1,651 research outputs found

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Simulation Native des Systèmes Multiprocesseurs sur Puce à l'aide de la Virtualisation Assistée par le Matériel

    Get PDF
    L'intégration de plusieurs processeurs hétérogènes en un seul système sur puce (SoC) est une tendance claire dans les systèmes embarqués. La conception et la vérification de ces systèmes nécessitent des plateformes rapides de simulation, et faciles à construire. Parmi les approches de simulation de logiciels, la simulation native est un bon candidat grâce à l'exécution native de logiciel embarqué sur la machine hôte, ce qui permet des simulations à haute vitesse, sans nécessiter le développement de simulateurs d'instructions. Toutefois, les techniques de simulation natives existantes exécutent le logiciel de simulation dans l'espace de mémoire partagée entre le matériel modélisé et le système d'exploitation hôte. Il en résulte de nombreux problèmes, par exemple les conflits l'espace d'adressage et les chevauchements de mémoire ainsi que l'utilisation des adresses de la machine hôte plutôt des celles des plates-formes matérielles cibles. Cela rend pratiquement impossible la simulation native du code existant fonctionnant sur la plate-forme cible. Pour surmonter ces problèmes, nous proposons l'ajout d'une couche transparente de traduction de l'espace adressage pour séparer l'espace d'adresse cible de celui du simulateur de hôte. Nous exploitons la technologie de virtualisation assistée par matériel (HAV pour Hardware-Assisted Virtualization) à cet effet. Cette technologie est maintenant disponibles sur plupart de processeurs grande public à usage général. Les expériences montrent que cette solution ne dégrade pas la vitesse de simulation native, tout en gardant la possibilité de réaliser l'évaluation des performances du logiciel simulé. La solution proposée est évolutive et flexible et nous fournit les preuves nécessaires pour appuyer nos revendications avec des solutions de simulation multiprocesseurs et hybrides. Nous abordons également la simulation d'exécutables cross- compilés pour les processeurs VLIW (Very Long Instruction Word) en utilisant une technique de traduction binaire statique (SBT) pour généré le code natif. Ainsi il n'est pas nécessaire de faire de traduction à la volée ou d'interprétation des instructions. Cette approche est intéressante dans les situations où le code source n'est pas disponible ou que la plate-forme cible n'est pas supporté par les compilateurs reciblable, ce qui est généralement le cas pour les processeurs VLIW. Les simulateurs générés s'exécutent au-dessus de notre plate-forme basée sur le HAV et modélisent les processeurs de la série C6x de Texas Instruments (TI). Les résultats de simulation des binaires pour VLIW montrent une accélération de deux ordres de grandeur par rapport aux simulateurs précis au cycle près.Integration of multiple heterogeneous processors into a single System-on-Chip (SoC) is a clear trend in embedded systems. Designing and verifying these systems require high-speed and easy-to-build simulation platforms. Among the software simulation approaches, native simulation is a good candidate since the embedded software is executed natively on the host machine, resulting in high speed simulations and without requiring instruction set simulator development effort. However, existing native simulation techniques execute the simulated software in memory space shared between the modeled hardware and the host operating system. This results in many problems, including address space conflicts and overlaps as well as the use of host machine addresses instead of the target hardware platform ones. This makes it practically impossible to natively simulate legacy code running on the target platform. To overcome these issues, we propose the addition of a transparent address space translation layer to separate the target address space from that of the host simulator. We exploit the Hardware-Assisted Virtualization (HAV) technology for this purpose, which is now readily available on almost all general purpose processors. Experiments show that this solution does not degrade the native simulation speed, while keeping the ability to accomplish software performance evaluation. The proposed solution is scalable as well as flexible and we provide necessary evidence to support our claims with multiprocessor and hybrid simulation solutions. We also address the simulation of cross-compiled Very Long Instruction Word (VLIW) executables, using a Static Binary Translation (SBT) technique to generated native code that does not require run-time translation or interpretation support. This approach is interesting in situations where either the source code is not available or the target platform is not supported by any retargetable compilation framework, which is usually the case for VLIW processors. The generated simulators execute on top of our HAV based platform and model the Texas Instruments (TI) C6x series processors. Simulation results for VLIW binaries show a speed-up of around two orders of magnitude compared to the cycle accurate simulators.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Instruction-set architecture synthesis for VLIW processors

    Get PDF

    Constraint-Aware, Scalable, and Efficient Algorithms for Multi-Chip Power Module Layout Optimization

    Get PDF
    Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM layouts is surpassing the capability of a manual, iterative design process to produce an optimum design with agile development requirements. An electronic design automation tool called PowerSynth has been introduced with ongoing research toward enhanced capabilities to speed up the optimized MCPM layout design process. This dissertation presents the PowerSynth progression timeline with the methodology updates and corresponding critical results compared to v1.1. The first released version (v1.1) of PowerSynth demonstrated the benefits of layout abstraction, and reduced-order modeling techniques to perform rapid optimization of the MCPM module compared to the traditional, manual, and iterative design approach. However, that version is limited by several key factors: layout representation technique, layout generation algorithms, iterative design-rule-checking (DRC), optimization algorithm candidates, etc. To address these limitations, and enhance PowerSynth’s capabilities, constraint-aware, scalable, and efficient algorithms have been developed and implemented. PowerSynth layout engine has evolved from v1.3 to v2.0 throughout the last five years to incorporate the algorithm updates and generate all 2D/2.5D/3D Manhattan layout solutions. These fundamental changes in the layout generation methodology have also called for updates in the performance modeling techniques and enabled exploring different optimization algorithms. The latest PowerSynth 2 architecture has been implemented to enable electro-thermo-mechanical and reliability optimization on 2D/2.5D/3D MCPM layouts, and set up a path toward cabinet-level optimization. PowerSynth v2.0 computer-aided design (CAD) flow has been hardware-validated through manufacturing and testing of an optimized novel 3D MCPM layout. The flow has shown significant speedup compared to the manual design flow with a comparable optimization result

    Memory-aware platform description and framework for source-level embedded MPSoC software optimization

    Get PDF
    Developing optimizing source-level transformations, consists of numerous non-trivial subtasks. Besides identifying actual optimization goals within a particular target-platform and compiler setup, the actual implementation is a tedious, error-prone and often recurring work. Providing appropriate support for this development work is a challenging task. Defining and implementing a well-suited target-platform description which can be used by a wide set of optimization techniques while being precise and easy to maintain is one dimension of this challenging task. Another dimension, which has also been tackled in this work, deals with provision of an infrastructure for optimization-step representation, interaction and data retention. Finally, an appropriate source-code representation has been integrated into this approach. These contributions are tightly related to each other, they have been bundled into the MACCv2 framework, a fullfledged optimization-technique implementation and integration approach. Together, they significantly alleviate the effort required for implementation of source-level memory-aware optimization techniques for Multi Processor Systems on a Chip (MPSoCs). The system-modeling approach presented in this dissertation has been located at the processor-memory-switch (PMS) abstraction level. It offers a novel combined structural and semantical description. It combines a locally-scoped, structural modeling approach, as preferred by system designers, and a fast, database-like interface, best suited for optimization technique developers. It supports model refinement and requires only limited effort for an initial abstract system model. The general structure consists of components and channels. Based on this structure, the system model provides mechanisms for database-like access to system-global target-platform properties, while requiring only definition of locally-scoped input data annotated to system-model items. A typical set of these properties contains energy-consumption and access-latency values. The request-based retrieval of system properties is a unique feature, which makes this approach superior to state-of-the-art table-lookup-based or full-system-simulation-based approaches. Combining such component-local properties to system-global target-platform data is performed via aspect handlers. These handlers define computational rules which are applied to correlated locally-scoped data along access paths in the memory-subsystem hierarchy. This approach is capable of calculating these system-global values at a rate similar to plain table lookups, while maintaining a precision close to full-system-simulation-based estimations. This has been shown for both, energy-consumption values as well as access-latency values of the MPARM platform. The MACCv2 framework provides a set of fundamental services to the optimization technique developer. On top of these services, a system model and source-code representation are provided. Further, framework-based optimization-technique implementations are encapsulated into self-contained entities exposing well-defined interfaces. This framework has been successfully used within the European Commission funded MNEMEE project. The hierarchical processing-step representation in MACCv2 allows for encapsulation of tasks at various granularity levels. For simplified reuse in future projects, the entire toolchain as well as individual optimization techniques have been represented as processing-step entities in terms of MACCv2. A common notion of target-platform structure and properties as well as inter-processing-step communication, is achieved via framework-provided services. The system-modeling approach and the framework show the right set of properties needed to support development of memory-aware optimization techniques. The MNEMEE project, continued research work, teaching activities and PhD theses have been successfully founded on approaches and the framework proposed in this dissertation
    • …
    corecore