737 research outputs found

    Shape representation and coding of visual objets in multimedia applications — An overview

    Get PDF
    Emerging multimedia applications have created the need for new functionalities in digital communications. Whereas existing compression standards only deal with the audio-visual scene at a frame level, it is now necessary to handle individual objects separately, thus allowing scalable transmission as well as interactive scene recomposition by the receiver. The future MPEG-4 standard aims at providing compression tools addressing these functionalities. Unlike existing frame-based standards, the corresponding coding schemes need to encode shape information explicitly. This paper reviews existing solutions to the problem of shape representation and coding. Region and contour coding techniques are presented and their performance is discussed, considering coding efficiency and rate-distortion control capability, as well as flexibility to application requirements such as progressive transmission, low-delay coding, and error robustnes

    Optimal context quantization in lossless compression of image data sequences

    Get PDF

    The 1995 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center

    Handwritten digit recognition by bio-inspired hierarchical networks

    Full text link
    The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%

    Delta bloom filter compression using stochastic learning-based weak estimation

    Get PDF
    Substantial research has been done, and sill continues, for reducing the bandwidth requirement and for reliable access to the data, stored and transmitted, in a space efficient manner. Bloom filters and their variants have achieved wide spread acceptability in various fields due to their ability to satisfy these requirements. As this need has increased, especially, for the applications which require heavy use of the transmission bandwidth, distributed computing environment for the databases or the proxy servers, and even the applications which are sensitive to the access to the information with frequent modifications, this thesis proposes a solution in the form of compressed delta Bloom filter. This thesis proposes delta Bloom filter compression, using stochastic learning-based weak estimation and prediction with partial matching to achieve the goal of lossless compression with high compression gain for reducing the large data transferred frequently

    Contributions to Medical Image Segmentation and Signal Analysis Utilizing Model Selection Methods

    Get PDF
    This thesis presents contributions to model selection techniques, especially based on information theoretic criteria, with the goal of solving problems appearing in signal analysis and in medical image representation, segmentation, and compression.The field of medical image segmentation is wide and is quickly developing to make use of higher available computational power. This thesis concentrates on several applications that allow the utilization of parametric models for image and signal representation. One important application is cell nuclei segmentation from histological images. We model nuclei contours by ellipses and thus the complicated problem of separating overlapping nuclei can be rephrased as a model selection problem, where the number of nuclei, their shapes, and their locations define one segmentation. In this thesis, we present methods for model selection in this parametric setting, where the intuitive algorithms are combined with more principled ones, namely those based on the minimum description length (MDL) principle. The results of the introduced unsupervised segmentation algorithm are compared with human subject segmentations, and are also evaluated with the help of a pathology expert.Another considered medical image application is lossless compression. The objective has been to add the task of image segmentation to that of image compression such that the image regions can be transmitted separately, depending on the region of interest for diagnosis. The experiments performed on retinal color images show that our modeling, in which the MDL criterion selects the structure of the linear predictive models, outperforms publicly available image compressors such as the lossless version of JPEG 2000.For time series modeling, the thesis presents an algorithm which allows detection of changes in time series signals. The algorithm is based on one of the most recent implementations of the MDL principle, the sequentially normalized maximum likelihood (SNML) models.This thesis produces contributions in the form of new methods and algorithms, where the simplicity of information theoretic principles are combined with a rather complex and problem dependent modeling formulation, resulting in both heuristically motivated and principled algorithmic solutions

    Analysis and Design of Lossless Bi-level Image Coding Systems

    Get PDF
    Lossless image coding deals with the problem of representing an image with a minimum number of binary bits from which the original image can be fully recovered without any loss of information. Most lossless image coding algorithms reach the goal of efficient compression by taking care of the spatial correlations and statistical redundancy lying in images. Context based algorithms are the typical algorithms in lossless image coding. One key probelm in context based lossless bi-level image coding algorithms is the design of context templates. By using carefully designed context templates, we can effectively employ the information provided by surrounding pixels in an image. In almost all image processing applications, image data is accessed in a raster scanning manner and is treated as 1-D integer sequence rather than 2-D data. In this thesis, we present a quadrisection scanning method which is better than raster scanning in that more adjacent surrounding pixels are incorporated into context templates. Based on quadrisection scanning, we develop several context templates and propose several image coding schemes for both sequential and progressive lossless bi-level image compression. Our results show that our algorithms perform better than those raster scanning based algorithms, such as JBIG1 used in this thesis as a reference. Also, the application of 1-D grammar based codes in lossless image coding is discussed. 1-D grammar based codes outperform those LZ77/LZ78 based compression utility software for general data compression. It is also effective in lossless image coding. Several coding schemes for bi-level image compression via 1-D grammar codes are provided in this thesis, especially the parallel switching algorithm which combines the power of 1-D grammar based codes and context based algorithms. Most of our results are comparable to or better than those afforded by JBIG1
    corecore