Learning-based Wavelet-like Transforms For Fully Scalable and Accessible Image Compression

Abstract

The goal of this thesis is to improve the existing wavelet transform with the aid of machine learning techniques, so as to enhance coding efficiency of wavelet-based image compression frameworks, such as JPEG 2000. In this thesis, we first propose to augment the conventional base wavelet transform with two additional learned lifting steps -- a high-to-low step followed by a low-to-high step. The high-to-low step suppresses aliasing in the low-pass band by using the detail bands at the same resolution, while the low-to-high step aims to further remove redundancy from detail bands by using the corresponding low-pass band. These two additional steps reduce redundancy (notably aliasing information) amongst the wavelet subbands, and also improve the visual quality of reconstructed images at reduced resolutions. To train these two networks in an end-to-end fashion, we develop a backward annealing approach to overcome the non-differentiability of the quantization and cost functions during back-propagation. Importantly, the two additional networks share a common architecture, named a proposal-opacity topology, which is inspired and guided by a specific theoretical argument related to geometric flow. This particular network topology is compact and with limited non-linearities, allowing a fully scalable system; one pair of trained network parameters are applied for all levels of decomposition and for all bit-rates of interest. By employing the additional lifting networks within the JPEG2000 image coding standard, we can achieve up to 17.4% average BD bit-rate saving over a wide range of bit-rates, while retaining the quality and resolution scalability features of JPEG2000. Built upon the success of the high-to-low and low-to-high steps, we then study more broadly the extension of neural networks to all lifting steps that correspond to the base wavelet transform. The purpose of this comprehensive study is to understand what is the most effective way to develop learned wavelet-like transforms for highly scalable and accessible image compression. Specifically, we examine the impact of the number of learned lifting steps, the number of layers and the number of channels in each learned lifting network, and kernel support in each layer. To facilitate the study, we develop a generic training methodology that is simultaneously appropriate to all lifting structures considered. Experimental results ultimately suggest that to improve the existing wavelet transform, it is more profitable to augment a larger wavelet transform with more diverse high-to-low and low-to-high steps, rather than developing deep fully learned lifting structures

    Similar works

    Full text

    thumbnail-image

    Available Versions