2,040 research outputs found

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF

    Steered mixture-of-experts for light field images and video : representation and coding

    Get PDF
    Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids. These grids are then further decorrelated through hybrid DPCM/transform techniques. However, these 2-D regular grids are less suited for high-dimensional data, such as LFs. We propose a novel coding framework for higher-dimensional image modalities, called Steered Mixture-of-Experts (SMoE). Coherent areas in the higher-dimensional space are represented by single higher-dimensional entities, called kernels. These kernels hold spatially localized information about light rays at any angle arriving at a certain region. The global model consists thus of a set of kernels which define a continuous approximation of the underlying plenoptic function. We introduce the theory of SMoE and illustrate its application for 2-D images, 4-D LF images, and 5-D LF video. We also propose an efficient coding strategy to convert the model parameters into a bitstream. Even without provisions for high-frequency information, the proposed method performs comparable to the state of the art for low-to-mid range bitrates with respect to subjective visual quality of 4-D LF images. In case of 5-D LF video, we observe superior decorrelation and coding performance with coding gains of a factor of 4x in bitrate for the same quality. At least equally important is the fact that our method inherently has desired functionality for LF rendering which is lacking in other state-of-the-art techniques: (1) full zero-delay random access, (2) light-weight pixel-parallel view reconstruction, and (3) intrinsic view interpolation and super-resolution

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Minimizing Computational Resources for Deep Machine Learning: A Compression and Neural Architecture Search Perspective for Image Classification and Object Detection

    Get PDF
    Computational resources represent a significant bottleneck across all current deep learning computer vision approaches. Image and video data storage requirements for training deep neural networks have led to the widespread use of image and video compression, the use of which naturally impacts the performance of neural network architectures during both training and inference. The prevalence of deep neural networks deployed on edge devices necessitates efficient network architecture design, while training neural networks requires significant time and computational resources, despite the acceleration of both hardware and software developments within the field of artificial intelligence (AI). This thesis addresses these challenges in order to minimize computational resource requirements across the entire end-to-end deep learning pipeline. We determine the extent to which data compression impacts neural network architecture performance, and by how much this performance can be recovered by retraining neural networks with compressed data. The thesis then focuses on the accessibility of the deployment of neural architecture search (NAS) to facilitate automatic network architecture generation for image classification suited to resource-constrained environments. A combined hard example mining and curriculum learning strategy is developed to minimize the image data processed during a given training epoch within the NAS search phase, without diminishing performance. We demonstrate the capability of the proposed framework across all gradient-based, reinforcement learning, and evolutionary NAS approaches, and a simple but effective method to extend the approach to the prediction-based NAS paradigm. The hard example mining approach within the proposed NAS framework depends upon the effectiveness of an autoencoder to regulate the latent space such that similar images have similar feature embeddings. This thesis conducts a thorough investigation to satisfy this constraint within the context of image classification. Based upon the success of the overall proposed NAS framework, we subsequently extend the approach towards object detection. Despite the resultant multi-label domain presenting a more difficult challenge for hard example mining, we propose an extension to the autoencoder to capture the additional object location information encoded within the training labels. The generation of an implicit attention layer within the autoencoder network sufficiently improves its capability to enforce similar images to have similar embeddings, thus successfully transferring the proposed NAS approach to object detection. Finally, the thesis demonstrates the resilience to compression of the general two-stage NAS approach upon which our proposed NAS framework is based

    Three dimensional point cloud compression and decompression using polynomials of degree one

    Full text link
    © 2019 by the authors. The availability of cheap depth range sensors has increased the use of an enormous amount of 3D information in hand-held and head-mounted devices. This has directed a large research community to optimize point cloud storage requirements by preserving the original structure of data with an acceptable attenuation rate. Point cloud compression algorithms were developed to occupy less storage space by focusing on features such as color, texture, and geometric information. In this work, we propose a novel lossy point cloud compression and decompression algorithm that optimizes storage space requirements by preserving geometric information of the scene. Segmentation is performed by using a region growing segmentation algorithm. The points under the boundary of the surfaces are discarded that can be recovered through the polynomial equations of degree one in the decompression phase. We have compared the proposed technique with existing techniques using publicly available datasets for indoor architectural scenes. The results show that the proposed novel technique outperformed all the techniques for compression rate and RMSE within an acceptable time scale

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    • …
    corecore