25 research outputs found

    Hyperspectral Image Compression Using Prediction-based Band Reordering Technique

    Get PDF
    The hyperspectral image represents various spectral properties Because it consists of broad spectral information of ground materials that can be used for various applications, These images are collected as large amounts of data that must be processed and transmitted to the ground station. These acquired images contain redundant spectral information that has to be reduced in order to reduce transmission and storage capacity. This work focuses on preserving their quality while compressing them using band reordering techniques and prediction coding. This can be accomplished by preprocessing in which sub-bands are decomposed and bands are reordered into unsequenced compression can be accomplished through using the technique of linear prediction. The report discusses the Pavia University hyperspectral image data cube, which was acquired via a sensor known as a reflected optics system imaging spectrometer (ROSIS-3) over the city of Pavia, Italy

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Agricultural Monitoring System using Images through a LPWAN Network

    Get PDF
    Internet of things (IoT) has turned into an opportunity to connect millions of devices through communication networks in digital environments. Inside IoT and mainly in the technologies of communication networks, it is possible to find Low Power Wide Area Networks (LPWAN). Within these technologies, there are service platforms in unlicensed frequency bands such as the LoRa Wide Area Network (LoRaWAN). It has features such as low power consumption, long-distance operation between gateway and node, and low data transport capacity. LPWAN networks are not commonly used to transport high data rates as in the case of agricultural images. The main goal of this research is to present a methodology to transport images through LPWAN networks using LoRa modulation. The methodology presented in this thesis is composed of three stages mainly. The first one is image processing and classification process. This stage allows preparing the image in order to give the information to the classifier and separate the normal and abnormal images; i.e. to classify the images under the normal conditions of its representation in contrast with the images that can represent some sick or affectation with the consequent presence of a particular pathology. For this activity. it was used some techniques were used classifiers such as Support Vector Machine SVM, K-means clustering, neuronal networks, deep learning and convolutional neuronal networks. The last one offered the best results in classifying the samples of the images. The second stage consists in a compression technique and reconstruction algorithms. In this stage, a method is developed to process the image and entails the reduction of the high amount of information that an image has in its normal features with the goal to transport the lowest amount of information. For this purpose, a technique will be presented for the representation of the information of an image in a common base that improves the reduction process of the information. For this activity, the evaluated components were Wavelet, DCT-2D and Kronecker algorithms. The best results were obtained by Wavelet Transform. On the other hand, the compres- sion process entails a series of iterations in the vector information, therefore, each iteration is a possibility to reduce that vector until a value with a minimum PSNR (peak signal to noise ratio) that allows rebuilding the original vector. In the reconstruction process, Iterative Hard Thresholding (IHT), Ortogonal MAtching Pur- suit (OMP), Gradient Projection for Sparse Reconstruction (GPSR)and Step Iterative Shrinage/Thresholding (Twist) algorithms were evaluated. Twist showed the best performance in the results. Finally, in the third stage, LoRa modulation is implemented through the creation of LoRa symbols in Matlab with the compressed information. The symbols were delivered for transmission to Software Defined Radio (SDR). In the receptor, a SDR device receives the signal, which is converted into symbols that are in turn converted in an information vector. Then, the reconstruction process is carried out following the description in the last part of stage 2 - compression technique and reconstruction algorithms, which is described in more detailed in chapter 3, section 3.2. Finally, the image reconstructed is presented. The original image and the result image were compared in order to find the differences. This comparison used Peak Signal-to-Noise Ratio (PSNR) feature in order to get the fidelity of the reconstructed image with respect of the original image. In the receptor node, it is possible to observe the pathology of the leaf. The methodology is particularly applied for monitoring abnormal leaves samples in potato crops. This work allows finding a methodology to communicate images through LPWAN using the LoRa modulation technique. In this work, a framework was used to classify the images, then, to process them in order to reduce the amount of data, to establish communication between a transmitter and a receiver through a wireless communication system and finally, in the receptor, to obtain a picture that shows the particularity of the pathology in an agricultural crop.Gobernación de Boyacá, Colfuturo, Colciencias, Universidad Santo Tomás, Pontificia Universidad JaverianaInternet of things (IoT) has turned into an opportunity to connect millions of devices through communication networks in digital environments. Inside IoT and mainly in the technologies of communication networks, it is possible to find Low Power Wide Area Networks (LPWAN). Within these technologies, there are service platforms in unlicensed frequency bands such as the LoRa Wide Area Network (LoRaWAN). It has features such as low power consumption, long-distance operation between gateway and node, and low data transport capacity. LPWAN networks are not commonly used to transport high data rates as in the case of agricultural images. The main goal of this research is to present a methodology to transport images through LPWAN networks using LoRa modulation. The methodology presented in this thesis is composed of three stages mainly. The first one is image processing and classification process. This stage allows preparing the image in order to give the information to the classifier and separate the normal and abnormal images; i.e. to classify the images under the normal conditions of its representation in contrast with the images that can represent some sick or affectation with the consequent presence of a particular pathology. For this activity. it was used some techniques were used classifiers such as Support Vector Machine SVM, K-means clustering, neuronal networks, deep learning and convolutional neuronal networks. The last one offered the best results in classifying the samples of the images. The second stage consists in a compression technique and reconstruction algorithms. In this stage, a method is developed to process the image and entails the reduction of the high amount of information that an image has in its normal features with the goal to transport the lowest amount of information. For this purpose, a technique will be presented for the representation of the information of an image in a common base that improves the reduction process of the information. For this activity, the evaluated components were Wavelet, DCT-2D and Kronecker algorithms. The best results were obtained by Wavelet Transform. On the other hand, the compres- sion process entails a series of iterations in the vector information, therefore, each iteration is a possibility to reduce that vector until a value with a minimum PSNR (peak signal to noise ratio) that allows rebuilding the original vector. In the reconstruction process, Iterative Hard Thresholding (IHT), Ortogonal MAtching Pur- suit (OMP), Gradient Projection for Sparse Reconstruction (GPSR)and Step Iterative Shrinage/Thresholding (Twist) algorithms were evaluated. Twist showed the best performance in the results. Finally, in the third stage, LoRa modulation is implemented through the creation of LoRa symbols in Matlab with the compressed information. The symbols were delivered for transmission to Software Defined Radio (SDR). In the receptor, a SDR device receives the signal, which is converted into symbols that are in turn converted in an information vector. Then, the reconstruction process is carried out following the description in the last part of stage 2 - compression technique and reconstruction algorithms, which is described in more detailed in chapter 3, section 3.2. Finally, the image reconstructed is presented. The original image and the result image were compared in order to find the differences. This comparison used Peak Signal-to-Noise Ratio (PSNR) feature in order to get the fidelity of the reconstructed image with respect of the original image. In the receptor node, it is possible to observe the pathology of the leaf. The methodology is particularly applied for monitoring abnormal leaves samples in potato crops. This work allows finding a methodology to communicate images through LPWAN using the LoRa modulation technique. In this work, a framework was used to classify the images, then, to process them in order to reduce the amount of data, to establish communication between a transmitter and a receiver through a wireless communication system and finally, in the receptor, to obtain a picture that shows the particularity of the pathology in an agricultural crop.Doctor en IngenieríaDoctoradohttps://orcid.org/0000-0002-3554-1531https://scholar.google.com/citations?user=5_dx9REAAAAJ&hl=eshttps://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/query.d

    An intelligent system for the classification and selection of novel and efficient lossless image compression algorithms

    Get PDF
    We are currently living in an era revolutionised by the development of smart phones and digital cameras. Most people are using phones and cameras in every aspect of their lives. With this development comes a high level of competition between the technology companies developing these devices, each one trying to enhance its products to meet the new market demands. One of the most sought-after criteria of any smart phone or digital camera is the camera’s resolution. Digital imaging and its applications are growing rapidly; as a result of this growth, the image size is increasing, and alongside this increase comes the important challenge of saving these large-sized images and transferring them over networks. With the increase in image size, the interest in image compression is increasing as well, to improve the storage size and transfer time. In this study, the researcher proposes two new lossless image compression algorithms. Both proposed algorithms focus on decreasing the image size by reducing the image bit-depth through using well defined methods of reducing the coloration between the image intensities.The first proposed lossless image compression algorithm is called Column Subtraction Compression (CSC), which aims to decrease the image size without losing any of the image information by using a colour transformation method as a pre-processing phase, followed by the proposed Column Subtraction Compression function to decrease the image size. The proposed algorithm is specially designed for compressing natural images. The CSC algorithm was evaluated for colour images and compared against benchmark schemes obtained from (Khan et al., 2017). It achieved the best compression size over the existing methods by enhancing the average storage saving of the BBWCA, JPEG 2000 LS, KMTF– BWCA, HEVC and basic BWCA algorithms by 2.5%, 15.6%, 41.6%, 7.8% and 45.07% respectively. The CSC algorithm simple implementation positively affects the execution time and makes it one of the fastest algorithms, since it needed less than 0.5 second for compressing and decompressing natural images obtained from (Khan et al., 2017). The proposed algorithm needs only 19.36 seconds for compressing and decompressing all of the 10 images from the Kodak image set, while the BWCA, KMTF – BWCA and BBWCA need 398.5s, 429.24s and 475.38s respectively. Nevertheless, the CSC algorithm achieved less compression ratio, when compressing low resolution images since it was designed for compressing high resolution images. To solve this issue, the researcher proposed the Low-Resolution Column Subtraction Compression algorithm (LRCSC) to enhance the CSC low compression ratio related to compressing low-resolution images.The LRCSC algorithm starts by using the CSC algorithm as a pre-processing phase, followed by the Huffman algorithm and Run-Length Coding (RLE) to decrease the image size as a final compression phase. The LRCSC enhanced the average storage saving of the CSC algorithm for raster map images by achieving 13.68% better compression size. The LRCSC algorithm decreases the raster map image set size by saving 96% from the original image set size but did not reach the best results when compared with the PNG, GIF, BLiSE and BBWCA where the storage saving is 97.42%, 98.33%, 98.92% and 98.93% respectively. The LRCSC algorithm enhanced the compression execution time with acceptable compression ratio. Both of the proposed algorithms are effective with any image types such as colour or greyscale images. The proposed algorithms save a lot of memory storage and dramatically decreased the execution time.Finally, to take full benefits of the two newly developed algorithms, anew system is developed based on running both of the algorithm for the same input image and then suggest the appropriate algorithm to be used for the de-compression phase

    Learning-based Wavelet-like Transforms For Fully Scalable and Accessible Image Compression

    Full text link
    The goal of this thesis is to improve the existing wavelet transform with the aid of machine learning techniques, so as to enhance coding efficiency of wavelet-based image compression frameworks, such as JPEG 2000. In this thesis, we first propose to augment the conventional base wavelet transform with two additional learned lifting steps -- a high-to-low step followed by a low-to-high step. The high-to-low step suppresses aliasing in the low-pass band by using the detail bands at the same resolution, while the low-to-high step aims to further remove redundancy from detail bands by using the corresponding low-pass band. These two additional steps reduce redundancy (notably aliasing information) amongst the wavelet subbands, and also improve the visual quality of reconstructed images at reduced resolutions. To train these two networks in an end-to-end fashion, we develop a backward annealing approach to overcome the non-differentiability of the quantization and cost functions during back-propagation. Importantly, the two additional networks share a common architecture, named a proposal-opacity topology, which is inspired and guided by a specific theoretical argument related to geometric flow. This particular network topology is compact and with limited non-linearities, allowing a fully scalable system; one pair of trained network parameters are applied for all levels of decomposition and for all bit-rates of interest. By employing the additional lifting networks within the JPEG2000 image coding standard, we can achieve up to 17.4% average BD bit-rate saving over a wide range of bit-rates, while retaining the quality and resolution scalability features of JPEG2000. Built upon the success of the high-to-low and low-to-high steps, we then study more broadly the extension of neural networks to all lifting steps that correspond to the base wavelet transform. The purpose of this comprehensive study is to understand what is the most effective way to develop learned wavelet-like transforms for highly scalable and accessible image compression. Specifically, we examine the impact of the number of learned lifting steps, the number of layers and the number of channels in each learned lifting network, and kernel support in each layer. To facilitate the study, we develop a generic training methodology that is simultaneously appropriate to all lifting structures considered. Experimental results ultimately suggest that to improve the existing wavelet transform, it is more profitable to augment a larger wavelet transform with more diverse high-to-low and low-to-high steps, rather than developing deep fully learned lifting structures

    On the design of fast and efficient wavelet image coders with reduced memory usage

    Full text link
    Image compression is of great importance in multimedia systems and applications because it drastically reduces bandwidth requirements for transmission and memory requirements for storage. Although earlier standards for image compression were based on the Discrete Cosine Transform (DCT), a recently developed mathematical technique, called Discrete Wavelet Transform (DWT), has been found to be more efficient for image coding. Despite improvements in compression efficiency, wavelet image coders significantly increase memory usage and complexity when compared with DCT-based coders. A major reason for the high memory requirements is that the usual algorithm to compute the wavelet transform requires the entire image to be in memory. Although some proposals reduce the memory usage, they present problems that hinder their implementation. In addition, some wavelet image coders, like SPIHT (which has become a benchmark for wavelet coding), always need to hold the entire image in memory. Regarding the complexity of the coders, SPIHT can be considered quite complex because it performs bit-plane coding with multiple image scans. The wavelet-based JPEG 2000 standard is still more complex because it improves coding efficiency through time-consuming methods, such as an iterative optimization algorithm based on the Lagrange multiplier method, and high-order context modeling. In this thesis, we aim to reduce memory usage and complexity in wavelet-based image coding, while preserving compression efficiency. To this end, a run-length encoder and a tree-based wavelet encoder are proposed. In addition, a new algorithm to efficiently compute the wavelet transform is presented. This algorithm achieves low memory consumption using line-by-line processing, and it employs recursion to automatically place the order in which the wavelet transform is computed, solving some synchronization problems that have not been tackled by previous proposals. The proposed encodeOliver Gil, JS. (2006). On the design of fast and efficient wavelet image coders with reduced memory usage [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1826Palanci
    corecore