
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Delta bloom filter compression using stochastic learning-based Delta bloom filter compression using stochastic learning-based

weak estimation weak estimation

Priyanka Trivedi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Trivedi, Priyanka, "Delta bloom filter compression using stochastic learning-based weak estimation"
(2010). Electronic Theses and Dissertations. 7954.
https://scholar.uwindsor.ca/etd/7954

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7954?utm_source=scholar.uwindsor.ca%2Fetd%2F7954&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

UMI'

Delta Bloom Filter Compression

Using Stochastic Learning-Based Weak

Estimation

By Priyanka Trivedi

A Thesis
Submitted to the Faculty of Graduate Studies

Through Computer Science
In Partial Fulfillment of the Requirements for

The Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2010

©2010 Priyanka Trivedi

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-57595-6
Our file Notre reference
ISBN: 978-0-494-57595-6

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

AUTHOR'S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

in

ABSTRACT

Substantial research has been done, and sill continues, for reducing the bandwidth requirement

and for reliable access to the data, stored and transmitted, in a space efficient manner. Bloom

filters and their variants have achieved wide spread acceptability in various fields due to tiieir

ability to satisfy these requirements.

As this need has increased, especially, for the applications which require heavy use of the

transmission bandwidth, distributed computing environment for the databases or the proxy

servers, and even the applications which are sensitive to the access to the information with

frequent modifications, this thesis proposes a solution in the form of compressed delta Bloom

filter.

This thesis proposes delta Bloom filter compression, using stochastic learning-based weak

estimation and prediction with partial matching to achieve the goal of lossless compression with

high compression gain for reducing the large data transferred frequently.

Keywords: Bloom filter, Compression, Stochastic learning-based weak estimation, Delta Bloom

filter, PPM.

iv

DEDICATION

This thesis is dedicated to

My Family

V

ACKNOWLEDGEMENTS

This thesis is a result of the research conducted at the University of Windsor. In the

process, some people who contributed in varied ways to the research and the creation of

the thesis deserve special mention.

I would like to convey my sincere gratitude to my supervisors Dr. Xiaobu Yuan and Dr.

Luis Rueda, for their excellent supervision, advice and guidance through out this research

work. Without their help and guidance the work presented here would not have been

possible. Their confidence in my abilities has been unwavering, and has helped to make

this thesis a solid work. Above all and the most needed, they provided me unflinching

encouragement and support in various ways. I hope to keep up our collaboration in the

future.

I would like to thank my internal reader, Dr. Alioune Ngom and my external reader, Dr.

S. Ejaz Ahmed for their participation as my thesis committee members and for taking out

their precious time to review this thesis and to give their comments and suggestions for

the thesis work. I would also take the opportunity to thank Dr. Akshai Kumar Aggarwal

for being the Chair of Defense.

I gratefully acknowledge Dr. James Frank for his advice and contribution in bringing the

thesis to this level and Dr. Maria Blass for her support at the time when I needed it the

most. I would like to thank my family for their constant support in every possible way.

It is my pleasure to thank all those who made this thesis possible.

VI

TABLE OF CONTENTS

AUTHOR'S DECLARATION OF ORIGINALITY iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

1. INTRODUCTION 1

1.1 Motivation 3

1.2 Thesis Contribution 5
1.3 Thesis Summary 6

2. BLOOM FILTERS 8

2.1 Probabilistic Data Structure 8
2.2 Bloom Filters 8

2.2.1. False Positive Rate 10
2.3 Bloom Filter Applications 11

2.4.1. Networking 11
2.4.2. Web 18

2.4 Delta Bloom Filter 22

3. DATA COMPRESSION 23

3.1 Lossless Compression 24
3.2 Encoding Methods 25

3.2.1 Huffman Coding 26
3.2.2 Shannon and Fano Coding 26
3.2.3 Arithmetic Coding 27

vii

3.3 Adaptive Methods 28
3.4 Higher-Order Models 28

3.4.1 Models 29

3.4.1.1 Probability Models 29
3.4.1.2 Markov Models 30

3.4.2 Prediction with Partial Matching (PPM) 31

3.4.3 Burrows Wheeler Transformation or Block Sorting (BWT) 31

3.4.4 Stochastic Learning-Based Weak Estimation (SLWE) 32

4. PROBLEM SPECIFICATION AND SOLUTION 34

4.1 Delta Bloom Filter 34

4.2 Adaptive Unigram Method 38
4.3 Partial Prediction Model (kth order) 38
4.4 Stochastic Learning-Based Weak Estimation Based Compression 40

4.4.1 Notes on the Implementation 43
4.5 Benefits of Delta Bloom Filter Compression 45

5. IMPLIMENTATION AND EXPERIMENTS 47

5.1 Implementation Consideration 47
5.2 Experimental Setup 48
5.3 Experiment Results and Observations 49

5.3.1 Results of the SLWE based Compression 50
5.3.1.1 Size of the Delta Bloom filter 50
5.3.1.2 Number of Hash Functions Used 54
5.3.1.3 % Change between Bloom filters 55
5.3.1.4 User based .parameter Lambda 57

5.3.2 Result Comparison between SLWE and PPM based Compression 58
5.3.2.1 Size of the Delta Bloom filter 59
5.3.2.2 Number of Hash Functions Used 60
5.3.2.3 % Change between Bloom filters 62

5.4 Analysis and Discussion 64
6. CONCLUSION AND FUTURE WORK 66
6.1 Conclusion 66
6.2 Future Work 67

BIBLIOGRAPHY 69
VITAAUCTORIS 74

viii

LIST OF THE TABLES

Table 2-1: Summary of the Research on the use of
Bloom filters for Network Applications 17

Table 2-2: Summary of the Research on the use of
Bloom filters for Web Applications 21

Table 5-1: Effect of the size of Bloom filter
(4Mb < m< 10Mb) on the SLWE-based compression 51

Table 5-2: Effect of the size of Bloom filter
(5Mb < m< 40Mb) on the SLWE-based compression 52

Table 5-3: Effect of the Number of Hash Functions, k,
on the SLWE-based compression 54

Table 5-4: Effect of percentage of change between two Bloom filters, c,
and X on SLWE-based Delta Bloom filter Compression for m = 140Kb 56

Table 5-5: Effect of A, on SLWE-based Delta Bloom filter compression 57

Table 5-6: Effect of the size of Bloom filter, m, on Compression gain
with respect to different compression models 59

Table 5-7: Effect of the number of Hash Functions, k, used to
construct Bloom filter on different compression models 61

Table 5-8: Effect of percentage of change between two Bloom filters, c,
on different compression models 63

tx

LIST OF THE FIGURES

Figure 2-1: Standard Bloom filter 9

Figure 2-2: Applications in Networking 12

Figure2-3: Web Applications 18

Figure 2-4: Delta Bloom filter 22

Figure 3-1: Compression and Decompression 25

Figure 3-2: A two- state Markov model 30

Figure 3-3: A basic Burrows - Wheeler Compression scheme 32

Figure 4-1: Summary Cache Representation 35

Figure 4-2: Delta Bloom Filter 36

Figure4-3: Bloom filter with4 hash functions 37

Figure 4-4: Delta Bloom filter compression using PPM 38

Figure 4-5: Delta Bloom filter compression using SLWE 41

Figure 5-1: Effect of the size of Bloom filter on the
SLWE-based compression 51
Figure 5-2: Effect of the size of Bloom filter on the
SLWE-based compression 53
Figure 5-3: Effect of the Number of Hash Functions on
the SLWE-based compression 55
Figure 5-4: Effect of percentage of change between two Bloom filters, c,
and X. on SLWE-based Delta Bloom filter compression for m = 140Kb 57
Figure 5-5: Effect of varying A. on SLWE-based Delta Bloom filter
compression for m=140Kb 58
Figure 5-6: Effect of the size of Bloom filter, m, on Compression
gain with respect to the different compression models 60
Figure 5-7: Effect of the number of Hash Functions used to construct
Bloom filter on the different compression models 62
Figure 5-8: Effect of percentage of change between two Bloom filters, c, on different
compression models 64

x

Chapter 1

INTRODUCTION

Computers and the technology related with computers have evolved over time. In

seventies, memory requirements were a major issue. The reason for it was that the

memory available at that time was small and expensive. Therefore, for commercial and

research purposes it was essential to utilize memory resources as efficiently as possible.

In recent years, the scenario has evolved, though the core issues remain the same. The

data to be dealt with has increased exponentially. Although, memory capacities have

increased since the last decades, with the present data requirements, there is a substantial

need to handle the data sets as concisely as possible. On the network side, also, there is a

limitation on the bandwidth and the communication times and costs, since the data

residing at any one node itself are significantly large. Here, also, there is a need for a

concise data representation. Membership query is the most common query type and

extensively used. It would reduce the relative costs sufficiently, even if there was just a

way to know in advance and succinctly about the membership of an element, i.e. whether

the element exist in the set or not.

Bloom filters have the capacity to fulfill all these requirements (broadly speaking, three

aspects of Information Economy), though, with a small limitation. Therefore, there was a

boom in the research work related to Bloom filters and their active participation in the

recent applications. In fact, its use has been picked up for the web applications which are

in demand in the industry.

Bloom filters are now widely used in peer-to-peer network systems [YS2006] and the

research on them is still active in this field. The applications are for string matching,

confidentiality maintenance, or the security [LPKS2005]. Bloom filters are also used for

wireless podcasting and the association rules in data mining [0LW2OO7]. Bloom filters

have found place in the forensic science to efficiently aggregate and search hashing

- 1 -

information. md5bloom [RCBG2006], a Bloom filter manipulation tool that can be

incorporated into forensics, has been introduced. Recently Microsoft produced a Bloom

filter forwarding architecture called BUFFALO which uses a small SRAM to store one

Bloom filter of the addresses associated with each outgoing link. BUFFALO significantly

reduces memory cost, increases the scalability of the data plane, and improves packet -

forwarding performance [MS2009]. A data popularity conscious Bloom filter has been

introduced recently [ZLSS2008]. It considers object popularity in sets and membership

queries and minimizes false-positive probability of BF by adapting the number of hash

functions used for each data object to its popularity in sets and membership queries. An

aging BF with two BF for the dynamic set is introduced to remove stale data in the BF to

make space for the new data. This scheme utilizes memory space more efficiently than

double buffering, the current state of the art [Yoon2010].

As technology is evolving further, now, there is a need for improving the efficiency and

representation of compressed Bloom filters. The applications involving heavy use of the

bandwidth, distributed computing environment for databases or proxy servers, and even

applications that are sensitive to the access to the data with frequent modifications, all

will benefit from the use of compressed Bloom filters. Depending on the benefits that

compressed Bloom filters offer, they will prove of vital use in application areas such as

databases, web caching, P2P applications and network applications.

Moving ahead of this, applications, for example in web proxies, that broadcasts its cache

content or the updates to the other proxies at frequent intervals, will benefit more from

the compressed delta Boom filter, which represents the updates to the Bloom filter in the

compressed form. In this way less data has to be transmitted.

In this thesis, delta Boom filter compression is proposed using Stochastic learning-based

weak estimation (SLWE) [OR2005] and using prediction with partial matching (PPM).

For delta Bloom filter compression, a lossless compression technique is needed to reduce

the amount of data without any loss of data. Using SLWE, probabilities of the source

symbols can be adaptively updated while being encoded. This technique not only uses

- 2 -

statistics of the source but also considers the variability of the source statistics. PPM is a

higher-order source modeling technique that makes use of the past history of the data

being encoded to give more efficient compression.

The proposed methods will provide substantial compression gain to applications relying

on heavy use of the bandwidth and distributed computing environment relying on

frequent updates of the underlying data.

1.1. Motivation

Bloom filters have a widespread use in databases, web caching, P2P applications and

network applications both for data storage and as a message. There is a present need for

an efficient and compact transfer of Bloom filter updates. This thesis addresses this need

and proposes delta Bloom filter compression using SLWE and PPM based methods.

Why Bloom Filters?

A Bloom filter is a probabilistic data structure which is used to test whether an element is

a member of a set, i.e. membership testing. Given a set S = {*/, } on a

universe U, if there is a need to answer queries of the form: Is y e SI, a Bloom filter is a

good choice. Bloom filters provide an answer in a constant time depending on the time to

hash. It requires a small amount of space compared to the original data.

Why Delta Bloom filters?

A Bloom filter is not just a data structure; it can also be used as a message which needs to

be broadcasted. In applications, for example, which require web cache sharing, the

proxies periodically broadcast updates of their cache contents. It has been proved that

Bloom filter-based caches are more efficient than the exact dictionary or the server list

approaches [FCAB2000]. In this scenario, where broadcasting of the updates is required,

a delta Boom filter can be sent instead. Applications that rely on the access to the data,

- 3 -

which is frequently updated, can gain from the use of the delta Boom filter. Furthermore,

this delta Boom filter can be compressed to increase the compression gain for these

applications and this is the main aim that we endeavor in this thesis.

Why Compression?

In a situation in which the Bloom filter is not just a data structure but also a message and

this message needs to be transmitted from one location to another, it will be beneficial to

compress it. Where there is a need for the access to this data which is frequently updated

and transmitted, compressed delta Boom filter can prove beneficial. Compression will

reduce the amount of the data being transmitted.

Why Lossless Compression?

Lossless compression is a process in which the data recovered after decompression is

exactly same as the original data. Bloom filters represent the set in the form of a bit

vector. Each element is hashed k times hi,...hk with the range {l,....m}, i.e. A,-: X —*

{l....m}, 1 < i < k . To store an element Xe S, the bits hj(X) are set to 1 for 1 < / <

k . If any of these bits are incorrectly represented due to the loss of data during

compression, the element which is a member of the set might be incorrectly represented

as not a member. This defies the basic property of the Bloom filter which states that the

false negative rate is not a characteristic of a Bloom filter [Mitz2002]. Therefore, lossless

data compression is the only choice for Bloom filter Compression.

Why SLWE based Compression?

Stochastic Learning-based Weak Estimation (SLWE) is a fairly new technique introduced

in [OR2006]. To the best of our knowledge, it has not been used to compress Bloom

filters. Using this technique we can adaptively update the probabilities of the source

symbols while being encoded. This technique not only uses higher-order statistical

models about the source but also considers the variability of the source statistics. Using

- 4 -

this technique, the data is encoded through single pass unlike the static coding algorithms

which require two passes, one pass to learn the probabilities and the second to encode the

data. As opposed to higher models, SLWE based compression has linear space

complexity. Also, in our experiments it was found out that SLWE achieves a better

compression gain than benchmark arithmetic coding and the higher-order Prediction with

partial matching compression method. Our proposed delta Boom filter compression

method using SLWE also works better in terms of scalability and adaptability in

comparison to the above mentioned methods. This thesis also proposes delta BF

compression using PPM model with arithmetic coding.

1.2. Thesis Contribution

This thesis proposes delta Boom filter compression. With respect to this goal, the thesis

contribution is twofold. Firstly, the use of higher-order model with arithmetic coding, in

terms of prediction with partial matching, for achieving delta Bloom filter compression.

Secondly, the use of SLWE an advanced estimation technique with arithmetic coding that

uses higher-order statistical model and, also, takes into account the variability of the

source statistics, for compressing the delta Bloom filter.

The compression gain achieved by the proposed methods is compared with the

benchmark arithmetic coding with adaptive unigram model with a conclusion that the

proposed methods are more efficient. Also, the results are compared between the

proposed delta Bloom filter compression using higher-order prediction with partial

matching and arithmetic coding, and found that the second proposed method for delta

Boom filter compression using SLWE is better in terms of compression gain.

The proposed methods are tested for the efficiency in terms of the compression gain,

scalability in terms of the dependence on the size of the Bloom filter and the adaptability

in terms of the number of the hash functions used, delta change in the Bloom filter

content, and dependence on the parameter A, (in case of SLWE).

- 5 -

1.3. Thesis Summary

The thesis is organized as follows:

Chapter 2: Bloom filter: In this chapter, Bloom filter principles are explained with its

characteristics and limitations. We highlight why Bloom filters are widely accepted for

the applications. Few uses of Bloom filters for networking and web applications are also

discussed. This cements the fact that, although Bloom filters were introduced in 1970's

[Blooml970], they have an active participation in the computer field. In this chapter, the

principles of the delta Boom filters are also explained.

Chapter 3: Data Compression: This chapter discusses data compression in the past and

in the present scenarios and how it is the behind-the-scene enabler for the common

aspects of our life. This chapter presents different data compression techniques including

lossless compression. Then, the encoding methods and the higher-order models for

coding are discussed. This chapter explains Huffman and arithmetic coding techniques,

as well as higher-order models, including Prediction with partial matching, Burrows-

Wheeler transformation and most importantly, the Stochastic learning- based weak

estimation method which is the backbone of the thesis, are also presented here.

Chapter 4: Problem Specification and Solution: This chapter presents the delta Boom

filter in detail including the real world applications and importance of the proposed

compressed delta Boom filter and how it can play an active role in enhancing the

efficiency of the present model. First, the implementation of the proposed method for

delta Boom filter compression using a higher-order model in terms of prediction with

partial matching coupled with arithmetic coding is presented. Then, the implementation

details of the second proposed method for delta BF compression by using the Stochastic

learning-based weak estimation method are presented.

- 6 -

Chapter 5: Implementation and Experiments: This chapter presents the issues faced

during the implementation and the experimental setup. Then the results of the proposed

delta Boom filter compression using the Stochastic learning-based weak estimation

method are presented. The proposed method is tested for efficiency in terms of

compression gain, scalability in terms of the dependence on the size of the Bloom filter

and adaptability in terms of the number of the hash functions used, delta change in the

Bloom filter content and its dependence on the parameter X.

Then the efficiency and dependence of the proposed methods are compared to the

benchmark and among each other on the factors mentioned above. With the encouraging

results of the comparison, it can be stated that the second proposed method that utilizes

SLWE is better than the benchmark arithmetic coding with adaptive unigram model and

the higher-order model that utilizes prediction with partial matching.

Chapter 6: Conclusion and Future Work: This chapter concludes the thesis by

highlighting the contribution and the possible avenues for future work.

- 7 -

Chapter 2

BLOOM FILTERS

This chapter presents Bloom filters. First, the concept of probabilistic data structure is

presented and then the Bloom filter, a type of probabilistic data structure is introduced

with its characteristics. Then, Bloom filter applications are discussed. At the end, the

principle of the delta Boom filter is presented.

2.1. Probabilistic Data Structure

A probabilistic data structure (PDS) is a data structure that supports algorithms which

inherently use a certain amount of randomness for their operations. Without a measure of

randomness, the data these data structures encode would use a prohibitive amount of

memory and/or the algorithms they support would be very slow. As a trade off for their

space, speed, and computational efficiency, many PDSs allow for a small margin of error

returns for instance Bloom filters.

2.2. Standard Bloom Filter

The Bloom filter was first introduced by Burton H. Bloom in 1970 [BLOOM 1970]. It is a

probabilistic data structure that is used basically to test whether an element is a member

of a set, i.e. membership testing. Here, false positives are possible, but false negatives are

not. Elements can be inserted into the set, but not removed/deleted. There are Bloom

filter variants that have achieved this (counting Bloom filter). The application areas

which require error free performance are not meant to use Bloom filters.

A Bloom filter represents an n-element set S = {Xj, X2, , X„} by using a bit vector

V= Vi, V 2,-— Vm of length m. All the bits are initially set to zero as in Figure 2-1 (a). The

filter uses k independent hash functions hi,...hk with the range {l,..../w}, i.e. hi: X —>

{!..../»}, 1< i< k.

- 8 -

As in Figure 2-1 (b), to store an element Q e S, the bits A,-(Q) are set to 1 for 1 < / < k. It

is to be noted that although a location can be set to one multiple times, it is only the first

change that has an effect. With respect to Figure 2-1 (c), if we want to check whether the

element Q is in the set S, we simply check if all ht{Q) are set to 1 or not. If any is set to 0,

then Q is not a member of S.

0 0 0 0 0 0 0 0 0 0

Figure 2-1: Standard Bloom filter

(a): all the bits are initially set to zero.

(b): each element is hashed k times and corresponding bits are set to one.

(c): While membership testing, Qi and Q3 cannot be members of the groups as they

have a 0 value in the bit corresponding to them.

- 9 -

2.2.1. False Positive Rate / False Drop Rate

If all hi (Q) are set to 1, we should not infer from it that the element Q is definitely in S.

There is a reason behind this. It is also possible that by coincidence hi(Q),...Jtk (Q) are

all set to 1. In the above example in Figure 2-1(c), hiiQi), h2(Qi) and /JJ(£?2) all bits are

set to 1, yet there is a probability that Qz is not the element of the set. This is known as

the false-positive/drop. The probability of this happening is termed as the false-positive

rate. Here, it is to be noted that the Bloom filter does not have a false-negative but may

have false-positive. This means that if an element does not exist in the set, the answer

could be that it does exist. On the other hand, if the element does exist in the set, it is

never possible that it is reported not to exist. In Figure 2-l(c), Q\ and Qi cannot be in the

set as there is a 0 value corresponding to them.

When all the elements are hashed into the Bloom filter, the probability that a specific bit

is still 0 is:

(1-1/#»)*" *£*"""

Suppose that p = e "kn/m. Then, the probability of a false positive, on the assumption that

the hash functions are purely random, is:

f ^ - e ^ y = (l - / t f , where P = e ^

The false-positive rate depends on the total length of the filter and the number of

elements that it contains. In other words, it means that the smaller the size of the Bloom

filter and larger the number of elements it contains, the greater the false positive rate is. It

is to be noted that if the probability, i.e. the false positive rate, is small enough, the false

positive is accepted for many applications. This depends on the advantages of using the

Bloom filter outweighing the false positive disadvantage.

-10-

The overhead borne due to the addition of every hash function remains constant, whereas,

after a given threshold value the compounded benefit of adding this new hash function

starts decreasing. The probability of false positives can be reduced by the allocation of a

larger amount of memory [Mitz2002].

2.3. Bloom Filter Applications

Bloom filters have a wide spread use for the applications that require data for

membership testing or similarity detection. These applications can rely heavily on the

bandwidth. In this section, the Bloom filter use for network and web based applications is

presented. It is relevant to discuss these applications as these are the fields which can also

benefit in the future from the compressed delta Boom filters.

2.3.1. Using Bloom filters for Network Applications

Bloom filters upon their introduction, were not considered for their use in network

applications. As the data residing at any one node itself grew exponentially, it was

realized that there is a limitation on the bandwidth, communication time and cost. The

need for a concise data structure like the Bloom filter was felt and, consequently, they

were implemented into various areas within networking as listed in Figure 2-2. The

research on the applications in networking is later summarized in Table 2-1.

- 1 1 -

Applications In Networking

^ 1 x
f Netww* N Authentication 1 /^^Attack Security

— 7~^
Worm

^ • ^

Spam

Figure 2-2: Applications in Networking

2.3.1.1. Broadcast Authentication

As broadcast authentication is the most basic approach to defend against attackers in the

wireless environments, it is a critical security primitive for sensor networks. The central

server relies on it to issue legitimate commands or queries to all or partial motes in the

network. //TESLA is a light-weight and self-healing protocol for sensor motes. Chen et al

[CLL2008] have proposed an efficient and flexible broadcast authentication protocol

combing //TESLA and compressed Bloom filter techniques. This technique also supports

multiuser authentication.

To bundle W independent //TESLA instances, Curtain takes the last N keys as entries to

be hashed into the Bloom filter of m bits. The Bloom filter bitmap replaces the last-

generated key in standard //TESLA or the root key in tree-based //TESLA as the

commitment. Pre-loaded by the sender to each receiver, the bitmap provides the

computational security during the usage of W //TESLA instances. For the receiver to

activate the next instance, it just checks that the last-generated N keys are all successfully

hashed into the Bloom bitmap. Before the end of the W instances, the sender broadcasts

the compressed bitmap of the next W instance with an ECC signature to enter the next

session.

-12 -

The hash functions used are based on SHA1 and a variant of first-order difference

compression is used to compress the bitmap [CLL2008]

2.3.1.2. Network Routing

Longest Prefix Matching (LPM) techniques are important for networking due to their

fundamental role in the performance of the Internet routers. Internet routers are required

to search variable-length address prefixes for the Classless inter-domain routing (CIDR)

in order to find the longest matching prefix of the IP destination address and retrieve the

corresponding forwarding information for each packet traversing the router. This is often

the performance reducer for the high-performance internet routers.

A probable solution given by Dharmapurikar et al [DKT2003] is sorting the forwarding

table entries by prefix length, associating a Bloom filter with each unique prefix length,

and "programming" each Bloom filter with prefixes of its associated length. A search

begins by performing parallel membership queries to the Bloom filters by using the

appropriate segments of the input IP address. The result of this step is a vector of

matching prefix lengths, some of which may be false matches. Hash tables corresponding

to each prefix length are probed in order of longest to shortest match in the vector,

terminating when a match is found or all of the lengths represented in the vector are

searched. The best part is that the approach is feasible for the newer version Internet

Protocol Version 6 (IPv6) which uses four times larger destination address of 128 bits.

2.3.1.3. Wireless Networks

A wireless object network is a network that connects objects to each other wirelessly.

Due to hardware advances it will be possible to embed small devices into everyday

objects such as toasters and coffee mugs, and hence forming a network. Wang et al.

presented a search engine for such a network called Snoogle. Snoogle uses information

retrieval techniques to index information and process user queries. It uses Bloom filters to

- 1 3 -

reduce communication overhead. Snoogle also considers security and privacy protections

for sensitive data [WTL2008].

2.3.1.4. Authentication

There are two major components for entity authentication for pervasive computing

environments: the Master key and the multiple access tokens. Master keys are

convenient, whereas multiple access tokens improve usability and do not have the

revocation problems. The question is how to combine both the advantages of traditional

master keys and multiple access tokens while avoiding their disadvantages. Zhu et al.

[FML2006] present the Master Key method, which is an approach for digital access

tokens to have the advantages of master keys and multiple access tokens.

The Master Key is invoked when the owner pushes a lock (target resource) or unlock

button. At that time, the Master Key discovers the right key (digital access token) for a

lock and authenticates with the lock. Now, the master key has to deal with privacy,

security and scalability- efficiency problems. The Bloom filter approach is useful here.

The Master key can utilize Bloom filter's time and space advantages as well as false

positive cases. The Bloom filter approach also helps in maintaining the security as

cryptographic hash functions, such as MD5 and SHA, are used.

Code words in the master key approach have two formats: the hash format and the Bloom

filter format. The hash format is used when the key and lock has a one-to-one relation, for

example, after the Master Key has discovered the target lock. The Bloom filter format is

used when keys and locks have one-to-many relationships. For instance, the Master Key

queries a set of potential locks, or a lock needs to identify a particular key owner from

many key owners.

However, here, the Master Key does not support multiple groups of key owners. There

are Bloom filter variants which support multisets. These could be investigated for the

future work. Moreover, compressed Bloom filter can be used for further improvement.

-14 -

2.3.1.3. Network Security

2.3.1.3.1. Worm Attack

It is a fact now that the manual defense techniques are not useful against the worm

epidemic. Due to the high infection speed of worms, worm identification and

containment methods are deployed into the network (instead of end-hosts) for fast and

coordinated response with a high coverage. Signature-based filtering has a higher chance

of containing epidemics and precision compared to blacklisting methods.

The fundamental operation of signature-based filtering is deep packet inspection (DPI),

the string matching of packet payloads against characteristic worm content, known as

signatures [AC2005]. Artan et al presented a space-efficient method to follow and detect

signatures that are fragmented over multiple packets, to solve the multi-packet signature

detection problem. To solve this problem, they introduced a new data structure, called

prefix Bloom filters (PBFs) and Chain heuristic (CH).

PBFs help recognize prefixes of signatures so that signatures over multiple packets can

be detected. These are Bloom filters programmed with the prefixes of the signatures. P, is

taken as the set of /-length prefixes of all signatures with lengths longer than i and 5, is

the set of signatures with lengths i. Then, PBFi is a Bloom filter that is programmed with

the elements of the set Pt and SBFt is a Bloom filter programmed with the elements of

set,.

The major advantage of the Prefix Bloom filter is that, even if a string contains only a

prefix of the signature, this prefix can be detected due to the use of the PBF. Also, to

make sure that the prefixes are detected just like the signatures, the Bloom filter is used to

store these signature prefixes. However, this increases the load on memory requirements.

Therefore, another concept called Chain heuristic is introduced to reduce this increased

memory requirement. This Chain heuristic is used to decrease the false positive rate of

- 1 5 -

prefix Bloom filters as well as the SBFs, without the requirement of any additional

memory.

2.3.1.3.2. Spam Filters

Spamming is the abuse of electronic messaging systems to indiscriminately send

unsolicited bulk messages. The filters are used as a safeguard against the spam by

classifying email as spam or ham (non-spam) by a statistical analysis of the message's

header and content (body). Statistical-based Bayesian filters are widely used in the tools

for blocking spam.

However, they have a problem of being bounded by the memory access rate. Kang. et al.

[KZ2006] have used Bloom filters for speeding up spam filters while keeping high

classification accuracy. First, the method used approximates of the dictionary lookup

with hash-based Bloom filter lookup, which trades off memory accesses with increase in

computations. Second, the method uses lossy encoding.

The approach takes Bloom filters one step ahead and uses a Bloom filter to serve for

value queries while preserving the Bloom filter's desired operating characteristics. For a

given token in the member set, the extension returns a value that corresponds to a given

token as the spam filters must retrieve each token's associated probability value.

-16 -

Table 2-1: Summary of the Research on the use of Bloom filters for Network Applications.

Authors)

Wang, H., Tan,

C.C., Li,Q

Chen, Y., Lin, I., Lei,

C , and Liao, Y.

Dharmapurikar, S.,

Krishnamurthy, P., and

Taylor, D. E.

Feng, Z., Matt W. M.,

and Lionel M. N.

Artan, N. S., and Chao,

H.J.

Kang, L., and Zhenyu

Z.

Conference/Journal
and Year

IEEE INFOCOM 2008

Lecture Notes in Computer

Science, 2008

ACM Conference on

Applications, Technologies,

Architectures and Protocols

For Computer

Communications, 2003.

IEEE International Conference

on Pervasive Computing and

Communications, 2006.

IEEE, Global

Telecommunications

Conference, 2005.

ACM Joint international

conference on Measurement

and modeling of computer

systems, 2006.

Tide of the Paper

Snoogle: A Search
Engine for the Physical
World

Broadcast

Authentication in

Sensor Networks Using

Compressed Bloom

filters

Longest prefix

matching using bloom

filters

The Master Key: A

Private Authentication

Approach for Pervasive

Computing

Environments

Multi-packet signature

detection using prefix

bloom filters

Fast statistical spam

filter by approximate

classifications

Main Contribution

The authors propose a search
engine, Snoogle, for wireless
object networks. It uses a BF to
reduce communication
overhead.
The authors propose an

efficient and flexible broadcast

authentication protocol

combing/<TESLA and

compressed Bloom filter

techniques. It also supports

multiuser authentication.

The authors introduce the use

of bloom filters for the longest

prefix matching for Internet

Protocol (IP) routing lookups.

The authors introduce a new

entity authentication approach,

combining both the advantages

of the traditional master keys

and multiple access tokens

(using BF), for pervasive

computing environments.

The authors introduce Prefix

BF to detect the signatures, of

the worms and malicious items,

that are fragmented over the

network packets and thus to

prevent the epidemic.

The authors introduce use of

Bloom filters to deal with the

problem of memory access of

Bayesian filters (spam filter),

by approximating

classification.

- 1 7 -

2.3.2. Using Bloom filters for Web Applications

Bloom filters can be used at the different levels of the web search/ refinement. Since this

is a relatively new application area, further research is required to get the maximum

benefit from the use of Bloom filters. This research area can be further divided depending

on the context of the use of Bloom filters: membership testing or the less explored area

similarity detection. Bloom filters cannot be used for exact matching due to their false

positive property. However, Bloom filters can be efficiently used for similarity detection.

Web Application!

s
<^~~ Membership Query ^ ~ ^ >

• ^
Prospective Search

\

Unk-Based Ranking

N̂
(^[^JSImitarlty Detection""^)

• Si
Template Removal DupHcata Document

Removal

Figure 2-3: Web Applications

2.3.2.1._Membership Test Based

First is the prospective search. Most of the searches are retro in nature. There is another

search - the prospective search by Irmak et al [IMSGI2006]. This can be used for news

alerts, job hunting, etc. This is a keyword oriented search. The Bloom filter is used along

with a hash table. During the matching phase, when the hash entries are created, the

corresponding bits in the Bloom filter are also set. The overhead for this is quite low.

During the testing phase, first a lookup is done into the Bloom filter to see if there might

be a hash entry for the current QID (integer query ID). If the answer is negative, the

process is continued with the next posting otherwise a lookup is performed into the hash

-18 -

table. Here, not much can be done with the Bloom filter variants. A standard Bloom filter

is sufficient.

One of the basic problems in Information Retrieval on web applications is the ranking

problem: how to arrange the documents that satisfy a query into an order such that the

documents most relevant to the query rank first. A solution is provided by Link-based

ranking algorithms which, again, can be grouped into two classes: query-independent

(in-link count or Google's famous PageRank) and query-dependent (HITS and SALSA).

What can be done further is to lower the query-time cost of HITS-like ranking

algorithms, i.e. algorithms that perform computations on the distance-one neighborhood

graph of the results to a query [GNPmc]. The basic idea is to compute a summary of the

neighborhood of each page on the web (an operation that is query-independent and thus

can be done off-line, may be at index construction time), and to use these summaries at

the time of the query for the approximation of the neighborhood graph of the resulting set

and hence, to compute scores using this approximate graph.

Here, Bloom filters are used to store the ancestors, descendents in the neighborhood

graph to facilitate the membership testing of the elements. Since, here, consistent

sampling is done instead of the random one the properties relevant to the ranking

algorithms are preserved in spite of using approximation of the neighborhood graph.

2.3.2.2. Similarity Detection Based

In web search, content relevance and link analysis comes next. Earlier, not much

attention was paid towards this area. But then researchers got interested in web search

refinement as it became the need of the time and of the industry.

Web search engines have now become a necessity as they offer a lot of convenience to

the users. Therefore, their performance is always under the scrutiny and day after day

better performance is expected. A necessary but also a hindrance in their efficiency is a

feature called Templates. Templates in web sites decrease the web search engine

-19-

performance. There are other template removal methods but their main bottleneck is

speed and scalability. Therefore, Chen et al [CYL2006] have used Bloom filters to

overcome this problem. In the first phase, web segmentation is done. Then the blocks are

clustered based on their layout style information. During the second phase, the word

offset distribution in the block is used to measure the similarity between the contents.

Here, Bloom filters are used. The evaluation is fast here as matching is only a bit wise

AND operation.

Next is the improving of the search experience by removing or grouping all near

duplicate documents in the results presented to the user by Jain N. et al [JDT2005].

There are three stages required here:

1: In the first stage content defined chunking is done to extract the document features.

2: In the second stage, these features are used as the set elements for the Bloom filter.

3: Finally, these Bloom filters are compared to detect the near-similar documents

(a threshold value is already defined).

Compared to other approaches like shingling, the Bloom filter approach is faster as only

bitwise ANDing is required. The second advantage is the compact size of the Bloom

filter. Due to this compact size, it can be easily attached to the document tag. Although, it

would have been more beneficial if a compressed Bloom filter was used; lesser data

would have to be transferred.

-20 -

Table 2-2: Summary of the Research on the use of Bloom filters for Web Applications

Authors)

Irmak, U.,

Mihaylov, S.,

Suel, T., Ganguly,

S., and Izmailov,

R.

Gollapudi, S.,

Najork, M., and

Panigrahy, R.

Chen, L., Ye, S.,

and Li, X.

Jain, N., Dahlin,

M. and Tewari, R.

Conference/Journal
and Year

International conference

on World Wide Web,

ACM, 2006.

research.microsoft.com,
2007.

ACM symposium on

Applied computing, 2006.

International Workshop

on the Web and

Databases, 2005.

Title of the
Paper

Efficient Query

Subscription

Processing for

Prospective

Search Engines

Using Bloom

Filters to Speed

Up HITS-like

Ranking

Algorithms

Template

detection for large

scale search

engines

Using Bloom

Filters to Refine

Web Search

Results

Main Contribution

The authors introduce the

Prospective search engine utilizing

the bloom filters for effective

membership testing.

The authors attempts the major

problem of information retrieval

and introduces a new technique,

utilizing bloom filter, for reducing

the query-time cost of query

dependent link-based ranking

algorithms

The authors introduce a two-stage

template detection method

approach which combines the

template detection and removal to

the index building process of a

search engine. The paper

introduces a bloom filter based

technique for finding similar

sequences

The authors introduce the solution

to the web search efficiency

problem by refining the web

search results by using bloom

filters for the similarity detection

-21 -

http://research.microsoft.com

2.4. Delta Bloom filter

In a scenario where an update to the Bloom filter has to be sent, these updates can either

be new Bloom filters or representations of the changes between the updated filter and the

original filter. Suppose there are two Bloom filters, BF1 and BF2. If an update has to be

sent, another Bloom filter can be generated, which represents the update, by performing

Exclusive-OR between the two Bloom filters as represented in Figure 2-4. The newly

generated Bloom filter representing the update or delta is known as the delta Boom filter.

Delta Bloom filters are discussed in detail in the Section 4.1.

BF1

BF2

Delta Bloom Filter
(BF2XORBF1)

0 0 , r 0 1 0 0 0 1

t i 'V' 0 1 0
If .

?'& 0 1

1 1 0 0 0 0
;

0 0 0

Figure 2-4: Delta Boom filter

One of the practical applications for the delta Bloom filter is sharing of caches between

web proxies. Sharing of caches between web proxies is an important technique for

reducing web traffic and relieving network bottlenecks. Each proxy maintains a Bloom

filter representing its local cache. It also holds the Bloom filters representing caches of

the other proxies. The proxies periodically broadcast updates to their cache contents

[FCAB2000]. Here, delta Bloom filters can be sent as the updates.

-22 -

Chapter 3

DATA COMPRESSION

In the last two decades, there has been a vast improvement in the way communication

takes place. Ever growing Internet, mobile and video communications have become an

integral part of our lives. All these require large amounts of data to be processed, stored

and transmitted. Another aspect that is common to all these, as a major enabler, is data

compression. It would not be an exaggeration to say that if data compression was not

there, then we would not be enjoying today's facilities for communication and

entertainment. It would not even be practical to load images on the websites. Little do we

realize that even for a long distance phone call, it is the data compression in the back

ground present as one of the enabler s.

There is an example of data compression from mid-19th century in the form of Morse

code introduced by Samuel Morse. Morse had observed that a telegram, represented with

dots and dashes, has some letters having more frequency than others. Based on this

observation he assigned shorter codes to the letters occurring more frequently (for

example,'.' for e). This reduced the average time to send the message.

Data compression can range from simple removal of extra space characters to the most

complex and sophisticated currently available statistical models. For example, a simple

removal of all extra space characters, insertion of a single repeat character to indicate a

string of repeated characters, and the substitution of the smaller bit strings for the

frequently occurring characters, can reduce the original size of a text file up to 50 %

[SK2000].

Data compression can be defined as the process of encoding using fewer bits than un-

encoded data through the use of encoding or compression techniques. In general terms,

data compression is a science of representing data in a compact form. The selection of the

compression tools for a particular application depends on the characteristics of the data

and application for which it is going to be used: streaming versus file; expected patterns

- 2 3 -

and regularities in the data; relative importance of CPU usage, memory usage, channel

demands and storage requirements, along with other factors [Mertlbm].

This chapter presents different categories of the data compression techniques as well as

various encoding methods and models.

3.1. Lossless Data Compression

Data compression techniques can be classified as of two types: Lossy and Lossless.

Lossy compression involves techniques in which compressing the data and then

decompressing it, retrieves data that is not exactly the same as the original, but is close

enough to be useful for the application. For an example, if there is a need to compress an

image representing scenery, some loss of data would not matter much. Here, limitations

of human perception can be taken advantage of.

Lossless compression is a technique that reduces the size of a file without losing any

data at all. That means that when a file is compressed, it will take up less space, but when

decompressed, it will still have the exact same data. For instance, images representing

medical data cannot afford to lose data between generation, storage, transmission and

reconstruction.

For lossless data compression, X, in Figure 3-1, is exactly same as Y whereas for lossy

compression schemes, X is slightly different from Y but in the allowable range. Cx

represents the compressed form of X. Y is reconstructed from Cx. As a trade off to this

distortion, lossy compression techniques provide higher compression rate.

-24-

txJpUuTS

Ffrggvfvnjkn
Nbnlkmdcadf
Cdsfmlklemn
Hbhefrekm,.

X Y

Figure 3-1: Compression and Decompression

3.2. Encoding Methods

By taking advantage of redundancy or patterns in the data, it is possible to abbreviate the

data so as to take up less space yet maintain the ability to reconstruct a full version of the

original data when required. In the encoding process, a code word, where a code alphabet

A = {ai, ..., a„}, is associated to represent each source alphabet word, where a source

alphabet S={si sm}, so as to minimize the size of the encoded data.

For lossless compression, we need uniquely decodable codes, that is, any given sequence

code words can be decoded in one and only one way. A code is uniquely decodable if its

extension is non-singular (it is a prefix code). For example, the mapping

C= {a, ->0, <*;>-• I0,ar->110,a,->111}

is uniquely decodable. This can be demonstrated by looking at the follow-set after each

target bit string in the map, because each bit string is terminated as soon as we see a 0 bit

which cannot follow any existing code to create a longer valid code in the map, but

unambiguously starts a new code.

Ffrggvfvnjkn
Nbnlkmdcadf
Cdsfmlklemn
Hbhefrekm,.

- 2 5 -

3.2.1. Huffman Coding

In Huffman coding, the assignment of code words to source messages is based on the

probabilities with which the source messages appear in the message sequence. Messages

which appear more frequently are represented by short code words while messages with

smaller probability map to longer code words. These probabilities are determined before

the transmission begins or can be estimated while encoding in a process called adaptive

coding. A code is said to be adaptive if the mapping from the set of messages to the set of

code words changes with time. Static Huffman coding requires the knowledge of the

probabilities of the source sequence while Adaptive Huffman coding requires

computation of an approximation to the probabilities of occurrence at an instant, as the

sequence is being transmitted. The assignment of code words to messages is based on the

values of the relative frequencies of occurrence at each point in time. A message Xcan be

represented by a short code word early in the transmission because it occurs frequently at

the beginning of the sequence, even though its probability of occurrence over the total

collection is low. Later, when the more probable messages begin to occur with higher

frequency, the short code word will be mapped to one of the higher probability messages

and X will be mapped to a longer codeword.

3.2.2. Shannon - Fano Coding

In 1960's Claude E. Shannon (MIT) and Robert M. Fano (Bell Laboratories, also taught

at MIT) introduced a coding procedure to generate a binary code tree. The procedure

evaluates the symbol's probability and assigns code words with a corresponding code

length. Compared to other methods Shannon-Fano coding is easy to implement. In

practical operation Shannon-Fano coding is not of larger importance. This is due to the

lower code efficiency in comparison to Huffman coding explained above. To create a

code tree according to Shannon's and Fano's algorithm, an ordered table is required

providing the frequency of any symbol. Each part of this table is divided into two

segments and '0 ' is added to the code words in one part while '7 ' is added to the other

part. The algorithm has to ensure that the upper and the lower part of the segment have

-26-

nearly the same sum of frequencies. This procedure is repeated until only a single symbol

is left.

3.2.3. Arithmetic Coding

Arithmetic coding, a special type of entropy coding, is a popular method for generating

variable-length codes but follows a different approach for data compression in

comparison to the static methods. It is more useful while dealing with sources with small

alphabets, for example, binary sources and alphabets with highly skewed probabilities.

Arithmetic coding is capable of achieving compression results which are arbitrarily close

to the entropy of the source [LH1987]. Deviations which are caused by the bit-resolution

of binary code trees do not occur by using this coding. In contrast to a binary Huffman

code tree the arithmetic coding offers a clearly better compression rate. On the other

hand, its implementation is much more complex. The most well-known paper on practical

arithmetic coding algorithm is by Rissanen and Langdon [RL1979]. Arithmetic coding is

also a part of the JPEG 2000 image format [JPEG2009].

The major drawback of arithmetic coding is its low speed because of the several required

multiplications and divisions for each symbol. It is a general technique for coding the

outcome of a stochastic process based on an adaptive model. The main idea behind

arithmetic coding is to assign to each symbol an interval. Starting with the interval [0..1),

each interval is divided into several subintervals, where sizes are proportional to the

current probability of the corresponding symbols of the alphabet. The subinterval from

the coded symbol is then taken as the interval for the next symbol. The output is the

interval of the last symbol. Implementations write bits of this interval sequence as soon as

they are certain.

-27 -

3.3. Adaptive Methods

All of the adaptive methods are one-pass methods; only one scanning of a sequence is

required. Static coding requires two passes: one pass to compute probabilities and

determine the mapping, and a second pass for transmission. Thus, as long as the encoding

and decoding times of an adaptive method are not substantially greater than those of a

static method, the fact that an initial scan is not needed implies a speed improvement in

the adaptive case. In addition, the mapping determined in the first pass of a static coding

scheme must be transmitted by the encoder to the decoder. The mapping may preface

each transmission (that is, each file sent), or a single mapping may be agreed upon and

used for multiple transmissions. In one-pass methods, the encoder defines and redefines

the mapping dynamically, during transmission. The decoder must define and redefine the

mapping in sympathy, in essence, learning the mapping as code words are received.

3.4. Higher-Order Models

Data Compression techniques can also be broadly divided into two categories, the ones

which use statistical techniques and the others which depend on the use of a dictionary.

Dictionary-based compression techniques generally create a dictionary (a pattern of the

characters) in memory as data is scanned looking for repeated data (some

implementations use a static dictionary so it does have to be built dynamically). Based on

a pattern recognition process (a look-up in the dictionary), that string of data is replaced

by a much shorter but uniquely identifiable string. This results in a compression of that

overall data.

Archiving applications tend to use more of the dictionary-based compression techniques

while statistical compression techniques are used more often for real-time applications.

The reason for this selection is based on the speed of the compression and

decompression. Dictionary-based compression techniques have slow compression but

fast decompression speed, whereas statistical compression techniques usually have

-28 -

similarly fast compression and decompression speed. Adaptive dictionary methods can be

traced to the research papers by Ziv and Lempel [ZL1977] [ZL1978]. A combination of

statistical and dictionary based technique is also possible.

Statistical encoding techniques determine the output on the basis of the probability of

the occurrence of the input data sequence. They operate by encoding the symbols one at a

time. The symbols are encoded into variable length output codes. The length of the output

code varies based on the probabilities or frequencies of the symbols. Lower-probability

symbols are encoded using more bits while high probability symbols are encoded using

fewer bits. As such algorithms are more symmetric in nature, the compression and

decompression generally requires the same amount of time. Huffman and arithmetic

coding are probably the most common and widely-used statistical compression

techniques [MBB2003].

3.4.1. Models

A good model for the data is useful in estimating the entropy of the source and leads to an

efficient compression algorithm. A mathematical model for modeling data is usually

needed to develop techniques involving manipulation of data using mathematical

operations. There are many approaches for creating mathematical model for compression

[Syd2000].

3.4.1.1. Probabilistic Models

The simplest statistical model for the source is with an assumption that each one of the

letters generated by the source is independent of each other letter, and each of them has a

particular probability of occurrence. Furthermore, the independence assumption of the

letters can be used with the assignment of the probability of occurrence to each letter.

The probability model for the source generating the letters from the alphabet

A = { a/, a2, —, am}, is defined as P = {P{ai\ P(ai), ..., P{am)}. Having a probability

model, the entropy of the source can be calculated.

- 2 9 -

3.4.1.2. Markov Models

When the probability model requirement of the assumption about the independence of the

letters cannot be met, there is a need to describe the dependence of the elements of the

data sequence on each other. This can be achieved by a model introduced by a Russian

mathematician, Andrei A. Markov and hence known as Markov Model.

q

Figure 3-2: A two- state Markov model

Knowledge of the past k symbols is equivalent to the knowledge of the entire past history

of the process. This indicates the dependence between the symbols not the form of the

dependence. The use of the Markov model does not require the linearity assumption. A

Markov model can be represented by a two-state diagram, for example in case of binary

images, as in Figure 3-2. This Figure consists of nodes 0 and 1, representing possible

states of the system, connected by arrows, representing the rate at which the system

operation transitions from one state to the other state. A state-to-state transition is

characterized by a probability distribution. The probabilities of the transition arrows

emanating from any state must sum to 1. Here, transition probability from state 1 to 0 is

q and that of being in the same state 1 is \-q.

-30 -

3.4.2. Prediction with Partial Matching (PPM)

Some of the most effective results in data compression have been achieved by statistical

source modeling in combination with arithmetic coding. Specifically, prediction with

partial matching (PPM) has generated notable results. The PPM algorithm was proposed

by Cleary and Witten [CW1984]. Substantial improvements and analyses have been

presented since its introduction [Mitz2002]. The techniques which make use of the past

history of the data being encoded to give more efficient compression are known as

predictive coding schemes. There has been resurgence in the use of predictive coding in

its many forms. The latest JPEG standard for lossless image compression uses a

predictive coding algorithm [JPEG2009].

The PPM algorithm initially tries to use the largest context whose size is predetermined.

In case symbol to be encoded has not been encountered in this context, an escape symbol

is encoded and the algorithm tries to use the next smaller context. If, in this context the

symbol is not found, then the context size is reduced further. This process continues until

the context which has been previously encountered with this symbol has been found or it

can be concluded that the symbol has not been encountered in any of the contexts. In this

scenario, a probability 1/Mis used to encode the symbol (M is the size of the source

alphabet). For instance, while coding h of the string "matching", it is first check if the

string "match" has been encountered before, i.e. if h has occurred in context "mate". If it

has not appeared in this context, then escape is encoded and checking for the lower order

context, "ate", takes place. If this has also not occurred then again an escape flag is

transmitted and context "tc " is checked. In the scenario if we escape from every context

then that is a special "order -1" context in which every letter has equal probability or a

frequency 1.

3.4.3. Burrows - Wheeler Transformation (BWT)

The Burrows-Wheeler compression algorithm, introduced in 1994 by Michael Burrows

and David Wheeler [BWT 1994], is a recent development in the field of lossless data

-31 -

compression. The algorithm received considerable attention because of its Lempel-Ziv

like execution speed and its compression performance close to state-of-the-art PPM

algorithms.

It is based on a permutation of the input sequence - the Burrows-Wheeler Transformation

(BWT), also called Block Sorting, which groups symbols with a similar context close

together. In the original version, this permutation was followed by a Move to Front

(MTF) transformation and a final entropy coding (EC) stage. Later versions used

different algorithms which come after the Burrows-Wheeler transform, since the stages

after the Burrows-Wheeler transform have a significant influence on the compression rate

too. In many approaches the MTF stage is replaced by a different stage in order to

achieve a better ranking. Since the task of the MTF stage or its replacement is to

transform the local structure of the BWT output into a global structure the stage is called

a Global Structure Transformation (GST) as represented in Figure 3-3. Representatives of

GSTs are MTF, WFC, AWAF, IF, SIF and DC. A Run Length Encoding (RLE) stage,

which exists in many variations, is also common, mostly in front of the EC Stage

[BWT1994].

BWT ••^Glftv; fWJ

Figure 3-3: A basic Burrows - Wheeler Compression scheme

3.4.4. Stochastic Learning-based Weak Estimators (SLWE)

A new family of "weak" estimators has been introduced recently [OR2005], known as

Stochastic Learning-based Weak Estimators (SLWE), and developed by using the

principles of stochastic learning. The uniqueness of this new approach lies in its

- 32 -

capability of dealing with data coming from different and time-varying sources, making it

suitable for, among other applications, a large range of files types which are transmitted

or stored in computer systems. This technique is used for the proposed delta Bloom filter

compression and is discussed in detail in the next chapter.

- 3 3 -

Chapter 4

PROBLEM SPECIFICATION AND SOLUTION

This chapter presents the delta Bloom filter concept in detail including the real world

applications and the proposed compressed delta Bloom filter. Then the implementation of

the delta Bloom filter compression by the use of a higher-order model in terms of

prediction with partial matching is presented. Next, the implementation details of the

delta Bloom filter compression by the use of the stochastic learning-based weak

estimation method, is presented. At last the benefits of the proposed delta Bloom filter

compression are presented.

4.1. Delta Bloom Filter

The Squid Web Proxy Cache is a fully featured publicly available internet caching server

which is capable of handling all types of web requests on behalf of a user. A request from

the user for a web resource, for instance a web page or a movie, is passed to the real web

server through the caching server. When the real web server returns the requested

resource to the caching server, it stores a copy of the resource in its cache prior to

forwarding it to the user. In the future, if the user requests a copy of the cached resource,

it is delivered from the local proxy server instead of being delivered from a real web

server located far away from the proxy.

The real advantage of a proxy server lies in greatly reducing the web browsing speed as

the frequently visited sites and requested resources are stored locally in the cache. The

commercial profit can be gained by large organizations having a large number of internet

users. On a small scale, it has the advantage for the small businesses or households

having a download quota. Squid web proxy servers also have several other features like

access control [SQJ.

-34-

Sharing caches between web proxies is an important technique for reducing web traffic

and relieving network bottlenecks. User requests to the server are handled through the

proxy. Each proxy maintains a Bloom filter that represents its local cache as shown in

Figure 4-1. It also holds the Bloom filters representing caches of the other proxies. These

proxies periodically broadcast updates to their cache contents. These updates can either

be new Bloom filters or representations of the changes between the updated filter and the

original filter. These updates to the Bloom filters can be exchanged periodically, or after

a certain percentage of the documents in the cache has been replaced, depending on the

underlying implementation. This fairly new web cache protocol called Summary Cache

was introduced by Fan et al. [FCAB2000]. Summary Cache is implemented in Squid

vl.1.14. Also, a variation of this procedure called cache digest is implemented in Squid

1.2b20[SQ].

Figure 4-1: Summary Cache Representation.

The difference, or delta, between the updated and original filter can be represented by

performing exclusive-OR of the corresponding bit arrays. As represented in the following

Figure 4-2, suppose there are two Bloom filters BF1 and BF2 of the same size. Delta

- 3 5 -

Bloom filter is formed by performing exclusive-or operation on BFU and BF2i and

storing in dBFh Here, dBF7 =BF17 © BF27.

0
0
1
0
1
0
0
1
0
1

_ 1 ,
1
1
0
1
0
1
1
0
1

BF10XORBF2o

BF17XORBF27
- * • >

0

0
0

BF1 BF2 Delta Bloom Filter
(BF2XORBF1)

Figure 4-2: Delta Bloom Filter

The delta Bloom filter can then be compressed. Compression of the delta Bloom filter

using arithmetic coding was first discussed by M. Mitzenmacher [Mitz2002].

This thesis, proposes the delta Bloom filter compression by using a fairly new technique

known as stochastic learning based weak estimation (SLWE) [RO2005]. This technique

is adapted for the use with the data. The results show that SLWE based compression

results in much more compression gain in comparison to the benchmark arithmetic

coding and also with the use of the higher order PPM based compression. The PPM

algorithm has been adapted for the delta Bloom filter compression and presented in this

thesis.

Due to the inexistence of the appropriate standard data benchmarks, the efficiency of the

algorithm has been proved through simulation with synthetic data. This is the same

approach which has been followed by M. Mitzenmacher [Mitz2002] to present their

experiment results. A pseudorandom number generator is used for generating the values

-36-

for creating the Bloom filters. A seed is used with the pseudorandom generator to

initialize it. This ensures that each time testing of the implemented algorithm is

performed the same random number series is generated. These values are passed to k

hash functions, where 2 < k < 10. These hash functions generate a value within the range

of m, the size of the Bloom filter. The bits at the corresponding index positions generated

by the hash functions are set to 1. Figure 4-2 represents a Bloom filter with m = 10.

Element a passed to four hash functions as k = 4. The result of the first hash function Hi.

is the index 2. Therefore, the bit at position 2 is set to 1. Similarly, for element a, the bits

at positions P4, Pzand Pw are set to 1.

±
o_
JL
jo
jo
j _
o.
1

Figure 4-3: Bloom filter with 4 hash functions.

Due to the difficulty of dealing with the implementation of arithmetic coding, the

maximum number of bits that would be required to be sent to the decoder for

decompression are calculated.

For e lement a

H i (a) = P 2

H 2 (a) = P 9

H 3 (a) = P 4

H 4 (a) = P 7

-=»

-37 -

4.2. Adaptive Unigram Model

The adaptive unigram model tracks the count of the bytes encountered before and based

on the frequency count estimates the probability for the byte b. The model updates

counters after each byte, and hence it is adaptive. It makes use of strings of length 1, that

is why, it is known as unigram. Each of the byte's counters has an initial value of 1 based

on the principle of Laplace smoothing. If the sum of the counts exceeds the maximum,

the counts are rescaled by dividing them by 2 and rounding up to at least 1. The adaptive

unigram model with the arithmetic coding is the benchmark compression method for the

comparisons in the thesis. The results of the proposed delta Bloom filter compression

using PPM and SLWE are compared with adaptive unigram based compression.

4.3. Prediction with Partial Matching (PPM)

As discussed in the third chapter, prediction with partial matching is an adaptive model

that can be used with the entropy-based encoding technique. Here, PPM is used with

arithmetic coding. This implementation can be found at http://www.data-

compression.info/Algorithms/AC/. For this thesis, it has been adapted for the use

depending on the data being compressed. The thesis presents a new method that involves

delta Bloom filter compression using a PPM model.

BloomFilterl BloomFiltera

BF2 X O R BF1

Delta Bloom Filter

P P M Adaptive
Model with

Arithmetic Coding

i
Compressed Data

Figure 4-4: Delta Bloom filter compression using PPM.

- 3 8 -

http://www.data-

Once the two Bloom filters are created, the exclusive-OR operation is performed on

them. Exclusive-OR is a logical operator which results in a value / or true when exactly

one of the operands is true. Here, exclusive-OR results in a value 1 to denote an update or

delta to the Bloom filter. This operation results in the generation of the delta Bloom filter.

Then, the data is converted to the byte format using a shift operator as the PPM model

deals with the bytes. This data is passed to the PPM model and then encoded using

arithmetic coding for the compression. For encoding, the data is accessed in the bit

format.

PPM Algorithm:

Repeat

Read next symbol, s.

Let dK, d(K-i), • • •, di be the preceding K characters.

Set the context size, k, to the maximum, K.

While (dk,. .., d{) has not been seen previously:

Set£<-£- 1.

While k > 0 and c is not in context {dk, . .., di):

Transmit an escape flag using context {dk,..., di).

Set k to k - 1.

If A: <—-1: Transmit symbol s using the special "order -1" context. Set k = 0.

Else Transmit s using context {dk, • • •, di).

VM\ek<K:

If context {dk, • • •, di) does not exist, create it.

Increment the count for s in context {dk,.. ., di).

Set&<-£ + 1.

Until end of file.

For decompression, the compressed data is passed to the arithmetic decoder which using

the PPM model reconstructs the original data.

-39 -

The algorithm for delta Bloom filter compression using PPM is as follows:

Start

Get Bloom niters BF1 and BF2

if BF1 is not equal to BF2

calculate BFX ^-BF2 XOR BF1

end if

convert BFX to byte array

use PPM model with the given context size, K, to provide an estimate for the probability

for the nth byte

encode data with cumulative probabilities

End

4.4. Stochastic Learning-based Weak Estimation (SLWE)

As discussed earlier, two Bloom filters are generated through simulation. Pseudorandom

number generator is used for generating the values for creating the Bloom filters. These

values are passed to k hash functions, where 2 < k < 10. These hash functions generate a

value within the range of m, the size of the Bloom filter.

Once the two Bloom filters are created, the exclusive-OR operation is performed between

them. This operation results in the generation of the delta Bloom filter representing the

updates to the original Bloom filter. Then Stochastic Learning-based Weak Estimation is

used for updating the probabilities as represented in the following Figure 4-5.

- 40 -

BloomFilterl BloomFilter2

BF2 XOR BF1

Delta Bloom Fllteif

SLWE with
Arithmetic Coding

1
Compressed Data

Figure 4-5: Delta Bloom filter compression using SLWE.

Binomial distribution is a discrete probability distribution of the number of successes in a

sequence of n independent success/failure observations, each of which yields

success/failure with probability p. Such a success/failure experiment is also called a

Bernoulli trial. Therefore, it can be said that a binomial random variable is characterized

by the number of the Bernoulli trials and the parameter characterizing each Bernoulli

trial. It is assumed that the number of observations is the number of trials, and the

stochastic learning methods are used to estimate the Bernoulli parameter for each trial.

Suppose that X is a binomially distributed random variable, having the value of "0" or

" 1 " . It is an assumption that X obeys the distribution S, where S = [s\, sj]7 where T

denotes the transpose of a vector.

X = "0" with probability s0

= " 1 " with probability s\, where, so + s\ = 1.

Let x («) be a concrete realization of Xat time "«". The goal is to estimate S, i.e., s, for

i =0, 1. This is achieved by maintaining a running estimate

P (n) = [po (n), pi (n)]T of S, wherep,(n) is the estimate of 5, at time ' V , for i = 0, 1.

-41 -

Then, the value of po (n) is updated as per the following rule:

Po(n+\)*-Xp0(n)ifx(n)=l (1)

<-l-Xpi(n)ifx(n) = 0 (2)

Where k is a user defined parameter and/?i(« +1) <— 1 - po(n + 1); k is used to learn the

probability of the next symbol based on the probability of the previous symbol.

The above explained probability updating method is utilized by an entropy based

encoding technique called arithmetic coding. This method for probability updating is

invoked by the encoding and decoding algorithm.

The algorithm followed for the delta Bloom filter compression using SLWE is as follows:

Start

Get Bloom filters BF1 and BF2

ifBFl is not equal to BF2

BFX^BF2XORBFl

end if

set count to 0

for each chosen value of X.

update the probabilities for each symbol in BFX

calculate number of bits used to encode each symbol in BFX by its information

amount, /n <- [- log2 Vi 001

Sum the number of bits used to encode all the symbols

hot *~ 'tot + 'n

count +—count + 1

end for loop

calculate the number of bits required to send k, bl <— flog2 counter]

calculate total number of bits required to represent compressed data, bitsn *—I,ot+ bl + 2,

and round off bitsn.

- 42 -

calculate compression gain s <—(1 - bitsn) / 100

End

4.4.1. Notes on the Implementation

Due to the difficulty of dealing with the implementation of the arithmetic coding, the

maximum number of bits that would be required to be sent to the decoder for

decompression are calculated.

It is assumed that the symbol at time n, s,, is encoded using the number of bits determined

by its information amount that is — log2Pj (n). This also assumes that all the symbols

occur independently of each other. Hence, the whole sequence, X, can be encoded by

using the following number of bits:

r-iog2n£=iP(*(n))i

= r-2£_ilog2p(x(n))l

As the bits to be transferred cannot be represented as a fraction, the total information

amount is rounded off.

On the other hand, the SLWE needs the parameter X to learn the probability of the next

symbol based on the probability of the previous symbol. This parameter X is optimized

based on the knowledge of the previous experiments [RO2005]. The range that is used

for the proposed method is 0.9900 < X < 0.9999. This gives a total 100 different values

for X. For decompression, the decoder requires to know the value of X in order to fully

recover the original data. The number of bits required to send the values of X can be

calculated as Pog21001, that is 7 bits. Again, this value needs to be rounded off in order

to avoid getting a fraction as the number of bits.

-43 -

Arithmetic coding has lower and upper bounds for a number of bits sent to the output

based on the information amount, entropy and the statistical data of the symbols predicted

by the SLWE. These bounds on the information amount can be derived as follows.

Upper and lower bounds on the number of bits required to be sent [Syd2000]:

The number of bits l(x) required to encode the entire sequence x, with enough accuracy

such that the codes for different values is unique is

lM = K^l + 1 (1)

where P(x) is the probability of x.

Since, /(x) is the number of bits required to encode entire sequence x, the average length

of an arithmetic code for a sequence of the length m, IAm , is given by

IAm = ZP(X)1(X) (2)

<!PW[[log^l+ l + l] (4)

= -ZP(x)logP(jr) + 2EP(;0 (5)

= H(Xm) + 2 (6)

Given that the average length is always greater than the entropy, the lower and upper

bounds on Ij* are

H(Xm) < IAm < H(Xm) + 2 (7)

-44-

Since the equation (7) gives an upper bound, the number of bits needed to encode a

sequence of the length m will not exceed 2 bits from the number of bits determined by its

information amount.

Therefore, the number of bits required to send the compressed data, two bits to cover the

upper limit for arithmetic coding and the number of bits required to send the value of X,

which is 7, are added together to estimate the size of the output. All of these will make

sure that the original input will be completely recovered from the compressed data and,

hence, achieving lossless compression.

4.5. Benefits of Delta Bloom Filter Compression

The proposed methods will provide substantial compression gain to applications relying

on heavy use of the bandwidth and distributed computing environment relying on

frequent updates of the underlying data. In a scenario where Bloom filter is not just a data

structure but also a message which needs to be transmitted from one location to another,

it is beneficial to compress it especially where frequent updates of this Bloom filter are

required to be transmitted. It will reduce the amount of data transmitted. If any of the bits

of the Bloom filter are incorrectly represented due to the loss of data during compression,

the element which is a member of the set might be incorrectly represented as not a

member. This will defy the basic property of the Bloom filter which states that the false

negative rate is not a characteristic of a Bloom filter. To ensure this does not happen, for

the proposed methods, lossless compression technique is used to reduce the amount of

data and there would be no loss of information due to compression. Further, using

SLWE as proposed in our method, probabilities of the source symbols can be adaptively

updated while being encoded requiring only one pass as opposed to the static coding

method that would have required two passes.

The proposed methods are tested for the efficiency in terms of the compression gain,

scalability in terms of the dependence on the size of Bloom filter and adaptability in

terms of the number of hash functions used, delta change in the Bloom filter content, and

- 4 5 -

its dependence on the parameter X. This ensures that the proposed methods perform better

than the benchmark zero-order arithmetic coding for different requirements of the

applications.

- 46 -

Chapter 5

IMPLEMENTATION AND EXPERIMENTS

This chapter presents the details of the experiments. The details of the case of delta

Bloom filter compression using SLWE with arithmetic coding method are presented here.

Adaptive kth order prediction with partial matching model with arithmetic coding for

delta Bloom filter has also been implemented. Delta Bloom filter compression using

adaptive unigram with arithmetic coding acts as the benchmark to compare the

performance of the proposed delta Bloom filter compression using the higher-order

models with arithmetic coding, including PPM and the Stochastic Learning-based Weak

Estimation (SLWE) method. The results show that further improvement in the

compression gain is possible by applying the proposed compression methods.

In this chapter, first, the implementation issues and the experiment set-up are discussed.

Then the results of the experiments are discussed. The proposed delta Bloom filter

compression methods are tested for scalability by varying the size of the Bloom filter.

The results of the experiments are compared with the varying number of the hash

functions and the percentage of change between the Bloom filters to test for the

adaptability. This chapter also presents the impact of varying X, a parameter required for

SLWE, on the compression gain. At the end of the chapter, the findings are compared and

concluded with positive results.

5.1. Implementation Considerations

We have to deal with the different formats of the data for the two implementations.

Prediction with partial matching uses data in the byte format whereas Stochastic learning-

based weak estimation requires data to be in bit format. The implementation needs to be

carried out so as to process the data in the required format specific to each model. Then,

for the comparison between the efficiency of the two methods, the compression gain is

-47 -

used. The model which has a higher compression gain or the percentage of the space

savings, represented as S, is better.

Secondly, the values of A need to be passed to the decoder as this value will be required

for the reconstruction of the data from the compressed data. As explained in Chapter 4,

the number of bits required to be sent to the decoder are calculated. There will be a small

overhead for sending these data.

5.2. Experimental Setup

All the implementations are done in Java on Eclipse IDE on a Windows XP operating

system with 760 MB of RAM, on Intel® Celeron M® 1.6 GHz processor.

For the experiments and comparisons, the implementation includes the following three

schemes:

• Benchmark: the adaptive unigram model with arithmetic coding for delta

Bloom filter (base for comparison).

• Adaptive kfh order PPM model with arithmetic coding for the delta Bloom

filter.

• SLWE with arithmetic coding for the delta Bloom filter.

The basic code for the adaptive unigram and PPM models were obtained from the

compression data repository [ACcomp]. In this thesis, a new method for delta Bloom

filter compression is proposed using PPM. After the implementation, the code is tested

with Bloom filters of various sizes, m, with different number of hash functions used to

create a Bloom filter, k, with different percentage of changes for the delta Bloom filter, c,

and with A, the parameter used in SLWE values.

First, two Bloom filters of the same size using random numbers are generated. For this a

pseudorandom number generator in Java is used. A specific seed is used to initialize the

- 4 8 -

pseudorandom number generator. This ensures that each time the code is tested the same

random number series are generated. For creating the Bloom filter, in the initial

experiments, two hash functions are used. The general hash function library is used from

http://www.partow.net and modified to suit the data requirements. The hashing algorithm

md5, which is available in the Java library, can also be used. However, this could be only

one of the k hash functions.

The size of the Bloom filter, m, is set to 140,000 bits and two hash functions are used,

k=2. The percentage difference between the two Bloom filters, c, is set to 5%. This setup

is followed for all initial tests of the implemented methods. This is the setup discussed by

Mitzenmacher for compressed Bloom filters [Mitz2002]. Therefore, to ensure that the

proposed method performs with the same settings, initially, we tested our code with them.

At first, two Bloom filters are generated as discussed earlier for the initial testing and the

delta Bloom filter is created by Exclusive ORing the two Bloom filters. As discussed

earlier, this Delta Bloom filter represents the update in the Bloom filter. Then the delta

Bloom filter is passed to the adaptive unigram model, PPM and SLWE, based on which

the arithmetic coding is carried out.

5.3. Experimental Results and Observations

In this section, firstly, the results of the proposed delta Bloom filter compression using

SLWE are presented. Secondly, the results of the delta Bloom filter compression using

PPM are presented. The proposed methods are tested with the Bloom filters of various

sizes, m, with different numbers of hash functions used to create a Bloom filter, k, with

different percentages of changes for the delta Bloom filter, c and with X, the parameter

used in SLWE and tested only for SLWE values. The results have been organized in a

tabular format, and then to show the trend of the results by varying the factor values is

represented through the graphs

- 4 9 -

http://www.partow.net

5.3.1. Results for the SLWE based Delta Bloom filter compression

In this section, we discuss the results of the experiments performed for testing the

proposed delta Bloom filter compression using the SLWE technique. The pattern

followed by varying the size of the Bloom filter, number of hash functions used,

percentage of change between the Bloom filters and the effect of the parameter X on our

proposed method are studied and presented. It is found that the proposed methods follow

a consistent pattern based on the above mentioned factors.

5.3.1.1. Size of the Bloom filter

i) The delta Bloom filter compression is tested for different sizes of the Bloom filter. The

size of the Bloom filter is in the range from 4 to 10Mb. Four hash functions are used to

create the Bloom filters and the percentage of change between the Bloom filters is 5%.

In Table 5-1 the results of the experiments are summarized. Table 5-1 shows the effect of

the size of the Bloom filter and X on the compression gain. For example, if a 5 Mb Bloom

filter is compressed by using X = 0.9994, a maximum compression gain of 86.98238% is

achieved. It also shows that if a larger size Bloom Filter is used then the compression

gain is higher. The compression gain increases with the size of the Bloom filter.

Compression gain also depends on the values of A but one particular value for X does not

result in the best result for all sizes of the Bloom filters.

-50-

Lambda
Values
0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

4Mb
86.716

86.718

86.720

86.721

86.721

86.719

86.715

86.705

86.683

86.609

5Mb
86.976

86.978

86.980

86.982

86.982

86.982

86.979

86.973

86.956

86.897

Bloom Filter Size
6Mb
87.487

87.490

87.492

87.494

87.495

87.495

87.493

87.488

87.474

87.426

7Mfr
88.121

88.124

88.127

88.129

88.130

88.131

88.130

88.126

88.114

88.072

; •' V !;••'<: "-

8M%-^'
88.711

88.713

88.716

88.718

88.720

88.721

88.720

88.717

88.707

88.671

£•*. V • •/•
3WH*"1.:; •
89.222

89.225

89.227

89.230

89.232

89.233

89.233

89.231

89.222

89.190

10Mb
89.732

89.735

89.738

89.740

89.743

89.744

89.744

89.743

89.735

89.706

Table 5-1: Effect of the size of the Bloom filter (4Mb < m < 10Mb) on the SLWE based
compression

The graph in Figure 5-1 has two variables, size of the Bloom filter and the parameter X. It

shows the effect of the size of Bloom filter on the compression gain achieved by SLWE-

based delta Bloom filter compression for a specific value of X. It can be noticed that the

graph follows a particular trend of consistent increase in compression gain with the

increase in the size of the Bloom filter. It also shows that the difference between

compression gain achieved by varying values of A for a particular size of the Bloom filter

is very close.

Lambda

O)
c
o
en
w
a>
i—

QL
E
o
O

J" * ^ * ^ * ^

— 0.999
0.9991

* 0.9992
0.9993

— 0.9994
— 0.9995
— 0.9996
— 0.9997

0.9998
--0.9999

Size of the Bloom filter (m) •

Figure 5-1: Effect of the size of Bloom filter on the SLWE-based compression

51

ii) Delta Bloom filter compression has also been tested on large size Bloom filters.

During these experiments, the size of the Bloom filter is set in the range 5 to 40Mb. Four

hash functions are used to create the Bloom filters and the percentage of change between

the Bloom filters is 5%. Table 5-2 shows the effect of the size of the Bloom filter and X, a

parameter used for SLWE technique, on the compression gain. For instance, if a 30 Mb

Bloom filter is compressed by using X = 0.9997, a maximum compression gain of

94.82777 % is achieved. It also shows that if a larger size Bloom Filter is used, then the

compression gain is more. The compression gain increases with the size of the Bloom

filter. The compression gain depends on the values of A and one particular value of X does

not result in the best result for all the sizes of the Bloom filters.

Lambda
values
0.9990

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

Bloom filter size
5Mb

86.976

86.978

86.980

86.982

86.982

86.982

86.979

86.973

86.956

86.897

10Mb

89.732

89.735

89.738

89.740

89.743

89.744

89.744

89.743

89.735

89.706

15Mb

91.769

91.773

91.776

91.779

91.781

91.784

91.785

91.785

91.781

91.762

20Mb

93.140

93.144

93.147

93.150

93.153

93.156

93.158

93.158

93.156

93.142

25Mb

94.108

94.112

94.115

94.118

94.122

94.124

94.127

94.128

94.127

94.116

30Mb

94.806

94.810

94.814

94.817

94.821

94.824

94.826

94.828

94.827

94.819

35Mb
95.374

95.379

95.383

95.387

95.390

95.393

95.396

95.398

95.398

95.391

40Mb

95.804

95.808

95.812

95.816

95.819

95.822

95.825

95.827

95.828

95.822

Table 5-2: Effect of the size of the Bloom filter (5Mb < m< 40Mb) on the SLWE-based
compression

As noticed from Table 5-2, there is a consistent trend of the increase in the compression

gain with the increase in the size of the Bloom filter. However, we cannot choose one

specific value for A,. The graph in Figure 5-2 makes the result trend visually

comprehensible. The two parameters here are the size of the Bloom filter and X, the

parameter used for SLWE-based compression. The graph represents the effect of these

two variables on the compression gain achieved by the proposed delta Bloom filter

-52 -

compression method. It shows that if a larger size Bloom Filter is used, then the

compression gain is increased.

Lambda

c
"03
O
c
o
CO
C/)
CD
Q.
E
o
O ^ ^ ^ ^ ^ ^ ^ ^

-— 0.999
0.9991

* 0.9992
0.9993

^0.9994
^0.9995
— 0.9996
— 0.9997
— 0.9998
--0.9999

Size of the Bloom filter (m)

Figure 5-2: Effect of the size of the Bloom filter on SLWE-based compression.

- 5 3 -

5.3.1.2. Number of Hash Functions Used

The experiments were performed for the different number of hash functions used to

create the Bloom filter. By increasing the number of hash functions, we can test the

adaptability of the proposed delta Bloom filter compression. Initially, Bloom filters of

size 140Kb were used. Table 5-3 summarizes the findings. The number of hash functions

used, k, is in the range 2 to 10 and X is in the range 0.99 to 0.999. It can be noticed that as

the number of the hash functions used increases, the compression gain decreases. By

using two hash functions for generating a Bloom filter of size 140Kb, a compression gain

of 94.19 % can be achieved.

Lambda
values

0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

Number of Hash functions, k
2
93.821

93.898

93.972

94.041

94.101

94.151

94.187

94.199

94.163

93.954

3
92.117

92.183

92.246

92.305

92.355

92.398

92.428

92.437

92.401

92.199

4
90.758

90.816

90.874

90.925

90.970

91.007

91.033

91.039

91.004

90.807

5
89.591

89.646

89.699

89.747

89.790

89.825

89.850

89.855

89.820

89.627

6
88.566

88.618

88.669

88.715

88.756

88.791

88.815

88.822

88.788

88.600

7
87.890

87.940

87.989

88.034

88.073

88.106

88.128

88.133

88.098

87.911

8
87.237

87.285

87.332

87.375

87.412

87.444

87.466

87.470

87.434

87.248

9
87.042

87.090

87.137

87.179

87.217

87.249

87.271

87.276

87.242

87.057

10
86.716

86.762

86.807

86.849

86.886

86.917

86.938

86.942

86.908

86.727

Table 5-3: Effect of the Number of the Hash Functions on the SLWE based compression

The graph in the Figure 5-3 represents the data presented in Table 5-3.The two variables

here are the number of hash functions used to create a Bloom filter and X. It shows the

trend of the decrease in the compression gain with increase in the number of hash

functions. As it can be noticed from the graph, the compression gain with respect to X

-54-

values is very close but consistently decreases with the number of hash functions used to

create Bloom filters.

Lambda A

2 3 4 5 6 7
Number of Hash Functions (k) -

8 10

— 0.99

0.991

* 0.992

• 0.993

-*- 0.994

— 0.995
— 0.996
— 0.997

0.998
0.999

Figure 5-3: Effect of the Number of the Hash Functions on SLWE-based compression.

5.3.1.3. Percentage of Change (c) Between the Two Bloom Filters

The experiments were performed to test the effect of the change between two Bloom

filters on the compression models. For this comparison, Bloom filters of size 140Kb are

created using two hash functions. Table 5-4 summarizes the results. The experiments

were performed for the percentage of change between the two Bloom filters ranging from

1% to 10 %. It can be noticed that the compression gain decreases with the increase in c.

- 5 5 -

Lambda
Values
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

% of change, c, between the Bloom filters
l
97.456

97.574

97.691

97.805

97.911

98.008

98.090

98.144

98.141

97.930

2
96.503

96.608

96.710

96.806

96.895

96.974

97.036

97.070

97.046

96.823

3
95.595

95.690

95.781

95.867

95.944

96.011

96.062

96.086

96.055

95.836

4
94.691

94.777

94.859

94.935

95.004

95.063

95.106

95.125

95.092

94.879

5
93.821

93.898

93.972

94.041

94.101

94.151

94.187

94.199

94.163

93.954

«
92.947

93.017

93.085

93.147

93.201

93.245

93.277

93.285

93.248

93.043

7
92.106

92.171

92.233

92.290

92.340

92.380

92.408

92.415

92.378

92.176

8
91.312

91.373

91.432

91.485

91.531

91.570

91.596

91.603

91.566

91.368

9
90.567

90.626

90.681

90.732

90.777

90.814

90.839

90.844

90.809

90.612

10
89.783

89.838

89.890

89.938

89.979

90.013

90.037

90.040

90.003

89.808

Table 5-4: Effect of % of change between two Bloom filters, c, and X on SLWE-based
delta Bloom filter compression for m = 140Kb.

The graph in the Figure 5-4 represents the experiment results summarized in Table 5-4.

The two variables here are percentage change between two Bloom filters and the

parameter X. There is a consistent decrease in the compression gain with the increase in

the percentage change between the two Bloom filters for a specific value of X. The

percentage of change between two Bloom filters denotes the update to the original Bloom

filter. Therefore, if there is a need to send the updates very frequently, then c can be

chosen as 1%. If a very frequent exchange of updated data is not required, then c = 5 can

be chosen. This will cost a slight decrease in the compression gain but frequent

transmission cost can be reduced.

-56-

C
CO

CD
c g
' «
en
CD
CL
E
o
o

Lambda

0.995

% Change between two Bloom filters (c)

E3 0.99
• 0.991
• 0.992
9 0.993
• 0.994
• 0.995
• 0.996
• 0.997
• 0.998
• 0.999

Figure 5-4: Effect of percentage of change between two Bloom filters, c, and X on the
SLWE-based delta Bloom filter compression for m = 140Kb.

5.3.1.4. User Defined Parameter A, for SLWE based Delta Bloom Filter Compression

In this case, the experiments were performed for the compression methods with a 140Kb

Bloom filter generated using two hash functions and with 5% change between the Bloom

filters. Table 5-5 summarizes the results. It can be noticed that the value of the parameter

X affects the compression gain achieved using the SLWE method.

Comp.
Model

SLWE

Lambda Value
0.990

93.821

0.991

93.898

0.992

93.972

0.993

94.041

0.994

94.101

0.995

94.151

0.996

94.187

0.997

94.199

0.998

94.163

0.999

93.95

Table 5-5: Effect of X on SLWE-based Delta Bloom filter compression.

- 5 7 -

The graph in the Figure 5-5 presents the effect of varying X on the compression gain

achieved by SLWE-based delta Bloom filter compression. It can be noticed that it does

not follow a specific trend. The compression gain achieved at first consistently increases

for 0.990 < X < 0.997. After this it starts to decrease till the maximum value set for the

experiments.

w

C
CO

O
c
o
CO
CO
CD
Q .
E
o o

* <s>N & <& <s>* «*F <d* £ <& <s?
Q* ^* ^» $y Q' ^ Q* ^« ^*

Lambda {A) •

Figure 5-5: Effect of varying X on SLWE-based delta Bloom filter compression for
w=140Kb.

5.3.2. Comparison Between the SLWE-based and PPM models for Delta Bloom
Filter Compression

For the comparison between the results of delta Bloom filter compression using different

compression methods, the same setup is used as described in earlier sections. The tests on

all the methods are performed on the same data. The cross validation of the process is

done in the case of the method using PPM model by testing whether the Bloom filter

reconstructed after compression is the same as the original Bloom filter. For the delta

Bloom filter compression using SLWE, cross validation is not required, as we are

calculating the bits required to send the compressed data and then the compression gain

based on this data. In the previous section, the effect of varying the size of the Bloom

- 5 8 -

filter, number of the hash functions, percentage of change between the Bloom filters and

that of the parameter X, on our proposed delta Bloom filter compression using SLWE

were seen. In this section, the comparison is performed between the benchmark adaptive

unigram method, SLWE-based delta Bloom filter compression, and the one based on the

higher-order model PPM.

5.3.2.1. Size of the Bloom Filter (m)

The size of the Bloom Filer plays a major role in compression. The larger the data for

training the model the better the compression achieved is. The proposed method of the

delta Bloom filter compression using SLWE consistently works better than the rest of the

compression methods in terms of compression gain as shown in Table 5-6. For this

comparison larger sizes of the Bloom filters are considered, in the range from 10 to 40

Mb, with four hash functions and percentage of change of 5%. In the table, the uniform

model represents no compression of the data. It can be noticed that the SLWE-based delta

Bloom filter compression provides consistent better compression gain than the unigram

and the PPM models. The difference between the compression gains achieved by SLWE-

based compression for a specific size of Bloom filter is not large but consistently better

than the other models for all the sizes considered during the experiments.

Compression
Models

Uniform

Unigram

PPM(O)

PPM(l)

PPM(2)

PPM(3)
PPM(4)

PPM(5)

PPM(6)
PPM(7)

PPM(8)
PPM(IO)

SLWE

Bloom filter size (Mb)

10

-0.070

89.680

89.166

88.590

88.559

88.498

88.416
88.325

88.243
88.157

88.070

87.900

89.744

15
-0.070

91.719

91.182

90.866
90.810

90.743
90.662

90.579

90.496
90.417

90.345

90.200

91.785

20

-0.070

93.088
92.532

92.396

92.336

92.269
92.187

92.106

92.030

91.955

91.882

91.740

93.158

25
-0.070

94.057

93.484

93.484
93.419

93.352
93.270
93.194

93.119

93.043

92.973

92.833

94.128

30
-0.070

94.756

94.172

94.271

94.199

94.133
94.055

93.981

93.903

93.829

93.761

93.619

94.828

35
-0.070

95.325

94.730

94.909

94.836

94.769
94.693

94.621

94.546

94.475

94.405

94.266

95.398

40
-0.070

95.753

95.151

95.390
95.317

95.252
95.177

95.104

95.031
94.962

94.894

94.758

95.828

Table 5-6: Effect of the size of the Bloom filter (m) on the compression gain with respect

to different compression models.

-59 -

The graph in the Figure 5-6 represents the data from Table 5-6 for the effect of the size of

the Bloom filter on the compression gain achieved by different compression models. It

shows that the size of the bloom filter is one of the factors on which delta Bloom filter

compression is dependent and considering this factor, SLWE-based compression

consistently performs better than the unigram and the proposed PPM-based delta Bloom

filter compression methods. This also proves that the proposed SLWE-based method is

scalable while consistently achieving better results than the other methods.

1 0 0

Compression
Models

]
J .
c
'ro
O
c
o
"35
(0
0)
a.
E
o
O

98

96

94

92

90

88

86

Uniform
Unigram
PPM(O)
P P M (l)
PPM(2)
PPM(3)
PPM(4)
PPM(5)
PPM(6)
PPM(7)
PPM(8)
PPM(IO)
SLWE

Size of the Bloom Filter (m)

Figure 5-6: Effect of the size of the Bloom filter (m) on the compression gain with respect

to the different compression models.

5.3.2.2. Number of Hash Functions (k)

The tests were performed by varying the number of hash functions used to create the

Bloom filter. By increasing the number of hash functions, we can test the adaptability of

the proposed delta Bloom filter compression methods. Bloom filters of size 140Kb were

used. Table 5-7 shows in detail the compression gain for the unigram, PPM and SLWE

based delta Bloom filter compression. Uniform means that there was no compression. It

-60-

can be noticed that the PPM model-based proposed compression method performs better

than the unigram based compression irrespective of the number of hash functions used.

The SLWE-based proposed compression method performs even better than the PPM

model. For the given size of the Bloom filter with two hash functions, as used by

Mitzenmacher [Mitz2002], our proposed SLWE based delta Bloom filter compression

method has a compression gain of 93.959 compared to 93.153 of the 0th order unigram-

based compression.

Compression
Models

Uniform

Unigram

P(0)

P(l)

P(2)

P(3)

P(4)

P(5)

P(6)

P(7)

P(8)

P(10)

SLWE

Number of Hash functions, k, used

-0.080

93.153

92.976

93.839

93.759

93.696

93.582

93.502

93.473

93.399

93.330

93.193

94.199

3
-0.080

91.407

91.247

91.876

91.784

91.716

91.659

91.561

91.401

91.327

91.287

91.144

92.437

4
-0.080

90.014

89.871

90.312

90.237

90.249

90.094

89.957

89.848

89.786

89.751

89.517

91.039

5
-0.080

88.830

88.687

88.985

88.968

88.905

88.768

88.647

88.607

88.464

88.373

88.075

89.855

6
-0.080

87.804

87.672

87.861

87.929

87.781

87.592

87.535

87.426

87.261

87.129

86.786

88.822

7
-0.080

87.118

86.986

87.124

87.146

86.958

86.815

86.826

86.581

86.415

86.255

85.883

88.133

8
-0.080

86.449

86.312

86.403

86.341

86.152

86.032

85.998

85.740

85.535

85.363

85.026

87.469

9
-0.080

86.272

86.140

86.203

86.129

85.958

85.855

85.786

85.512

85.300

85.140

84.786

87.276

10
-0.080

85.940

85.809

85.883

85.815

85.655

85.546

85.403

85.146

84.929

84.723

84.374

86.942

Table 5-7: Effect of the number of Hash Functions used to construct a Bloom filter on the
compression models.

The graph in the Figure 5-7 shows the effect of the number of Hash Functions used to

construct a Bloom filter on the compression models. It shows that the number of has

functions used is a factor on which all the considered compression models are dependent

upon. The graph reflects the trend of the reduction in compression gain with the increase

-61 -

in the number of hash Junctions used to construct a Bloom filter. As we can notice, with

the increase in the number of hash functions, SLWE-based compression actually achieves

better compression in comparison with the other methods in terms of the compression

gain although the use of larger number of hash functions will increase the computational

complexity.

Compression
Models

1

'V)
* * • * » '

c
CO

o
c
o
U> w CD
L.
Q.
E
o
O

94

92

90

88

86

84

-*- Uniform
Unigram

•-* P(0)
- » P (1)
-*-P(2)
— P(3)
— P(4)
— P(5)

P(6)
P(7)
P(8)
P(10)

— SLWE

Number of hJash Functions (k) I 9 10

Figure 5-7: Effect of the number of Hash Functions used to construct a Bloom filter on
different compression models.

5.3.2.3. Percentage Change Between the Two Bloom filters

The experiments were performed to test the effect of the percentage of change between

the two Bloom filters on different compression models. For this comparison, Bloom

filters of size 140Kb, created using two hash functions were used. Uniform means there is

no compression. Except for the 1% of change, SLWE-based compression leads to better

compression gain than the PPM-based compression model and the unigram model, as

clearly reflected in Table 5-8. This reflects the adaptability of the proposed compression

method for delta Bloom filter compression as though all the considered compression

models depend on this factor but the SLWE-based method achieves consistent better

compression gain than the unigram or PPM-based methods.

- 6 2 -

Models

Uniform

Unigram

P(0)

P(D

P(2)

P(3)

P(4)

P(5)

P(6)

P(7)

P(8)

P(10)

SLWE

% of change between two Bloom filters, c

1
-0.080

97.186

96.980

98.215

98.187

98.164

98.147

98.124

98.095

98.061

98.044

97.998

98.144

2
-0.080

96.065

95.859

96.985

96.951

96.905

96.860

96.802

96.762

96.728

96.694

96.619

97.070

3
-0.080

95.052

94.863

95.916

95.864

95.790

95.704

95.653

95.590

95.538

95.515

95.424

96.086

4
-0.080

94.074

93.891

94.852

94.772

94.715

94.617

94.543

94.486

94.440

94.406

94.240

95.125

•5 .
-0.080

93.153

92.976

93.839

93.759

93.696

93.582

93.502

93.473

93.399

93.330

93.193

94.199

€
-0.080

92.249

92.083

92.844

92.747

92.695

92.581

92.552

92.444

92.352

92.278

92.140

93.285

7
-0.080

91.385

91.225

91.860

91.780

91.700

91.649

91.523

91.403

91.317

91.254

91.151

92.415

8
-0.080

90.583

90.429

90.949

90.909

90.823

90.772

90.635

90.520

90.492

90.417

90.246

91.603

9
-0.080

89.823

89.674

90.120

90.057

90.040

89.891

89.760

89.628

89.600

89.445

89.262

90.844

10
-0.080

89.017

88.868

89.228

89.160

89.125

88.942

88.788

88.662

88.639

88.462

88.239

90.040

Table 5-8: Effect of the percentage of change between two Bloom filters, c, on different
compression models.

The graph in the Figure 5-8 represents the data from Table 5-8 for the effect of the

percentage of change between two Bloom filters, c, achieved by the different

compression models. It can be noticed that SLWE-based compression consistently

performs better than unigram and PPM for delta Bloom filter compression. For very

frequent updates to the original Bloom filter, c = 1, unigram, PPM and SLWE based

compression models achieve very high compression gain with little difference between

them. As the value of c increases, the difference between the compression gain achieved

by SLWE-based compression and the other models increases. If an application doesn't

require a very frequent data updates, then the selection of SLWE-based delta Bloom filter

compression method becomes easier.

- 6 3 -

Compression Models

•— Uniform
Unigram

* P(0)
P(D

— P(2)
- P (3)
~ P (4)
— P(5)

P(6)
P(7)
P(8)
P(10)

— SLWE

% Change between two Bit Arrays (C) •

Figure 5-8: Effect of percentage of change between two Bloom filters, c, on different
compression models.

5.4. Analysis and Discussion

The experiments were performed according to the setup discussed in Section 5.2 of

Chapter 5 for considering the dependence and effect of various factors on delta Bloom

filter compression. For the first set of experiments, the size of the Bloom filter, m, was set

to 140,000 bits, which were created using two hash functions, k, and the percentage of

difference between the two Bloom filters, c, was set to 5%. The results of these

experiments were very encouraging. The proposed SLWE-based compression had a

higher percentage of compression gain, s, relative to the benchmark unigram model or the

higher-order PPM-based compression. Not only this, the experiments were performed by

varying the number of hash functions used, \<k< 10, it was found that the SLWE based

delta Bloom filter compression, again, achieves higher compression gain than the others.

This pattern of better compression gain continued even when the experiments were

performed with different values of c, that is, the percentage of change between the Bloom

filters (or the delta Bloom filter).

Encouraged by the experiments results as expected, we went ahead to simulate the real

application setup for the proposed delta Bloom filter compression. As discussed in the

-64-

1
"to*

O)

vi
n

CD
0)

CO
Q.

CO

5?

100
99
98
97
96
95
94
93
92
91
90

fourth chapter, the delta Bloom filter can be used with the Bloom filter-based summary

cache for the web proxies. Due to the unavailability a standard benchmark for the real

application data, the experiments were performed through simulation. Mitzenmacher has

also performed the tests through simulation [Mitz2002].

The size of the Bloom filters was calculated to be used in this scenario. In practice,

proxies typically have 8 to 20GB of cache space and an average file size of 8KB.

Therefore, the average number of documents can be said to be in the range 1 to 2.5 M

documents. The load factor, If, options chosen by Li Fan et al [FCAB2000] were 8, 16 or

32, preferably 8 or 16. Based on these findings, the size of the Bloom filter will be:

8 Mb-20Mb for //= 8,

16 Mb-40Mb for //= 16.

The percentage of change is in the range 1< c < 10. The optimal number of hash function

[MITZ2002] would highly increase the computation cost. Therefore, there is a tradeoff

between the false positive rate and the number of hash functions used. Here, four hash

functions are used.

In this scenario, also, the second proposed method for delta Bloom filter compression

performs better than the first proposed method that uses PPM based compression and the

benchmark unigram-based compression, for scalability as well as adaptability, in terms of

compression gain.

- 6 5 -

Chapter 6

CONCLUSION AND FUTURE WORK

As technology evolves, the need for representing and transferring the data concisely and

reliably also increases. Bloom filters play a vital role in fulfilling this requirement.

However, to fulfill the requirements of the applications which rely on the heavy use of

the bandwidth and also the need to access to frequently modified data, the standard

Bloom filter use needs enhancement.

6.1. Conclusions

In this thesis, the use of the delta Bloom filter is proposed for such applications and then

the delta Bloom filter compression is proposed to increase the benefits. The proposed

method for delta Bloom filter compression will bring substantial benefits to the above

mentioned applications.

For compressing any data, the selection of the compression tools depends on the

characteristics of the data and application for which it is going to be used:

• Streaming versus file.

• Expected patterns and regularities in the data.

• Relative importance of CPU usage, memory usage, channel demands and storage

requirements along with other factors.

In this thesis, delta Bloom filter compression is proposed using an advanced estimation

technique for arithmetic coding known as stochastic learning-based weak estimation

technique that uses a higher-order statistical model and, also along with it, takes into

account the variability of the source statistics. Also, delta Bloom filter compression is

proposed using higher-order prediction with a partial matching with arithmetic coding.

The performance of the proposed compression methods is compared in terms of

compression gain to the benchmark compression model and between each other.

-66-

Comprehensive experiments were performed to test for the dependence and effect of

various factors on the proposed delta Bloom filter compression using SLWE-based and

PPM-based compression. The considered factors are the size of the Bloom filter, the

number of hash functions used to create Bloom filters, percentage change between two

Bloom filters, and parameter X. The results of the experiments are encouraging in terms

of compression gain while also taking scalability and adaptability factors into

consideration. The proposed method of the delta Bloom filter compression using

stochastic learning-based weak estimation consistently achieves better results in

comparison to the other methods.

Due to the unavailability of the standard benchmark real application data, the results are

based on simulation. In the future, there is a plan to perform the tests for the proposed

delta Bloom filter compression with the data from real applications. A move has already

been initiated in this direction and, based on the encouraging results of the simulations,

the plan is to present similar results with real application data.

6.2. Future Work

This thesis identifies a need for frequent updates of the data summaries to be transmitted

and provides an efficient solution to this problem by reducing the amount of the data

being transmitted. In this way, it reduces the bandwidth requirements of a system. The

applications involving heavy use of the bandwidth, distributed computing environment

for databases or proxy servers, and applications that are sensitive to the access to the data

with frequent modifications, all will benefit from the proposed technique. For these

applications, there is another aspect to be considered and that is related to security. The

next logical step should be a study to combine both these aspects of compression and

security. The proposed method provides a solution for large data sets and frequent data

transfers. As a future work, a combined solution for large data transfer as well as in

encryption can be carried out. For this, the probable areas of study can be the type of hash

-67 -

functions to be used, combination of compression and encryption algorithms, and trade

off between the combined method and the computational limits of the system.

In the proposed method, cryptographic hash functions are not used. However, we plan to

use hash functions such as MD5 and SHA. A future study can be carried out for the use

of different types of hash functions to be used with the proposed method.

Also, as a future work, further study and experiments can be performed to learn A,,

parameter used for SLWE, while encoding. In this thesis, the range set for parameter A, is

0.9900 to 0.9999 based on previous studies [OR2006]. A set block from the data can be

utilized to learn A and that value of A can be utilized to learn the probability of the next

symbol. Also, further studies can be continued on the use of non-linear stochastic

learning-based estimation for the delta Bloom filter compression. Within SLWE

approaches there are many learning automata schemes that could be utilized such as

nonlinear, continuous, discretized, pursuit learning and estimator algorithms [OR2006].

The study of these algorithms combined with entropy-based coding technique can be

done for delta Bloom filter compression. In this thesis, SLWE and PPM are used with

arithmetic coding for delta Bloom filter compression. As a future work, these methods

can be combined with other encoding schemes such as adaptive Fano coding which could

be used for delta Bloom filter compression. Also, Burrows-Wheeler transformation or

Block sorting which is discussed in Chapter 3 can be used for delta Bloom filter

compression. The algorithm works by applying a reversible transformation to a block of

input text. The transformation does not itself compress the data, but re-orders it to make it

easy to compress with simple algorithms such as move-to-front encoding. Experiment

using block sorting was carried out during thesis. The initial results seem promising;

however, more tests are desired and can be carried out in future.

- 68 -

BIBLIOGRAPHY

[AC2005] Artan, N. S., and Chao, H. J., "Multi-packet signature detection using prefix

Bloom filters", IEEE, Global Telecommunications Conference, 3: 6-28, Nov.-2 Dec,

2005.

[ACweb] http://www.data-compression.info/Algorithms/AC/.

[Blooml970] Bloom, B. H., "Space/time trade-offs in hash coding with allowable

errors", Communications of ACM, 13(7):422.426,1970.

[BM2003] Broder, A., and Mitzenmacher M., "Network Applications of Bloom filters: A

Survey", Internet Math., l(4):485-509, 2003.

[CLL2008] Chen, Y., Lin, I., Lei, C, and Liao, Y., "Broadcast Authentication in Sensor

Networks Using Compressed Bloom filters", Lecture Notes in Computer Science 5067,

pp:99-111,2008.

[CW1984] Cleary, J. G. and Witten, I. H., "Data compression using adaptive coding and

partial string matching", IEEE Trans. Communication. COM-32, pp: 396-402,1984.

[CYL2006] Chen, L., Ye, S., and Li, X., "Template detection for large scale search

engines", In Proc. of the 2006 ACM symposium on applied computing, pp: 1094-1098,

2006.

[DKT2003] Dharmapurikar, S., Krishnamurthy, P., and Taylor, D. E., "Longest prefix

matching using Bloom filters" , In Proc. of the 2003 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications (Karlsruhe,

Germany,). ACM, New York, NY, pp: 201-212, Aug. 25-29,2003.

-69 -

http://www.data-compression.info/Algorithms/AC/

[FCAB2000] Fan, L., Cao, P., Almeida, J., and Broder, A. Z., "Summary cache: a

scalable wide area web cache sharing protocol", IEEE/ACM Transactions on Networking

(TON),S(3):2U-293, June, 2000.

[FML2006] Feng, Z., Matt W. M., and Lionel M. N., "The Master Key: A Private

Authentication Approach for Pervasive Computing Environments", In Proc. of the

Fourth Annual IEEE International Conference on Pervasive Computing and

Communications, pp: 212-221, March, 2006.

[GNPmc] Gollapudi, S., Najork, M., and Panigrahy, R., "Using Bloom filters to Speed

Up HITS-like Ranking Algorithms", research.microsoft.com.

[GSQD2004] Guofei, G., Sharif, M., Qin., X., Dagon, D., Lee, W., and Riley, G., "Worm

detection, early warning and response based on local victim information", In proc. Of

Computer Security Applications Conference, 20th Annual, pp: 136-145,6—10 Dec, 2004.

[HHJ1998] Hankerson, D., Harris, G., and Johnson, P. Jr., "Introduction to Information

Theory and Data Compression", CRC Press, 1998.

[IMSGI2006] Irmak, U., Mihaylov, S., Suel, T., Ganguly, S., and Izmailov, R, "Efficient

guery Subscription Processing for Prospective Search Engines", In proc. of the 15th

international conference on World Wide Web, ACM Press, pp: 1037-1038,2006.

[JDT2005] Jain, N. , Dahlin, M. and Tewari, R., "Using Bloom filters to Refine Web

Search Results", In the proc. of 8th International Workshop on the Web and Databases,

Baltimore, Maryland, June 16-17,2005.

[JDT2005] Jain, N., Dahlin, M., and Tewari R., "TAPER: Tiered Approach for

Eliminating Redundancy in Replica Synchronization", USENIX Conference on File and

Storage Technologies, 2005.

- 70 -

http://research.microsoft.com

[JPEG2009] http://www.iDeg.org/ipeg2000,2009.

[KZ2006] Kang, L., and Zhenyu Z., "Fast statistical spam filter by approximate

classifications", In proc. of the joint international conference on Measurement and

modeling of computer systems, Saint Malo, France, pp:347.358, 2006.

[LH1987] Lelewer, Debra A.,and Hirschberg, Daniel S., "Data Compression", ACM

Computing Surveys, 1987.

[LPKS2005] Locasto, M. E., Parekh, J. J., Keromytis, A. D., and Stolfo, S.J., "Towards

collaborative security and P2P intrusion detection", In Proc. of the Sixth Annual IEEE

SMC, pp:333. 339, June 15-17, 2005.

[Mertlbm] Mertz, D., "Data Compression Primer: Theory and Strategy of Data

Representation", IBMhttp://www. ibm.com.

[MS2009] "BUFFALO: Bloom Filter Forwarding Architecture for Large Organizations /

Accountability in Hosted Virtual Networks", Microsoft Research, Sept. 2009.

[MNW1998] Moffat, A., Neal, R., and Witten, I. H, "Arithmetic coding revisited" ACM

Transactions on Information Systems, 16(3), pp:256-294, July 1998.

[Mitz2002] Mitzenmacher, M., "Compressed Bloom filters", IEEE/ACM Transactions on

Networking, 10(5): 604 . 612, Oct., 2002.

[OR2006] Oommen, B. J., and Rueda, L., "Stochastic learning-based weak estimation of

multinomial random variables and its applications to pattern recognition in non-stationary

environments", Pattern Recognition 39 pp: 328- 341, 2006.

-71 -

http://www.iDeg.org/ipeg2000
http://www
http://ibm.com

[QLW2007] Qiu, L., Li, Y., and Wu, X., "Preserving privacy in association rule mining

with Bloom filters", Journal of Intelligent Information Systems, Springer Netherlands,

Jan. 27, 2007.

[RCBG2006] Roussev, V., Chen, Y.,Bourg, T.,Golden G., Richard III, "md5bloom:

Forensic file system hashing revisited", Science Direct, Digital Investigation, 3S(2006),

pp: 82-90, 2006.

[RL1979] Rissanen, J. and Langdon, G. G., "Arithmetic coding", IBM J. Res. Dev. 23, 2

(Mar.),pp: 149-162,1979.

[RO2004] Rueda, L., and Oommen, B. J., "On Families of New Adaptive Compression

Algorithms Suitable for Time-Varying Source Data", LNCS 3261, pp: 234- 244, 2004

[SBB2003] Simpson, M., Barua, R., and Biswas, S., "Analysis of Compression

Algorithms for Program Data", August, 2003.

[SQ] Squid Web Proxy Cache, http://www.squid-cache.org. Last access: December 20,

2009.

[Syd2000] Sayood, K., "Intoduction to Data Compression", Morgan Kaufmann Press,

2000.

[WTL2008] Wang, H., Tan, C.C., Li, Q., "Snoogle: A Search Engine for the Physical

World", IEEE, In proceedings of INFOCOM 2008 27th Conference on Computer

Communications, pp: 1382-1390, April, 2008.

[Yoon2010] Yoon, M.K., "Aging Bloom Filter with Two Active Buffers for Dynamic

Sets", IEEE Transactions on Knowledge and Data Engineering 22(1), pp: 134-138, Jan.,

2010.

-72 -

http://www.squid-cache.org

[YS2006] Yuen, W. H., and Schulzrinne, H., "Improving search efficiency using Bloom

filter in partially connected ad-hoc networks", IEEE, In proc. of Global

Telecommunications Conference, San Francisco, CA, USA, pp: 1-5, Nov., 2006.

[ZLSS2008] Zhong, M, Lu, P., Shen, K., and Seiferas, J., "Optimizing Data Popularity

Conscious Bloom Filters", ACM, In Proceedings of the Twenty-Seventh ACM

Symposium on Principles of Distributed Computing, pp: 355-364, Aug. 2008.

[ZL1977] Ziv, J. and Lempel, A.,"A Universal Algorithm for Sequential Data

Comression", IEEE Transactions on Information Theory 23(3), pp: 337-343,1977.

[ZL1978] Ziv, J. and Lempel, A., "Compression of Individual Sequences Via Variable-

Rate Coding", IEEE Transactions on Information Theory 24(5), pp: 530-536,1978.

- 73 -

VITA AUCTORIS

Priyanka Trivedi was bora in Lucknow, India. She received her Bachelor of Engineering
degree in Computer Science and Engineering from the Shivaji University, India.
Presently, she is completing her Masters' degree in Computer Science from the
University of Windsor, ON, Canada and expects to graduate in January 2010.

-74 -

	Delta bloom filter compression using stochastic learning-based weak estimation
	Recommended Citation

	ProQuest Dissertations

