296 research outputs found

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    A comprehensive review on brushless doubly-fed reluctance machine

    Get PDF
    The Brushless Doubly-Fed Reluctance Machine (BDFRM) has been widely investigated in numerous research studies since it is brushless and cageless and there is no winding on the rotor of this emerging machine. This feature leads to several advantages for this machine in comparison with its induction counterpart, i.e., Brushless Doubly-Fed Induction Machine (BDFIM). Less maintenance, less power losses, and also more reliability are the major advantages of BDFRM compared to BDFIM. The design complexity of its reluctance rotor, as well as flux patterns for indirect connection between the two windings mounted on the stator including power winding and control winding, have restricted the development of this machine technology. In the literature, there is not a comprehensive review of the research studies related to BDFRM. In this paper, the previous research studies are reviewed from different points of view, such as operation, design, control, transient model, dynamic model, power factor, Maximum Power Point Tracking (MPPT), and losses. It is revealed that the BDFRM is still evolving since the theoretical results have shown that this machine operates efficiently if it is well-designed

    Design and Dynamic Control of Heteropolar Inductor Machines

    Get PDF

    Brushless doubly-fed reluctance machine modeling, desing and optimization

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2015.Esta tese aborda a modelagem, o projeto e a otimização, com validação experimental, de máquinas de relutância duplamente alimentadas sem escovas (BDFRM) para sistemas de geração de energia eólica. O objetivo principal dela é de contribuir para o domínio de técnicas de projeto otimizado para a BDFRM através da proposição de uma metodologia baseada em diferentes níveis de modelagem e em otimização. Discute-se como técnicas de otimização podem ser aplicadas em todas as fases de desenvolvimento com objetivos distintos. Especificamente, a metodologia proposta se concentra na definição e na solução iterativa de problemas de otimização com restrições nas saídas utilizando um algoritmo determinístico acoplado a modelos semi-analíticos de diferentes níveis. Como conclusão geral, pode-se afirmar que a BDFRM é potencialmente uma boa candidata para ser utilizada em sistemas de geração de energia eólica. Contudo, aspectos técnicos e econômicos sobre essa escolha devem ainda ser avaliados, comparando-se as diferentes topologias existentes sob o mesmo enfoque metodológico.Abstract : This thesis addresses the modeling, design and optimization with experimental validation of the Brushless Doubly-Fed Reluctance Machine (BDFRM) for wind power systems. Its main goal is to contribute on mastering the BDFRM optimized design by proposing a methodological approach based on different modeling levels and on optimization. More precisely, it draws its attention on setting the optimization problem and on the iterative solution of a constrained inputs/outputs problem by using a deterministic algorithm. As a general conclusion, the results show that the BDFRM is potentially a good candidate to be used in wind power systems. However, the technical and economic aspects on this choice must be still assessed, analyzing and comparing the overall system solution of distinct topologies within the same framework

    A new iron loss model for brushless doubly-fed machines with hysteresis and field rotational losses

    Get PDF
    The brushless doubly-fed machine (BDFM) has two stator windings with different pole numbers, supplied with different frequencies. Therefore, the distribution of magnetic fields in stator and rotor iron is complex. In addition, the stator flux density distribution is non-sinusoidal and has a DC offset at the natural speed. This makes the use of conventional hysteresis models utilised for sinusoidal fields impractical for the BDFM. In this paper a new hysteresis model is proposed for the BDFM stator iron based on the scalar Preisach model. The rotational characteristics of the magnetic fields in the BDFM are also considered and their effects in generating iron losses are assessed. 2-D time-stepping finite element (FE) models are developed for a prototype D160 BDFM to estimate iron losses and are validated by experiments

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Advancements in Flux Switching Machine Optimization : Applications and Future Prospects

    Get PDF
    This work was supported by the Commonwealth Scholarship Commission, U. K., under Grant Number: NGCN-180-2021Peer reviewe

    Brushless Doubly-Fed Reluctance Machines for Aerospace Electrical Power Generation Systems

    Get PDF
    This thesis describes a programme of research encompassing the design, optimisation and experimental testing of a brushless doubly fed reluctance machine (BDFRM) for use as an aerospace electrical generator, specifically a direct line connected generator, to widen the input shaft speed beyond the normal constraints imposed by the 360-800Hz specification for a variable-frequency AC aerospace network. BDFRMs offer the functionality of frequency correction, via a control winding, and have the advantage of using a robust reluctance rotor. A partially-rated control winding converter can, in principle, be used to provide the slip power required. A further advantage of the BDFRM is the inherent fail-safe nature of these machines, with the output voltage collapsing as soon as the control winding current has been removed. A synchronous reluctance machine was studied as a means of providing a baseline for the BDFRM performance, including a comparison of the effect of scaling on power density. A large number of time-stepped finite element simulations were undertaken to explore BDFRM performance, in particular, the influence of magnetic saturation in limiting the achievable power density and in compromising power quality. Detailed optimisation of a BDFRM was undertaken, including systematic mechanical design of the rotor for high speed operation. This analysis illustrates the significant compromises in machine electromagnetic performance which result from the need to accommodate mechanical stress. The scope for employing small amounts of permanent magnet material in the rotors of both synchronous reluctance machines and BDFRMs, to improve the machine performance at the lower end of the current density range, was investigated. Following detailed optimisation, a demonstrator machine was manufactured, which includes a skewed rotor. The performance of this machine was measured at a number of test points to verify predictions of output power, voltage and voltage harmonics

    High-frequency issues using rotating voltage injections intended for position self-sensing

    Get PDF
    The rotor position is required in many control schemes in electrical drives. Replacing position sensors by machine self-sensing estimators increases reliability and reduces cost. Solutions based on tracking magnetic anisotropies through the monitoring of the incremental inductance variations are efficient at low-speed and standstill operations. This inductance can be estimated by measuring the response to the injection of high-frequency signals. In general however, the selection of the optimal frequency is not addressed thoroughly. In this paper, we propose discrete-time operations based on a rotating voltage injection at frequencies up to one third of the sampling frequency used by the digital controller. The impact on the rotation-drive, the computational requirement, the robustness and the effect of the resistance on the position estimation are analyzed regarding the signal frequency
    corecore