 1} 2 {1, 0, 0} 1 + 2d3
2

1+2d3

4 {1, 0, 0, 1} 2 + 2d3 {1, 0, 1, 0} 2 + d4
2+2d3
2+d4

5 {1, 0, 0, 0, 1} 2 + 2d3 + 3d4 {1, 0, 1, 0, 0} 2 + d4 + 1
2

2+2d3+3d4
5
2
+d4

Table 2: Performance ratios for T = 5 and n = 3

r(d, 3) = r(d, 4) it follows that d4 = 2d2
3 + 3d3− 1. Substituting this in r(d, 3) = r(d, 5) we have

12d3
3 +24d2

3 +3d3−4 = 0. Solving this equation we have d∗3 ≈ 0.328, d∗4 ≈ 0.201 and r∗ ≈ 1.207.

Note that this problem can be solved exactly because there exists a closed formula for finding

the root of a polynomial of degree 3. However, no closed formulas exist for polynomials of

degree at least 5 and hence another approach is required for larger values of T .

We will derive a numerical procedure to find values dt that satisfy (6). Assume that the

optimal ratio equals r∗. This means there exists an instance d∗ with r(d∗, i) = r∗ for i =

n, . . . , T . Furthermore, assume for the moment that the optimal plans corresponding to the

i-period problem of d∗, say P ∗i, are known (note that C(d∗, P ∗i, i) = C∗(d∗, i)). If the value r∗

is not known, we can start with an initial guess r. Then for fixed r the system

C(d, P i, i)
C(d, P ∗i, i)

= r for i = n, . . . , T

14



is a system of m + 1 linear equations in m variables (dn, . . . , dT−1) with m = T − n, which

means it is overdefined. Define the residual of equation i by

ei(r, d) = rC(d, P ∗i, i)− C(d, P i, i)

and the sum of squared residuals by

S(r, d) =
T∑

i=n

ei(r, d)2. (7)

Because

ei(r∗, d∗) = r∗C(d∗, P ∗i, i)− C(d∗, P ∗, i) = 0,

it follows S(r∗, d∗) = 0. Therefore, given the optimal production plans, the demand sequence d∗

that solves (6) with corresponding ratio r∗ is a solution of the problem of minimizing (7).

Clearly, given a fixed r, minimizing (7) is nothing but least squares fitting which is a relatively

easy problem. Because the ratio r∗ is at least 1 by definition and because of the existence of

heuristics with worst case ratio 2, the value r∗ can be found by a search procedure on the interval

[1, 2] given that the optimal production plans are known. (Note that we have not proved the

existence of a unique solution in this interval.) We will call the above method which, for given

plans, finds the demand sequence that satisfies (6) the least squares procedure (LSP).

3.4 An initial guess for the optimal plans

The procedure of the previous section cannot directly be applied, because the set of optimal

production plans is not known. Therefore, we will construct a set P ′i (i = n, . . . , T ) that serves

as an ‘approximation’ for the set of optimal production plans. For ease of notation let

r′(d, i) =
C(d, P i, i)
C(d, P ′i, i)

for i = n, . . . , T and R′(d, T ) = min
i=n,...,T

r′(d, i).

Lemma 8 For a given instance d with dt = 0 (t = 2, . . . , n− 1), dt > 0 (t = n, . . . , T − 1) and

arbitrary plans P ′i (i = n, . . . , T ), it holds that R′(d, T ) ≤ R(d, T ).

Proof From the optimality of C∗(d, i) it follows that C(d, P ′i, i) ≥ C∗(d, i). Therefore,

r′(d, i) =
C(d, P i, i)
C(d, P ′i, i)

≤ C(d, P i, i)
C∗(d, i)

= r(d, i).

¤

Note that starting with plans P ′i that are worse than P i leads to r′(d, i) < 1. Therefore,

we have to start with a reasonable guess. Let k be a fixed integer with n < k ≤ T and consider
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the set of production plans P ′i (i = n, . . . , T ) defined as follows (for ease of notation we do not

show the dependence on k of this set)

P ′i
t =





1 for t = 1

0 for t = 2, . . . , i,
for i = n, . . . , k − 1 (8)

P ′i
t =





1 for t = 1 and t = n

0 otherwise,
for i = k, . . . , T. (9)

As for the plans P i, the plan P ′i represents a plan for an i-period problem instance. The value

k indicates that plans consisting of at least k periods have an additional setup in period n. We

will come back on the choice of k in the next section. The motivation to take plans P ′i is that

for small horizons (t ≤ k−1) it seems reasonable to have only a setup in period 1 and for larger

horizons (t ≥ k) it seems reasonable to have an additional setup to reduce the holding costs. A

lower bound W ′(n, T ) on W (n, T ) can be found by solving the system

W ′(n, T ) = r′(d, i) for i = n, . . . , T. (10)

Example 2 To illustrate the use of the sets P i and P ′i consider a problem instance for T = 3.

In this case P 2 = {1, 1}, P 3 = {1, 0, 1} and with k = 3 we have P ′2 = {1, 0}, P ′3 = {1, 1, 0}.
From Lemma 2 it follows that d3 = 1

2 and by (10)

W ′(2, 3) =
2

1 + d2
=

2 + d2

5/2
.

Solving this quadratic equation (note that we do not need the LSP of Section 3.3) we have

d2 = 1
2(
√

21 − 3) ≈ 0.79 and W ′(2, 3) = 1
5(1 +

√
21) ≈ 1.117. So the instance d1 = 1, d2 =

1
2(
√

21− 3), d3 = 1
2 is a problem instance with performance ratio 1

5(1 +
√

21) and hence a lower

bound on the worst case ratio for T = 3.

3.5 An iterative procedure to find worst case examples

In this section we will describe an iterative procedure in which the plans P ′i are updated in

each iteration. We start with some initial guess for the optimal plans and calculate the optimal

demand sequence using the least squares procedure. Now given this demand sequence, we can

determine the ‘real’ optimal plans corresponding to this demand sequence. If these plans are

different from our initial guess, a new iteration is performed starting with these new plans. The

iterative procedure is schematically illustrated in Table 3.

In Step 1 we start with the initial guess P ′i
old (i = n, . . . , T ) for the optimal production

plans. Given these plans, we calculate the optimal demand sequence d∗ and the corresponding
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Iterative procedure to calculate W ′(n, T )

Step 1: Start with some initial guess P ′i
old (i = n, . . . , T )

Step 2: Calculate r∗ and d∗ given P ′i
old (i = n, . . . , T ) using the LSP

Step 3: Calculate P ′i
new (i = n, . . . , T ) given d∗

If P ′i
new = P ′i

old (i = n, . . . , T ) Then

Output: W ′(n, T ) = r∗ and d∗

Stop

Else

P ′i
old = P ′i

new (i = n, . . . , T )

Go to Step 2

End if

Table 3: Iterative procedure to calculate W ′(n, T )

performance ratio r∗ using the LSP of Section 3.3. In Step 3 we check whether the guess

was right by calculating the optimal plans P ′i
new corresponding to d∗. If yes, the procedure is

terminated. If not, then we go back to Step 2 and start with these plans. Note that by Lemma 8

in every iteration the performance ratio will increase. Because the number of plans is finite, the

iterative procedure will terminate.

The iterative procedure (IP) of Table 3 was implemented in Visual Basic. When starting

the IP, we have multiple initial guesses for P ′i
old as k in (8) and (9) can range from n + 1 to T .

Given some value of T and n we started the IP with all possible values of k and it turned out

that the IP always terminated with the same plans P ′i
new. The values W ′(n, T ) for T = 3, . . . , 20

and n = 2, . . . , T − 1 can be found in Table 4. Below each performance ratio the minimum

number of iterations needed before termination over all initial plans is shown. Note that the

performance ratio is 1 if T = 2 or if n = T . In the latter case we only have two strictly positive

demands (including the demand in period 1) which is similar to the case T = 2.
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Table 4 shows some interesting results. First, it follows that W ′(n, T ) ≤ W ′(n + 1, T + 1).

As this property holds for W (n, T ) (see Lemma 3) and because the IP converges to the same

solutions when starting with different initial guesses, it suggests that W (n, T ) and W ′(n, T )

might be equal. Second, we see that for a fixed T the value of n that maximizes W ′(n, T )

(the performance ratios in bold), say n(T ), is increasing in T . Furthermore, we see that for

n < n(T ), W ′(n, T ) is increasing in n, and for n > n(T ), W ′(n, T ) is decreasing in n. Third,

the minimum number of iterations shows that the initial guesses are reasonable. For n close

to T we see that one of the initial guesses is the optimal one. Finally, we note that for large

values of T we can find performance ratios close to 3
2 . For example, W ′(80, 100) = 1.494 and

W ′(480, 500) = 1.499.

Again look at the graph of R∗(d, 5) in Figure 3. The function R∗(d, 5) has two local optima:

d1
3 ≈ 0.328, d1

4 ≈ 0.201 with R∗(d1, 5) ≈ 1.207 and d2
3 = 0, d2

4 ≈ 0.226 with R∗(d2, 5) ≈ 1.191.

The performance ratios of these two solutions are equal to the ratios found by the IP (W ′(3, 5)

and W ′(4, 5) in Table 4), which shows that the IP leads to the optimal solutions for T = 5 with

d2 = 0.

4 Worst case instances

Using the results of the previous section, we will present three worst case problem instances.

First, we will derive a problem instance with three positive demand periods (including period 1)

for which any on-line heuristic has a performance ratio of at least 1
4(
√

17 + 1) ≈ 1.281. Second,

we will give a problem instance for which any on-line heuristic has a performance ratio of at

least 3
2 at the time period of the second setup (where the setup in period 1 is the first). We end

this section with the main result of our paper and present a problem instance for which any

on-line heuristic has a performance ratio of at least 2.

4.1 An instance with three positive demand periods

Theorem 9 There exist a problem instance with three positive demand periods for which any

on-line heuristic has a worst case ratio of at least 1
4(
√

17 + 1) ≈ 1.281.

Proof Note that it is sufficient to show that

lim
T→∞

W (T, T + 1) =
1
4
(
√

17 + 1) ≈ 1.281.
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Assume that demand in period T equals dT = c
T−1 (for ease of notation we use T − 1 in the

denominator). Furthermore, by Lemma 2 we have dT+1 = 1
T . It is not difficult to see that in

the T -period problem it is optimal to have a setup only in period 1 for appropriate c, whereas

plan P T has setups in periods 1 and T . So we have r(c, T ) = 2
1+c . For the (T + 1)-period

problem it is optimal to have setups in periods 1 and T , whereas P T+1 has setups in periods 1

and T + 1 implying that r(c, T + 1) = 2+c
2+ 1

T

. Now the maximum of

W (T, T + 1) = max
c

min

{
2

1 + c
,

2 + c

2 + 1
T

}
,

is attained for c = 1
2(

√
17 + 8/T − 3) with

W (T, T + 1) =
1
2(

√
17 + 8/T + 1)
2 + 1/T

→ 1
4
(
√

17 + 1) ≈ 1.281 as T →∞.

¤

Note that for T + 1 = 3, we have that W (2, 3) = 1
5(
√

21 + 1) which is consistent with the value

found in Example 2. Furthermore, it can be shown that there exist on-line heuristics that have

a worst case ratio of 1
4(
√

17+1) for this instance and hence the problem instance can be called a

worst case problem instance. The theorem also shows that the values on the diagonal of Table 4

tend to 1
4(
√

17 + 1).

4.2 An instance with at most two heuristic setup periods

The numerical results of the IP led to the construction of a problem instance with performance

ratio 3
2 . In Table 5 we present the output of the IP for a 100-period problem instance with

d80, . . . , d100 > 0. This problem instance has a performance ratio of 1.494. Note from the

t 80 81 82 83 84 85 86 87 88 89

(t− 1)dt 0.3391 0.2271 0.1520 0.1018 0.0682 0.0456 0.0306 0.0205 0.0137 0.0092

(t−1)dt

(t−2)dt−1
- 0.670 0.670 0.670 0.670 0.670 0.670 0.670 0.670 0.670

t 90 91 92 93 94 95 96 97 98 99

(t− 1)dt 0.0061 0.0041 0.0028 0.0018 0.0012 0.0016 0.0064 0.0242 0.0874 0.3017

(t−1)dt

(t−2)dt−1
0.670 0.670 0.670 0.670 0.670 1.305 3.976 3.781 3.608 3.454

Table 5: Problem instance generated from the IP with performance ratio 1.494

table that the ratio between the holding cost of two consecutive periods is approximately 2
3 (for

t = 80, . . . , 94). We will present a problem instance with this property and we will show that
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the performance ratio of this instance tends to 3
2 for T large. Define the sequence xt = 1

3(2
3)t

(note that xt
xt−1

= 2
3). In the proof we will use the following property of the sequence xt.

Lemma 10 Let xt = 1
3(2

3)t for t = 0, 1, . . . . Then for all i = 0, 1, 2, . . .

2 +
∑i−1

t=0 xt

1 +
∑i

t=0 xt

=
3
2
.

Proof By induction. First, note that the lemma holds for i = 0 as 2
1+1/3 = 3

2 . Assume that

the lemma holds for some i ≥ 1 so that 4 + 2
∑i−1

t=0 xt = 3 + 3
∑i

t=0 xt. Since 2xi = 3xi+1 we

have

4 + 2
i−1∑

t=0

xt + 2xi = 3 + 3
i∑

t=0

xt + 3xi+1 ⇔ 4 + 2
i∑

t=0

xt = 3 + 3
i+1∑

t=0

xt ⇔ 2 +
∑i

t=0 xt

1 +
∑i+1

t=0 xt

=
3
2
.

¤

Theorem 11 There exists a problem instance for which any on-line heuristic generates at

most 2 setup periods (including the first period) and for which the heuristic has worst case ratio

at least 3
2 .

Proof We will prove the theorem by showing that there exists a problem instance d with

lim
T→∞

R′(d, T ) =
3
2
.

Define the demand sequence d with time horizon T 2 + T + 1 as follows: d1 = 1, dt = 0 for t =

2, . . . , T 2− 1), dt =
xt−T2

t−1 for t = T 2, . . . , T 2 + T with xt as in Lemma 10 and dT 2+T+1 = 1
T 2+T

.

(Using the notation of the previous sections we have set T to T 2 + T + 1 and n to T 2.) First,

for i = T 2, . . . , T 2 + T + 1 we have

C(d, P i, i) = 2 +
i−1∑

t=T 2

(t− 1)dt = 2 +
i−T 2−1∑

t=0

xt

and

C(d, P 1, T 2 + T + 1) = 1 +
T 2+T+1∑

t=T 2

(t− 1)dt = 1 +
T∑

t=0

xt + 1.

Now let P ′i be a production plan for the i-period problem (i = T 2, . . . , T 2 + T ) with only a

setup in period 1 and let P ′T 2+T+1 be a production plan with setups in periods 1 and T 2 (so

using the notation of Section 3.4 we have set k to T 2 + T + 1). Then we have

C(d, P ′i, i) = 1 +
i∑

t=T 2

(t− 1)dt = 1 +
i−T 2∑

t=0

x0
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and

C(d, P ′T 2+T+1, T 2 + T + 1) = 2 +
T 2+T+1∑

t=T 2+1

(t− T 2)dt = 2 +
T 2+T∑

t=T 2+1

t− T 2

t− 1
xt−T 2 +

T + 1
T 2 + T

≤ 2 +
T 2+T∑

t=T 2+1

T

T 2
xt−T 2 +

1
T

= 2 +
1
T

T∑

t=1

1
3

(
2
3

)t

+
1
T
≤ 2 +

2
T

.

By Lemma 10 we have that

r′(d, i) =
2 +

∑i−T 2−1
t=0 xt

1 +
∑i−T 2

t=0 xt

=
3
2

for i = T 2, . . . , T 2 + T.

Furthermore, because limT→∞
∑T

t=0 xt = 1 we have that C(d, P T 2+T+1, T 2 + T + 1) → 3,

C(d, P 1, T 2 + T + 1) → 3 and C(d, P ′T 2+T+1) → 2 for T →∞ and hence r′(d, T 2 + T + 1) → 3
2

and r′(d, 1) → 3
2 for T →∞. In conclusion, demand sequence d is an instance with performance

ratio R′(d, T 2 + T + 1) → 3
2 for T →∞. ¤

4.3 An instance for the general problem

In the previous section we found a problem instance with performance ratio 3
2 . The problem

instance started with a sequence of zero demands followed by a sequence of positive demands.

In this section we will build on this idea. After the last setup generated by the heuristic, we

again extend the demand sequence by a sequence of zero demands followed by a sequence of

positive demands. By repeating this procedure, it will follow that any on-line heuristic has a

worst case ratio of at least 2. We will use the following lemma to prove our main result.

Lemma 12 Let xi = 1
2(1

2)i and yi =
∑i

j=0 xi for i = 0, 1, 2, . . . . Then for i ≥ 0

1 + yi−1

yi
= 2 and yi → 1 for i →∞.

Proof By induction. ¤

Theorem 13 Any on-line lot-sizing heuristic has worst case ratio at least 2.

Proof Consider a partial demand sequence d0, . . . , dT with a solution generated by some on-line

heuristic. We will extend this demand sequence such that the ratio between the cost increase

of the heuristic solution and the cost increase of the optimal solution is arbitrarily close to 2 or

strictly larger than 2.

Let m,n be integers and let dt = 0 for t = T + 1, . . . , T + m − 1, dt = xt−(T+m)

t−T for

t = T + m, . . . , T + m + n − 1, and dT+m+n = 1
m+n . This means we add m − 1 zero demand
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periods and n+1 positive demands to the original demand sequence. We will specify the values

for m and n later.

Let k be the first setup period of the heuristic after period T . We will consider the problem

instance d0, . . . , dk as the new problem instance. Let ∆CH
k = CH(k)−CH(T ) (∆C∗

k = C∗(k)−
C∗(T )) be the cost increase for the heuristic (optimal) solution, where CH(t) (C∗(t)) is the

heuristic (optimal) cost for the 0, . . . , t-period problem. We will show that ∆CH
k

∆C∗k
is arbitrarily

close to 2 or larger than 2 for any k.

• k ∈ {T + 1, . . . , T + m− 1}:
As ∆CH

k = 1 and ∆C∗
k = 0, clearly ∆CH

k
∆C∗k

≥ 2.

• k ∈ {T + m, . . . , T + m + n− 1}:
Let p = k − (T + m). First,

∆CH
k ≥

k−1∑

t=T+m

(t− T )dt + 1 =
k−1∑

t=T+m

(t− T )
xt−(T+m)

t− T
+ 1 =

p−1∑

t=0

xt + 1 = yp−1 + 1.

Second,

∆C∗
k ≤

k∑

t=T+m

tdt =
k∑

t=T+m

t
xt−(T+m)

t− T
=

p∑

t=0

t + T + m

t + m
xt → yp for m →∞.

Hence, by Lemma 12, ∆CH
k

∆C∗k
≤ yp−1+1

yp
= 2 for m →∞.

• k = T + m + n or k does not exist:

First, ∆CH
k ≥ yn−1 + 1. Now consider the optimal solution for the (T + m + n)-period

problem. Construct a solution by taking the optimal solution of the T -period solution

and adding a setup in period T + m. As this is an arbitrary solution,

∆C∗
k ≤ 1 +

T+m+n∑

t=T+m

(t− (T + m))dt = 1 +
n−1∑

t=0

t
xj

t + m
+

n

m + n
≤ 1 +

n

m
yn−1 +

n

m + n
.

Hence, ∆CH
k

∆C∗k
≤ (yn−1 + 1)/(1 + n

myn−1 + n
m+n) → yn−1+1

yn
= 2 for m = n2 and n →∞.

It follows that we can extend any problem instance in such a way that ∆CH
k

∆C∗k
is larger or

arbitrarily close to 2 no matter where the next setup of the heuristic occurs. Given this newly

constructed k-period problem instance, we can in turn extend this problem instance by setting

T = k and applying the procedure as described above. As the cost increase of the heuristic

solution is twice as large as the cost increase of the optimal solution and the cost increase is at

least 1, repeating the procedure will lead to a problem instance with worst case ratio arbitrarily

close to 2. ¤
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We remark that the proof is constructive in the sense that we can build a problem instance for

an arbitrary on-line heuristic starting with a single period (t = 0). We can set the appropriate

values for m and n, dependent on how close to 2 the performance ratio has to be. Finally, the

instance is also a worst case instance as there exist on-line heuristics with worst case ratio 2.

5 Optimal on-line heuristics for T = 3 and T = 4

The ideas of Section 3 did not only result in the construction of a problem instance with worst

case ratio 2, they are also the basis for the construction of an optimal on-line heuristic for a

3-period and 4-period horizon. An on-line heuristic is called optimal if there does not exist any

other on-line heuristic with lower worst case performance. It is clear that we can construct an

optimal heuristic for the case T = 2, because it is optimal to have a setup in period 2 if and

only if d2 ≥ 1. This result can be generalized as follows.

Observation 14 Assume that we have a T -period instance and a plan generated for the first

T −1 periods with the last setup in period p. Then it is optimal to make a new setup in period T

if and only if dT ≥ 1
T−p .

5.1 An optimal heuristic for T = 3

Example 2 shows that d2 = 1
5(
√

21 − 3) ≈ 0.791 may be the threshold value whether or not

to have a setup in period 2 for a 3-period problem instance. Based on this threshold value we

construct a heuristic as follows.

Heuristic for T = 3 (H3)

P1 = 1

If d2 < 1
2(
√

21− 3) Then P2 = 0

If d3 < 1
2 Then P3 = 0

Else P3 = 1

Else P2 = 1

If d3 < 1 Then P3 = 0

Else P3 = 1

Table 6: Heuristic H3 for T = 3
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Proposition 15 Heuristic H3 has a worst case ratio of at most 1
5(1 +

√
21) ≈ 1.117.

Proof First, by Observation 14 instances have a performance ratio larger than 1 if there is a

non-optimal decision in period 2.

• Assume we have an instance d with d2 < d2 and the optimal solution has a setup in

period 2. Then one can show that an instance with d3 = 1
2 will give the largest performance

ratio. The performance ratio of this instance equals

2 + d2

5/2
<

2 + d2

5/2
=

1
5
(1 +

√
21).

• Assume we have an instance d with d2 ≥ d2 and the optimal solution has no setup in

period 2. Then one can show that an instance with d3 = 0 will give the largest performance

ratio. The performance ratio of this instance equals

2
1 + d2

≤ 2
1 + d2

=
1
5
(1 +

√
21).

So the worst case ratio of H3 is at most 1
5(1 +

√
21). ¤

Example 2 and Proposition 15 show that the worst case ratio of Heuristic H3 equals 1
5(1+

√
21)

and this bound is tight.

In the literature there has also been some research on the worst case performance for lot-

sizing heuristics with a finite time horizon. Vachani (1992) analyzed the performance bounds

of several heuristics (not necessarily in the class of on-line heuristics). In Table 7 we summarize

the results for the case T = 3. It follows from Table 7 that our simple heuristic outperforms

all other heuristics. For the notations we refer to Vachani (1992). All performance bounds

Heuristic EOQ POQ SM LUC PPB BMY FC H3

Performance bound ∞ 3 4
3 ∞ 3

2
3
2

6
5

1
5(1 +

√
21)

Table 7: Performance ratios of some heuristics for T = 3

can be derived from (the references to) the examples in Vachani (1992) except for SM. The

performance bound for SM is derived from the following example.

Example 3 Consider an instance with d1 = 1, d2 = 0 and d3 = 1
4 + ε with ε > 0. Let AC(t)

be the average cost for the first t periods with only a setup in period 1. Because AC(1) = 1,

AC(2) = 1
2 and AC(3) = 3/2+2ε

3 > 1
2 = AC(2), SM has a setup in periods 1 and 3 with total
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cost CH = 2. However, it is optimal to have only a setup in period 1 with cost C∗ = 3
2 + 2ε.

Therefore, the performance ratio of this instance equals

CH

C∗ =
2

3
2 + 2ε

→ 4
3

for ε → 0.

Finally, we note that the bound for PPB is smaller than the bound in Vachani (1992) which

is 3T
T+2 = 9

5 > 3
2 . The claim in Vachani (1992) that the example in Bitran et al. (1984) yields

a tight bound is not correct. Namely the example yields a bound of 3T
T+3 when T is a multiple

of 3. The example from Bitran et al. (1984) and the instance d1 = 1, d2 = 1− ε, d3 = 2ε have

a performance ratio of 3
2 for ε → 0.

5.2 An optimal heuristic for T = 4

In a similar way as for the case T = 3 we can construct a heuristic for the case T = 4. The

heuristic is illustrated by the decision tree in Figure 5. Within each node one can find a node

number and above each (relevant) node one can find the threshold value for whether or not to

make a new setup. We will show that the heuristic has a worst case ratio of 1
14(3+

√
177) ≈ 1.165.

7

8

9

10

11

12

13

14

3

4

5

6

1

2

0

d2

d
1
3

d
2
3

1

1

1
2

1
3

1

1

1

1

1

1

1
0

0

0

0

0

0

0

d2 = 0.740

d
1
3 = 0.657

d
2
3 = 0.359

Figure 5: Heuristic H4 represented by a decision tree
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The construction of this heuristic is not as straightforward as for the case T = 3. The value

d2 ≈ 0.7401 maximizes W (2, 4) ≈ 1.150 and the value d
2
3 = 1

22(
√

177 − 9) ≈ 0.359 maximizes

W (3, 4) = 1
14(3 +

√
177) ≈ 1.165. Furthermore, it can be verified that the production plans

on the path through node 1 that maximize the performance ratio of the following nodes are

heuristic plan PH = {1, 1, 1} (node 3) with the optimal plan P ∗ = {1, 1, 0} and heuristic plan

PH = {1, 1, 0, 1} (node 9) with the optimal plan P ∗ = {1, 0, 1, 0}. The value d
1
3 ≈ 0.657

maximizes min{3/(2 + d3), (3 + d3)/(5/2 + d2)} at a value of approximately 1.129.

Proposition 16 Heuristic H4 has a worst case ratio of at most 1
14(3 +

√
177) ≈ 1.165.

Proof The proof consists of calculating the performance ratio at all nodes of the decision

tree in Figure 5. That is, for each node we will consider all (relevant) optimal production plans

and we will show that for each node the performance ratio will be at most 1
14(3+

√
177) ≈ 1.165.

- Node 1: PH = {1, 1}, P ∗ = {1, 0}, CH/C∗ = 2
1+d2

≤ 2
1+d2

≈ 1.150

- Node 2: PH = {1, 0}, P ∗ = {1, 0}, CH/C∗ = 1

- Node 3: PH = {1, 1, 1}

• P ∗ = {1, 0, 1}, CH/C∗ = 3
2+d2

≤ 3
2+d2

≈ 1.095

• P ∗ = {1, 1, 0}, CH/C∗ = 3
2+d3

≤ 3

2+d
1
3

≈ 1.129

- Node 4: PH = {1, 1, 0}

• P ∗ = {1, 0, 0}, CH/C∗ = 2+d3
1+d2+2d3

≤ 2
1+d2

≈ 1.150

• P ∗ = {1, 0, 1}, CH/C∗ = 2+d3
2+d2

≤ 2+d
1
3

2+d2
≈ 0.970 (So P ∗ = {1, 0, 1} cannot be an optimal

plan.)

- Node 5: PH = {1, 0, 1}

• P ∗ = {1, 0, 0}, CH/C∗ = 2+d2
1+d2+2d3

≤ 2

1+2d
2
3

≈ 1.165

• P ∗ = {1, 1, 0}, CH/C∗ = 2+d2
2+d3

≤ 2+d2

2+d
2
3

≈ 1.162

- Node 6: PH = {1, 0, 0}
1Using the same approach as in Example 1, it can be shown that d2 is the positive root of the cubic equation

3x3 + 12x2 + 3x− 10 = 0.
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• P ∗ = {1, 0, 1}, CH/C∗ = 1+d2+2d3
2+d2

≤ 1+2d
2
3

2 ≈ 0.859 (So P ∗ = {1, 0, 1} cannot be an

optimal plan.)

• P ∗ = {1, 1, 0}, CH/C∗ = 1+d2+2d3
2+d3

≤ 1+d2+2d
2
3

2+d
2
3

≈ 1.042

For nodes 7–14 we note that the case with P ∗
4 = 1 is not of interest. Because the cost in

period 4 of the optimal solution is always at least equal to the cost in period 4 of the heuristic

solution, the performance ratios will be at most equal to the performance ratios of the 3-period

problems (that is, the performance ratios corresponding to nodes 3–6).

- Nodes 7 and 11: Because both the heuristic and the optimal solution have a setup in period 4

(as d4 > 1), the performance ratios will be smaller than the performance ratios of nodes 3 and 5,

respectively.

- Node 8: PH = {1, 1, 1, 0}, P ∗ = {1, 0, 1, 0}, CH/C∗ = 3+d4
2+d2+d4

≤ 3
2+d2

≈ 1.095

- Node 9: PH = {1, 1, 0, 1}, P ∗ = {1, 0, 1, 0}, CH/C∗ = 3+d3
2+d2+d4

≤ 3+d
1
3

2+d2+ 1
2

≈ 1.129

- Node 10: PH = {1, 1, 0, 0}

• P ∗ = {1, 0, 0, 0}, CH/C∗ = 2+d3+2d4
1+d2+2d3+3d4

≤ 2
1+d2

≈ 1.150

• P ∗ = {1, 0, 1, 0}, CH/C∗ = 2+d3+2d4
2+d2+d4

≤ 2+d
1
3+2· 1

2

2+d2+ 1
2

≈ 1.129

- Node 12: PH = {1, 0, 1, 0}

• P ∗ = {1, 0, 0, 0}, CH/C∗ = 2+d2+d4
1+d2+2d3+3d4

≤ 2

1+2d
2
3

≈ 1.165

• P ∗ = {1, 1, 0, 0}, CH/C∗ = 2+d2+d4
2+d3+2d4

≤ 2+d2

2+d
2
3

≈ 1.162

- Node 13: PH = {1, 0, 0, 1}

• P ∗ = {1, 1, 0, 0}, CH/C∗ = 2+d2+2d3
2+d3+2d4

≤ 2+d2+2d
2
3

2+d
2
3+2· 1

3

≈ 1.143

• P ∗ = {1, 0, 1, 0}, CH/C∗ = 2+d2+2d3
2+d2+d4

≤ 2+2d
2
3

2+ 1
3

≈ 1.165

- Node 14: PH = {1, 0, 0, 0}

• P ∗ = {1, 1, 0, 0}, CH/C∗ = 1+d2+2d3+3d4
2+d3+2d4

≤ 1+d2+2d
2
3+3· 1

3

2+d
2
3+2· 1

3

≈ 1.143

• P ∗ = {1, 0, 1, 0}, CH/C∗ = 1+d2+2d3+3d4
2+d2+d4

≤ 1+2d
2
3+3· 1

3

2+ 1
3

≈ 1.165

¤
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Note that if d2 > d2, then we already know in the second period that the performance ratio

will be smaller or equal than 1.150. This is due to the relatively high cost in period 2 (at least

d2), which causes a relatively small performance ratio.

6 Discussion and implications of the results

In this section we will show that the main result of Section 4.3 does not only be apply to on-

line heuristics, but also to a broader class of heuristics with a so-called look ahead-look back

feature. This generalizes the result of Axsäter (1985) in another direction, besides the property

that decisions may depend on all previous setup periods. Furthermore, we will show that the

result also applies for on-line heuristics in a rolling horizon environment. Finally, we briefly

discuss the worst case performance of on-line heuristics for the capacitated lot-sizing problem.

6.1 Look-ahead look-back heuristics

On-line heuristics are myopic in the sense that they do not take into account future demand.

However, there is a broader class of heuristics which has a so-called look ahead-look back feature.

When the decision is to make a setup in period t or not, there is an option to look back and look

ahead a number of periods and to move the setup to one of those periods if an improvement

can be made. Wemmerlöv (1983) proposes a variant of PPB where it is allowed to look ahead

and look back one period in order to improve the current solution. Heuristics possessing the

look ahead-look back feature can be considered as a compromise between the class of myopic

on-line heuristics and the heuristics using the complete model horizon.

Consider an on-line heuristic with the additional property to look ahead and look back

l periods. A slightly modified version of the worst case example of Section 4.3 shows that

heuristics with the look ahead-look back feature also have worst case ratio at least 2. First,

consider an arbitrary demand sequence d = d0, . . . , dT . Define a demand sequence d′ consisting

of (l+1)T +1 periods with d′(l+1)t = dt/(l+1) for t = 0, . . . , T and the remaining demands equal

to zero. So we add l zero-demand periods between every two demand periods of the original

sequence. Consider a solution with n setups in periods ti (i = 1, . . . , n) for instance d. Then

the solution for instance d′ with setups in periods (l + 1)ti (i = 1, . . . , n) has the same cost.

Furthermore, it will never be optimal to have a setup in a zero demand period. Therefore, the

optimal cost for sequence d and d′ is equal.

Consider some on-line heuristic with the look ahead-look back feature that generates a
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solution for d′. Clearly, any heuristic of interest will only generate setups in positive demand

periods. Assume that the heuristic generates the first setup in some period t = p(l + 1) with

p ∈ N. When looking back or looking ahead l periods, there are only zero-demand periods and

hence cost will not decrease when moving the setup to one of these periods. Therefore, we can

still apply the proof of Theorem 13 by adding l zero demand periods between any two demands

of the original instance and scaling the demands with a factor 1
l+1 . Thus we have the following

proposition.

Proposition 17 Let H be an on-line heuristic with the additional property to look ahead and

look back l periods for some fixed l > 0. Then H has worst case ratio at least 2.

6.2 Rolling horizon environment

Often the demand for the complete horizon T is not known, but the demand for the first n

periods is known (with n ¿ T ). In this case the lot-sizing problem for n periods is solved, the

first lot-size decision is implemented and the horizon is rolled forward to the period where the

next lot-size starts. Again it is assumed that the next n periods are known and the procedure

is repeated. This is known as lot-sizing in a rolling horizon environment, where n is called

the planning horizon. As the on-line heuristics use no future demand information, they are

particularly suitable to be applied in a rolling horizon environment.

Consider a rolling horizon environment with a planning horizon of n periods. We can easily

construct a problem instance with worst case performance arbitrarily large. Take the instance

with dtn = ε for t = 0, 1, 2, . . . , N (N ∈ N) and zero demands elsewhere. In period 0 any

algorithm faces zero demands in all periods except for period 0 and hence a lot-size of ε is made

in period 0. Now the horizon is rolled forward to period n and we are in the same situation as in

period 0. So any heuristic will generate a solution with setups in periods tn for t = 0, 1, 2, . . . , N .

As it is optimal to have only a setup in period 0 for ε sufficiently small, the performance ratio

for this instance becomes arbitrarily large for N sufficiently large.

Due to the rolling horizon environment no algorithm is able to construct a solution with a

lot-size covering more than n periods, whereas it may be optimal to have lot-sizes that cover

more than n periods. This means that the optimal solution can never be constructed by any

algorithm. This is in contrast with the situation where the planning horizon is not bounded.

In this case it is the fact that the heuristics make the setups in the wrong periods that cause

the non-optimal behavior, while it is possible to construct a solution with the same setups as

in the optimal solution.
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In a rolling horizon environment it seems not fair to measure worst case performance by

comparing the rolling horizon solution with the optimal solution over T periods. Therefore,

Simpson (2001) proposes to measure the heuristic performance by comparing the heuristic

solution with the optimal solution for which no lot-size covers more than n periods. Call this

the n-optimal solution. Clearly, the worst case performance now depends on the length of the

planning horizon n.

Consider the extreme case that n = 1. In this case both any heuristic and the n-optimal

solution have a setup in each period. Using the alternative performance measure, each heuristic

has worst case performance 1. Furthermore, consider the case n = 2 and the simple heuristic

that makes a setup in each period t with dt > 1
2 . It is not difficult to verify that the ratio of the

cost of any 2-period lot-size in the 2-optimal solution is at most 3
2 smaller than the cost of the

same two periods in the heuristic solution. Therefore, the worst case performance of this simple

heuristic is at most 3
2 . So for planning horizons n = 1 and n = 2 there are heuristics with worst

case performance smaller than two when using the alternative performance measure.

On the other hand, consider a rolling horizon environment where n is relatively large. It

will be clear that for n sufficiently large and using the instance of the proof of Theorem 13, the

worst case performance of any on-line heuristic will be arbitrarily close to two (or larger). In

fact, for n sufficiently large the rolling horizon environment changes to the ‘on-line setting’ as

in the previous sections.

At first sight it seems counterintuitive that the larger the planning horizon (i.e., the more

information available), the larger the worst case ratio. However, when using the alternative

performance measure for small planning horizons, it is rather that the cost of the n-optimal

solution is relatively high (compared to the ‘real’ optimal cost) than that the heuristics generate

good solutions.

6.3 On-line capacitated lot-sizing heuristics

A natural question is whether the results in this paper can also be applied to on-line heuristics

for the capacitated lot-sizing problem. In the capacitated lot-sizing problem there is only a

limited amount of production capacity available in each period (Florian et al., 1980). It turns

out that our results cannot be applied to this problem because of feasibility issues, and that the

worst case performance can be arbitrarily large.

Assume that we have an on-line heuristic for the capacitated lot-sizing problem. As on-

line heuristics do not use future demand information and future demand may be higher than
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future capacity, there is a feasibility issue. The only way to make sure that an on-line heuristic

generates a feasible solution (assuming there exists a feasible solution) is to produce at capacity

in each period, because cumulative demand may be equal to cumulative capacity. However, this

leads to problem instances with arbitrarily high performance ratios, as producing at capacity is

undesirable for instances where demand is relatively small compared to capacity.

7 Conclusion

In this paper we studied the worst case performance for a general class of on-line lot-sizing

heuristics. On-line heuristics have the property that setup decisions are made on a period-by-

period basis without taking into account future demand information. We developed a procedure

to construct problem instances with a high performance ratio for a fixed horizon. The insights

obtained from the analysis resulted in the construction of a problem instance with performance

ratio 2. This means that any on-line heuristic has at least worst case performance 2, which

generalizes a result from Axsäter (1985), who proves this result for a more restrictive class of

heuristics. Furthermore, the analysis led to the construction of optimal on-line heuristics for 3-

and 4-period horizons. A direction for future research is to find out whether we can construct

optimal on-line heuristics for general model horizons.
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