EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Instruction-set architecture synthesis for VLIW processors

Citation for published version (APA):
Jordans, R. (2015). Instruction-set architecture synthesis for VLIW processors. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/12/2015

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/d54b3f09-3f6c-46ff-bbe8-1824a332bca2

Instruction-set Architecture Synthesis for VLIW Processors

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor
een commissie aangewezen door het College voor Promoties in het openbaar te
verdedigen op dinsdag 1 december 2015 om 14.00 uur

door

Roel Jordans

geboren te Roosendaal en Nispen

Dit proefschrift is goedgekeurd door de promotor en de samenstelling van de
commissie is als volgt:

voorzitter: prof.dr.ir. A.C.P.M. Backx

1¢ promotor: prof.dr. H. Corporaal

copromotor: dr. L. J6zwiak

leden: prof.dr.Tech. J.H. Takala MSc (Tampere University of Technology)
prof.dr. K.L.M. Bertels (Technische Universiteit Delft)
prof.dr.ir. P.H.N. de With

adviseurs: dr.ir. J.A.J. Leijten (Intel Benelux)
dr.ir. B. Mesman

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.

Instruction-set Architecture
Synthesis for VLIW Processors

Roel Jordans

Doctorate committee:

prof.dr. H. Corporaal

dr. L. Jozwiak

prof.dr.ir. A.C.P.M. Backx
prof.dr.Tech. J.H. Takala MSc
prof.dr. K.L.M. Bertels
prof.dr.ir. P.H.N. de With
dr.ir. J.A.J. Leijten

dr.ir. B. Mesman

Eindhoven University of Technology, promotor
Eindhoven University of Technology, copromotor
Eindhoven University of Technology, chairman
Tampere University of Technology

Delft University of Technology

Eindhoven University of Technology

Intel Benelux

Eindhoven University of Technology

This work is supported in part by the Artemis Joint Undertaking, project ASAM 100265.

© Copyright 2015, Roel Jordans

All rights reserved. Reproduction in whole or in part is prohibited without the written

consent of the copyright owner.

Cover design by Roel Jordans

Printed by CPI-Koninklijke Wohrmann — The Netherlands

A catologue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-3963-5

Summary

Instruction-set Architecture Synthesis for VLIW
Processors

The high energy efficiency and performance demands of image and signal process-
ing components of modern mobile and autonomous applications have resulted in
a situation where it is no longer feasible to only use general purpose processing
systems to serve those applications. This has caused a strong shift to heteroge-
neous systems containing multiple highly specialized processors. While some tool
support for the design process of such specialized processor architectures exists,
key decisions are still made by human designers, usually based on incomplete and
imprecise information. Combining this with the short interval between different
product generations and limited design times strongly reduces the number of
design alternatives that can be considered, and results in a sub-optimal design
quality.

Current state-of-the-art technologies offer design automation for several steps
of the design process by automating key activities such as the construction of a
processor architecture from a high level description, the evaluation of candidate
designs through simulation or emulation, or proposing extensions to an existing
processor architecture. While these tools already substantially improve the design
times over a completely manual design, further significant improvements can still
be obtained, specifically through automation of the design analysis and decision
making process. This dissertation proposes several significant improvements of
the design effectiveness and efficiency through automation of several stages of the
design process.

A three step approach to processor architecture design is presented which
starts by using our new application analysis methods to obtain parallelism and
performance estimates for the various compute intensive parts of the target ap-
plication. These estimates are then used during an application restructuring
phase which aims at improving the available parallelism and decides upon the
mapping of application data into the processors internal memories. Taking this
transformed version of the target application, its memory hierarchy as defined
by the memory mapping, and the parallelism estimates allows us to propose an
initial processor architecture which completes the second step. The third step is
then to further refine the processor architecture and results in a highly specialized

processor architecture description.
The research presented in this dissertation focusses on improving the following
steps in the design process.

e A parallelism estimation method for estimating the instruction-level paral-
lelism exposed by the application is presented. This method provides paral-
lelism feedback used during the exploration of the application restructuring,
but is also used for determining the appropriate number of issue-slots in the
initial architecture. As a result, we are able to construct an initial processor
architecture that both meets the performance requirements for the target
application yet still is reasonably close to the final refined processor design.

e A processor architecture refinement method which allows us to avoid the
(time consuming) construction of intermediate candidate processor architec-
tures. Our approach only needs to construct both the initial and refined de-
signs, all other considered candidate architectures need not be constructed.

e A rapid energy consumption methodology which combines the block exe-
cution profile of a simulation of the target application with its scheduled
assembly listing. This makes our energy estimation method independent of
the number of simulated processor clock cycles and enables the use of larger,
more representative, input data sets, thus allowing for a both a faster and
more realistic evaluation of the candidate designs.

e An architecture exploration framework called BuildMaster, which simplifies
the implementation of our architecture refinement exploration strategies.
This framework automatically detects when compilation and simulation
results obtained for previously considered candidates can be re-used for the
evaluation of newly proposed candidate architectures. This intermediate
result caching system allows us, for example, to avoid on average over 90%
of the originally required simulation time by re-using previously obtained
profile information for the energy estimation.

e A set of exploration strategies which effectively refine the processor archi-
tecture and a comparison between these strategies on both the quality of
the obtained result, as well as, the required exploration time. We show that
the proposed exploration heuristics find results whose quality is comparable
to the results found using a genetic algorithm while requiring an order of
magnitude less exploration time.

Combining the presented techniques results in a highly efficient and extensible
instruction-set architecture exploration methodology. In our experiments we show
that our framework is able to explore hundreds of processor architecture variations
per hour while consistently producing compact results that meet the expected
performance.

Contents

1 Introduction

1.1 Parallelism in processor architectures

1.1.1 Different kinds of parallelism

1.1.2 Real life examples
1.2 Context of thiswork
1.3 Problem statement,
1.4 Contributions
1.5 Dissertation outline.,

2 Related work
2.1 Commercial EDA tools.
2.1.1 Cadenceo
2.1.2 SYNOPSYS .« o v v e e e e e e e
2.2 Research projects
2.2.1 Architecture description languages
2.2.2 TCE: TTA-based Co-design Environment
2.2.3 PICO: Program-In Chip-Out
2.3 The SiliconHive tools
2.3.1 Overview
2.3.2 Architecture template oL
2.4 Compiler support L.
2.4.1 Source code annotation
2.4.2 Code transformations
2.4.3 Extensions for architecture exploration
2.5 Conclusion

3 VLIW processor design in the ASAM project

3.1 Overviewo
3.1.1 Macro- and micro-architecture exploration

3.2 ASIP architecture exploration: An example
3.2.1 Application code restructuring and initial architecture con-
structiono

3.2.2 ASIP instruction-set synthesis through architecture refine-

ment

iii

13
15
15
17
19
19
20
23
27
27
28
32
32
34
35
36

CONTENTS

3.3 Conclusion e 56
Early performance estimation 57
4.1 Parallelism estimation of straight-line code 58
411 Methods L 59
4.1.2 Experimental resultso 62
4.1.3 Conclusion on parallelism estimation 64
4.2 VLIW issue-width optimization 64
4.2.1 Possible search strategies 66
4.2.2 Experimental results0 67
4.2.3 Conclusion on the issue-width optimization 68
4.3 Parallelism estimation of pipelined loops 69
4.3.1 Determining the minimum initiation interval 69
4.3.2 Methods 72
4.3.3 Experimental results, 74
4.4 Conclusion L 75
Area and energy modeling 77
5.1 Estimating area and energy L. 78
5.1.1 Issue-slots and operations 79
5.1.2 Register files and memory-like interfaces 80
5.1.3 Interconnect, 81
5.1.4 Miscellaneous 82
5.1.5 Model calibration oL 82
5.2 Activity estimation 83
5.2.1 Trace-based energy estimation 84
5.2.2 Profile-based energy estimation 84
5.2.3 Improved profile-based energy estimation 86
5.2.4 Further improvements 88
5.3 Initial experiments 88
5.4 Conclusion 91
Intermediate result caching 93
6.1 The simulation cache 0oL 94
6.2 The compilation cache 0oL 94
6.3 Experiments. 96
6.3.1 Exploration time speedup 96
6.3.2 Cache hit-rates oL 98
6.3.3 Caching induced exploration path divergence 99

6.4 Conclusion 102

CONTENTS

7 Automated design space exploration
7.1 Exploration method
7.1.1 Growing versus shrinking strategies.
7.1.2 Active versus passive exploration
7.1.3 Exploration algorithms
7.2 Heuristicsearch
7.3 Genetic algorithmo oo
7.3.1 Genetic algorithm configuration
7.3.2 Fitness function L.
7.3.3 Terminate function and number of generations
7.3.4 Further optimizations to the genetic algorithm
7.4 Experiments. L
7.4.1 Separation into passive and active exploration
7.4.2 Quality of the active exploration results
7.4.3 Exploration time Lo oL
7.5 Conclusion

8 Conclusions and future work
81 Conclusions
82 Futurework

Bibliography

A ASIP construction and exploration tools
A.1 Processor architecture construction
A.1.1 Features e
A.1.2 Installation and usage
A.1.3 XML input specification L.
A.1.4 Limitations
A.2 Design-space exploration tools,
A21 Imterface.
A.2.2 Initial prototype preparation
A23 Usage . . . o oo
A24 Examples e
A.2.5 Implementing custom fitness models
A.2.6 Current status and limitations

Samenvatting
Acknowledgements
About the author

Author’s publications

103
104
105
106
107
108
110
110
111
112
112
113
113
116
117
119

121
121
125

129

137
137
138
138
138
139
139
141
141
142
143
145
145

149

151

153

155

vi

CONTENTS

The last thing one settles in writing a book is what one
should put in first.

Blaise Pascal, “Pensées”, 1670

Introduction

We live in an era of electronic systems that can be found everywhere around us
and, in some cases, even inside us. Obvious ones are the computers we have on our
desks and in our pockets. Less obvious ones are embedded inside bigger systems,
often without being noticeable separate from the whole product containing them.
It is very difficult to make an accurate estimate of how many processors are
currently in the world as parts of these embedded systems. It is however safe to
say that embedded processors outnumber those present in the more conventional
stand-alone computers by a large margin. For example, a contemporary smart-
phone contains approximately 10 processors (e.g., baseband (radio) processing,
real-time video encoding/decoding, audio processing, encryption, several general
purpose processors, etc.), while modern cars such as the Mercedes S-class and
BMW 7 have over 60 processors (e.g., fuel injection, navigation, anti-lock breaking
(ABS), in vehicle entertainment, etc.)*.

Nowadays, such a combination of one or more embedded computing systems
with mechatronics or other physical systems is often referred to as a cyber physical
system. This combination of diverse yet combined systems presents complex
demands on the communication and computation capabilities. A complex het-
erogeneous cyber physical system usually includes various kinds of information
processing and involves several types of parallelism. It is therefore usually best
served using a heterogeneous computing system composed of several different
parallel processors. For many of the applications standard off-the-shelf embedded

1«The Dozens of Computers That Make Modern Cars Go (and Stop)” —http://www.nytimes.
com/2010/02/05/technology/05electronics.html

http://www.nytimes.com/2010/02/05/technology/05electronics.html
http://www.nytimes.com/2010/02/05/technology/05electronics.html

2 CHAPTER 1. INTRODUCTION

Memory CPU

] G

I

interconnect

Figure 1.1: Different types of accelerators illustrating data movement to and
from the accelerator

processors suffice. However, when performance or battery life becomes critical,
these standard processors usually do not provide the satisfactory performance
levels and/or performance/power trade-offs. Application specific instruction-set
processors (ASIPs) and hardware accelerators provide much more freedom and
can be used in such cases. As with all customizations, different specific application
requirements result in different systems. In many cases, a hardware accelerator
can be added to an existing off-the-shelf processor to achieve the required per-
formance. This allows the designer of the system to increase the efficiency of the
system by executing a part of the application in hardware. It leads to a highly
efficient implementation, but limits the flexibility and re-use possibilities of the
system. Later generations of the same product commonly contain variations of
the same application which might require a re-design of the system, because its
hardware accelerator part (if not reconfigurable) does not provide any possibility
for adaption to new requirements.

Implementing accelerator hardware into a system design can be achieved in
various ways. Figure 1.1 illustrates the three most commonly used methods.

1. Small accelerators can be implemented as instruction-set extensions of an
existing processor (CPU) through the addition of a specialized function
unit (SFU). A key advantage of this method is the close connection between
the accelerator and the existing data-path of the processor. This results
in a low energy overhead from transferring input values to the accelerator,
and makes it possible to efficiently accelerate smaller parts of the code. A
common constraint for accelerators of this type is that they usually do not
allow any form of control-flow within the accelerated application part.

2. Larger accelerators are usually constructed outside of the processor. This
allows for more complex functionality which may include more irregular
control-flow within the accelerated part. In the case of Accl in our example,
the input values of the accelerated application part are programmed directly
from the central processor. After that, the accelerated program is executed
and the results are copied back again by the processor. This type of

1.1. PARALLELISM IN PROCESSOR ARCHITECTURES 3

accelerator requires active control from the processor which makes large
data transfers relatively costly in both the required transfer time and energy
consumption.

3. Incorporating direct memory access (DMA) into the accelerator is commonly
the preferred method when designing accelerators capable of handling larger
amounts of data, Acc2 is an example of such an accelerator. This removes
the CPU from the main data transfer path, which may improve the available
data bandwidth if the required data rate was not supported by the processor,
but adds further complexity to the accelerator.

In general, hardware accelerators such as Acc! and Acc2 are mostly used when
a larger non-changing part of an application can be offloaded onto the accelerator.
Typical examples of such applications include the encryption and compression
algorithms that are parts of communication standards. However, for most of the
other applications, some form of reconfiguration of the accelerator may be required
in order to keep up with evolving standards and new similar applications. Such
reconfiguration can either be achieved by a tighter integration between smaller
hardware accelerators and the processor (i.e. using one or more SFUs), or by
adding programming capabilities to larger accelerators (which changes them into
highly-specialized application specific processors themselves). The smaller size of
the extensions and the programmable nature of the processor make it easier to re-
combine the accelerator functionality when new versions of the target application
need to be supported.

In parallel to the inclusion of specialized hardware, be it realized using hard-
ware accelerators or instruction-set extensions, both the temporal performance
and energy consumption can usually be much improved by increasing the paral-
lelism with which the application is executed. Usually, a more parallel execution
of an application enables a more substantial decrease of the frequency at which the
processor system needs to work, without breaking any of the temporal constraints
of the application. In turn, lowering the frequency of the processor allows for a
lower supply voltage which leads to a lower energy consumption.

1.1 Parallelism in processor architectures

The maximal amount of parallelism that can effectively be exploited for a given
application is determined by the structure of the application itself. For instance,
there is a limit on the effectiveness of the parallelism increase of the processor
architecture which has been described by Amdahl’s Law. Gene Amdahl argued
that the speedup of a program using multiple parallel processors (or processing
elements) is limited by the processing time of the sequential part of the application

4 CHAPTER 1. INTRODUCTION

[2]. Amdahl’s Law can be generalized as Equation 1.1

1
Speedup(N) = @ —On (1.1)
with S the serial percentage of the workload (expressed as a decimal between 0
and 1), N the number of processor cores, and Oy the parallelization overhead for
N threads.
A simplified form case of Equation 1.1 can be formulated to estimate an upper
limit on the speedup when ignoring the parallelization overhead and assuming an
unlimited number of processor cores:

1
Speedup(upper limit) = g (1.2)

For example, if 95% of an application can be parallelized and the remaining
5% can not, then the execution time of the parallelized application is limited to
be at least 5% of the original execution time, which limits the maximal speedup
that can be obtained to 20x.

At a first glance, Amdahl’s Law seems to put a strict bound on the usefulness
of increasing parallelism in processor architectures. However, a later observation
by Gustafson [30] counteracts this. Gustafson observed that the parallel portion
of an application is not a constant, but grows proportionally to the increasing
processing power of the system as described by Equation 1.3.

Speedup(N) =S+ N(1—-S5)—On (1.3)

This relation, known as Gustafson’s Trend, can easily be observed in the
evolution of computer games over the last decades; as computational resources
increased, so did the sophistication of computer games, both in terms of higher
resolution graphics and more detailed physics modeling [27]. Similar trends can
be observed in different fields as well, for example, Gustafson did his observations
when working with large scale fluid dynamics simulation on a 1024-processor
system. In his case, increased processor capacity generally resulted in simulations
with higher grid resolution, more time steps, and increased difference operator
complexity [30].

1.1.1 Different kinds of parallelism

Several different kinds of parallelism can be recognized within an application
depending on the granularity of the parallelism.

Task-level parallelism (TLP) An application may be composed of a system
of processing (communicating) application parts which can be executed
in parallel on different processors of a multi-processor system. Such an
application part is usually referred to as a task. Different tasks may have

1.1. PARALLELISM IN PROCESSOR ARCHITECTURES 5

different processing requirements and specialized hardware may be provided
for an efficient execution of each specific task. Key to task-level parallelism
is the fact that different tasks are executed using independent instruction
streams, either through running tasks in a multi-processor system or using
multi-threading on a shared processor. This form of parallelism is sometimes
also referred to as thread level parallelism.

Instruction-level parallelism (ILP) Instructions, the basic steps of the pro-
gram execution, can also be executed in parallel when they do not depend on
each other’s result. Superscalar processors contain multiple operation execu-
tion pipelines and determine at runtime which instructions can be executed
on which execution unit. Many modern general purpose processors use a
superscalar design internally, however, this comes at a price. The additional
hardware for the instruction scheduling logic can have a significant impact
on the overall area and energy consumption of the processor. Explicitly pro-
grammed instruction-set processors partially avoid this hardware overhead
by moving the scheduling decisions to the compiler and explicitly encode
which operations get executed into the program memory of a processor.
This simplifies the processor design at the cost of extra program memory
and a highly complex compilation process. Very Long Instruction Word
(VLIW) processors, as considered in this dissertation, are an example of
such explicitly programmed processors that can efficiently exploit ILP.

Operation-level parallelism (OLP) Frequently occurring patterns of basic op-
erations can be combined into complex operations and implemented as
instruction-set extensions. A common example of a complex operation is
the multiply-and-add operation that can be found in many digital signal
processing (DSP) designs. However, more complex operations, for example,
implementing a partial Fourier transform or a single step of an encryption
program, can also be provided. Such complex operations are closely related
to hardware accelerators, the main difference being the tight coupling with
the processor, which makes it possible to accelerate smaller operation se-
quences and reduces the communication overhead compared to an external
accelerator.

Data-level parallelism (DLP) The same operations may have to be executed
on several parallel data items. Specifically, the computations within an
application may sometimes be written as mathematical vector operations
where the same basic operation gets applied to several (preferably many)
data elements. Image and signal processing applications commonly have
large parts which exhibit data-level parallelism.

It is important to observe that some of these kinds of parallelism strongly
overlap on which algorithms and applications they can be applied. However,
their implementations do differ significantly and the selection of one or more

6 CHAPTER 1. INTRODUCTION

. sCRU
Video|Decode
Processor

| ECortex A9 {Cortex-A9
[cru_ = - cPU

“Processor q

Dual , & '
D’i'splay'j! x Graphics =
0 3 l " iProcessor -

(a) Intel Atom Z3770* (b) Nvidia Tegra 2F

Figure 1.2: Two competing MPSoC’s commonly found in current smartphones
(no relative scaling of die sizes implied)

*Source: http://tweakers.net/reviews/3162/2/intels-atom-bay-trail-de-eerste-
nieuwe-atom-in-vijf-jaar-zes-verschillende-bay-trails.html

tSource: http://www.anandtech.com/show/4144/1g-optimus-2x-nvidia-tegra-2-review-
the-first-dual-core-smartphone/3

kinds of parallelism to implement for a specific processor architecture will depend
on the combination of algorithms and applications executed on it, as well as, the
flexibility (programability) demands for its future uses. For example, while it
may be possible to distribute an application that presents a high level of data-
level parallelism across different tasks in a multi-processor system, doing so might
not result in the most efficient overall system.

1.1.2 Real life examples

Task-level parallelism is commonly supported using several processors, e.g. a
Multi-Processor System-on-Chip (MPSoC). Such an MPSoC usually contains one
or more standard processors, together with several specialized (programmable)
accelerators which efficiently handle various high-performance tasks. Figure 1.2
shows the chip die photographs of two common MPSoCs from competing manufac-
turers; the different processor blocks are marked in the figure. It can be observed
that the general purpose processor part (marked CPU) represents only a fraction
of the total chip area. The remaining marked blocks represent special purpose
accelerators. Such special purpose accelerators are often programmable processors
by themselves, specially designed for the type of tasks that they are supposed to

http://tweakers.net/reviews/3162/2/intels-atom-bay-trail-de-eerste-nieuwe-atom-in-vijf-jaar-zes-verschillende-bay-trails.html
http://tweakers.net/reviews/3162/2/intels-atom-bay-trail-de-eerste-nieuwe-atom-in-vijf-jaar-zes-verschillende-bay-trails.html
http://www.anandtech.com/show/4144/lg-optimus-2x-nvidia-tegra-2-review-the-first-dual-core-smartphone/3
http://www.anandtech.com/show/4144/lg-optimus-2x-nvidia-tegra-2-review-the-first-dual-core-smartphone/3

1.2. CONTEXT OF THIS WORK 7

execute. The tailoring of such an accelerator to a certain application includes
providing the processor with the ability to execute multiple operations of the
application in parallel in a VLIW instruction, as well as, the addition of function
units implementing complex operation patterns that can be executed as parts of
an even more complex (VLIW) instruction. Such a specialized processor is usually
called an Application Specific Instruction-Set Processor (ASIP). Next to the ASIP
blocks, a MPSoC often also contains one or more non-programmable accelerators.
This non-programmable hardware provides a very efficient implementation of a
set of fixed algorithms. The non-programmable nature makes this logic much
less flexible in the face of evolving standards and the introduction of novel algo-
rithms, but it increases efficiency and security, because the fixed implementation
makes malicious modification of the implemented algorithm extremely difficult.
In general, all non-safety-critical and non-performance-critical, but still high-
performance, application parts that still require acceleration or improved energy
efficiency, are nowadays implemented as programmable ASIPs to enable software
updates for the system, so that the system can efficiently support future standards
and late design modifications. The added complexity required for making an ASIP
programmable can often be kept within reason, making the energy efficiency of
an ASIP much more close to that of a non-programmable hardware accelerator
than to that of a general purpose processor.

When creating a new ASIP, the designer usually starts with an existing (gen-
eral purpose) processor and either a) extends this processor with complex custom
operations to increase efficiency of specific algorithm parts (increasing the OLP),
or b) starts by adding parallel execution units which increases the processor’s
ability to execute more operations in parallel (increasing the DLP and/or ILP).
Both approaches can result in efficiently programmable ASIPs and are often
combined when very tight performance constraints need to be met.

1.2 Context of this work

The work presented in this dissertation was performed as part of the ASAM
project?. In brief, the goal of the ASAM project was to automate the process
of designing a new MPSoCs based on ASIP blocks which are designed automat-
ically and concurrently with the MPSoC. For this purpose, tightly cooperating
macro-architecture and micro-architecture exploration stages are envisioned [38],
as shown in Figure 1.3. The macro-architecture exploration is responsible for
designing the MPSoC containing several ASIPs providing TLP, whereas the micro-
architecture exploration designs single ASIP blocks and implements DLP, OLP,
and ILP. This directly illustrates both the necessity and difficulty of such an
undertaking; the macro-architecture exploration will require information about
the performance of the ASIPs that will be designed in order to decide which

2 Automatic Architecture Synthesis and Application Mapping — http://www.asam-project.
org

http://www.asam-project.org
http://www.asam-project.org

8 CHAPTER 1. INTRODUCTION

Input

' C code ' Macro-level Micro-level

Application
Analysis

l Stimuli |
Probabalistic

ralomnto [_owe]
exploration Parallelization C-to-C
——
Compaan SiliconHive tools

Compiler l TIM Generation }
(App. Analysis) HiveCC
Ne—— I
— I Instruction-set I TIM Compiler
— architecture
l synthesis l

Power control

HSD Compiler

System-level Deterministic
Interconnect and exploration
Memory DSE

System simulator

Genesys

SHMPI
prototyping

[t

e ————

Processor
area/energy
model

[Complete system architecture]

Figure 1.3: An overview of the MPSoC design flow developed for the ASAM
project illustrating the macro- and micro-level architecture exploration showing
the contributions of this thesis in a darker shade. A detailed description of this
flow is presented in Chapter 3.

parts of the application to execute where, while the micro-architecture explo-
ration needs to know the tasks that will be mapped onto a particular ASIP in
order to propose its architecture which will determine its performance. It is
a circular dependence between the marco- and micro-architecture design space
exploration. In the ASAM project, the design phase ordering problem is solved
within the macro-architecture exploration using early best-case and worst-case
performance estimates for executing separate tasks on an ASIP, and solving the
more detailed architectural decisions during the design of each individual ASIP in
the later micro-architecture exploration phases. This way the macro-architecture
design space exploration produces a MPSoC proposal and the micro-architecture
design space exploration elaborates the proposal and provides feedback on its
performance characteristics to the macro-architecture exploration. The process is
repeated until a satisfactory MPSoC design is obtained.

The micro-level architecture exploration is subdivided into three phases to
further split the VLIW architecture synthesis problem into more manageable steps

1.3. PROBLEM STATEMENT 9

and to enable an efficient structured interaction between the macro- and micro-
level exploration. These three phases are as follows:

e Application analysis
o Application parallelization and coarse ASIP synthesis

o ASIP instruction-set architecture synthesis

The PhD project presented in this dissertation is focused on the last phase of
the instruction-set architecture synthesis, but also contributed to the two earlier
phases.

1.3 Problem statement

This dissertation presents the work performed as part of the ASAM micro-archi-
tecture exploration and synthesis phase. A three step approach to VLIW ASIP
architecture design is proposed which starts by using our application analysis
methods to obtain parallelism and performance estimates for the various compute
intensive parts of the target application. These estimates are then used during
an application restructuring step. This restructuring improves the exploitation of
available parallelism, performs the actual application parallelization, and decides
the mapping of application data into the processor’s internal memories. Taking
this transformed version of the target application, its memory hierarchy as defined
by the memory mapping, and the predicted parallelism (based on the earlier esti-
mates) allows us to propose a coarse initial processor architecture. The applica-
tion’s parallel execution structure and a corresponding coarse ASIP architecture,
including the number of parallel ASIP memories, is then constructed based on
the generated mapping. This proposed ASIP architecture defines the internal
memory hierarchy, an initial internal communication structure, and a preliminary
set of issue-slots and register files. The goals of this second step are to provide
an initial ASIP and application pair which already approximates the required
temporal performance, but still is composed of (possibly over-dimensioned) ASIP
building blocks from a standard library. The third step, instruction-set architec-
ture synthesis, is then to further refine this coarse initial processor architecture
through specialization of the issue-slots and optimization of the register files and
interconnect. Completing this third step results in a highly specialized processor
architecture with a highly specialized application specific instruction-set, capable
of efficiently running the target application.

The research presented in this dissertation focusses on automatic ASIP instruc-
tion-set architecture synthesis, as well as, the closely related performance esti-
mation of an application specific hardware/software (sub-)system implemented
on a single ASIP. In the scope of this research, a set of effective and efficient
methods and automatic tool prototypes had to be researched, developed, and

10 CHAPTER 1. INTRODUCTION

experimentally validated, in order to enable such an instruction-set architecture
synthesis as was required within the ASAM project. Several key problems have
been identified in this process which are limiting factors for implementing an
efficient and effective processor architecture exploration. The main identified
problems are as follows:

1. Both the distribution of tasks on a, yet to be constructed, MPSoC platform,
as well as, the application restructuring step, require early estimates on the
kinds of parallelism available in a particular application part and their ex-
pected performance. High quality parallelism and execution time estimates
help by both improving the selection of the proper task distribution among
the processors in a MPSoC, but also aid the construction of initial ASIP
and MPSoC architecture proposals that, through this, have a chance to be
closer to the final design.

2. The current state-of-the-art implementations for the evaluation of proposed
candidate architectures commonly depend on an activity trace of (part of)
the target application. Both obtaining and processing such a trace can
be very time consuming, which limits the effectiveness of the architecture
exploration by forcing the use of (less representative) shorter execution
traces.

3. Implementing different exploration strategies efficiently implies thorough
tracking of previously explored design points. When getting closer to a final
architecture, many design points will differ only slightly. Recognizing when
previously obtained results are available for re-use offers an opportunity for
a substantial exploration efficiency improvement. This intermediate result
tracking is, to a large degree, independent of the exploration strategy.

4. State-of-the-art processor architecture exploration methods need to con-
struct and analyze each proposed candidate processor architecture. This is
a very time consuming process which significantly impacts the exploration
efficiency and should be avoided whenever possible.

5. Refining the instruction-set architecture of an initially proposed ASIP ar-
chitecture is a process that involves proposing and comparing many differ-
ent candidate architectures. A smart candidate construction and selection
strategy is key to an efficient exploration.

The aim of the work presented in this dissertation is to address the above
problems and provide satisfactory solutions.

1.4 Contributions

The research presented in this dissertation contributes substantial improvements
to the following steps in the ASIP architecture design process.

1.4. CONTRIBUTIONS 11

1. A method for estimation of the instruction-level parallelism exposed by the
application is presented. This method provides a measurement of available
parallelism used during the exploration of the application restructuring, as
well as, for determining the appropriate number of issue-slots in the initial
ASIP architecture. In result of using the parallelism estimates, we are able
to construct an initial ASIP architecture that both meets the performance
requirements for the target application and is reasonably close to the final
refined ASIP architecture, which both accelerates the final architecture
design and enables reasonably accurate early feedback on ASIP performance
characteristics (Chapter 4).

2. A rapid energy consumption estimation methodology which combines the
block execution profile from a simulation of the target application with
its scheduled assembly listing. This makes our energy estimation method
independent of the number of simulated processor clock cycles, and in
consequence, enables an efficient use of larger more representative input
data sets, allowing for both a faster and more realistic evaluation of the
candidate designs (Chapter 5).

3. An automatic architecture exploration framework called BuildMaster, which
simplifies the implementation of our architecture refinement exploration
strategies. This framework automatically detects when the compilation
and/or simulation results obtained for previously considered candidate ar-
chitectures can be re-used for the evaluation of newly proposed candidate
architectures. Doing so allows us to avoid many of the time-consuming
compilation and simulation steps. This intermediate result caching system
allows us, for example, to avoid on average over 90% of the originally
required simulation time by re-using the previously obtained profile infor-
mation for the energy estimation (Chapter 6).

4. A generic processor architecture refinement method which allows us to avoid
the (time consuming) construction of intermediate candidate processor ar-
chitectures. Our approach only needs to construct both the initial and
refined designs; all other considered candidate architectures need not to
actually be constructed (Chapter 7.1).

5. A set of VLIW ASIP exploration strategies which effectively refine the
processor architecture and a comparison between these strategies in relation
to both the quality of the obtained result, as well as, the required exploration
time. We show that the proposed exploration heuristics find results of
quality comparable to those found using a genetic algorithm, while requiring
an order of magnitude less exploration time (Chapter 7.2-4).

Combining the above mentioned techniques results in a highly efficient auto-
mated instruction-set architecture exploration technology and provides an exten-
sible framework for experimenting with different exploration strategies. In the

12 CHAPTER 1. INTRODUCTION

experiments reported in this dissertation we show that our framework is able to
explore hundreds of processor architecture variations per hour while consistently
producing compact instruction-set architecture designs that meet the expected
performance.

1.5 Dissertation outline
This dissertation is organized as follows:

Chapter 2 “Related work”, presents a selection of recent work related to the
automatic construction of VLIW ASIPs, including an introduction of the
SiliconHive design flow and VLIW processor architecture template which
was used as part of the ASAM project.

Chapter 3 “VLIW processor design in the ASAM project”, introduces
the three step ASIP design flow that was developed by the TU/e team
of the ASAM project and discusses the proposed VLIW processor design
methodology. It describes which tasks need to be performed during the
various stages of the design process and how this is achieved using the
methods presented in this dissertation.

Chapter 4 “FEarly performance estimation”, demonstrates our methods for
early best-case and worst-case performance estimation of an application part
for a not-yet-designed VLIW processor architecture and evaluates the fitness
of the presented methods for the ASAM design methodology.

Chapter 5 “Energy and area modeling”, continues with a more in-depth
discussion of our specific VLIW architecture template and discusses the ar-
chitecture modeling (energy and area) that has been used in our architecture
exploration tools and experiments.

Chapter 6 “Intermediate result caching”, discusses our BuildMaster frame-
work for effective processor architecture exploration. Many time-consuming
steps are involved in an automated ASIP architecture exploration. Good
management and reuse of previously obtained information can significantly
help in avoiding many of these time-consuming steps which can significantly
reduce the exploration time.

Chapter 7 “Automated design space exploration”, proposes three methods
for automated instruction-set architecture exploration and synthesis for
VLIW processors and discusses their limitations and effectiveness.

Chapter 8 “Conclusions and future work”, finalizes this dissertation with
our conclusions and a discussion of the possible future work.

“The Guide says there is an art to flying”, said Ford, “or
rather a knack. The knack lies in learning how to throw
yourself at the ground and miss.”

Douglas Adams, “Life, the Universe and Everything”,
1982

Related work

The development of contemporary digital systems heavily relies on electronic
design automation (EDA) tools. Placing, sizing, and connecting the 1 billion
transistors of a contemporary MPSoC simply is not possible without a huge
amount of fully automated design assistance. Historically, EDA tools focussed
solely at placement and routing of transistors. However, over time this limited
approach became infeasible as circuit complexity increased. As a result, EDA tools
adapted libraries of higher-level standard components. Initially these components
were simple logic gates (and, or, etc.), but later usage of only these small blocks
also proved insufficient and larger so called Intellectual Property (IP) blocks were
added to the libraries. These IP blocks can be as simple as a memory controller,
but may also contain complete processors including local cache memories. Nowa-
days the design and support of such IP libraries has become an important part
of the digital electronics design industry and the sole reason for the existence of
companies such as ARM and Imagination Technologies.

Managing a system-level design containing several such complex IP blocks
is a very complex task which requires highly specialized tools. Currently three
major EDA tool vendors deliver such tools (Synopsys', Cadence?, and Mentor
Graphics?), and virtually everyone designing or using IP blocks will be using the
EDA tools of one or more of these companies. Mentor Graphics, the smallest of the
three, focusses mostly on the realization of designs provided by human experts and
doesn’t (by itself) provide much support for choosing between alternative high-

Thttp://www.synopsys.com
2http://www.cadence.com
Shttp://www.mentor.com

13

http://www.synopsys.com
http://www.cadence.com
http://www.mentor.com

CHAPTER 2. RELATED WORK

14

Table 2.1: Key features of related tools and projects

Vendor /Toolflow Style Language Template Origin ISA Exploration Section
Cadence
XTensa Architecture TIE VLIW Hardware manual 211
extension + extensions synthesis
Synopsys
Processor designer ~ Structural LISA 2.0 ADL Simulator manual 2.1.2
description construction
ASIP designer ISA description nML ADL Compiler manual 2.1.2
synthesis
Research projects
ArchC ISA description ArchC ADL Simulator manual 2.2.1
construction
Codasip ISA description Codal ADL Simulator manual 2.2.1
construction
LISA 3.0 Structural LISA 3.0 ADL Simulator manual 2.2.1
description construction
TCE Structural ADF TTA Hardware automated 222
description synthesis
PICO Architecture configuration VLIW Eg&émﬂo automated 2.2.3
extension + accelerator synthesis
SiliconHive/Intel
HiveCores Structural TIM VLIW Hardware manual 232
description + extensions synthesis
This work Structural TIM VLIW Hardware automated 3.1
description + extensions synthesis

2.1. COMMERCIAL EDA TOOLS 15

level designs. The tool that comes closest to providing an automated application-
to-design path is Calypto Design Systems’ Catapult-C, which started off as a
product from Mentor Graphics. Catapult-C, however, is mostly aimed at the
high-level synthesis of hardware accelerators only and has no special advantage
when used to design application specific processor architectures. However, it can
be useful when creating SFUs. In contrast, Cadence and Synopsys do provide
tools which allow for more automatic design of both hardware accelerators and
application specific processor architectures.

This chapter presents an overview of several of the currently available methods
for (automated) design of customized, application specific, processor architec-
tures, which are in a quite close relation to the research of this dissertation.
Table 2.1 gives an overview of these methods and shows the sections were each
toolflow is presented in more detail. The style and origin columns of Table 2.1 are
indications of the architecture granularity and original purpose of the toolflows.
Each of the presented tool flows nowadays has full support for generating hardware
with an instruction-set simulator and compiler. However, the original design
choices often do have a lasting impact on the abilities and strengths of each of
these toolflows as will be discussed below. The interpretation of the language and
template columns is explained for each of the toolflows in their respective section
within this chapter.

This chapter first presents the commercially available tools from both Cadence
and Synopsys, and then continues with a presentation of the recent research
on the topic. We finalize the related work chapter with a discussion of the
SiliconHive/Intel design framework that was used within the ASAM project, of
which the research presented in this dissertation is a part.

2.1 Commercial EDA tools

Both Cadence and Synopsys provide a large portfolio of EDA tools. These various
tools are aimed at different phases of the design process, and can often be used
in combination with each-other in a semi-integrated fashion to offer a complete
design flow from a high-level design problem specification to a detailed circuit
design. In the last decade, through a series of external acquisitions both vendors
have been moving to include more high-level design tools in their tool frameworks.
This section will present the tools of both vendors which are relevant in relation
to automated instruction-set architecture synthesis of VLIW processors, the topic
of this dissertation.

2.1.1 Cadence

Similar to Mentor Graphics, Cadence traditionally focussed on providing tools
that take a complete design and implement it in the latest technology. As such,
Cadence mostly provides EDA tools that take a high-level system description and

16 CHAPTER 2. RELATED WORK

Y '

Designer-Defined Set/Choose
Instructions (optional) Configuration Options

v Y

Xtensa® Processor Generator

Processor Generator Outputs

Application
Source C/C++
Hardware System Modeling/Design Software Tools
EDA Xplorer IDE Compile
Scripts RiL =3 Gul ‘

to All Tools
Fast Function Executable
Simulator (TurboXim) GNU Software Toolkit *

(Assembler, Linker,

Synthesis XTSC Debugger, Profiler) — Profile Using
SystemC 1SS
System
Block Place and Route Modeling XTMP Xtensa C/C++ (XCC) ¢
CS"Ba”d Compiler
. . ystem
Verification Modeling oo Choose Different
Pin-Level C Software Libraries Configuration or
SoC Integration Cosimulation Develop New
Operating Systems Instructions
! ! } |
L |
To Fab/FPGA System Development Software Development

Figure 2.1: Processor Customization with Cadence X Tensa*

*Source: http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

iteratively translate the design into a more detailed lower-level design until the
final circuit is realized. However, more recently, Cadence has strengthened its
position in the automated high-level design market, first by acquiring Tensilica in
2013, and thereafter by the acquisition of Forte in 2014.

Forte’s Cynthesizer tool together with the Cadence C-to-Silicon design-flow
provided Cadence with a high-level synthesis design-flow similar to that of Mentor
Graphics. However, as with Mentor Graphics, Forte’s tools and Cadence’s C-to-
Silocon design-flows mostly focus on high-level synthesis of hardware accelerators
and less at the automatic synthesis of application-specific processor architectures.
The acquisition of Tensilica, however, changed this.

Tensilica was a company that specialized in programmable TP solutions and
their tools include a language that allows a designer to describe a new processor
architecture at the instruction-set architecture level. Based on this architecture
description, the Tensilica tools automatically generate the processor architecture
hardware-design together with the required software to program the newly de-
signed processor architecture. These tools now live on as part of Cadence’s XTensa
tool-suite.

http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

2.1. COMMERCIAL EDA TOOLS 17

The Cadence XTensa design-flow, illustrated in Figure 2.1, automates the con-
struction of new processor architectures and their corresponding support software.
The designer is presented with a configurable base processor architecture which
can be extended with extra operations. These operations are specified manually by
the expert designer and are included directly in the processor datapath as designer
defined instructions. Both hardware description (RTL) and supporting system
modeling and software tools (simulator/compiler) are then generated for the re-
vised architecture in minutes. This provides an expert user with a methodology
to quickly evaluate the effect of different processor architecture variations on the
performance of the target application. This design-flow helps a lot when designing
an application specific processor architecture, but still relies on design exploration
and decisions of a human designer. Identifying customization possibilities and
other extensions, such as the addition of custom operation patterns, require either
the usage of external tools or the presence of an expert user.

2.1.2 Synopsys

Synopsys, currently the largest of the three main EDA companies, has been
involved in electronic system-level design a bit longer than the other two but,
like Cadence, has also recently been expanding its interest in processor architec-
ture synthesis tools. These tools include Synopsys Processor Designer, shown
in Figure 2.2, which features the design-flow that was acquired from Coware in
2010, and the Synopsys ASIP Designer tools (formerly IP Designer) shown in
Figure 2.3, which were acquired from Target in 2014.

The Processor Designer toolflow allows a user to describe a processor in
the LISA architecture description language and automatically creates both the
hardware description and software support tools. The LISA language provides
a high flexibility to describe the instruction-set of various processors, such as
SIMD, MIMD and VLIW-type architectures [66, 73]. Moreover, processors with
complex pipelines can be easily modeled. The original purpose of LISA was to
automatically generate instruction-set simulators and assemblers [66]. It was later
extended to also include hardware synthesis [73].

Synopsys ASIP Designer provides a different architecture description language
(nML [25,28]) which is also aimed at the description and synthesis of application
specific processor architectures and their support software. The nML language is
very similar in intents and purpose to the LISA language but several subtle differ-
ences exist. For example, nML aims more directly at describing the instruction-set
architecture of the processor, including the semantics and encoding of instructions,
which makes it slightly more suited for generating a retargetable C compiler
together with the simulator and processor hardware [25]. This stronger focus on
generating a full compiler does however restrict possible hardware optimizations
compared to the LISA based flow. For example, sharing hardware resources within
a function unit is more limited for nML based architectures than it is for those
described using LISA [73].

18 CHAPTER 2. RELATED WORK

Application

Synopsys
Processor
Designer

C-Compiler

Assemblar

L

Simulator
Design goals
met? Mo - |
fag]
T Euild
RTL
generation
Synopsys SystemC Software RTL Analyze
Processor Support tools implementation
Package {Verllog, VHDL)
Figure 2.2: Synopsys Processor Designer®
*Source: http://www.synopsys.com/systems/blockdesign/processordev
Q User-defined
algorithm
User-defined
C/C++)
¥
i o Architectural optimizati ASIP synthesis
nl ural o on 8
— and software development (5 i
: L ©
s
e .| © v
Inst;ue%‘tlnn FIT | MEY | GFD) —
FMT [OPD | SH +

Synthesizable RTL
VHDL/Verilog
-
Refinement [2) ¥
Debugger truction Vi Design
& profiler set simulator] CS Compiler
¥
o SDK generation

A J l
@ architectural optimization . Verification

@ Heardware generation

Test program generator
Virtual prototype
) verification

ASIC
FPGA

Figure 2.3: Synopsys ASIP Designer*

*Source: http://www.synopsys.com/dw/ipdir.php?ds=asip-designer

http://www.synopsys.com/systems/blockdesign/processordev
http://www.synopsys.com/dw/ipdir.php?ds=asip-designer

2.2. RESEARCH PROJECTS 19

Outside of these small differences both Processor Designer and ASIP designer
remain very similar. In both cases an expert user has to provide an architec-
ture description from which the tools are then able to generate a compiler and
simulator. Using these generated tools, the user can then compile and simulate
the target application on the proposed architecture. Cycle count and resource
usage statistics are then gathered by the user upon which further alterations to
the processor architecture can be proposed. The selection and implementation
of these extensions is done manually by the user. Hardware (RTL) generation
is usually only performed after the user is satisfied with the performance of
a simulated version of the processor because of the time consuming nature of
running the actual hardware synthesis and the extremely slow speed of RTL
simulation.

Synopsys also offers a high-level synthesis tool called Synphony C Compiler.
Again, this high-level synthesis tool is aimed more at non-programmable hard-
ware accelerators and less at application specific processor architecture design.
However, this hasn’t always been the case. The Synphony C Compiler was the
product of Synfora which originated in 2003 from the PICO project as a start-up
company. PICO, which stands for Program-In, Chip-Out, did much more than
the synthesis of hardware accelerators and will be discussed in more detail in
Section 2.2.3.

2.2 Research projects

In parallel to the commercial offerings discussed above, several research projects
have recently been performed in relation to the high-level design of application
specific processor architectures. Most of these research projects focus on pro-
viding or improving architectural description languages for the construction of
application specific processor architectures (see Section 2.2.1. Two projects were
found to differentiate themselves from the others in that they provide support for
automated architecture exploration. These projects, the TCE framework and the
PICO project, will be discussed separately and in more detail in Sections 2.2.2
and 2.2.3 respectively.

2.2.1 Architecture description languages

Several domain specific languages have been developed for the description of
both functionality and structure of application specific processor architectures.
Using such an architecture description language (ADL), and its related EDA
tools, allows a designer to quickly make variations of a processor architecture
and consider the effects of design choices on the cost and performance of the
final product. Various design analysis tools, including simulation, are commonly
provided with the ADL tools for this purpose. Examples of such languages are
the nML and LISA languages as used by Synopsys ASIP Designer and Synopsys

20 CHAPTER 2. RELATED WORK

Processor Designer, respectively. More variations exist in research: ArchC [4] is
still being developed at the University of Campinas in Brazil*, Codal [13] is being
researched by both Codasip® and the Technical University of Brno in the Czech
Republic, and a new version (3.0) of LISA [14,41,73] is in development at RWTH
Aachen University®.

The current research on these languages and their respective frameworks fo-
cusses mostly on the translation of a high-level processor architecture description
into a corresponding structural description in a hardware description language,
such as VHDL or Verilog, as well as, the generation of programming tools such
as a C/C++ compiler or assembler, debugging and instruction-set simulation
tools, and application analysis and profiling tools. In some cases (e.g. LISA
3.0 and ArchC), support for system-level or multi-processor integration is also
being added. LISA 3.0 also improves on its previous incarnation by the addi-
tion of support for reconfigurable computing [14,41]. A reconfigurable processor
introduces a reconfigurable logic component in or near the datapath. Such a
component can have either a fine grained, similar to a small field programmable
gate array (FPGA), or coarse grained, more like a coarse grained reconfigurable
array (CGRA), reconfigurability. This addition allows for further customization of
the instruction-set even after the finalization of the processor silicon, for example
during the processor initialization or possibly even at runtime.

In general, the process of using these ADL based tools is very similar to that
of the Synopsys tools described above. Support is provided for constructing
both development tools such as a compiler and simulator, as well as, a RTL
description of the hardware of a processor described using in the ADL. Application
analysis tools focussing at highlighting hot spots and candidate instruction-set
extensions can also be provided to the designer. However, like with the Cadence
and Synopsys tools, the final decision making on which processor variation to
consider for a next design iteration is left to the expert designer.

Many more ADL frameworks exist and this section named only a few which
were relevant to the research of this dissertation; for more information on this
topic see the book “Processor Description Languages” by Mishra and Dutt [57].

2.2.2 TCE: TTA-based Co-design Environment

The TTA-based Co-design Environment” is a set of tools aimed at designing
processor architectures according to the Transport Triggered Architecture (TTA)
template. TTA processors are, like VLIW processors, a sub-set of the explicitly
programmed processor architectures and can be seen as exposed datapath VLIW
processors. Unlike VLIW processors, TTA processors do not directly encode
which operations are to be executed, but are programmed by specifying data

4nttp://www.archc.org

Shttp://www.codasip.com
Shttp://www.ice.rwth-aachen.de/research/tools-projects/lisa/lisa
"http://tce.cs.tut.fi/

http://www.archc.org
http://www.codasip.com
http://www.ice.rwth-aachen.de/research/tools-projects/lisa/lisa
http://tce.cs.tut.fi/

2.2. RESEARCH PROJECTS 21

Fle Edit View Tools Optiens Help
o S @ @ @ €> e s Q\ @
New open Zoom + Zoom - Fit Win options Help

qra.adr

FU; FU: FU: FU: FU:
cMuL CADDSUB LSUA INVSQRT LsuB

@ v & w N o~ o

Socket: name = gcu_i2

Figure 2.4: Transport Triggered Architecture processor template*

*Source: http://tce.cs.tut.fi/screenshots/designing_the_architecture.png

movements. As a result, all register file bypassing from function units and register
files is fully exposed to the compiler. The TTA programming model has the benefit
of enabling software bypassing, a technique where short-lived intermediate results
of computations are directly forwarded to the function-unit consuming the data,
while completely bypassing the register file. This reduces both the register file size
and port requirements, as well as, energy consumption for the TTA architecture
compared to more traditional VLIW architectures. A similar reduction of the
register file energy consumption can be obtained using hardware bypassing [64,
75], but that technique generally has a larger hardware overhead as it requires
run-time detection of bypassing opportunities. Figure 2.4 illustrates the TTA
processor architecture template. It shows how the function units, register file, and
control unit, are connected through sockets to the transfer buses. Programming is
achieved by controlling the connections in of the sockets with the buses. From this
figure it is also clear that register file bypassing can be implemented in software
simply by forwarding a result from one function unit directly to the input of
another.

Research on Transport Triggered Architectures started with the MOVE project
[15,31] at Delft University of Technology during the 90s. Later, when the Delft
MOVE project was discontinued, Tampere University of Technology continued the
research, and created the next generation of the MOVE framework which they
named the TTA-based Co-design Environment. Hoogerbrugge and Corporaal
[15, 31, 32] investigated automatic synthesis of TTA processor architectures as
part of the MOVE project and a derivative of this work is still available within

http://tce.cs.tut.fi/screenshots/designing_the_architecture.png

22 CHAPTER 2. RELATED WORK

the TCE. Chapter 6 of the TCE manual [78], titled “Co-design tools”, is dedicated
to the tools available for supporting automatic processor architecture exploration.
These tools are somewhat similar to the tools and techniques presented in this
dissertation. However, this dissertation presents several techniques and tools that
target another processor architecture style (VLIW).

In general, the work described in this dissertation is to some degree similar to
that of the TCE, but has a strong focus on optimizing the exploration efficiency.
The methods presented within this dissertation improve upon those related to the
TCE as follows:

e The techniques presented in Chapter 4 can be used to give early estimates on
the number of buses and function units to create a good initial architecture.
The TCE expects that an initial processor is designed and constructed by
the user and is then iteratively adapted to better suit its purpose. Starting
with a better architecture reduces the number of iterations in the adaptation
process and, as a result, substantially speeds-up the exploration.

e As part of the exploration, the TCE framework provides the possibility
of performing a compiled simulation. As preparation for the compiled
simulation, the processor simulator (ttasim) is compiled to include a com-
piled form of the target application. This avoids the instruction-set inter-
pretation step traditionally needed for simulation and significantly speeds
up simulation but does require the compilation of a specialized simulator
program [78]. The ttasim documentation suggests that it can be combined
with ccache [82] to drastically reduce compilation times before simulation.
Ccache works by saving compiled binary files into a cache. When ccache
notices that a file about to be compiled matches a previously compiled
(and cached) file, it simply reloads file from the cache, thus eliminating
recompilation of unmodified files and saving time [78]. This can be very
useful when running the same simulation program again, due to drasti-
cally reduced compilation times. Our BuildMaster framework, presented in
Chapter 6 works similarly as ccache, but takes more architectural knowledge
into account. This allows our BuildMaster to also recognize when slightly
different hardware configurations will result in exactly the same compiled
binary code. Our approach therefore recognizes more opportunities than
only the trivial ones observed using ccache, as a result it achieves higher
compilation cache hit-rates and delivers a higher compilation time reduction.

e The BuildMaster framework also manages our energy and area estimation,
combined with our profile-based energy estimation presented in Chapter 5.
TCE uses a simulation-trace based energy estimation, and therefore requires
a simulation run for each considered design-point. Our approach only re-
quires a new simulation run when the application’s execution profile changes,
which only happens after significant changes to the processor architecture.
Our BuildMaster framework is capable of predicting when these changes will

2.2. RESEARCH PROJECTS 23

happen and will only re-run a simulation when predicts that this is actually
required. In our experiments (see Chapter 6) we found that we can avoid
on average over 90% of the simulation runs using this technique. This can
greatly reduce the total simulation time, especially when an architecture
supporting a large application or benchmark is to be explored.

¢ Our instruction-set architecture exploration algorithms, presented in Chap-
ter 7, differ from those for the TCE also in relation to the fact that we
target VLIW-based processors and not TTA-based ones. This, combined
with our careful construction and selection of an initial architecture for the
exploration, especially when combined with our thorough caching of inter-
mediate results, allows us to obtain a highly efficient processor architecture
in a very short time.

Most of the presented techniques, after small modifications, could also apply
to the TCE and could help to further reduce TTA-based processor architecture
exploration times.

2.2.3 PICO: Program-In Chip-Out

As was mentioned above, the PICO project, grandparent to parts of Synopsis’
current design-flow, offered more than the automatic synthesis of hardware ac-
celerators which was incorporated into Synphony C compiler. In its original
form PICO covered the automatic synthesis of a processor system containing
a set of non-programmable hardware accelerators combined with a single VLIW
processor [1,42]. Figure 2.5 illustrates the PICO system architecture template.

In essence the goals of PICO were very similar to those of the ASAM project.
Both projects aimed to automatically develop an application specific multi-pro-
cessor system. However, there are also several key differences. PICO approaches
the problem by synthesizing a system with a single VLIW processor and a set
of hardware accelerators, whereas the ASAM project utilizes one or more heavily
specialized highly parallel VLIW processors and no hardware accelerators. The
differences between these two approaches stem mostly from the differences in their
VLIW processor templates. For example, the PICO VLIW processor template
(shown in Figure 2.6) uses a single register file for each data-type (integer, floating
point, etc.), this severely limits the number of operations which can be executed
in parallel. Many read ports need to be available to provide the operands to each
operation executed in parallel. Large many ported register files quickly become
very expensive regarding both area and energy, and limit the maximum operating
frequency of the VLIW processor [53,79].

The PICO design-flow, illustrated in Figure 2.7, provides a fully automated
design flow for developing the non-programmable accelerator (NPA) subsystems,
the VLIW control processor, and the cache memory hierarchy. To limit the size of
the design space, each of these three components (NPAs, VLIW architecture, and
cache hierarchy) is explored independently from the others. Considering all three

24 CHAPTER 2. RELATED WORK

NPA subsystem
)
e VLIW processor Nonprogrannable accelerator N
| Predicate register file | NPA data path
Integer » Foaingpoirt | || | npA Commrents
e s | 1o | oy [intatzionca, K1 EL D
interface Done E E E
2 s
Instruction fetch Integer Memory Floating-point
and decode l| functional units functional units I \.
— 1
(v vy Cache subsystem N
L1 L1
instruction cache data cache
. v v Cache interconnect vV o
2
unified cache
v System bus -
PE - Processing element Main
IM - Internal memory memory

Figure 2.5: PICO system architecture template [42]

Control path [Instruction cache |
| 2
/ ’ Instruction prefetch FIFO I
. l-unit o : ‘ ‘
Instruction format control [
0 add/sub/mult 24 Id/stdisp 47

i |srt1 src2 |destl
TO E

" v
tsrcl| disp |dstl \ On-deck register
: 3 3ﬁﬁ_l

srct | sre2 [oesta [[isre1 | disp s ~ = ~ 7

: Idinc [Instruction register |

SN

ek
T [[il[[s2 [sr2 ot [st ost] s [| ﬁ rar e :
H Decode a] a2 a3 a4 ag af 517 disp

L3N T N S

add/sub i 3

P ilEJH_Hsrcllscm Joesta| l ’ Integer regjster file
T v
L Integer FU v v
Data path 4 =[Memory FU

Figure 2.6: PICO VLIW processor architecture template [42]

2.2. RESEARCH PROJECTS 25

Input C code @

VLIW code L { Con'pute-mtenswe

}
{ ~.= EI @
NPAcorsmr,tor
— / ‘
Machine
description
F’“ b d NPAspacevserr

Executable

—7 VW] control
VLIW constructor processor | e Ca:hespacewdke’

@

/@|
©

Cache o
VLIW spacewalker EETEY ‘\
PICO-generated system

Figure 2.7: PICO design-flow organization [42]

components combined results in a too large design space which severely limits
the effectiveness of any automated exploration [1,42]. During the exploration, a
Pareto-optimal set of solutions is obtained for each of the three system compo-
nents. First compute-intensive kernels are identified (2) (see step 2 in Figure 2.7)
in the input C code (1) and NPA architectures are explored for each of these
kernels (3), (4). The compute-intensive parts are then replaced with calls to the
hardware accelerators in the original C code (5) and a set of alternative VLIW
processor architectures is then designed (6), (7), (8). Finally, the cache hierarchy
is tuned for the memory requirements of the application (9) and compatible
VLIW, cache, and NPA designs are combined to form a set of Pareto-optimal
designs (10). The focus for the system architecture exploration by PICO is on
the trade-off between the area and timing. Area is measured in either physical chip
area or gate count, whereas an estimation of the application’s processor runtime
is used for the timing. Similar to our approach, the timing estimate is computed
as the total sum of each basic block’s schedule length multiplied by its profiled
execution count.

The aims of the PICO project were quite similar to those of the ASAM project,
of which this dissertation is a part. However, the architecture template for the

26 CHAPTER 2. RELATED WORK

PICO project was substantially more restricted than that of the ASAM project.
The research reported in this dissertation much improved upon the PICO project
results, a.o. as follows:

e The VLIW processor architecture template used within the ASAM project
has substantially more design freedom. This allows us to construct VLIW
processor architectures which perform like hardware accelerators but are
still fully programmable. This comes at the cost of a much larger design
space, and thus, a more complex design space exploration. The ASAM
project developed methods and tools to explore this much larger design
space effectively and efficiently.

e While PICO focusses on a single VLIW processor with the addition of
hardware accelerators, the ASAM project replaces these hardware accel-
erators with several heavily customized VLIW processors. This results in a
fully programmable heterogeneous multi-processor system which improves
the customization and adaption possibilities of the platform. The ASAM
approach also enables a much more heavy use of code transformations
to optimize and combine compute intensive kernels in an efficient way.
The ASAM project considers loop tiling, kernel fusion, and vectorization
whereas the PICO NPA Spacewalker only considers loop tiling [74]. Adding
these extra code transformations drastically increases the size of the design
space. The ASAM project handles this increased design space complexity by
incorporating a high-level exploration of these code transformations using
early performance estimates of both single kernels and kernel combinations.
Based on this exploration we are able to find promising kernel combinations
while designing each single VLIW processor node. Chapter 4 presents our
effective and efficient techniques for early performance estimation and gives
bounds on the best-case and worst-case timing behaviour for single kernels.

o PICO considers the trade-off in design area and performance (cycle count)
during its exploration, the ASAM project considers the same, but adds the
energy consumption to the considered design quality metrics. Like PICO,
we use the profiled execution count of the basic blocks of an application to
estimate the cycle count of kernels mapped onto VLIW processor candidates.
However, we have extended this method to provide sufficient information
to also perform energy estimation. Building further on the profile-based
energy estimation, we recognize that the execution profile of different archi-
tecture candidates changes relatively infrequently. In chapters 5 and 6, we
therefore present techniques which cache previous profiles obtained through
simulation and recognize when the execution profile is likely to change.
These techniques allow us to avoid over 90% of the otherwise required
simulation time and provide a significant exploration time reduction, making
the exploration of large design spaces feasible.

2.3. THE SILICONHIVE TOOLS 27

The work presented in this dissertation focusses on techniques and tools to
improve the architecture exploration speed. The developed techniques and tools
can be integrated into PICO to allow for a much faster and more thorough design
space exploration.

2.3 The SiliconHive tools

As with all large high-tech companies, public information about the Intel Benelux
VLIW ASIP development technology is mainly available through cooperation in
research projects such as the ASAM project or with the added knowledge of
its ancestry. Through its previous incarnations at both SiliconHive and Philips,
a veritable treasure trove of information on this technology can be uncovered.
The initial research and development was carried over into SiliconHive when it
was spun-out of Philips Research as part of the Philips Technology Incubator
program in 2003. Intel then acquired SiliconHive in 2011 after a period of growth
and further development.

This section uses a selection of the information made available through the
ASAM project and from publications from both the earlier Philips and SiliconHive
periods, to introduce the SiliconHive VLIW ASIP architecture template and the
pre-existing SiliconHive development framework. The SiliconHive architecture
template is introduced in this section. Key features of the related retargetable
compiler are introduced in Section 2.4.

2.3.1 Overview

Similar to the other tool flows discussed in this chapter, the SiliconHive tool
flow, illustrated in Figure 2.8, offers an architecture description language (called
TIM) and a set of tools to generate hardware RTL descriptions, an instruction-set
simulator, a retargetable C compiler, and various other debugging and software
development tools. In parallel, the SiliconHive tools also offer a second language
(called HSD) that allows a user to construct a multi-processor system consisting of
one or more VLIW processors (specified using the TIM language) and other hard-
ware components (such as hardware accelerators, memory units, and peripherals)
taken from a library or imported from external sources.

Starting from an original application design, the user starts by composing or
selecting an initial MPSoC platform design and then decomposing the application
into a parallelized version tuned for the initial platform. After mapping the appli-
cation onto this platform, the user can then compile and simulate the application
to find the remaining critical points of the design. Using this information, the
user then can manually update the parallelization, mapping, and/or the platform
composition in an iterative design process. Several pre-selected processor and
platform designs are available for an easy start but the parallelization, mapping,
and design-space exploration steps need to be performed manually.

28 CHAPTER 2. RELATED WORK

data

application

system

VHDL

Figure 2.8: SiliconHive flow*

ESiIiconHive tool

D manual

*Source: ASAM project

2.3.2 Architecture template

The SiliconHive ASIP design technology offers a highly flexible template of a
customizable VLIW processor. Figure 2.9 illustrates this processor architecture
template. A processor (cell) is organized in two parts, one part (coreio) contains
the local memories and handles the interface with the external world, while the
other part (core) performs the actual operations as described by the program in
the local program memory.

Interfacing to the external world and memories

SiliconHive processors usually contain one or more local scratchpad memories
which are used for low-latency storage of (intermediate) data used by the al-
gorithm running on the processor. Several memories with different organization
(e.g. different sizes and/or data-widths) and differently implemented (e.g. register-
based or SRAM) can be included in a single processor as required by the target
application. Local memories are also connected through a slave interface to the
global MPSoC interconnect hierarchy so that the other elements of the MPSoC

2.3. THE SILICONHIVE TOOLS 29

register register register status program
file file file register || | counte
register
programmable interconnect
function function function function | function
unit unit unit || unit unit
{
issueslot isgieslot isgueslot
data path sequencer
f ‘ core
v v
‘ : :
address mapping address address H H
mapping mapping H H
Y Y
storage storage storage [1 [T storage status
orl/o orl/o orl/o orl/o & control ?Qgim
device device device device bank v
] Y | > i
logical memory ogical memory logical memory
y /| L
LI
address address address
mapping mapping mapping
slave slave slave
interface interface interface
coreio
A cell
stream slave slave master slave
port port port port port

Figure 2.9: SiliconHive processor architecture template [38]

containing the SiliconHive processor can access these memories when providing
input and/or consuming output to/from the SiliconHive processor. One or more
master interfaces may also be present in the coreio. These master interfaces can
either connect to an external memory, a direct memory access (DMA) controller,
or the local memory of another SiliconHive processor. Stream interfaces (FIFOs)
can also be added to the processor. Such FIFO interfaces are mainly suitable for
small data transactions and are usually utilized by providing hand-shake signals
while performing larger transactions through a master interface transfer.

In parallel to these data storage and transfer components, the coreio of a
SiliconHive processor also contains the program memory, as well as, a set of
status and control registers which can be used for reconfiguring the processor.

30 CHAPTER 2. RELATED WORK

pearl_ray

ray_ray_s1_op0_BUS
bp_pearl_s2_op0_BUS
bp_pearl_s1_op0_BUS

bp_pearl_s1_sr_BUS -
bp_pearl_s1_pc_BU! I bp_pearl_s2_op1_BU:!
bp_pearl_rf1 bp_pearl_rf2 ray_ray_rf1
16x 32 bp-pearipo | | bp_pearl sr 16x 32 8x32

bpfconﬁg_pmgﬁonf f_pmem bp_fi#8, fifo bp_¢ 1_mem ray,xmﬁ,master
stat_ctrl fifo0 fifo1 master_int
4096 4128 2x82 16384{x 32

13x32 2x32 1073741824 x 32

Figure 2.10: An example SiliconHive processor, the Pearl Ray [62]

Examples of such reconfiguration are actions like reprogramming the program
memory, entering/leaving the low-power sleep mode, and starting/stopping a
kernel.

The core itself contains a very small sequencer block, which task it is to
interface the datapath with the status and control registers, and which fetches
the appropriate instructions from the program memory. Instruction decoding
is very cheap in the SiliconHive processor architecture by using a horizontally
programmed processor style. Instruction bits usually correspond directly to part
of the configuration bits of the processor registers and input select multiplexers.

Core structure

The actual execution of the program is performed inside the datapath. Here,
operations are executed within issue-slots. Each issue-slot is composed of a set
of function-units which implement the actual operations. This division of issue-
slots into function-units can be somewhat confusing as most of the related work

2.3. THE SILICONHIVE TOOLS 31

[7,15,31,53,79] uses the term function-unit (or functional-unit) to designate what
is called an issue-slot in SiliconHive terminology. However, this dissertation will
use the SiliconHive terminology since it builds upon their processor architecture
framework.

Within the datapath, issue-slots are connected to multiple register files using
a (optionally shared) interconnect [7,48,62,83]. This provides an efficient im-
plementation for very wide VLIW processor architectures without incurring the
overhead of a large, centralized, register file [53,79].

Figure 2.10 shows the Pearl Ray processor, one of the example processors of
the SiliconHive design flow [62]. It demonstrates a processor with 3 issue-slots, 5
register files (3 general purpose register files, one program counter, and one status
register), a local memory, a master interface, and two bidirectional FIFOs. The
leftmost issue-slot communicates with the sequencer, it contains a ’status update
unit’ (SUU) and is connected to both the status register and program counter.

Programming a SiliconHive processor is achieved by configuring the appro-
priate connections between issue-slots, selecting appropriate register file indices
for each register file port, and selecting the executed operation for each issue-
slot. In this explicitly programmed processor, the processor configuration maps
almost directly into bit-fields of the program word [7]. For example, the Pearl
Ray processor instruction word is constructed as follows:

« Issue-slots 1, 2, and 3 (each):
— n operation selection bits, with n = [2log(ops)] and ops the number
of operations in the issue-slot.
— Extra immediate bits for operations taking immediate (constant) val-
ues.

o General purpose register file 1, 2, and 3 (each):

— Operand select bits for each output port
— A write index for each input port

— A bus select for each input port of a register file, which is used directly
to configure the multiplexers in the result select network (illustrated
as dots in Figure 2.10).

e Status register and program counter:

— A write-enable bit.

Overlaying reduces the length of the program word by assigning multiple pur-
poses to program word bits depending on the selected operation. For example, the
immediate bits are overlapped with the select bits for one of the other operands.
This causes a reduction of the program word length without causing encoding
conflicts when an operation which uses an immediate (e.g. add %regl, Y%reg2,

32 CHAPTER 2. RELATED WORK

#imm) operand will use one less register file input compared to its non-immediate
variant (e.g. add Yregl, %reg2, Y%reg3d).

The explicitly programmed nature of the SiliconHive processors makes it rela-
tively easy to compute the final instruction width for newly constructed processor
architectures. This is especially useful when modeling the impact of architecture
changes (see Chapter 5). For the example Pearl Ray processor, the program word
width after overlaying is 111 bits.

2.4 Compiler support

One of the major difficulties in the development and usage of VLIW processors is
the ability of the programmer to obtain a sufficiently high resource utilization of
the processor. The high amount of programming freedom provided by explicitly
programmed processor architectures, which enables the high performance benefits
of these architectures, also increases the complexity of the scheduling process.
Combining this with the presence of large, complex, custom operations and VLIW
scheduling techniques such as software pipelining [46] easily results in a highly
complex compiler.

This high compiler complexity, up to the point where the creation of a compiler
becomes infeasible, is often one of the motivations for moving parts of the decision
making process to the programmer, the user of the compiler. Annotations added
to the input C code allow for a simplification of the compilers decision making
process which often leads to a better final result when an experienced programmer
is using the compiler. Even with a good compiler, annotations may bring a
substantial profit as they allow for localized overrides of the compiler heuristics
in cases where sub-optimal results are being produced.

2.4.1 Source code annotation

Source code annotation is a popular technique to enable some of the more eso-
teric processor features without invasive changes to the compiler itself. Classical
examples are intrinsics and annotations that capture the mapping of data into
one of the (possibly many) different memories of a processor. However, hints for
enabling and disabling specific optimizations can also be provided as source code
annotations. Complex optimizations can be very time consuming, while most of
their benefit can only be observed for a (small) portion of the application code.

Complex operations

Complex operations, such as an FFT butterfly operation or those working on
vector elements, are difficult to represent or efficiently detect in the C language.
For this purpose, most compilers provide direct access to such operations through
intrinsics. A compiler intrinsic looks like a C function call, but translates within

2.4. COMPILER SUPPORT 33

the compiler directly into the (complex) operation it represents. This allows the
programmer to force the compiler to select the intended operation and allows for
a strong simplification of the custom operation selection heuristics in the compiler
itself. Listing 2.1 shows an example of an explicitly selected multiply-accumulate
operation. In this case the intrinsic is usually not needed as the compiler will
recognize the operation automatically, but bigger or more complex operations,
such as the FFT butterfly operation mentioned above, this may not be feasible
and the use of the intrinsic will be required in order to generate efficient code.
Another common use of intrinsics is to represent low-level functionality that has
no representation in C such as a FIFO send or receive operation (as demonstrated
below in Listing 2.3).

#if HAS_std_mac

r = 0OP_std_mac (a, b, c);
#else

r =a *x b + c
#endif

N

S

Listing 2.1: Example use of an intrinsic

Memory mapping

The mapping of (global) data arrays onto one of the local memories of a processor
is often controlled by added annotations. For example, OpenCL [77] recognizes
__private as a keyword which denotes that the thus marked data should be
mapped into the private memory of the processor running the kernel.

The SiliconHive compiler recognizes a MEM(memory_name) annotation, illus-
trated in Listing 2.2, where memory__name is one of the memories of the processor
design, which forces the data to be mapped onto the selected memory. Any global
data that is not annotated will be mapped into a default memory. Mapping all
the data into a single memory can severely limit the parallelism at which the
application can be executed as only a single load-store unit (LSU) is usually
connected to each memory. Though connecting multiple LSUs is possible this
either requires arbitration (which sequentializes access from the different LSUs)
or a multi-port memory (which is expensive). As such, mapping all data into a
single memory effectively restricts the number of parallel load-store operations to
one per cycle, which severely impacts the overall performance of memory-intensive
applications.

1 int MEM(meml1) a; // A wvariable in memory meml

Listing 2.2: Ezample use of a MEM annotation

© 0w N o U A W N e

34 CHAPTER 2. RELATED WORK

Optimization hints

Optimization hints can often be provided either by using standardized C key-
words such as inline, restrict, and register, by in-line annotations such as
__builtin_expect() in GCC, or by compiler directives using #pragma state-
ments.

Typically, #pragma directives are used by the SiliconHive compiler to control
loop optimizations (such as unrolling) and scheduling parameters (such as sug-
gestions for the initiation interval for software pipelining). Exhaustive scheduling
can also be selected for specific parts of the program through a #pragma statement
as further discussed in Section 2.4.2.

The SiliconHive compiler also allows the programmer to force the execution of
an operation onto a specific function unit using the ON keyword, which can help
the scheduler to find a better mapping of the application. Extra dependencies
between operations can be added to the C code using the DIST, AFTER, SYNC,
and SYNC_WITH keywords. Such explicit synchronization statements allow, for
example, the addition of a scheduling dependency between the FIFO read which
receives a handshake signal, and the memory read which retrieves the actual data
that was received by the processor. An example usage of such keywords is given
in Listing 2.3. Adding these annotations is required when speculative execution
of operations is enabled in the compiler. Failing to provide proper annotations
may result in operation re-ordering which and will cause incorrect results during
the execution of the program.

int SYNC_WITH(O) foo;

int SYNC_WITH(1) bar;

void func(void)

{

a: OP_std_snd (0, 0) SYNC(O);
foo = 1; // can go after b, but not before a
bar = 2; // can go before a, but not after b

b: OP_std_snd (0, 1) SYNC(1);

()

Listing 2.3: Example use of SYNC and SYNC_WITH annotations

2.4.2 Code transformations

Code transformations form a key to enabling a high ILP, but also for controlling
the buffer sizes required for intermediate data. Code transformations, such as
speculation and unrolling, or scheduling techniques, such as software pipelining,
are mostly aiming at increasing the explicitly available ILP within important
sections of the program. However, such ILP enhancing techniques usually also
come at the cost of an increase of the program size. The SiliconHive compiler
supports these ILP enabling optimizations both as automatic optimizations, but

N

2.4. COMPILER SUPPORT 35

also provides the user with more control through enabling/disabling these opti-
mizations for parts of the code using annotations. Listing 2.4 shows an example
of explicitly enabled software pipelining on a loop.

for(i = j = 0; i < 100; i++, j++) {
table[j] = tablel[i] * 3 + 2;

#pragma hivecc pipelining=0

}

Listing 2.4: Ezxample use of a code transformation annotation

Loop transformations, a subset of the code transformations with focus on the
structure of loop nests, generally aim at controlling the distribution and size of
data elements communicated between consecutive loop nests, but also affect the
sizes of data communicated between the processor and external inputs and outputs
(such as external memories or other processing tiles). The loop transformations
used within the ASAM project are mainly: loop fusion, loop tiling, and loop
vectorization. These loop transformations are currently not provided by the
SiliconHive compiler and are performed within the ASAM project as source-level
code transformations.

For the purpose of loop transformations, formal mathematical models of loop
nests, such as the Polyhedral model [6], are used. Such formal models allow for a
direct analysis of the effects of loop transformations on the memory requirements
of the transformed code. Although the SiliconHive compiler does not yet support
such loop transformations, several tools are already available [5,6,9,29,84] which
allow for translations to and from the polyhedral domain, as well as, the automatic
exploration of loop transformations. Chapter 3 further illustrates how these
methods are used within this disseration and the ASAM project in general.

2.4.3 Extensions for architecture exploration

Using a compiler in the context of an architecture construction or exploration
framework increases the demands on the compiler. A lot of time can be saved if the
same compiler can be used for several variations of a specialized processor without
the need for rebuilding (parts of) the compiler. In the SiliconHive compiler, this
is achieved through the addition of several compiler controls. These compiler
controls allow the programmer to override the set of available processor resources
that the compiler is allowed to use. Such compiler flags make it very easy to
investigate the effects of removing specific function unit, or even a complete issue-
slot, from a proposed processor architecture.

However, code annotations pertaining to resource allocation, such as an ex-
plicit function unit binding or the use of a complex operation through an intrinsic,
are considered definitive by the SiliconHive compiler. Thus, removing an explicitly
used resource from a processor will result in a conflict with source code annotations

36 CHAPTER 2. RELATED WORK

present in the target application. For example, removing a function unit may
result in the removal of an intrinsic from the compiler which was used in the
target application. In some cases, replacement or emulation code can be provided
by the programmer. Such emulation code needs to be provided in source code
form itself as pre-compiled emulation libraries will also not have the opportunity
to take removed resources into account.

A similar difficulty appears when a load-store unit is removed, making one
of the memories of the candidate processor inaccessible. Such a removal can
invalidate the current memory mapping of the target application in a way that
can not be covered easily by the use of replacement code. It is quite likely
that the entire memory mapping needs to be reconsidered in such a case. As
a result, either the exploration can not have the freedom of removing load-store
units and their related issue-slot and memory interfacing hardware, in which case
the exploration needs to be provided with a set of different initial architectures
representing different memory mappings; or the compiler needs to provide an
automated method for finding an appropriate distribution of data across memories
so that the distribution of data across different local memories will not require
annotation.

2.5 Conclusion

In this chapter we have presented several tool flows and research projects that
either overlap directly with the full scope of the ASAM project, or that are
used within the ASAM project itself. However, there are many other previous
works that cover sub-parts of the problems investigated in this dissertation. In
particular, we recognize that instruction-set architecture synthesis relies heavily
on tools and techniques from various research fields, such as; instruction schedul-
ing [7,31,46,51,53,65,70,76], instruction-set extension [59-61,69,81,86], hardware
synthesis [37,74], performance and energy modeling [44,45,67,72,88], design space
exploration [37,50], and many others. Such works are further discussed in the
related chapters of this dissertation. A more thorough overview of these tools and
techniques, and many others, can be found in [40].

T’aint what you do, it’s the way you do it.
Melvin ‘Sy’ Oliver & James ‘Trummy’ Young, 1939

VLIW processor design in the ASAM
project

As previously mentioned, the ASAM project focusses on the automatic synthesis
of a heterogeneous VLIW ASIP based multi-processor system. The ASAM design-
flow is built upon the VLIW MPSoC design framework of Intel Benelux (formerly
SiliconHive) that was presented in the previous chapter. The aims of the ASAM
project include the automation of several of the manual steps. In particular the
exploration, analysis, and decision making regarding multi-ASIP platform design,
application parallelization, ASIP customization, and application mapping steps
were considered for automation.

One of the key problems addressed by ASAM is that it is impossible to perform
an efficient parallelization and mapping without information on the performance
of application parts on specific processing elements of the platform, but it is
equally impossible to construct a reasonable multi-processor platform and each of
the application-specific processing elements without knowledge of the paralleliza-
tion and mapping due to the cyclic dependency between both.

The ASAM project tries to break the cyclic dependency of this ‘chicken and
egg’ problem by tight coherent coupling of various design stages and phases, as well
as, through statically computing early performance estimates of single tasks, and
combining those into likely application mappings using a probabilistic application
partitioning and parallelization phase.

37

CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

38

Input

@ System input

Macro-level

_ Stimuli —

User constraints

P Y

Compaan
Compiler

@ Task parallelization

O

@ WCET

Micro-level
)

Probabalistic

@ ASIP design

Application

exploration

(App. Analysis)
Ne—
 SEEE——

System-level
Interconnect and

@ Comm. optimization

@ ASIP Design + Sim.

@ C transformation

C-to-C

Parallelization

H

Memory DSE

@ ASIP instantiation SiliconHive tools
0 Intel tools ——
_ HiveCC —
‘I_ @ Instruction-set 6 BuildMaster _ TIM Compiler —
@ Instruction-set + Sim|
HSD Compiler
Deterministic @ Power control j @ UNICA simulator
exploration \ O oy) System simulator
prototyping
® sysiem output l
« @@

H Complete system architecture H

Figure 3.1: ASAM flow overview with the contributions covered in this dissertation marked in a darker shade*

*Source: The ASAM project

3.1. OVERVIEW 39

3.1 Overview

The ASAM approach divides the MPSoC design space exploration into two main
stages: the macro-architecture exploration, and the micro-architecture explo-
ration. These two stages are tightly coupled to form a coherent MPSoC architec-
ture exploration framework. The macro-level architecture exploration focusses
on the construction of the system out of a set of (initially unknown) VLIW
ASIP processors, whereas the micro-level architecture exploration focusses on
the analysis of a set of tasks assigned to a single ASIP and the construction of
new VLIW ASIPs specialized for (groups of) specific tasks. Figure 3.1 illustrates
the tight bi-directional cooperation between the macro- and micro-level architec-
ture exploration. Further information on the ASAM flow can be found in [38].
The work presented in this dissertation lies within the micro-level architecture
exploration and focusses mostly on the application analysis and the instruction-
set architecture synthesis (highlighted in Figure 3.1). However, to adequately
place this work in its context some more information is needed about the macro-
micro interaction, as well as, the application (or more accurately intra-task)
parallelization within the micro-level stage.

3.1.1 Macro- and micro-architecture exploration

The ASAM flow starts @ with its input composed of the C-code of the target
application, as well as, user supplied constraints and design objectives. From
these, it extracts the overall application structure and a set of compute intensive
kernels using the Compaan Compiler [43], which translates these kernels into tasks
in a Polyhedral process network @

The user supplied constraints and design objectives consist of both structural
and parametric requirements. These requirements guide the automated tools and
are used to control exploration aspects, such as the granularity of the computa-
tional tasks and the available processor architecture components (both structural
requirements), but also to allow user defined limits on the energy consumption,
throughput, and maximal area occupation (parametric requirements). Through
these constraints and objectives, the user is able to control both the size and
complexity of the overall exploration problem and can influence the trade-offs
that are considered during the design process.

Finding good task combinations to be executed in single ASIPs

Each of the tasks of the Polyhedral process network is then analyzed by the
micro-level application analysis @ Chapter 4 presents an efficient method for
determining the best-case and worst-case execution times of tasks for a future
VLIW processor designed according to the SiliconHive template. These best-case
and worst-case execution time estimates, computed by the micro-level for tasks
assigned by the macro-level to be executed on a single ASIP, are then taken by the

40 CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

macro-level and used during the probabilistic system exploration [38,54,55]. Using
an evolutionary algorithm combined with Monte Carlo simulation and models
of the inter-processor communication the probabilistic system exploration finds
promising task clusterings. For each of the task-clusterings the micro-level is then
consulted to produce an initial customized VLIW processor architecture @

Deciding the ASIP memory hierarchy and initial VLIW ASIP archi-
tecture

In the micro-level application-parallelization and coarse architecture synthesis
stage, multiple tasks within a single cluster may be transformed so that data-
locality and re-use are optimized. The micro-level application parallelization
tool [17,38] transforms the Polyhedral representation of the clustered loop kernels
to reorder and fuse the kernel executions in such a way as to find possible trade-
offs between the data-throughput and the processor area and power consumption.
Although at this stage, the power consumption is assumed to be proportional
to the area. Currently, loop fusion, loop tiling, and kernel vectorization are
considered during this exploration, but the repertoire of transformations can be
extended.

Loop fusion combines two kernels into a single new kernel which localizes any
intermediate results which were communicated between the original kernel
pair. This reduces the total memory requirements for the task cluster.

Loop tiling enlarges the granularity of data on which the kernel is running.
This allows for a trade-off between the size of the local cache or scratch-
pad memories in the processor versus the bandwidth required between the
considered processor and its external memory.

Loop vectorization changes the data granularity for the computations per-
formed within the kernel and reduces the number of instructions required
for the execution of a given application (part).

The application parallelization uses estimates of the instruction-level paral-
lelism (ILP) available in each kernel. These estimates are obtained as one of the
results of the application analysis, as explained in Chapter 4. The application
parallelization creates an optimized parallel structure of the application part
mapped to a single VLIW ASIP and constructs a corresponding initial VLIW
architecture with sufficient resources to achieve the predicted throughput. A
Pareto-set of such coarse VLIW architecture designs is then returned to the
macro-level exploration @ which then uses the performance metrics of these more
accurate designs in combination with a set of communication models (obtained
from the communication and global memory exploration) to determine the final
multi-processor system architecture. Each of these returned candidate VLIW
processor architectures can be synthesized @ (Appendix A) and a transformed
C code can be generated to match the selected high-level loop transformations

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 41

@. After the ASIP synthesis and corresponding C code generation, the ASIP
based hardware/software subsystem is ready for simulation using the SiliconHive

tools .

Finalizing the ASIP design

The final optimization step is applied when the area and/or energy consumption
of the thus far synthesized ASIP based platform is not yet satisfying the design
constraints or for further optimization of the design objectives. This optimization
is performed by the micro-level instruction-set architecture synthesis, separately
for each single VLIW processor in the system when requested by the macro-
level architecture exploration @ This processor architecture optimization step
tries to improve the processor architecture both by the addition of application-
specific instruction-set extensions as custom operations [59-61], and by the re-
moval of unused or scarcely used processor components which were included as
part of the processor building blocks used during the construction of the initial
processor prototype. The remainder of this dissertation focusses on the final
processor optimization process. Several improvements to the processor area and
energy models are presented in Chapter 5 and both the exploration algorithm
(Chapter 7), and techniques reducing the exploration time (Chapter 6) are
also discussed. The resulting refined ASIP design, together with more detailed
area, energy, and execution time metrics, are then returned to the macro-level
architecture exploration @

Finalizing the MPSoC platform

Finally, the macro-level architecture exploration continues with an exploration of
the MPSoC interconnect and global memory structure@ based on the available
design alternatives for the various VLIW processor cores in the system. The
macro-level also selects the appropriate VLIW instances from the set of refined
architectures produced through the micro-level architecture exploration. Com-
bining the selected VLIW instances and the synthesized interconnect and global
memory structure allows the introduction of system level power control @ (e.g.
voltage scaling, power gating) after which the full system can be simulated through
the SiliconHive tools or emulated on FPGA @ After this final validation
of the system design, the tools can finalize the design and (semi-)automatically
produce the required RTL and software descriptions for performing further (ASIC)
hardware synthesis and the production of the final system prototype.

3.2 ASIP architecture exploration: An example
This section presents an example walk-through of the automatic ASAM micro-

level architecture exploration and synthesis process, to further illustrate the ASAM
approach for designing a fully customized VLIW ASIP processor. The application

42

CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

int input_image [N][M];
int temp_image [N/2][M];
int output_image [N/2][M/2];

{

15
16
17
18

20
21
22
23

int h, w;

1
2
3
4
5 void downsample2d(void)
6
7
8
9

// kernel 1: wertical down sampling
for(h=0; h < N/2; h++) {
for(w=0; w < M; w++) {
temp_image [h] [w] =
(input_image [2xh] [w] + input_image [2*¥h+1][w]) >> 1;
}
}

// kernel 2: horizontal down sampling
for(h=0; h < N/2; h++) {
for(w=0; w < M/2; w++) {
output_image[h] [w] =
(temp_image [h] [2*w] + temp_image [h] [2*w+1]) >> 1;

Listing 3.1: 2D down sampling a N x M image, original code

NxM N2xM N/2 x M/2

1] Vscale [FF——11 Hscale [{I—

Figure 3.2: Array-OL representation of the horizontal and wvertical down-
sampling kernels from Listing 3.1

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 43

shown in Listing 3.1, 2D down sampling, was selected for this demonstration.
Down sampling is a common function in image processing which benefits from
most of the considered transformations without being overly complex, and there-
fore it is appropriate to be used for the explanation. However, the methods
presented here are equally applicable to much more complex applications and
algorithms.

As can be seen from the code in Listing 3.1, 2D down sampling consists of
two main kernels, performing vertical and horizontal down sampling respectively.
As the kernels are fairly small (with only a few operations each) and at the same
time have a quite high communication requirement (half of the original image is
communicated from the first kernel to the second kernel), it is fairly likely that
the macro-level architecture exploration will decide to map both kernels onto a
single processor.

Array-OL [10], a graphically enriched representation of the polyhedral model,
is used within the ASAM project in the second phase of the micro-level ar-
chitecture exploration for performing the application restructuring and coarse
processor architecture synthesis. Figure 3.2 shows a graphical representation of
the Array-OL model corresponding to the input code of the 2D down sampling
application. Both vertical and horizontal down sampling kernels (V scale and
H scale respectively) are shown as grey rectangles. The input and output sizes
for each kernel iteration are illustrated next to the input and output ports, both
kernels consume two data elements and produce a single data element, the main
difference being the orientation of the two consumed elements in the 2D data
domain. The repetition domain surrounds each kernel and represents the loop-
nest that wraps around each kernel in Listing 3.1.

From both the Array-OL model and the original source code, it can be seen
that this implementation of the algorithm requires half of the original input image
in temporary storage locations, as well as, both the complete input and output
image directly accessible by the processor. This data needs to be stored either in
the ASIP local memories or in a, usually slower, external memory.

3.2.1 Application code restructuring and initial architec-
ture construction

The application parallelization phase of the micro-level architecture exploration
[17,18, 38] starts to optimize the data locality and memory architecture of the
customized processor with the Array-OL model of Figure 3.2 as input. Figure 3.3
shows the effect that some of the considered transformations have on the Array-
OL model.

The first transformation that will be considered is loop (or kernel) fusion. The
main advantages of this transformation are a reduction of the temporary data
storage and an increased kernel size. Figure 3.3b illustrates the effect of kernel
fusion on the example code. In order to perform loop fusion, a single repetition
domain needs to be put around both kernels. Before this is possible, the V scale

44 CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

z
>
<

n

1] V scale

]_

z
>
<

N/2xM

¥ 2

{1

H scale

(a) Original code structure

| ™

V scale

H scale

NxM

(b) After kernel fusion

B | B
—{—

|

V scale

O

]_

(]

il

H scale

N/2x M/2
O
N/2 x M/2
[T
D :
N/2 x M/2
O ﬂ
—p—

(c) After both kernel fusion and vectorization with vectorized data elements
colored gray and a double box for denoting the vectorized iteration domain

Figure 3.3: Array-OL representation of the horizontal and vertical down-
sampling kernels after different optimizations

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 45

kernel will need to be executed twice so that it produces the appropriate data
elements for the H scale kernel. This results in a second repetition domain
wrapping only the V scale kernel. This second repetition domain only has two
iterations and will be unrolled in the generated C code. Unrolling repetition
domains with a small repetition count increases the kernel size and usually has a
positive effect on the instruction-level parallelism available in the application. As
can be seen in Figure 3.3b, loop fusion significantly reduces the temporary storage
requirements of the application. In this case, loop fusion successfully removed the
entire temporary storage except for a few single data elements.

After the application of fusion, both vectorization and tiling are explored
using a genetic algorithm [17,18]. Vectorization is mainly used to increase the
number of data elements that are processed per cycle, as it changes the data
granularity at which the computations are performed. Two repetition domains
exist in the fused version of the application, the inner and the outer repetition
domain. Both have no dependencies on previous iterations and can be vectorized
at will. However, the inner repetition domain wrapping the V scale kernel only
has two iterations and will provide only very limited performance impact when
vectorized. The more logical choice is therefor to unroll this inner loop and to
vectorize the outer repetition domain. The main limitation of the vectorization
here is that vectorization puts a constraint on the possible input image sizes
(unless strip-mining is used or explicit padding is added to the data). In this
case we assume that the input image width is a multiple of 32, which results in
a maximum vector width of 16 since the application needs to read two (vector)
elements next to each other to feed the inner repetition domain. Figure 3.3c
illustrates the vectorized and fused kernels. A double box on the outer repetition
domain and the colored data elements illustrate the changed data granularity.
Care should be taken when vectorizing the H scale kernel as it consumes two
consecutive data elements to produce its result. When vectorizing such a kernel,
vector shuffling operations are required to reorganize the data in such a way that
the consecutive elements are put into separate vector elements so that the original
kernel code can be kept. Listing 3.2 illustrates how this is achieved using the
0P_vec_odd and OP_vec_even intrinsics, which select the even and odd elements
of the input vectors respectively.

Finally, tiling is applied to the restructured loop nest to enable more freedom
in the global mapping of the input and output data arrays. Tiling is used in the
ASAM project to improve the data locality of the processor cores and to distribute
data between the global memory and the local memories of each processor. This
allows a significant reduction in the required size of local memories for the final
processor designs. It also allows us to use direct-memory-access (DMA) con-
trollers to perform data transfers in parallel to the actual computations. A tiled
implementation therefore enables streaming operation of the kernel. This has as
major benefit that the restructured kernels can start processing data while it is
still being produced by the source of the data (an image sensor or other processing
step in a larger application). The only requirement for a streaming application

46 CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

1 #include <hive/asam_support_cell.h>

2 #define N_BUFFERS 2 // use double-buffering

3

4 volatile tvector MEM(ASAM_ISP_MEM_vmem) image_hive [N_BUFFERS][4];
5 tvector MEM(ASAM_ISP_MEM_vmem2) image_hive2[N_BUFFERS];
6

7 int height_hive, width_hive;

s

9 void down(void) ENTRY

10 {

11 int n, wi, w2, i;

12
13 const int final_h = height_hive>>1;

14 const int final_w = (width_hive/ASAM_ISP_VEC_N_WAYS)>>1;
15 const int n_tiles = final_hxfinal_w;

16

17 // initialize empty space on input fifo

18 for(i = 0; i < N_BUFFERS; i++) {

19 OP_std_snd (FIFO_SOURCE, 0);

20 }

21

22 // run kernel

23 for(wli=w2=n=0; n < n_tiles; n++, wili++, w2++) {
24 // local storage for kernel

25 tvector v1, v2, v3, va, vb, vc, vd;

26

27 // acquire input token

28 a: OP_std_rcv(FIFO_SOURCE) NO_ALIAS;
29

30 va = image_hive [w1&(N_BUFFERS-1)]1[0] DIST(a, 1);
31 vb = image_hive[wl1&(N_BUFFERS-1)][1] DIST(a, 2);
32 vc = image_hive[wl1&(N_BUFFERS-1)]1[2] DIST(a, 3);

33 b: vd = image_hive[wl1&(N_BUFFERS-1)][3] DIST(a, 4);
34

35 // release input

36 OP_std_snd (FIFO_SOURCE, 0) AFTER(b,0) NO_ALIAS;

37

38 // compute kernel

39 vl = (va + vc)>>1;

40 v2 = (vb + vd)>>1;

41 v3 = (0P_vec_odd(vl,v2) + OP_vec_even(vl,v2))>>1;

42

43 // acquire output space, write result, and release output

44 ¢: OP_std_rcv(FIFO_SINK) NO_ALIAS;

45 d: image_hive2 [w2&(N_BUFFERS-1)] = v3 DIST(c, 1);
16 OP_std_snd (FIFO_SINK, 0) AFTER(d, 0) NO_ALIAS;
47

48 #pragma hivecc exhaustive, pipelining=0, stuck=3000
49 }

50 }

Listing 3.2: 2D down sampling a N X M image, fused, vectorized, and tiled for
streaming operation using double buffering

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 47

is that there is sufficient data to perform at least one iteration and that there is
space available to store the (partial) results.

Listing 3.2 shows the transformed C code of the 2D down sampling application.
It also shows the SiliconHive annotations that control the memory mapping
(MEM), synchronization of handshake signals and the actual data reads (DIST
and AFTER), and intrinsics (OP_...) for communicating control signals with the
DMA controller over FIFO connections to control the data transfers, as well
as, for performing vector shuffling operations. This implementation uses double
buffering to enable data transfers in parallel to the computation. Two external
DMA channels are used to arrange the data transfers to and from the input
(image_hive) and output (image_hive2) buffers respectively. These buffers are
mapped into different memories in order to enable parallel access. The DMA
channels are managed through FIFO channels, sending a FIFO token on an
incoming channel releases space whereas receiving a FIFO token corresponds to
acquiring data in the next buffer slot. The program therefore starts by computing
the total number of tiles to be processed for the dataset and reporting the empty
state of the input buffer to the DMA controller on lines 13-20. The kernel then
enters its main loop and waits for an input tile from the DMA controller on
line 23. The kernel data is then loaded into the register file when the input
tile is obtained. The load operations on lines 28-33 also demonstrate the added
sequencing annotations using the DIST directive, this directive ensures that the
compiler does not reorder the load operations with respect to the FIFO handshake.
Once the data is loaded into the processor, the input tile can be released (line
36) and the main computations of the fused kernels can be performed (lines
39-41). An output tile then needs to be acquired from the DMA controller on
line 44 (although the compiler is free to reorder this acquisition with the kernel
computation). Finally the output is written to the output memory (line 45) and
the output tile is marked as finished to the output DMA channel (line 46). The
entire kernel loop is then marked for exhaustive scheduling and software pipelining
using a compiler directive on line 48.

During the loop transformation exploration process, the parallelism available
in the core loop nest(s) of the code is estimated, using the methods presented
in Chapter 4. This enables the code restructuring and initial architecture con-
struction process to construct an ASIP architecture that has an issue-width that
is appropriate for obtaining the predicted throughput. Figure 3.4 shows the
processor that was constructed for the transformed C-code of the down-sampling
application. The constructed processor is a wide VLIW ASIP with 4 16-way vector
issue-slots, 2 vector memories for storing the input and output buffers, 3 scalar
issue-slots (including fifo and control operations), and a small scalar memory for
storing the width and height parameters of the kernel.

Running the restructured code, presented in Listing 3.2, on the so constructed
initial processor architecture demonstrates that this ASIP architecture and appli-
cation code combination is indeed capable of processing pixels at the predicted
throughput of a full vector width of input pixels (16 pixels) per cycle. The

CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

48

—— S =

Figure 3.4: Initial processor architecture for the down-scaling application based on code restructuring and initial
architecture construction exploration decisions

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 49

transformed code also utilizes the proposed processor architecture quite well,
as it has an 85% utilization of the issue-slots in the core loop. However, large
parts of the instruction-set remain unused which results in an inefficient use of
the provided function units and requires an unnecessarily wide program memory.
As such, this architecture is still quite overdimensioned and can substantially be
reduced during the architecture refinement phase to decrease both the area and
power consumption, while still realizing the required throughput.

At this point, the tasks of the code restructuring and initial architecture
construction are completed and the second phase of the micro-level architecture
exploration can be concluded. The proposed initial processor architecture is
returned to the macro-level architecture exploration which can now explore the
system memory architecture based on each processor’s minimal memory size
requirements. Extra buffer space can be added based on the overall mapping
of the target application tasks and their respective communication buffer size
requirements during the global interconnect and memory hierarchy exploration.

3.2.2 ASIP instruction-set synthesis through architecture
refinement

As already mentioned above, the initial coarse processor architecture proposed by
the second phase of the micro-level architecture exploration is usually overdimen-
sioned. It is composed of issue-slots taken from a standard library and thereby
supports a large variation of operations in each issue-slot. However, usually not
all of these operations need to be replicated into each issue-slot and many of
them can be removed without any impact on the execution time of the target
application. In some specific cases, even the number of the VLIW issue-slots can
be reduced. Furthermore, register files also have been introduced with quite large
sizes and may be reduced as well. Removing these redundant resources from the
initial architecture will greatly simplify the structure of the interconnect between
the issue-slot outputs and the register file inputs. This in turn can result in a
large reduction of the number of program word bits required for each instruction
in the program memory which further reduces the processor’s area and energy
consumption.

The third phase of the micro-level architecture exploration, the instruction-set
architecture synthesis, performs the architecture refinement using the following
three techniques; instruction-set extension, (passive) architecture shrinking, and
(active) architecture reduction.

Instruction-set extension

Instruction-set extension can (optionally) be applied as the first step of the instruc-
tion-set architecture synthesis when a very high performance and/or an extremely
low power solution is required. During this step, common operation patterns are
identified in the target application, function units implementing each of them

50 CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

in hardware are constructed, and then the application specific instructions cor-
responding to them are added to the instruction-set of the initial prototype
which was obtained from the previous exploration phase. For example, the down
sampling application has a frequently occurring pattern where two values are
added and the result is shifted by one place, which effectively computes the average
of both values. This operation pattern is the key computation in both the vertical
and horizontal down sampling kernels. Implementing the complete pattern as a
single complex operation provides two benefits: it results in a smaller kernel body,
as fewer operations are required to encode the entire algorithm, and it improves
the latency of the kernel execution by executing both the addition and the shift in
the same clock cycle. As an additional advantage, the use of complex operations
also reduces the number of register file accesses as intermediate values between
the operations in a pattern are no longer stored in the register file. This results in
a further reduction in the energy consumption and can result in a lowered register
file pressure which allows us to further reduce the register file size.

The detection and selection of candidate operation patterns for the creation
of custom operations, as well as, the insertion of these custom operations into the
initial prototype is performed by the designer of the processor with the help of
an operation pattern enumeration tool [59-61]. This tool supports the designer
by enumerating candidate operation patterns based on the frequency of their
occurrence, as well as, the possibilities for hardware sharing between custom
operations.

Architecture shrinking

Architecture shrinking passively strips unused components from an oversized
ASIP architecture and estimates the effects of the removal of these components on
the processor architecture design. During the shrinking process, individual issue-
slots, function-units, register-files, memories, and /or (custom) operations can get
removed from the architecture. Register files and memories can also be resized
to provide exactly the required amount of space. As a result, the connectivity of
interconnect, as well as, the size of the instruction word and program memory, can
be drastically reduced, without any impact on the temporal performance (latency,
throughput) of the overall ASIP design.

The passive shrinking approach is fully implemented in the area and energy
modeling as presented in Chapter 5. Doing so allows for an efficient estimation of
the benefits of a specific architectural shrinking. In our implementation, we allow
for user control of the kinds of elements which are removed during the shrinking
process. For example, enabling or disabling the removal of single operations from
a candidate architecture can have a large impact on the re-programmability of
the resulting processor. Removing all operations except those that are required
for the functioning of the target application will result in an architecture that
may only (effectively) support small variations on the original algorithm but will
also provide a higher efficiency that is closer to a non-programmable hardware

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 51

implementation. However, keeping some of the less costly (though currently
unused) instructions in the final architecture design can improve the support
for variations of the original algorithm at the cost of a somewhat lower energy
efficiency. Deciding the granularity at which to perform the exploration depends
strongly on the intended purpose of the design and, as such, is left to the designer
of the processor architecture.

Architecture reduction

Often, performing only the architecture shrinking will not result in the most
efficient architecture design. For instance, instruction scheduling heuristics may
have decided to map several operations of the same kind onto different issue-slots,
while these could have been mapped into the same issue-slot. This may result
in the same operation being supported by multiple issue-slots when this is not
strictly required for achieving the required performance of the algorithm. The
ASIP architecture reduction technique implements the active component of our
instruction-set synthesis framework. It actively tries to suppress the usage of
specific architecture components (issue-slots or function-units) by disabling them
as selection alternatives for an operation in the compiler. Doing so will render
them unused in the resulting application mapping which allows for the successive
architecture shrinking to remove them from the final design.

Chapter 7 compares several implementations of the presented architecture
refinement methods, demonstrates the benefits of combining shrinking and reduc-
tion techniques, and compares their effectiveness and exploration time. Several
different reduced architectures are usually considered and for each of those can-
didate architectures the target application code will need to be compiled and
simulated to determine the performance of the proposed candidate. Chapter 6
introduces two intermediate result caching techniques which greatly speed-up
this iterative process by remembering and reusing information on the previously
considered architectures. The caching framework recognizes when previous com-
pilation and/or simulation results can be re-used and this way provides a big
improvement on the required exploration time.

Experimental results

Applying our architecture refinement techniques on the example down-sampling
application demonstrates their high effectiveness. Figure 3.5 shows the architec-
ture optimization effects during various stages of the optimization on both the
area and energy consumption of different architecture variations. Each bar in the
graphs is subdivided to show the area and energy distribution across the various
components of the processor architectures and shows the most costly components
at the bottom. It should be noted however, that these figures only show the energy
and area cost of the core processor architecture with its local memories. The other
components of the system such as the (usually larger) external memories are not

52 CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

accounted for in the graphs. The first (leftmost) bar shows the area and energy
requirement of the initial prototype that was proposed by the previous micro-level
architecture exploration phase. All bars are normalized with relation to the initial

prototype.

1.0 —
O fifo O dmem
1.0 — O dmem O fifo
O pmem O instruction.decoder
O register.files O interconnect
B issue.slots O clk
0.8 — @ pmem
| W register.files
0.8 B issue.slots
0.6 —
0.6 —
0.4 —
0.4 —
0.0 0.0
= 0w s T 0 g =3 B0 B B T w0 g
£ 5 & 5 & & 3 £ 3 £ = & 3z 3
5 £ = + 5+ 7 2 + 2+ = ¥ %
= — B=) ©0 = = = B — B=| o0 = = =]
g & = & g © g = = & g ?
= ol puh e Bl 4
B " £ g E E " £ £ £
2 - = a
(a) area (b) dynamic energy

Figure 3.5: Estimated area and energy during different stages of optimization,
normalized to initial prototype

The second bar illustrates the effect of adding the custom operation pattern
for the add-shift (avg) custom operation which is applied on two vectors of data
elements. It shows the increase in the processor area (due to the extra hardware)
and a decrease in the active energy consumption due to a decreased number of
reads from the register file. The total execution time of the algorithm did not
change due to the inclusion of this operation. This can be explained since the

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 53

cycle-count of the down-sampling application is limited by the initiation interval of
the main loop kernel, which in turn is dominated by the amount of load operations
from the input memory. Instead, the introduction of the custom operation results
in a decrease of the required number of issue-slots for the processor. This is
achieved by joining operations that were already scheduled in parallel into a single
custom operation. The main area and energy savings from this optimization are
the removal of an issue-slot and its register files, as well as, the corresponding
reduction in the width of the program memory as fewer operations need to be
encoded per instruction.

The result of passively shrinking both the initial architecture and the version
which includes the custom operation is shown in bars three and four respectively.
Shrinking has a large impact on the size of the issue-slots as many standard
operations can be completely removed and others are only needed in a few issue-
slots. The register files provided by the initial architecture are also significantly
over-dimensioned. The results shown in this example demonstrate those obtained
using a full-customization of the processor architecture and include the removal
of all unused elements from the initial (extended) architecture.

Continuing the process by actively exploring further architecture reductions
results in another decrease in both the area and energy requirements for the
processor architecture design, as shown by the fifth and sixth bars. In both
cases, the design was optimized to improve the energy-delay product of the final
processor in an attempt to find a smaller, more efficient, version of the architecture
without giving up too much on the temporal performance. As a result, both
proposed architectures (with and without custom operation) consume about 5%
less energy when compared to their shrunk versions. For the processor architecture
which includes the custom operation, the architecture reduction phase was able to
remove a complete vector issue-slot. This resulted in a final proposed architecture
which has a 91% utilization of its issue-slots.

The exploration time required for both the original and extended initial ar-
chitectures also clearly shows the effectiveness of our intermediate result caching
techniques. The exploration of both architectures took 54 minutes in total on
a 2.8 GHz Intel Core i7 with 6 GB of RAM memory. The caching framework
was able to reuse a significant number of compilation and simulation results, over
72% of the compilation time and over 94% of the simulation time were avoided by
the use of our caching techniques. Overall, the automatic exploration framework
considered 407 different processor architecture variations in less than 1 hour and
produced two highly optimized processor designs. Both final designs proposed by
the automated architecture exploration reduce the area of the initial design by
more than a factor of 4x, and the energy consumption by almost 2x.

After the exploration, we verified the predicted results by comparing them
to the results obtained by actually constructing this proposed architecture using
the SiliconHive tools. The result of this verification is demonstrated in the final
bar of the bar-graph and the resulting architecture is shown in Figure 3.6. From
this experiment we can learn that the area required for actually constructing

CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

54

down_core_fullcustom

c0_c5_[s4_is Js_op0_BUS

id0_is_ib_sr_BUS
o1 |is0_is|is_pc_BUS H
c0_cl_is0ts. c0_c1_is0_is_pc c0_c1_is0_is_sr

Figure 3.6: The final full-custom architecture based on the exploration result

3.2. ASIP ARCHITECTURE EXPLORATION: AN EXAMPLE 55

the proposed processor architecture is slightly higher, while the energy required
for running our algorithm on this architecture is slightly lower than predicted.
These effects demonstrate some of the limitations of our current area and energy
model in relation to the architecture template. In the case of our down sampling
application, three discrepancies between the predicted and obtained area and
energy numbers can be observed.

Firstly, the load-store unit, connected to the input memory, is only used for
load operations. However, being a load-store unit, it is derived from a standard
template library element which has a fixed set of input and output ports. There-
fore, an extra register file must be added to be able to actually construct the
processor without diverging from the current template, and in order to keep all
input and output ports correctly connected. This is the 3th register file from
the right in Figure 3.6, which is not used but does provide space for one 512 bit
wide vector element and represents approximately 10% of the register file area in
the final architecture. Improving the architecture template library such that it
allows for a load-store unit with only load operations (and thus fewer input ports)
would enable the removal of this extra register file and bring the total register file
area back down to the predicted space. The automated tools presented in this
dissertation are currently not able to perform this optimization but the SiliconHive
template does allows the construction of such a load-only unit.

Secondly, the architecture model is completely agnostic of the operations
implemented within function units (except for their names) and only counts
accesses to register files. This is a limitation of the current implementation of
the exploration tools and should be resolved as part of the future work. As a
result, the architecture exploration is currently unable to recognize when a specific
register file read or write port is unused in the proposed architecture. Removing
such unused register file ports during the final architecture construction further
simplifies the interconnect, reduces the cost of the register files in general, and
reduces the number of instruction word bits required for programming the final
processor architecture.

Finally, the automated exploration framework resizes the program memory
based on the number of instructions required for encoding the target application.
However, in its current implementation, it does not take into account the small
processor initialization routine that also needs to be loaded into the program
memory. In the case of the down sampling application, the addition of this
initialization code results in a different rounding of the program memory size
(from 32 lines to 64 lines). This results in a program memory area which is larger
than predicted, though not twice as large as fewer bits are required to encode the
instruction word due to the reduction of the interconnect complexity as explained
previously.

56 CHAPTER 3. VLIW PROCESSOR DESIGN IN THE ASAM PROJECT

3.3 Conclusion

This chapter has presented the ASAM approach to automatically designing a fully
customized MPSoC based on the SiliconHive technology, and demonstrated how
a single customized VLIW ASIP is automatically created for a given set of tasks.
The remaining chapters of this dissertation present a more in-depth discussion
of the techniques used during this automatic instantiation and customization
process. In particular, we present our method for estimating the required issue-
width of the new VLIW ASIP in Chapter 4, the processor enery and area model
in Chapter 5, the BuildMaster instruction-set architecture exploration framework
in Chapter 6, and the exploration algorithm in Chapter 7.

I've found from past experiences that the tighter you
plan, the more likely you are to run into something
unpredictable.

MacGyver, 1985

Early performance estimation

Traditionally, the issue-width decision for a VLIW processor has been based on
an analysis of the instruction-level parallelism of the target application. Previous
research [3,71,81,85] mostly focused on estimating the average parallelism that
can be obtained for a specific application on an unconstrained platform, only con-
sidering the true dependencies imposed by the target application. Larus [47] and
Wall [85] focussed on finding the upper-bound of instruction-level parallelism over
traces of a complete application. More recently, Cabezas and Stanley-Marbell [11]
published a method for estimating the parallelism distribution across a program’s
execution. They showed that, in some cases, over 80% of the program’s execution
stream has a parallelism that is an order of magnitude smaller than the mean
value. Our goal is to provide the required temporal performance at a minimal
energy consumption. It is therefore important that enough parallelism is exploited
for the high-performance parts of the application, even when these parts constitute
only a small portion of the application. In order to better quantify the high
variation in application parallelism Theobald et. al [80] defined their smoothability
metric. This metric provides a score in the range of 0-100%. A program which

This chapter is based on:
Jordans, R.; Corvino, R. and Jézwiak, L.: Algorithm Parallelism Estimation for Constraining
Instruction-Set Synthesis for VLIW Processors. In DSD 2012.
Jordans, R.; Corvino, R.; Jézwiak, L. and Corporaal, H.: FEzploring Processor Parallelism:
Estimation Methods and Optimization Strategies. In DDECS 2013.
Jordans, R.; Corvino, R.; Jozwiak, L. and Corporaal, H.: Ezxploring processor parallelism:
Estimation methods and optimization strategies. In International Journal of Microelectronics
and Computer Science, 4 (2), 2013.

57

58 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

exhibits short bursts of high parallelism separated by long sequential sections will
get a low score, while a program that has a more evenly distributed parallelism
will obtain a higher score.

While both the parallelism distribution and the smoothability metric do pro-
vide insight in the parallelism variability of a whole program, they only provide a
lower-bound on the parallelism required for obtaining a specific performance. Our
method attempts to estimate the exact parallelism required for obtaining a specific
performance for a given program part with real-time constraints. The estimated
required parallelism can be directly translated into an issue-width requirement for
a VLIW ASIP, or can be explored as part of a high-level design space exploration,
such as the data-memory organization exploration.

In this chapter, we will compare several methods to estimate instruction-
level parallelism regarding their suitability for issue-width estimation and their
computational complexity. The following methods are considered:

1. Average parallelism (AP) [3,33,34,71,81,85], estimated by dividing the
number of operations in the program (part) by the expected latency of the
program (part).

2. Force based parallelism (FBP) a contribution of this chapter introduced in
Section 4.1.1.

3. Mazimum parallelism (MP) [11,33,34], providing an upper bound on the
degree of parallelism that can be utilized by an application part.

4. Required parallelism (RP) [33, 34, 85], computing the minimal degree of
parallelism as required for scheduling of an application part within a given
latency bound.

We also consider the effect of software pipelining [12,46,70], a commonly used
technique for increasing the throughput of a loop based code, and present two
methods for estimating the parallelism of software pipelined loops.

In order to ensure the practical relevance of our solutions and provide more
control on the issue-width estimation to the end-user, we have added the option
of explicitly constraining some specific types of hardware resources in the opti-
mization. Common uses of this option are constraining the number of ports of the
data memories and/or constraining the number of instances of specific (costly)
resources (e.g. a maximum number of dividers).

4.1 Parallelism estimation of straight-line code

This section introduces three different methods for rapid application parallelism
estimation, including our novel force based parallelism estimation method, a

4.1. PARALLELISM ESTIMATION OF STRAIGHT-LINE CODE 59

reference method for computing the required parallelism using constraint pro-
gramming, and presents the results of our experimental research comparing the
three estimation methods to the required parallelism reference.

The presented methods are used to predict the parallelism of straight line
(sequential) code parts, usually called basic blocks. As such, the operations within
a basic block form, through their dependencies, a directed acyclic graph (DAG)
G(V, E) with operations V' = {v; : i = 0,..., N} and operation dependencies
E = {(v,v;) : i,j = 1,...,N} (e.g. Figure 4.1a). We also use the algorithms
for As Soon As Possible (ASAP) scheduling and As Late As Possible (ALAP)
scheduling described in [19]. The results of scheduling are represented by vectors
of operation start-times. The vector of ASAP scheduled operation start-times is
defined as t°, where ¢ denotes the start-time of operation v;. The latency \ of a
DAG is defined as the number of time-steps required for executing the scheduled
DAG, i.e. the difference between start time of the first node to start and the
finish time of the last node to finish. The vector of ALAP scheduled operation
start-times is similarly defined as t”. The application model used in the examples
below assumes that all operations have an execution time of a single clock cycle.

The parallelism level ®; of a DAG G at an instant ¢ € [0, \], with A\ € N* and
A denoting the upper bound of the scheduled DAG execution latency, is defined
as the number of operations that can be scheduled at the same instant ¢ to be
executed in parallel. An estimation of the parallelism level over the interval [0,)]
can be used to decide the parallelism level required to optimally execute the DAG.

4.1.1 Methods

The four parallelism estimation methods are defined as follows.

Average parallelism

Perhaps the most commonly used measure to estimate the parallelism of an
application is the average parallelism. It is estimated by dividing the number
of operations (|V|) by the required latency (A), and provides a lower bound on
the required issue-width.

1%

Force based parallelism

Another estimate of the required issue-width can be obtained using a concept
found in Force Directed Scheduling [65] in a novel way.

During force directed scheduling, a distribution graph is computed which
provides information on the possible distribution of operations across the cycles
of the schedule. The distribution-graph is computed from ASAP-ALAP schedule
intervals as the sum of the probabilities of all operations which may be executed

60 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

for each given cycle. An example is shown in Figure 4.1. In this example, we
assume that the maximum latency for the schedule is minimized, i.e. the ALAP
schedule is computed for a latency of 5 cycles. Both operations v; and vs can
be scheduled at 3 different moments, as shown by their ASAP-ALAP schedule
interval in Figure 4.1b. Their scheduling probability is therefore 1/3 for each
cycle. The distribution graph of the DFG example is shown in Figure 4.1c. For
cycle 1, for example, the summed probability was computed by adding p(v1) = 1/3
and p(vq) = 1 which results in a bar height of 11/3.

C2)
e

OO

I
2--1m -t -t - == -
b 1
[I A
0 P N T
[
[R B
[
0 T T T T T
12 3 4 5 t 1 2 3 4 5 t
(a) (b) (c)

Figure 4.1: Ezample DFG (a) with ASAP-ALAP schedule intervals (b), and
the corresponding distribution graph used in estimating the force based parallelism

(c).

Force Directed Scheduling selects the next operation to be scheduled based
on a force calculated from this distribution graph. However, we observe that
the distribution graph itself is a good predictor for the required parallelism of
an application part. We therefore define the force based parallelism estimate as
the maximum value of the summed probabilities in the distribution graph. For
example, from Figure 4.1c one will find the value of 12/3, which could lead to the
conclusion that a parallelism of 2 is an appropriate solution. Estimating the force
based parallelism for the 8 point 1-dimensional IDCT benchmark code results in
a value of 7.85, closely corresponding to the required parallelism of 8.

It should be noted that the force based parallelism estimate does not provide
an upper nor lower bound on the parallelism, but a value close to the actually
required value. Figure 4.1 shows an under-estimation while Figure 4.2 shows a
graph that results in an over-estimation. In this example, the operation v, can
be scheduled in parallel to operations v; and vs. This results in a FBP of 2.5
whereas the required parallelism for this graph is only 2. More extreme cases,
resulting in larger overestimations, can be constructed in a similar fashion.

4.1. PARALLELISM ESTIMATION OF STRAIGHT-LINE CODE 61

5
®
@/@\@ c

() (b) (©)

Figure 4.2: An example DFG resulting in an over-estimation of the required
parallelism by the FBP method.

Figure 4.3: Potential parallelism graph used in estimating the mazimum
parallelism for the example DFG given in Figure 4.1a.

Maximum parallelism

The maximum parallelism [33,34] can be estimated in a way that is similar to
the estimation of the force based parallelism. The only difference is that we now
compute a worst-case resource usage by counting all nodes using a weight of 1
for each cycle as shown in Figure 4.3. Estimating the maximum parallelism for
the example DFG shown in Figure 4.1 results in a parallelism of 3, a parallelism
which cannot be obtained in any valid schedule of the DFG, but which, when
provided, does guarantee the required latency.

Much care should be taken though when estimating the maximum parallelism
under resource constraints, as the minimal schedule latency may increase due to
the added constraints.

Required parallelism

The required parallelism is used as reference in the experiments. We use constraint
programming to compute the minimal degree of parallelism required for scheduling
an application part within a given latency bound [33]. This is achieved by actually
scheduling each basic block to its minimal latency using a common formulation
[61], but then minimizing the available parallelism until a lower bound is found.
Algorithm 4.1 shows the constraint formulation that was used.

62 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

Algorithm 4.1 Constraint-set for solving maximum required parallelism

Require: DAG G(V, F) and latency bound A
Ensure: Calculate the minimal required parallelism ®pp of G such that the
scheduled latency A is inferior to A
t;€(0,...,A—1)
for all (v;,v;) € E do
impose t; +1 < ¢
end for
impose ®pp = max, 5 |[v; €V it =t
minimize ®rp

The constraint programming approach is capable of finding a proven minimal
degree of parallelism for each application part when given sufficient time. Time-
outs of up to a minutes were sufficient for most cases except for the most complex
blocks in our experiments for which 30 minutes was still insufficient, as a result a
proven optimal value could be found in most cases.

4.1.2 Experimental results

All three above presented methods and our reference method for VLIW issue-
width estimation using constraint programming have been implemented using
the intermediate representation (IR) of the LLVM compiler framework [49]. This
provides a method to compare their respective quality in the approximation of
the required issue-width.

The experiments reported in this chapter have been performed on a set of 3667
basic blocks taken from an MPEG4-SP encoder application. This application
contains a large set of basic blocks showing different kinds of processing which
are representative for general video and image processing algorithms. Each of
these basic blocks was taken as a separate experiment and the parallelism was
estimated for it’s ASAP schedule. Almost all these basic blocks fall within the
range of 1-150 operations but there are several larger blocks with sizes up to
1279 operations (e.g. £dct). In the experiments, all three parallelism estimation
methods have been applied to each of the basic blocks, with and without adding
a constraint on the number of parallel memory accesses. The memory constraint
(-constrain-1su=NN) was selected as a common example of an explicit resource
constraint which allows at most N load/store operations to be executed in parallel.
Any other resource constraints (e.g. constraining costly function units) can be
added in a similar fashion.

The experiments have been grouped as unconstrained and constrained cases,
referring respectively to the experiments without and those with the added re-
source constraint. Figure 4.4 shows a box-plot of the results obtained from our
experiments normalized to the required parallelism (RP) for achieving the ASAP

4.1. PARALLELISM ESTIMATION OF STRAIGHT-LINE CODE 63

A average parallelism without -constrain-lsu
)
50.0 -1 B average parallelism with -constrain-lsu=1
C force based parallelism without -constrain-lsu
D force based parallelism with -constrain-lsu=1
E maximum parallelism without -constrain-Isu
20.0 7 P maximum parallelism with -constrain-lsu=1 8
e}
8
10.0 — ¢}
@)
50 —
2.0 7 I I
! !
1.0 %
g e}
0.5 — 8 o) o
(@] S/
O
e}
02— \ \ \ \ \ \
A B C D E F

Figure 4.4: The deviation of various parallelism estimation methods from the
required parallelism. Normalized to the required parallelism when scheduled for
the ASAP latency of each respective block.

latency of each basic block found through an exhaustive search. The central box
(flattened into a line for all experiments except E and F) contains the 50% of all
samples surrounding the median. The whiskers extending from the box (also only
visible for E and F) illustrate the tail of the sample distribution and extends up
to 1.5 times the length of the center box to illustrate the bulk of the lower and
upper quartile of the samples. The remaining points that fall outside of these
whiskers are considered outliers and are drawn individually as small circles.

From the experimental results shown in Figure 4.4 we conclude, as expected,
that the average parallelism provides a lower-bound on the VLIW issue-width
required for executing the application, while the maximum parallelism provides an
upper-bound. The average parallelism underestimates the required parallelism, on
average by 7% independent of the presence of extra resource constraints. However,
this under-estimation of issue-width can be up to a factor of 8.9x as shown in our
experiments. The maximum parallelism provides an overestimation of up to two

64 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

orders of magnitude and, on average, 31% for the unconstrained and 72% for the
constrained experiments. The force based parallelism delivers the most accurate
estimation, on average resulting in a 3% overestimation for the unconstrained and
a 6% overestimation for the constrained experiments. The worst-case result for
force based parallelism is an underestimation of the required parallelism by 5.2x.

4.1.3 Conclusion on parallelism estimation

From our experiments, it follows that the average parallelism measure usually
provides a quite accurate view of the issue-width requirement of an application.
However, in the worst case, it underestimated the required issue-width by a factor
of 8.9x.

We also conclude that, the maximum parallelism provides an upper bound
with a large error margin. We therefore consider the maximum parallelism to be
less useful for a direct issue-width estimation. However, as it will be shown in the
next section, the maximum parallelism can be used to create an improved search
strategy for finding the required parallelism.

Finally, we have shown that the force-based parallelism estimation is more
precise than the average parallelism estimation and has a much smaller worst-case
deviation. Our force-based parallelism measure should therefore be the preferred
method for making initial estimates of the required parallelism.

4.2 VLIW issue-width optimization

The VLIW issue-width of application parts is explored at two points in the
ASAM micro-architecture exploration flow. Firstly we need fast estimates of
the latency and parallelism of key application parts to provide them for the
coarse application parallelization and loop restructuring phase, where parallelism
estimates are used to predict the required VLIW issue-width. The estimation of
these input parameters is performed only once but the quality of the estimate
is directly reflected in the quality of the proposed VLIW processor architecture
candidates. Secondly, an exploration of the issue-width is performed during the
final instruction-set synthesis and architecture refinement phase of the micro-level
exploration. A highly detailed, and thus time consuming, scheduling algorithm
is used at this stage. Selecting a good VLIW issue-width optimization strategy
therefore can positively impact the overall instruction-set architecture synthesis
time by reducing the number of required scheduling iterations.

The actually required issue-width can be found by using both a growing or
shrinking strategy, where growing is the most common [16, 26, 69, 86] strategy
for exploring parallelism. However, applying a linear search starting at 1 and
incrementing with 1 for finding the optimal issue-width that guarantees a given
latency may not be the best choice since this requires up to ®rp + 1 iterations
of the scheduling algorithm, with ®zp equal to the required parallelism. Finding

4.2. VLIW ISSUE-WIDTH OPTIMIZATION 65

the ASAP latency is trivial when no resource constraints are provided. As a
result, only ®pp iterations are required when not considering additional resource
constraints because it is possible to prove that there is no improvement possible
for a solution with ®rp + 1. However, an extra scheduling iteration is required
when considering additional resource constraints in order to prove the optimality
of the obtained result.

Another possibility, when an upper-bound to the parallelism is known, for
example through estimating the maximum parallelism, is to perform a binary
search, which requires a number of scheduler iterations logarithmic to the size of
the considered parallelism range.

100
80 d
=
>, 60
Q
g °
)
5 40 °
® o
20 ® o o A L 2
L)) =4 ()] =8 [= 66
0 AP RP A MP
0 2 4 6 8 10 64 66 68

Provided parallelism (P)

Figure 4.5: Latency versus parallelism plot for an 8-point IDCT function with
average parallelism (P ap), required parallelism for its ASAP latency (Prp), and
maximum parallelism (Pprp) marked

Both the previous work (e.g. [85]) and our initial experiments have shown that
the required issue-width ®zp usually has a relatively small value in comparison
to the maximum parallelism ®,;p, often even smaller than log ®;p. For example
(cf. Figure 4.5), a naive growing technique would find the ®gp in 8 scheduling
steps in this case. A binary search strategy starting on the range 1-®,,;p would
also require 8 scheduling steps. Starting the growing technique at the average
parallelism ®4p improves the performance of the growing strategy by reducing
the number of the required scheduling steps to 4. Similarly, changing the range
partitioning within the binary search algorithm can help in improving the average
performance of the binary search strategy. For example, dividing the solution
range into the lower-third and upper-two-thirds partitions results in 5 scheduling
steps. Furthermore, it is also possible to select the first pivot independently of
the division strategy of the remaining ranges. For instance, using the value of the
force-based parallelism estimate ®ppp as first pivot, and continuing from there
with a balanced binary search, results in 4 scheduling steps. Finding the best
starting-point and search strategy are therefore critical to an optimal performance
of the required parallelism estimation method.

66 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

4.2.1 Possible search strategies

As stated above, two main search strategies are possible, linear search and binary
search. Several starting points are possible for both of them. This section will
further explain the different possibilities for both strategies.

Linear search

Both the growing and shrinking strategies can be combined with linear search
depending on the selected starting point. The simplest approach is to start
at a parallelism of 1 and increase the parallelism until a satisfactory latency is
obtained.

A faster way to obtain a single design point satisfying the latency requirements
is to start from an estimated parallelism value which is closer to the final result.
Both the average parallelism and the force based parallelism are good candidates
for this. However, both ®,p and ®rgp are fractional numbers, which makes
the selection of the rounding strategy important. Since the average parallelism
provides a lower-bound, it can be rounded up to the next integer value. However,
deciding upon the rounding for the force based parallelism estimation is not so
straightforward as it can either over- or under-estimate the required parallelism.
We therefore provide the results for separate experiments using either the rounded
up (ceil ®ppp) or the rounded down (floor ®ppp) values as starting points.

A downside of starting at ®rgp is that, if the initial estimate provides us
with a result satisfying our latency bound, it is required to verify that this is the
optimal result. Assuming that the schedule latency decreases monotonically with
respect to an increase in the issue-width of a VLIW processor allows us to only
check for narrower architectures, which requires an extra run of the scheduler
with a parallelism of one less. This extra scheduler run can be avoided if ®4p
and ®rpp are equal, because this implicitly verifies optimality by proving that
®rpp is in fact the minimal value in such cases.

Binary search

This method requires a starting range and a rule for selecting the pivot. Only one
reasonable starting range is available from our parallelism estimation methods
which can provide both upper- and lower-bounds for the required parallelism.
However, the balance of the search and selection of an initial pivot are critical
to the performance of the binary search, as shown in the example accompanying
Figure 4.5. Both the balance of the search and the selection of the initial pivot
have therefore been explored in our experiments. The first set of experiments
with the binary search strategy varies the search balance, through a parameter o
of the algorithm. The second set of experiments with the binary search strategy
used ®Prpp as the initial pivot and was performed for the same values of a.
Algorithm 4.2 shows how such an unbalanced binary search can be implemented
using a balancing parameter «, while using ®rgp as the first pivot.

4.2. VLIW ISSUE-WIDTH OPTIMIZATION 67

Algorithm 4.2 Computing required parallelism using an unbalanced binary
search where the balance is controlled by parameter o

Require: Basic block BB, latency bound X, and balance parameter o with 0 < o < 1
Ensure: Calculate the issue-width ® of BB such that the scheduled latency A < X
s O < Purp
DPopin — Pap
Dpivot — |PrBP]
while ®,,4. > ®pin do
A < Schedule (BB, ®pivot)
if A > X then
(I)min — q)pi'uot + 1
else
Dinar — q)pivot
end if
Dpivot — Pmin + | (Prmaz — Pmin) |
: end while
return ®rp < Pnin

_ = e e
® N9

4.2.2 Experimental results

For the experiments with the search strategies we used the same framework and
benchmark set as were used for the comparison experiments presented in the
previous section. We have again grouped the experiments as unconstrained and
constrained cases, referring respectively to the experiments without and those with
the added resource constraint. This time we focused on the number of scheduler
runs needed for finding the required parallelism for obtaining an ASAP schedule.
We did not count the extra scheduler run required for determining the ASAP
latency of the blocks. The results of our experiments (presented in Table 4.1)
were obtained using basic blocks of at least 10 operations from the MPEG4-SP
encode application to prevent bias from very small blocks that will not provide
much parallelism.

It should be noted that the quality of our result strongly depends on the quality
of the internal scheduler. Our implementation uses a list scheduler but other
schedulers can be used as long as they provide a monotonically decreasing latency
in relation to an increasing issue-width to prevent the issue-width exploration
from getting stuck at an early local minimum. This means that using a more
effective (but slower) scheduling algorithm we will be able to achieve an even
higher result quality. From the many available list-scheduler heuristics [76],
we selected the dependency height (i.e. the difference between the goal latency
and the ALAP schedule time of the node A\ — t¥) as the main criterion and
we prioritize load-operations in order to increase the scheduler’s freedom for
scheduling shorter sequences. We found that using this combination of instruction
selection criteria we can obtain a high quality result! without increasing the

1On average within 3% of the actually required parallelism as computed using an optimal

68 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

Table 4.1: Total number of scheduler iterations required for finding the required
parallelism for all (534) basic blocks with 10 or more operations of an MPEG4-SP
encoder for several linear and binary search strategies

method | start | a | unconstrained | constrained
linear 1 3283 1782
AP 1133 914

ceil(FBP) 1538 1401

ﬂOOI"(FBP) 1388 1233

binary search AP-MP 0.5 1942 2111
0.2 1467 1519

0.1 1428 1399

0.04 1417 1347

0.02 1458 1336

binary search | AP-FBP-MP | 0.5 792 853
0.2 783 849

0.1 802 869

0.04 833 887

0.02 869 896

computational complexity. Observe that it is possible to achieve even higher
quality results when using more effective scheduling algorithms, but at the cost
of their higher computational complexity.

4.2.3 Conclusion on the issue-width optimization

Usage of a binary search strategy with the force based parallelism estimate as the
initial search point to find a single design point for the parallelism-latency trade-
off optimization results in the fewest required search steps. In our experiments
this resulted in a 31% reduction from the currently used method of linear search
from the average parallelism for the unconstrained experiments, and in a 7%
reduction for the constrained experiments. We therefore recommend to use a
combination of our force based parallelism metric with binary search when looking
for a single design point using a time-consuming scheduling algorithm. However,
we recognize that the 7% reduction in exploration time is much more likely as
most architecture explorations will involve some form of resource constraints. As
such, it might not be worth the added complexity of the exploration algorithm
considering that the full Pareto-front of solutions can also be very interesting in
many cases. Computing the Pareto-front requires the exhaustive linear search
starting from 1.

scheduler based on constraint programming [51].

4.3. PARALLELISM ESTIMATION OF PIPELINED LOOPS 69

4.3 Parallelism estimation of pipelined loops

The parallelism estimation methods presented above focus on estimating the par-
allelism of single basic blocks. As such, they do not take inter block dependencies
into account. Taking inter block dependencies into account often allows for a
further performance improvement and results in an increase in instruction-level
parallelism. One of key types of inter block dependencies are inter iteration
dependencies of a loop kernel. These inter iteration dependencies are usually ex-
ploited using a technique called software pipelining [46]. With software pipelining,
increased utilization of parallel resources is achieved by overlapping the execution
of multiple iterations of a loop core. Figure 4.6, for example, shows how the
overlapping of multiple iterations of a loop kernel (distinguished by their different
background color and texture) increases the parallelism exposed by a loop, and, in
consequence, the parallelism exploitation. Section 4.3.1 provides a more in-depth
explanation of this example.

Two main techniques based on different approaches are used for creating
software pipelined schedules: modulo scheduling [46,70], and unroll-and-jam [12].
Our estimation methods build upon their common concepts and are independent
of the used software pipelining method.

4.3.1 Determining the minimum initiation interval

The initiation interval (I7) of a software pipelined loop is the distance, in cycles,
between the start of two consecutive loop iterations. The initiation interval is
constrained by two factors: 1) the available resources, and 2) the inter-iteration
dependencies of the loop core. Considering that both factors provide a bound
on the II, Il..s for the resource constraint, and II... for the inter-iteration
dependencies (or recurrences), we find that the overall 1T can be defined as their
maximum:

II = maX(IIresa IITGC)

Resource constraints

In our case resources are usually unconstrained, because we are constructing new
architectures. We may however impose constraints on some especially costly
resources. Only the resources which have explicit constraints assigned are there-
fore taken into account when estimating the minimal initiation-interval. In our
architectures, the main resource constraint influencing the minimal initiation
interval is the number of single-ported memories used. Within the VLIW ASIP
architecture template used for the ASAM project, for each memory only a single
load/store operation is performed per cycle?. As we do allow the existence of

2Memory solutions supporting multiple parallel LSUs are possible within the SiliconHive
template but their usage is not explored within the ASAM project.

-

S

70 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

multiple memories in our processor, multiple arrays (or data sets) can be accessed
in parallel, as long as they are mapped onto different memories.

To illustrate this we refer to the down-sampling example shown in Listing 4.1.
Figure 4.6a shows a compact representation of the schedule of the loop operations
without software pipelining, horizontal black lines are used to show the repeated
part of the loop core. In the loop shown in Listing 4.1, two elements are read from
array A and one element is written to array B. Considering the resource constraint
of the load/store unit(s) in the architecture, we find two possible solutions for the
minimal initiation interval of this loop.

1. When both arrays are mapped onto the same memory the minimal 7, is
3 (cf. Figure 4.6b)

2. When both arrays are mapped onto different memories the minimal 17,4 is
2 (cf. Figure 4.6¢)

for(int i = 0; i < N; i++) {
B[il = (A[2xi] + A[2*xi+1]) / 2;
}

Listing 4.1: Example loop nest showing an initiation interval constrained by the
number of available load/store unit(s).

In our architecture, accessing (reading or writing) N data elements from a
single memory requires N cycles. For software pipelined loops, this results in
the minimal initiation interval being at least equal to the maximum number of
elements accessed in a single memory.

Inter-iteration dependencies

Inter-iteration dependencies appear when a loop iteration requires a result that
was produced by an earlier loop iteration. So called reduction loops are frequently
occurring examples of this kind of behaviour. Listing 4.2 shows an example of
such a loop where B; contains the sum of all elements A; with 0 < j < 4.

B[0] = A[0];

for(int i = 1; i < N; i++) {
B[i] = B[i-1] + A[il;

}

Listing 4.2: FExample loop nest having an initiation interval constrained by a
loop carried dependency.

The problem with this kind of loop is that a new iteration can only be started
after the previous B; has been calculated. However, this kind of memory carried

N

o o

4.3. PARALLELISM ESTIMATION OF PIPELINED LOOPS 71

11d |
1d
1d| d| |+
l1d| 1I=3 d| | /|
|| st
|/ |+
st /]

(a) Original (b) Single memory (c) Two memories

Figure 4.6: Simplified schedules of the loop in Listing 4.1 showing the
original sequential schedule and two software pipelined versions demonstrating the
influence of different memory mappings. Operations from different loop iterations
are distinguished by their background color and texture. Only the kernel operations
are shown in these schedules, address calculation and control-flow operations are
hidden for brevity.

inter-iteration dependency can be translated into a register carried memory inter-
iteration dependency by introducing a local variable whose values are stored in
a register. Listing 4.3 shows how this can be achieved for the code shown in
Listing 4.2.

register int r = A[0];

B[0] = r;

for(int i = 1; i < N; i++) {
r =r + A[i];
B[i] = r;

}

Listing 4.3: Restructured version of the code shown in Listing 4.2, changing a
memory carried dependency into a register carried dependency.

Figure 4.7 shows the effect of this transformation on the software pipelined
schedule. A side effect of this transformation is that the number of memory
accesses is reduced which, in turn, leads to a decreased minimum initiation-
interval.

In general, all memory carried inter-iteration dependencies can be translated to
register carried ones by inserting one or more temporary variables into the code.

72 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

l1d|
i) dependency

(a) Original (b) Transformed

Figure 4.7: Simplified schedules for the original (Listing 4.2) and transformed
(Listing 4.3) wversion of a loop showing an inter-iteration dependency. The
original schedule shows the inter-iteration dependency which constrains software
pipelining. The transformed schedule has been software pipelined and assumes that
A and B are stored in different memories.

Adding many temporary variables increases the register file size requirements
which may decrease the quality of the resulting processor design. However, usually
applications only require a limited number of temporary variables. Furthermore,
loops requiring a very large sliding window (and therefore many temporary vari-
ables) are usually good candidates for vectorization, which helps to decrease the
number of required temporary variables to a lower, more manageable number.

In our work on VLIW ASIP design the size of the register file can be adapted
to fit the required number of temporary variables. As such, register carried
dependencies limit the initiation interval solely through their length. However,
we are still able to insert custom operations that can significantly reduce the
critical path length that constrains the initiation interval during the instruction-
set architecture synthesis. We therefore do not consider inter-iteration dependen-
cies as a limiting factor for the initiation interval. As a result, the minimal
initiation interval estimates proposed in this chapter are solely based on the
resource constraints of the architecture (i.e. we consider Il... = 1), and in
particular on the memory access constraints described above.

4.3.2 Methods

In the last set of experiments, we compare two methods for the parallelism esti-
mation when software pipelining is applied. Both methods compute the minimal
initiation interval from the memory access counts.

4.3. PARALLELISM ESTIMATION OF PIPELINED LOOPS 73

Utilization-based parallelism estimation

This method assumes that the final schedule efficiently utilizes the resources avail-
able in the processor architecture. This means that the overlapping operations of
the different loop core iterations are distributed in such a way that the obtained
initiation interval becomes equal to the minimal initiation interval. Dividing
the number of operations in the loop body (|V]) by the initiation interval (II)
gives a lower bound on the required number of issue-slots, quite similar to the
average parallelism method for a straight-line code. The only way to achieve this
parallelism is when the software-pipelined schedule efficiently utilizes the provided

issue-slots.
1%
Powp, = PHW

The schedule shown in Figure 4.7b serves to illustrate this method. The
transformed kernel has 3 operations (|V|) and its initiation interval (I7) is 1
cycle. Using the utilization-based method, the estimated parallelism is 3, which
matches with the observed software pipelined parallelism shown in Figure 4.7b.

Duplication-based parallelism estimation

Our second method computes the number of parallel copies of the loop body in
the software pipelined schedule. We compute this number by dividing the latency
of a single execution of the loop body (A) by the minimal initiation interval (IT).

A
Ncopies = ’71—]—“

The software pipelined parallelism can then be estimated by multiplying the
parallelism of the original loop core with the number of parallel copies.

(I)SWPQ = q)orig Ncopies

Re-using the schedule shown in Figure 4.7b, we see that a single execution of
the transformed loop core has a latency () of 3 cycles, an initiation interval (I7)
of 1 cycle, and a non-pipelined parallelism ((I)orig) of 1. Using the duplication-
based method, we find that 3 copies of the loop will run in parallel, resulting in
the total parallelism of the software pipelined loop being 3.

In our experiments we have used the required parallelism ®zp, obtained from
Algorithm 4.2. Other parallelism estimates, such as found using the average
parallelism or force-based parappelism methods, are also usable. However, us-
ing the parallelism estimates obtained with the average parallelism method will
produce a result that is very similar to the results provided by the utilization-
based parallelism estimation ®gy p,. Using parallelism estimates obtained with
the force-based parallelism method will produce very similar results compared to
our choice of using the computed parallelism from Algorithm 4.2.

74 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

4.3.3 Experimental results

] O Utilization-based estimation
o O Duplication-based estimation
% N B Measured parallelism
s A
EN
“Q —
> il ca (1 a0 ﬂ i
- il
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

loop

Figure 4.8: Comparison of estimated parallelism versus observed parallelism
after software pipelining in custom built architectures.

For our experiments related to parallelism estimation of pipelined loops we
mapped several kernels (partially) from the Polybench benchmark [68] onto dif-
ferent customized instances of our target VLIW ASIP architecture. This resulted
in a total of 14 different software pipelined loops for which we could compare the
estimated software pipelined parallelism with the actually obtained parallelism.
In this section, we compare the results of our parallelism estimation methods
with the actually obtained parallelism to quantify the respective quality of our
estimation methods.

Figure 4.8 shows the estimated parallelism using our two methods together
with the actually obtained parallelism achieved with the SiliconHive tools when
running the loop code on an architecture which was manually customized for that
particular loop. As such, our measured reference is the I1 that was achieved using
the manually optimized code on an overly wide simulated SiliconHive processor ar-
chitecture. We can see that the utilization-based estimation method performs the
best. Its average error is less than 1% in our experiments. Our duplication-based
estimation method performs worse. It results in a quite large over-estimation
(54% on average). However, there are several cases where the utilization-based
estimation underestimates the required parallelism.

Further investigation into the cases where this underestimation occurs shows
us that their source is outside of our method, but in the abstraction of LLVM’s
intermediate representation (IR) over the actual instruction-set of our target archi-
tecture. The LLVM IR includes an operation getelementpointer which is used
to perform address computation. In the target-specific back-end of the compiler,
this operation gets lowered into zero or more target specific operations depending

4.4. CONCLUSION 75

on the complexity of the addressing and the available architecture features. The
cost of this operation is determined during the parallelism estimation through
the machine model which estimates the required number of operations for the
target architecture. In our experiments miss-prediction of the required number of
operations for the address computation was responsible for each of the observed
underestimations. The effect of these estimation errors is especially visible for
loops with a very small IT such as L7 and L10 (which both have an IT of 1) where
the number of operations directly translates into the parallelism of the loop.
Overestimations of the parallelism are similarly related to the IR abstractions,
loops L2 and L4 for example both include IR operations that get combined into
larger operations such as multiply-add. Improving the machine model for our
estimator or implementing this estimation at a lower, more accurate, level (after
expansion of the address computation and detection of operation patterns) of the
compiler can therefore result in better quality estimations.

Investigating the estimation errors of the duplication-based method shows a
more fundamental problem. The duplication-based method estimates the number
of copies of the loop core executed in parallel. However, the operations of a loop
core are usually not uniformly distributed in time and the resulting non-pipelined
schedule will only utilize the required parallelism for a small portion of the time.
The over-estimation of the software pipelined parallelism is a direct effect of the
limited utilization within the original schedule. One of the key benefits of software
pipelining is that it enables the scheduler to fill the gaps in the schedule of one loop
iteration by executing operations of another iteration, resulting this way in a much
better overall utilization. A variation of the duplication-based method is possible
by actually unrolling the input code N¢opies times and directly estimating the
parallelism of the unrolled loop. However, our experiments show that this gives
results which are equivalent to the results obtained using the utilization-based
method, which is much simpler to apply.

In this section, we have shown how a simple utilization-based method can be
used to efficiently obtain very good parallelism estimates of software pipelined
loops. The average error margin of the utilization-based method was shown to be
less then 1%. Furthermore, the observed errors were not caused by our method,
but by the abstractions of the LLVM-IR on which our analysis was performed.
Implementing the method in a later stage of compilation providing more precise
information will result in even more accurate estimations.

4.4 Conclusion

In this chapter, we presented and compared three methods for estimating the
required VLIW ASIP issue-width for a given target application. We experimen-
tally demonstrated that our force based parallelism estimation proposed in this
chapter delivers results with only a 3% over-estimation on average, substantially
outperforming the commonly used average parallelism estimation regarding both

76 CHAPTER 4. EARLY PERFORMANCE ESTIMATION

the average and maximum error. Moreover, our algorithms can be controlled
by the ASIP designer to account for resource constraints, such as the maximum
number of instances for a specific type of function unit (e.g. a divider), etc.

We have also considered several different strategies for obtaining the required
VLIW issue-width for a specific latency and were able to reduce the number of
required scheduler runs by up to 31%. Furthermore, we investigated two methods
of estimating the required VLIW issue-width for software pipelined loop bodies.
We found that our simple and very efficient utilization-based method was capable
of estimating the required parallelism very accurately, with less than 1% error on
average. Finally, we found that the remaining estimation errors were caused by the
application code abstractions of the LLVM IR on which we based our estimations.
Such an estimation inaccuracy is a direct consequence of the high abstraction level
at which these estimates were obtained. Lowering the abstraction level through
re-implementing the method in a later compilation stage is expected to further
improve its accuracy.

The whole is other than the sum of its parts
Kurt Koffka, 1886-1941

Area and energy modeling

A key to an effective and efficient automated instruction-set architecture ex-
ploration is a rapid, but accurate enough, quality estimation of a proposed pro-
cessor design. The three quality aspects of a proposed processor and application
combination that are usually considered are the processing speed, processor area,
and energy consumed when running the application. An actual complete con-
struction of a finalized hardware and software design for each processor variation
considered during the processor’s instruction-set architecture exploration requires
a significant amount of effort, which is at least impractical, but usually prohibitive.
Therefore, the actual customization of the processor and related software alterna-
tives, as well as, their analysis through simulation or emulation should be replaced
by analytic models as much as possible. These models should be accurate enough
to provide reasonable estimates of the processing speed, area, and energy, and
fast enough to enable a thorough design space exploration.

Modeling the execution time of a given application software alternative on
a proposed processor architecture, as well as, modeling the processor area, are
relatively simple when compared to the modeling of the energy consumption. The
execution time (as expressed in clock cycles) can usually be obtained from a cycle-
accurate simulation of the application and does not require a full construction
of the actual processor architecture. Similarly, the estimation of the processor
area only requires knowledge about the internal structure and organization of the

This chapter is based on:
Jordans, R.; Corvino, R.; Jézwiak, L. and Corporaal, H.: An Efficient Method for Energy
Estimation of Application Specific Instruction-set Processors. In DSD 2013.

7

78 CHAPTER 5. AREA AND ENERGY MODELING

processor. Such information can be derived from a gate-level implementation
of the processor architecture, either directly (more accurate) or through the
summation of the area of its components as remembered from previous synthesis
results (less accurate).

The modeling of energy consumption is much more difficult, as it requires
both information about the physical structure of the finalized processor design
from hardware synthesis, as well as, information on the activity of the various
components (preferably as toggle rates at the wire level) for a given application
software version. Combining these together as a weighted sum of the component
activities and the energy consumption of these components for a single transition
yields the overall dynamic energy consumption estimate. The most accurate
results can be achieved when the activities of single wires in the design are
considered (using gate-level simulation) but this kind of simulation is usually very
time consuming. This problem gets exaggerated further when we consider that
a full simulation, using a sufficiently large set of input data of the application
on the proposed architecture is often required in order to get a representative
estimation of the consumed energy. Therefore, several techniques have been
proposed in the past to model the energy consumption of a processor at the
instruction level (e.g. [8, 44,45, 72,88]). These techniques have been reported
to have average error margins of approximately 1-5%. While not exact, such
error margins can be tolerated during architecture evaluation during instruction-
set synthesis. The downside of these techniques is that they usually require
an extremely time consuming simulation to obtain the component activity for
each proposed architecture candidate. This makes the iterative instruction-set
architecture exploration process slow and severely limits the number of candidates
that can be considered during the exploration.

In this chapter we first present a brief description of the area and energy
models used within the ASAM project. We then present the existing methods for
obtaining the required activity counts and introduce our novel method which,
in most cases, completely eliminates the need for re-simulation of the target
application for new variations of a previously considered processor design. Our
new energy estimation method enables both to significantly speed-up the design
space exploration process, and the exploration of a larger design space.

5.1 Estimating area and energy

A set of area and energy models was made available within the ASAM project for
estimating the physical characteristics of proposed ASIP architectures. Overall,
these models use methods that are very similar to those of the related work.
These models predict the area and energy in three parts; total area, static energy
consumption, and dynamic energy consumption.

The total area (Aotal, €quation 5.1) is computed as the sum of the major ASIP
component areas. The specific contributions of these components are discussed

5.1. ESTIMATING AREA AND ENERGY 79

below in more detail.

Atotal = Z (Aismisc + Z Af“)

IS FU;s

+ Z Arf
RF
+ Z Amemory

MEM

+ Ainterconnect

+ Amisc

Energy which is consumed independently of the activity (or inactivity) within
the ASIP is considered static energy consumption. For a large part, this en-
ergy consumption is caused by leakage in the transistors of the actual ASIP
implementation. As such, the static energy consumption depends largely on the
implementation choices for each of the ASIP components. In the ASAM ASIP
model the static energy consumption is computed through the accumulation of a
multiplication of the area of each component by a leakage constant for components
of that type, similar to the area estimation.

One important aspect to realize when modeling the static energy consumption
is that it represents the constant energy consumption for the whole the runtime
of the program. In the ASAM model, the static energy consumption has been
modeled per cycle and needs to be multiplied by the number of cycles that the
target application is executed before it can be combined with the dynamic energy
consumption into a total energy consumption.

The total dynamic energy consumption (Eqg,,, equation 5.2) is computed by
combining the activity () of each component with a normalized energy consump-
tion (Eporm) for components of that type. Again, the specific contributions of
these components are discussed below in more detail.

5.1.1 Issue-slots and operations

The area of each issue-slot is composed of the accumulated areas of its function-
units and a small miscellaneous part, which takes a.o. a part of the overhead from
the instruction decoding and distribution of the decoded control signals to the
function-units of each issue-slot into account. The area of each function-unit type
is considered a fixed number for function-units operating on a given data width,
whereas the miscellaneous area overhead component is considered as a function
of the number of operations contained within the issue-slot.

Dynamic energy consumption within the issue-slots depends directly on the
executed operations. A weighted sum, combining the function-unit activity with

80 CHAPTER 5. AREA AND ENERGY MODELING

Edyn = § aOPEnormop
oP

+ § : < z : arfreadEROTmrfread + : : anwriteEnormrfwritc>
RF

reads writes

+ : : (z : amem7‘eadEn0rmme7nread + : amemwrzﬂteEnor'"hnemwrite>

MEM \reads writes

+ Einterconnect
+ Emisc
(5.2)

a normalized dynamic energy cost is used to compute the contribution of each
issue-slot to the total dynamic energy consumption.

Normalized area and dynamic energy consumption numbers are available at a
function-unit granularity. Obtaining a finer granularity is difficult since multiple
operations implemented within the same function unit often share hardware. For
example, a function unit which provides multiplication, addition, and multiply-
accumulate operations will commonly only contain a single multiplier and a single
adder. This makes it very difficult to predict when, and by how much, the area
and dynamic energy consumption of a function-unit will change with the removal
of one or more of its operations. Two solutions for this problem exist, either
a worst-case estimate (using the normalized numbers for the full function-unit)
is used, or a set of characterizations for different configurations is provided for
each function-unit. The tools used in this dissertation use the former method but
can be extended to the latter as part of future improvements to the architecture
modeling.

5.1.2 Register files and memory-like interfaces

All register files and components with memory-like interfaces are treated in a
similar way within the ASAM area and energy models. Small local memories
may be implemented using register-based structures while large register files may
structurally resemble a small memory. Area is consumed based on the internal
storage requirements and control hardware, while energy is directly correlated
with the read/write access activity counts. Components with memory-like in-
terfaces are ASIP parts such as local memories, FIFO interfaces, and master
interfaces for external memories.

Register file area is modeled for each register file separately. Register files
are characterized through their size (both data-width and number of entries),
and type (the number of read and write ports). Both read and write accesses

5.1. ESTIMATING AREA AND ENERGY 81

are counted separately for each register file. This information, combined with
the read and write cost for a register file of the given size and type allows us to
compute the total energy spent on register file accesses.

The cost for components with memory-like interfaces are counted similarly to
register files, but usually use specialized models for obtaining their area and access
energy cost. Furthermore, many of these components will have a relatively stable
configuration during the ASIP instruction-set architecture exploration. For exam-
ple, the local memory sizes, the external memory interfaces, and the number and
configuration of FIFO interfaces are already determined during the construction of
the initial architecture in the second phase of the micro-architecture exploration.
As such, their area and energy cost per access are relatively constant for the
ASIP architecture variations considered during the instruction-set architecture
exploration.

Each VLIW ASIP instance also contains a program memory. This memory
is modeled similarly to the local memories but differs in that its accesses are
implicit instruction word reads, and that only read accesses are performed. The
program memory area and access cost are also much more susceptible to variation
compared to the local memories. Different compositions of the ASIP instruction-
set will result in different instruction widths, and different levels of instruction-
level parallelism will result in different program lengths. During the instruction-
set architecture exploration, a new instruction-word width is computed based on
the remaining resources and the program memory is resized accordingly. The
length of the program memory can also be optimized during the instruction-set
architecture exploration. The number of operations listed in the final compiled
version of the target application is optionally rounded to the next power-of-two
bound to provide room for program updates, and used to determine a suitable
minimal program memory length. Both the access cost and program memory
area are then based on the new width and length of the program memory.

5.1.3 Interconnect

The interconnect component mainly represents the result select network. This
network transports the results of computations from the outputs of the issue-
slots to the inputs of the register files. The area and energy consumption of the
network are determined by both its complexity and the activity on the network.
The activity can be counted similarly to that of the other components in the ASIP
architecture but its complexity is much more difficult to model.

Two important factors determine the interconnect complexity. Firstly, the
logic part of the network contains multiplexers that route the data from the
source issue-slots to one or more register-file write-port destinations through a
multi-bus network where each issue-slot usually has a private result bus. Secondly,
the wiring of the network also contributes significantly to its area and switching
energy costs. The current version of the model uses the number and data-widths
of the switches in the routing network to estimate its area and energy per access.

82 CHAPTER 5. AREA AND ENERGY MODELING

Accurately estimating the wiring cost is quite difficult as it also depends on the
layout of the finalized ASIP design. However, we are estimating the ASIP area
and energy costs before the layout is done. As such, the interconnect model
currently ignores the layout effects and estimates the area and energy costs solely
based on the complexity of the network.

5.1.4 Miscellaneous

Besides the above listed ASIP architecture components, there are several other
components which are more difficult to categorize into a single of the above
categories. These components usually provide the underlying infrastructure of
the ASIP and are grouped into a miscellaneous category. Examples of such
components are the distribution of clock signals, parts of the instruction fetching
and decoding processes that are not yet counted as part of the issue-slots or
program memory, and the overall status and control logic for the ASIP. These
components either have a fixed cost (e.g. status and control logic) or have a
cost that is proportional to the overall ASIP area such as the clock distribution
network.

5.1.5 Model calibration

The ASIP architecture model relies strongly on the provided area and energy cost
numbers for each of the used ASIP components. Two methods exist for obtaining
such metrics. The most general approach is to characterize the ASIP architecture
building-block library into a set of generic area and energy cost numbers for a
specific implementation technology and clock-frequency requirement. Using this
approach, it is possible to construct a generic library of components with their
associated costs and to provide a fast instruction-set architecture exploration.
However, this approach fails when non-standard blocks are included in an ASIP
design (e.g. a new function unit with custom operation patterns). Adding non-
standard blocks to the library requires a full hardware synthesis and charac-
terization of the new block. This characterization is performed manually using
external hardware synthesis tools and is currently not integrated into the ASAM
architecture exploration framework.

The second approach is more robust; it involves retraining the model based
on a fully constructed version of the initial ASIP architecture prototype as pro-
duced after the application parallelization step (cf. Figure 3.1) of the micro-level
architecture exploration. The initial architecture is synthesized using Cadence’s
RTL-Compiler and the area cost numbers are extracted directly from the synthesis
reports. Synopsys Primetime-PX is then used to simulate (a representative part
of) the target application on the synthesized platform to obtain the energy cost
numbers for each of the ASIP architecture components. Such a simulation is
extremely time consuming though and significantly increases the overall ASIP
instruction-set architecture synthesis time. The advantage of this method is that

5.2. ACTIVITY ESTIMATION 83

it can also be applied after instruction-set extensions have been added to the
initial processor architecture, thus automating the incorporation of these custom
components into the energy and area models. A full RTL description of the
blocks functionality will still need to be provided, but it will now be synthesized
and analyzed as part of the overall model calibration which now automatically
provides the integration of the custom operation model.

The current ASAM ASIP architecture cost model also provides options for
estimating area and energy cost of architectures after changing the data-width
of computations. These extrapolations are implemented as linear approximations
and have a relatively large error margin. Without changes in the data-width, the
ASAM ASIP architecture model has an error margin of approximately +10%.
This error margin can easily double when changes to the data-width are consid-
ered.

Several improvements of the models are still possible which can further reduce
the error margin of the model to those reported in the related work. One key
opportunity is the incorporation of better models for the local memories, e.g.
by using specialized memory modeling tools such as CACTI [58], or by directly
using models provided by a memory IP block vendor. The research presented in
this dissertation does not explore the data-width of the computations as these
are decided during the second phase of the micro-level architecture exploration
before the initial prototype ASIP architecture is constructed. This allows us to
train the area and energy cost models for an ASTP with a fixed data-width which
reduces the error margin. As such, the ASAM ASIP area and energy cost model
provides a sufficient accuracy for demonstrating the advantage of our automated
instruction-set exploration methods. However, it is important to realize that
the trend of the model versus the synthesised reality (answering if architecture
variant A is preferable over B) is more important for the exploration of ASIP
architectures than the absolute accuracy of the model (answering the specific
energy and area requirements of each architecture variant). The absolute accuracy
only becomes important when hard area or energy constraints are considered.
Further improvements to the ASIP area and energy cost models, while useful, are
therefore beyond the scope of this work.

5.2 Activity estimation

As stated above, the estimation of dynamic energy consumption relies heavily on
activity counts for each of the ASIP building blocks. In that, our energy model
is quite similar to the approaches used in the previous works [8,44, 45,72, 88].
Our energy model distinguishes itself by the way that these activity counts are
collected. So far, we have observed two methods for obtaining activity counts in
previous research works; trace-based and profile-based. In this section, we extend
these methods by introducing our improved profile-based energy estimation.

84 CHAPTER 5. AREA AND ENERGY MODELING

candidate prototype

candidate
application architecture

I
HiveCC
compiler

I

mapped application

simulator

I

component activity
architecture component
model costs

cost
estimates

:

Figure 5.1: Trace-based energy estimation

5.2.1 Trace-based energy estimation

Traditionally, a simulation of the target application software on the proposed
processor hardware is used to obtain the activity counts for the key components
of the processor. When using a gate-level simulation these key components can
be single gates and/or wires. However, when using a cycle-accurate instruction-
set simulator the granularity of these key components increases to operations,
function units, and register files.

Figure 5.1 illustrates the energy estimation process using the traditional simu-
lation-based method. Using a re-targetable compiler (in our case the SiliconHive
HiveCC compiler), the application gets compiled for the proposed processor ar-
chitecture which results in the mapped application. This mapped application is
then fed into a cycle accurate simulation of the proposed processor architecture,
which in turn results in an execution trace. This execution trace is a list of all
activities for each component of the processor architecture. This allows us to
then compute the total energy consumption as the sum of components activities
weighted by their individual cost. During the model calibration process, a gate-
level simulation of a test program which triggers each component with several
input patterns is used to determine the component costs.

5.2.2 Profile-based energy estimation

One of the major limitations of the trace-based energy estimation is a large
trace size when a large enough representative set of inputs is used for the target

5.2. ACTIVITY ESTIMATION 85

application. In most cases, this results both in a slowdown of the simulator due
to the large amount of data (hundreds of megabytes when simulating a larger
application) that needs to be written into the trace file, and a significant amount
of time (tens of minutes) in extracting the aggregate counts from the acquired
data. Some of these inefficiencies can be resolved by storing the application trace
in an efficient database format which allows for an easy extraction of the aggregate
numbers, such as is done in the TCE-project [52,67]. While this does alleviate
the problem somewhat, it still does require the gathering of the entire execution
trace.

A more efficient method seems to be to collect the aggregates directly. For
example, both the MOVE project [16] and the PICO project [42] use the applica-
tion profile which contains only the basic block execution counts, and combines
this with the scheduled assembler code to estimate the execution time of the
target application while reducing the need for a full cycle-accurate simulation
into a, much simpler, structural simulation of the code. Collecting the application
profile directly from the simulation significantly lowers the storage requirement
and completely removes the time required for processing the application trace.

A similar method can be used to obtain aggregate usage counts other than the
total instruction count. Combining the application profile with the information in
the scheduled assembly code allows us to compute the exact activity counts for all
key resources in the processor (i.e. operations, register files, and memories). While
applying such a technique may run into inaccuracies when considering processor
architectures supporting out-of-order execution, this does not happen in our case.
Exact activity counts can be obtained for our target architecture as it performs
such optimizations at compile-time.

Figure 5.2 illustrates the process of the profile-based energy estimation method.
As can be seen from the figure, the activity estimation step now computes the
key component activities based on the scheduled assembly code (obtained from
the HiveCC compiler) and the execution profile of the application. The advan-
tage of this technique is that it completely removes the application trace from
the equation and only uses the aggregate basic block access counts from the
application profile. This has both the advantage of requiring much less data to be
communicated between the simulation and energy estimation frameworks, but also
allows for a much less detailed simulation. However, this advantage in evaluation
speed comes at a cost of a lower accuracy. By directly collecting the aggregate
activity counts we no longer have access to the individual input patterns applied
to each component. Profile-based energy estimation can therefore only be used in
combination with an operation-level energy estimation framework which does not
take the change in signal values between consecutive inputs into account. As a
result, the accuracy of the usable models [8,52,72,88] can be a few percent lower
than otherwise feasible [44,45]. So far, this lower energy estimation accuracy has
been tolerated [8,52,72,88], as it enables the exploration of much larger design
spaces without significantly increasing the exploration time.

86 CHAPTER 5. AREA AND ENERGY MODELING

candidate prototype

candidate
application architecture

I
HiveCC
compiler

e

‘ simulator

T

scheduled assembler

application activity
profile estimation

component activity
architecture component
model costs

cost
estimates

I

:

Figure 5.2: Profile-based energy estimation

5.2.3 Improved profile-based energy estimation

Both methods presented above focus on energy estimation for single architecture
evaluations and will perform a simulation of the program running on the proposed
architecture before producing an estimation result. A further improvement of
the evaluation time can be realized when we account for the fact that there is
only a limited variation of the application profile during an iterative instruction-
set architecture exploration. As such, we may be able to re-use the profile
information from previous candidate architecture evaluations and remove the need
for re-running the simulation entirely. In some cases, however, a change in the
proposed processor architecture can trigger a different combination of software
optimizations and scheduling decisions which results in a profile change. Such
code transformations need to be detected properly in order to be able to determine
when new profile information needs to be obtained.

Handling of the code transformations

The estimation of the component activity is trivial when the target compiler does
not apply control-flow transformations which influence the application’s profile.
In general, we can only reuse information from the application profile when
the activity estimator can recognize the transformation from the changed control-
flow graph of the application. For example, transformations like if conversion
and speculation (cf. figure 5.3a) can move an operation from a basic block in
the program to its parent. In some cases, such a move causes the original basic

5.2. ACTIVITY ESTIMATION 87

block to become empty, which results in the basic block being removed from
the control-flow graph. Such a transformation can easily be recognized from the
changed control-flow graph and the profile can be adjusted accordingly. However,
other transformations are more difficult to recognize. For example, loop unrolling
(cf. figure 5.3b) duplicates a loop body and adjusts the iteration count of the
corresponding loop to compensate for the duplication. Both the original and the
unrolled loop have the same control-flow graph shape. This makes it impossible
to recognize unrolling without a corresponding annotation from the compiler or
an in-depth analysis of the resulting assembly code.

Before speculation

BB1: condition
count = 20

After speculation

BB1'":
condition +
speculated if +
endif
count = 20

BB3: endif
count = 20

(a) if conversion (speculation)

Before unrolling After unrolling

BB1: loop header BB1: loop header
count = 20 count = 10

BB2’:
loop body +
copy of loop body
count = 9

BB3: loop exit
count = 1

BB2: loop body
count = 19

BB3: loop exit
count = 1

(b) loop unrolling

Figure 5.3: Code transformations and their effects on the application profile

The above described problem of taking code transformations into account after
they have been applied is related to our current implementation of the activity
prediction module outside the compiler. Integrating the activity prediction into
the compiler will make it possible to directly handle the code transformations that
can currently not directly be recognized from the control-flow graph by an external
tool. The overhead of merging the activity estimation with the standard compiler
activities should be relatively small in most cases, as most of the optimizing
compilers are already profile-driven and already have all the necessary data for
the activity estimation.

Current implementation of the method

In principle, our method should produce exactly the same prediction results as the
simulation based method. However, some operations (e.g. conditionally executed

88 CHAPTER 5. AREA AND ENERGY MODELING

or guarded operations) may have a different cost depending on the application
state. In these cases, the static profile-based estimation needs to be able to
guess which is the correct cost. Our current implementation takes the worst-
case cost for these operations as it has no way of recognizing the origin of the
operation. Better approximations are possible when the activity prediction is
combined with the compilation process. If the compiler remembers the basic
block from where a guarded operation originated, it can use the profile count of
that block to determine how often the guard is true and how often it is false. This
would make it possible to accurately model the application state.

5.2.4 Further improvements

Keeping track of the code transformations that have been applied by the compiler
seems a bit artificial when one considers that the compiler can often also use the
same profile information to make more informed optimization decisions. It can
be expected that a compiler will keep track of the changes it makes to the code
structure and tracks their expected effect on the application profile for usage
by subsequent optimization decisions. If this is already the case, it should also
be feasible to output the updated profile information directly, thus completely
removing the need for any re-simulation of the target application.

Figure 5.4 illustrates this further improved energy estimation flow. This
flow presents two extra opportunities besides the ability of avoiding the need
for any re-simulation. The first advantage is that this method can use any
profile which accurately reflects the application structure as input. As such, it is
possible to compile the target application for a different, much faster, processor
architecture and obtain the application profile through native execution on that
processor architecture. This method is much faster than any simulation can offer
but will still produce exactly the same results as in the case when the target
architecture was simulated, as long as the code structure remains unchanged. The
second advantage is that the execution count of specific application parts may be
computed statically or may be estimated by the compiler. A profile composed of
such estimated or analytically derived information can also be used. As such, the
information obtained through this further improved method for energy estimation
may even open up opportunities for energy aware optimizations by the compiler
itself.

5.3 Initial experiments

To demonstrate the value and benefits of the improved profile-based energy es-
timation method on a real-life application, we selected the Pan-Tompkins QRS
detection algorithm [63] for an electro-cardiogram (ECG) monitor, performed the
architecture exploration for this application, and mapped this application onto

5.3. INITIAL EXPERIMENTS 89

simulate only once

initial
prototype

simulator

¥

application HiveCC
profile compiler

/ scheduled assembler

activity
estimation

candidate prototype

candidate
application architecture

k_

I

updated
application
profile

omponent activity
architecture component
model costs

cost
estimates

1

.

Figure 5.4: Improved profile-based energy estimation

the selected architecture. For this application, both the power consumption and
real-time behaviour of the created architecture are critical.

In our experiments, we have compared the quality and speed of our ASIP ar-
chitecture exploration when using each of the three energy estimation techniques:
trace-based, profile-based, and our improved profile-based. For this purpose,
we have implemented all three cost estimation techniques into our automated
instruction-set architecture exploration framework and compared the resulting ex-
ploration times. Figure 5.5 shows how the exploration time increases as dependent
on the number of considered design points for each cost evaluation method. Two
experiments, both using the trace-based cost estimation method for evaluation,
took more than one day. The exploration time for these experiments has been
extrapolated based on a linear regression of the exploration time as a function of
the number of considered design points and was predicted to be approximately
35 hours (for 347 design points) and 85 hours (for 835 design points) respectively.
Figure 5.5 clearly shows the advantage of our fast cost-estimation technique when
it comes to the total exploration time of larger design spaces.

90

CHAPTER 5. AREA AND ENERGY MODELING

O trace-based
A profile-based

o ‘2 — improved profile-based

=

=

Q
~
=

© /////

E o -
= — o

+~ —

= —

o _—
o -

- -

= —

o -
S o

= e

3 /////

— s
— L -
o A
\ \ \ \ \
0 200 400 600 800 1000

number of explored candidates

Figure 5.5:
evaluation techniques with added regression lines

The total exploration time plotted for all three different cost

trace-based

profile-based

improved profile-based

B compilation time
O
O estimation time

simulation time

’ *-H-

50 —
100 —
150 —
200 —

time (s)

250 —
300 —
350 —

Figure 5.6: The average candidate architecture evaluation time split into its
magjor components for the three estimation techniques during an exploration

considering 178 candidates

5.4. CONCLUSION 91

Figure 5.6 presents the distribution of the candidate architecture evaluation
time in its main components; compilation, simulation, and evaluation. From this
figure we find that the trace-based estimation method indeed offers a unnecessarily
slow estimation. Even for the used example trace, processing 10000 samples with
the Pan-Tompkins QRS detection algorithm (taking 50 seconds in real-time), the
parsing of the application trace of 68 megabyte and computation of the aggregate
energy estimates takes over 5 minutes. Switching to the profile-based estimation
method reduces the estimation time to a negligible 5 milliseconds and reduces
the average evaluation time to 35.6 seconds. Including then the re-use of the
simulation results by our improved profile-based energy estimation further reduces
the evaluation time. The selected ECG application implementation provides
no opportunities for performing code transformations that result in a changed
application profile. As a result, only a single simulation was required for the
entire exploration, thus reducing the average simulation time by a factor of 178
(the number of explored candidate architectures). This resulted in a reduction
of the average simulation time from 19.3 seconds to 109 milliseconds. The re-
maining candidate evaluation time, 16.3 seconds, represents time required for the
compilation of the target application on the proposed candidate.

The experiments reported here are for a single example application of low
to medium complexity for which the application profile does not change during
the architecture exploration. Especially the trace based estimation is highly
dependant on the application run-time and test data size. We have observed
several cases where larger tests would take hours to estimate energy using the
trace-based approach while our profile-based approach would still take well below
a single second.

5.4 Conclusion

In this chapter, we discussed our efficient ASIP area and energy estimation models
and methods. In particular, we proposed and discussed a novel method for
the estimation of the energy consumption of VLIW ASIP architectures, and we
have experimentally demonstrated its effect on the instruction-set architecture
exploration time. Using our method, we can explore many more design points
within the same time compared to other approaches, without any loss in accuracy.

Further experiments using the improved profile-based energy estimation are
presented in the next chapter, where this technique is used to implement the
simulation caching in the BuildMaster framework.

92

CHAPTER 5. AREA AND ENERGY MODELING

There are three great virtues of a programmer; Lazyness,
Impatiance, and Hubris

Larry Wall, “Programming Perl”, 1996

Intermediate result caching

During the process of ASIP instruction-set architecture refinement, many
similar candidate architectures are considered. The evaluation of each of the con-
sidered architecture variations consists of two major components; compilation and
simulation (see the previous chapter). In the previous chapter we demonstrated
how the reuse of the application profile, consisting of basic block execution counts,
helps to avoid unnecessary simulations which results in a significant reduction of
the total exploration time.

In this chapter, we provide methods to automatically detect when such reuse
is possible and implement a simulation cache based upon this detection. Similarly,
we also detect when the proposed changes to the architecture are not expected to
result in changes of the compilation result with respect to a previously considered
candidate architecture and use this detection ability to implement a compilation
cache. Both these caches storing intermediate evaluation results and a supporting
VLIW ASIP instruction-set architecture refinement framework are bundled into
the BuildMaster framework presented in this chapter. This framework allows
us to implement our intermediate result caching techniques independently of the
exploration strategies, which greatly simplifies the addition of new strategies to
our architecture exploration tools.

This chapter is based on
Jordans, R.; Diken, E.; Jozwiak, L. and Corporaal, H.: BuildMaster: Efficient ASIP
Architecture Ezxploration Through Compilation and Simulation Result Caching. In DDECS
2014.

93

94 CHAPTER 6. INTERMEDIATE RESULT CACHING

The techniques presented in this chapter will be used in the experimental
research discussed in the next chapter. This chapter mainly investigates their
specific benefits, demonstrates the effectiveness of both compilation result caching
and simulation result caching, and shows the exploration time improvements due
to using the exploration strategies presented in the next chapter.

6.1 The simulation cache

The simulation cache builds upon our efficient cost estimation method and is
responsible for automatically recognizing when a previously obtained applica-
tion profile can be reused in our improved profile-based cost estimation method.
It keeps track of basic block execution count changes resulting from key loop
transformations (we currently track changes in software pipelining) and uses the
hybrid method to update the application profile when changes are detected. The
detection of if-conversion (and other transformations which remove basic-blocks)
is handled by the estimator itself and does not require an updated profile. The
BuildMaster framework is currently not able to properly detect transformations
such as loop unrolling or loop peeling, as the used compiler does not currently
provide information about the effects of these transformations in a useful way.
Properly detecting these transformations from the compiler output would either
require changes to the compiler output or an extensive analysis of the generated
assembly code and is considered to be outside the scope of this research work.

The previously extracted profiles are cached and indexed based on a hash-table
storing hashes of a string representation of the loop transformations applied during
their corresponding compilation. This hash-table allows us to efficiently detect
when an applicable profile exists. When a matching set of loop transformations
is found, we use the stored application profile with our improved profile-based
cost-estimation method. If such a profile does not exist, we fall-back onto the
hybrid method and add the profile to the simulation cache for later use. This
simple but effective method allows us to reliably find applicable profiles and
can easily be extended when information regarding other code-structure changing
transformations becomes available.

6.2 The compilation cache

The BuildMaster framework automatically recognizes when two similar architec-
ture prototypes should result in the same optimized ASIP architecture design.
The decision on ignoring the unused resources in our cost model plays a critical
role in this process, as it allows different initial architectures to end up in the same
final design point. Figure 6.1 illustrates this with an example. While exploring a
3-issue VLIW processor we create a candidate prototype which removes function
unit F'Us from issue-slot 2 and FUs from issue-slot 3 (red color). Let’s notice that

6.2. THE COMPILATION CACHE 95

the compiler did not require FUs from issue-slot 1 and FU; from issue-slot 3 (cf.
figure 6.1a, yellow color). When, later in the exploration, we consider a similar
architecture but now also disable F'Us from issue-slot 1 we expect that the result
will be as shown in figure 6.1b and has the same performance metrics as found
for the first situation.

Y SO "

Sequencer 4—»

.| Issue slot ; Issue slot , Issue slot 4
Program
memory :
; FU,| |[FUg4 FU,| |FU, . FU, . FU,4
: Data path :
(a)
Y S .

Sequencer 4—»

Issue slot , Issue slot , Issue slot 4
Program
memory
(o o
Data path :
(b)

Figure 6.1: Two equivalent architectures showing resources removed during
the selection of candidates (marked red) and unused resources after compilation
(marked yellow)

The compilation cache detects such cases by registering which resources are
unused for previous prototypes in correspondence to the list of resources which
were explicitly disabled in that prototype. Any candidate architecture which
explicitly disables all resources that were also explicitly disabled in the cached
prototype, and additionally, explicitly disables a subset of the unused resources
of the reduced prototype, is considered a hit of the compilation cache. The cost
metrics (energy, area, and cycle count) of the previous prototype are returned
immediately and no cost estimation is performed on the new candidate. Candidate
architectures which do not provide a hit on the compilation cache will be added
as new entries after their cost has been estimated.

96 CHAPTER 6. INTERMEDIATE RESULT CACHING

6.3 Experiments

We have implemented the BuildMaster framework and integrated it into our
design space exploration framework [35]. This allowed us to test various cache
configurations under different exploration runs. In this section we compare the
differences between enabling and disabling of either one or both the compilation
and simulation caches. Our experiments show the speedup of the total design
space exploration (cf. figure 6.2 and figure 6.3) as well as the cache hit-rates when
both caches are enabled (cf. figure 6.4).

The experiments have been performed using six applications from different
application domains and having different characteristics, which have been prepro-
cessed using the first two stages of the ASAM micro-level architecture exploration.
This pre-processing has prepared them for usage with our exploration framework
and provides a fair starting point for the comparison of our exploration strategies
and intermediate result caching. Two ECG hart-beat detection applications ecg-1
and ecg-2, two AES encryption and decryption applications, one using a small test
sequence (aes-1) and one using a large test sequence (aes-2), 2D down sampling
(down), and a low-pass spatial filter (Ipsf) were selected for the experiments.
Each application was explored using both our heuristic exploration strategies
best-match and first-match which will be presented in the next chapter. The
experiments used the energy-delay product as a criterion to guide the candidate
architecture selection process but other cost-functions should yield similar results
with regard to the cache performance.

6.3.1 Exploration time speedup

Figure 6.2 shows the distribution of the obtained speedup due to caching for
different architecture exploration runs as a boxplot. The center line in the box
illustrates the median value and is surrounded with a box extending to encompass
both of the quartiles surrounding the median. The whiskers extending from
the box illustrate the first and last quartile of the samples, samples that are
over 1.5 times the total length of the box into the first or last quartile are
considered outliers and are drawn as separate points (e.g. the topmost sample
for the compilation cache).

We observed no cases where the addition of either cache resulted in a slow-
down of the exploration (speedup < 1) and found that in most cases the explo-
ration time was significantly reduced. Especially, the exploration time of the more
complex applications seems to be strongly decreased by the presence of the caches.
The geometric mean of the speedup when only using the compilation cache was
1.8, when only using the simulation cache it was 1.7, and when using both cache
levels it was 3.0. From this we conclude that both caches are roughly equally
effective over our set of experiments.

Looking in more depth into our experiments we see that some of them show
a greater benefit from the compilation cache while some others benefit more

6.3. EXPERIMENTS 97

o _
Al
_
\
\
*® T I
S !
N— ‘
@ \
5]
< \
g |
o © |
o0 o) |
g \
g |
= \
=
3] |
< _ \
B <+ | |
= [
= |
el | |
5]
o} \
o 1
wn
PO
T
— S
< \ \ \
compilation cache simulation cache both caches

Figure 6.2: A boxplot showing the exploration-time speedup ranges using
different caching strategies

from the simulation cache. Figure 6.3 provides a more detailed view of the
architecture exploration speedup for two different strategies best-match search
and first-match search that will be explained in the next chapter. The AES
encryption applications (aes-1 and aes-2) demonstrate the impact of the size of
the input data. Traditionally it takes a large amount of time to simulate the
target application with a large dataset; smaller datasets are usually considered in
an attempt to keep the design space exploration time within reasonable bounds.
However, we noticed in our experiments that using a too small dataset has a
substantial impact on the quality of the final architecture. Application aes-2
shows us (under both exploration strategies) that a larger architecture is found
to be cost efficient for the AES encryption when more realistic input data is
used. Applications with a relatively small input size, and especially those with
a large final architecture (such as down and Ipsf) tend to have more benefit
from the compilation cache. This can be explained through the larger size of
the final architectures (5 and 7 issue-width VLIW processors respectively) with

98 CHAPTER 6. INTERMEDIATE RESULT CACHING

O compilation cache only
O simulation cache only
B both caches

n cll cn [

ecg-1 ecg-2 aes-1 aes-2 down Ipsf

speedup (x)
0 2 46 8

(a) best-match search

O compilation cache only
O simulation cache only

EI:I B both caches

ecg-1 ecg-2 aes-1 aes-2 down Ipsf

speedup (x)
0 2 4 6 8

(b) first-match search

Figure 6.3: Exploration-time speedup ranges using different caching strategies

a high specialization of each issue-slot. Exploring such highly specialized wide
VLIW processors requires many small steps when exploring the function-unit
composition (i.e. defining which operations have to be available in each issue-
slot). These many small exploration steps are likely to more often trigger hits
in the compilation cache when a large architecture is considered. Furthermore,
applications down and Ipsf both have several kernels which are software-pipelined;
this makes the compilation and scheduling problem for these applications more
difficult and thus more time consuming than for the other applications.

The influence of the input data size makes it difficult to precisely compare
the proposed caching methods to the traditional exploration without caching. It
is clear that a lot can be gained and that this method allows for an efficient
usage of substantially larger input datasets. This last feature helps us in creating
new processor designs which are better tuned to their specific usage, but makes
comparison based on only the exploration time incomplete.

6.3.2 Cache hit-rates

The hit-rates of both caches may give us a better insight into the actual benefits
of the caching. Figure 6.4 shows the hit-rates observed in our experiments for

6.3. EXPERIMENTS 99

<

ES

~ o O compilation cache
L © B simulation cache
=

£ o

< <f

©

=

&

8 o

ecg-1 ecg-2 aes-1 aes-2 down lpsf
(a) best-match search

<

=X

- o O compilation cache
it o0 B simulation cache
8

£ o

~ <

©

=

[}

g o

ecg-1 ecg-2 aes-1 aes-2 down Ipsf
(b) first-match search

Figure 6.4: Observed cache hit-rates for two different architecture exploration
strategies

both caches. Observe that the simulation cache is very effective and consistently
gets hit-rates above 90% for all of our experiments (95% on average). This can
be directly translated into the observed speedup, as it allows us to skip over 90%
of the simulation runs when compared to the traditional methods.

The speedup related to the compilation cache is more difficult to quantify.
From figure 6.4 we can see, for example, that application down has a compilation
cache hit-rate of approximately 50%. While this does allow us to save quite
some exploration time, it does not fully explain the observed 4-6x speedup in
the exploration time measurements. A secondary effect, referred to as caching
induced exploration-path divergence, is the additional cause of this speedup. It is
discussed next.

6.3.3 Caching induced exploration path divergence

Both the simulation cache and the compilation cache try to detect when a previ-
ously obtained evaluation result can be reused instead of (re-)computed. However,
small variations can occasionally occur between the cached result and the actual
result that would be obtained through compilation and/or simulation. For exam-

CHAPTER 6. INTERMEDIATE RESULT CACHING

100

Table 6.1: Detailed experimental results showing caching induced exploration path divergence on the down and lpsf
applications when using first-match search. The cache configuration column refers to the following cache configurations:
1) both caches enabled, 2) compilation cache only, 3) simulation cache only, and 4) both caches disabled. The time column
presents the total exploration time in seconds.

Compile cache Simulator cache final exploration result cache
benchmark hit-rate (%) | hits | misses | hit-rate (%) | hits | misses | improvement | time configuration
Down-sampling 50.7 38 37 92.0 23 2 1.112918 801 1

48.1 38 41 — 0 29 1.122509 988 2
— 0 143 98.5 129 2 1.112918 4038 3
— 0 184 — 0 172 1.122509 5631 4
LPSF 21.0 17 64 93.1 54 4 4.324151 2940 1
21.0 17 64 — 0 58 4.324151 3229 2
— 0 195 96.8 183 6 4.379904 9514 3
— 0 195 — 0 189 4.379904 10485 4

6.3. EXPERIMENTS 101

ple, the simulation cache may not properly recognize a loop transformation that
was applied, or the compiler may produce a slightly different code when presented
with a reduced set of resources (even though all resources that were previously
in use are still available). These slight variations between the cached results and
results from the compiler can result in variations in the exploration choices, we
call this effect caching induced exploration-path divergence.

For our experiments, caching induced exploration-path divergence is mainly
observed in the compilation cache but can also be seen in the simulation cache.
This divergence happens when a cached value is returned which is different from
the actual value that would have been found without the cache. Table 6.1 gives
two example applications to illustrate these effects. Observe the typical symptom
of a caching induced exploration path divergence: The total of cache hits and
misses when the cache is enabled does not always equal the total misses when
the cache is disabled. This implies that sometimes a different number of design
points is considered depending on whether the compilation cache is enabled or
not. This is a clear sign of the caching induced exploration path divergence. This
divergence caused the exploration to find a different final improvement for the Ipsf
application when the compiler cache was enabled (cache configurations 1 and 2).
We see a similar effect for the simulation cache with the down-sampling application
(application down) where we also find that enabling the cache yields slightly
different improvement of the considered cost function (cache configurations 1
and 3).

In the simulation cache, exploration path divergence can happen when the
compiler uses a transformation which is not properly detected by the simulation
cache. In the case of the down-sampling application (application down) the
optimization to blame was loop peeling, which was performed as part of the
software-pipelining. In this application, one execution of a loop kernel was moved
from the loop core into the prologue, resulting in a slightly decreased loop count.
The BuildMaster framework is currently not able to properly detect the loop
peeling transformation, as no direct information on this kind of transformations
is available from the compiler output. We observed only this single simulation
cache induced divergence in our experiments.

Our experiments show that the compilation cache is much more susceptible to
caching induced exploration path divergence. Only for the most simple application
in our benchmark set (application ecg-1) the cache hits and misses add up to the
number of points considered when compilation caching is disabled. Based on our
experiments we can formulate our hypothesis that the main reason for compilation
cache induced divergence is the sensitivity of the compiler heuristics to the set of
available resources. This can cause the compiler to find a different schedule when a
simplified version of the same problem is presented. However, the exploration path
divergence was only observed in a single experiment (application Ipsf), producing
a different final design. It was also only observed when the first-match heuristic
was selected.

So far, we have only observed the above two cases where the caching induced

102 CHAPTER 6. INTERMEDIATE RESULT CACHING

exploration path divergence resulted in a different final design. However, in
both these cases the final design cost improvement found without caching was
approximately only 1% lower than the cost of the final design found when using
caching, while caching helped to greatly reduce the total exploration time.

6.4 Conclusion

In this chapter we have presented and discussed the BuildMaster framework. This
framework offers a very effective and efficient automated caching of intermediate
compilation and simulation results during the design space exploration of VLIW
ASIPs. Both the compilation and the simulation cache can facilitate the reduction
of the architecture exploration time and make it possible to efficiently use more
realistic larger datasets for the evaluation of the proposed designs. The presented
caching methods become more and more effective for larger applications using
larger input datasets. This is a very useful feature. Due to this feature our
framework can contribute towards the construction of higher quality VLIW ASIPs
better specialized to particular applications, while at the same time strongly
reducing their design time.

The most exciting phrase to hear in science, the one
that heralds new discoveries, is not “Eureka” but “That’s
funny...”

Isaac Asimov, 1920-1992

Automated design space exploration

After completing both the construction of an initial ASIP architecture and
the calibration of the area and energy models, it is time to optimize the initial
design which satisfies the temporal performance constraints, in order to produce
a more compact and energy efficient final design. In the ASAM project, this final
optimization of the design is performed during the third phase of the micro-level
architecture exploration, i.e. instruction-set architecture synthesis.

Design space exploration is an iterative evolutionary process by its nature.
One or more candidate designs are proposed and evaluated, and based on the
evaluation results new (hopefully better) candidates are proposed. The evaluation
of candidates can be completely analytical (based on mathematical quality models
as used in the model-based design approaches), but may also require a partial or
complete construction and simulation of the proposed design. Different explo-
ration strategies may be selected depending on factors such as the complexity of
the design problem, the time required for the evaluation of individual candidates,
and the time available to perform the exploration. Design space exploration has
been used by many previous works and there exist many different exploration
strategies [37,39,40] ranging from simple heuristics to highly complex algorithms.
Some of these methods are quite generic (such as genetic algorithms) whereas

This chapter is based on:
Jordans, R.; Corvino, R.; Jézwiak, L. and Corporaal, H.: Instruction-set Architecture
Exploration Strategies for Deeply Clustered VLIW ASIPs. In ECyPS 2013.
Jordans, R.; Jézwiak, L. and Corporaal, H.: Instruction-set Architecture Exploration of VLIW
ASIPs Using a Genetic Algorithm. In MECO 2014.

103

104 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

other methods may be highly specialized (such as custom tuned heuristics) and
combinations utilizing concepts from multiple techniques can be encountered as
well.

This chapter introduces the design space exploration algorithms that are used
in processor and instruction-set architecture synthesis, and compares them for
both the required exploration time and the quality of the produced designs. We
first provide an overview of the exploration goals and strategy and introduce
the possible exploration algorithms in Section 7.1. Section 7.2 then presents
our heuristic exploration methods, followed by Section 7.3 which presents the
implementation of a genetic algorithm that was used to verify the quality of our
heuristics. Section 7.4 then presents the results of our experiments using the
selected exploration methods.

7.1 Exploration method

One of the first aspects to decide when considering to automate a design ex-
ploration problem is the formulation of the design goal. Is there a single goal
and do we want to focus on optimizing this single aspect of the design (e.g.
energy consumption) with constraints on the others? Or are there trade-offs
which have to be considered among the different aspects, do we want to limit
the impact of the design aspects that are less of a problem? For example,
reducing the energy consumption can easily result in an execution slow-down of
the target application. Deciding how much of a slow-down can be tolerated can
sometimes be modeled as a hard constraint on the execution time, but often a less
restrictive soft constraint or minimization objective can help in getting an even
better energy consumption. In general, such a multi-objective exploration can
be performed in two variations. Either a set of Pareto-optimal (non-dominated)!
solutions is produced as the result of the exploration, and the multi-objective score
aggregation and trade-off decision making is left to the human designer, or and
automated algorithmic aggregation and trade-off decision making is performed
using one of several possible aggregation methods. For instance, a cost function
can be defined and optimized which combines the key design attributes (energy,
area, delay) into a single aggregate value.

Previous works [1, 15,31, 32,42] mostly focused on obtaining a set of Pareto-
optimal designs, and are considering either the area-delay or energy-delay trade-
offs. In the ASAM project however, such a Pareto-optimal set of design candi-
dates is already determined as part of the application restructuring and coarse

1A solution dominates another solution when it scores the same or better in all considered
quality metrics and scores better in at least one of the metrics. A non-dominated solution has
the characteristic that no one of the other possible solutions dominates it. In other words, a
non-dominated solution is either equivalent to another non-dominated solution or better on one
or more of the considered quality metrics than any other of the possible solutions (thus also
non-dominated solutions). The full set of non-dominating solutions therefore provides insight
in the trade-offs among various quality aspects.

7.1. EXPLORATION METHOD 105

architecture exploration phase [38]. From the results of this second phase of
the micro-architecture exploration the initial prototype is selected for further
refinement using the algorithms presented in this chapter. During the architecture
refinement phase considered here we focus on refining a single Pareto-optimal
solution constructed in the second phase into a better solution. We have to
perform here a local search around one selected Pareto-optimal coarse architecture
to refine this architecture in a good way. In order to avoid a further increase
in the number of ASIP design alternatives presented to the ASAM macro-level
architecture exploration we are not focusing on finding Pareto-optimal solution
sets, but on further refinement of already Pareto-optimal high-level solutions
towards a single aggregate value or cost function. For this purpose, our ASIP
instruction-set architecture exploration framework offers several different cost
functions such as the energy-delay (ED) product and the energy-delay-squared
(EDD) product. The energy-delay product puts more emphasis on the energy
consumption, the energy-delay-squared product puts more emphasis on the delay.
In both cases, a design is better when it has a lower score. Any other custom
cost functions to accommodate specific design concerns can easily be added into
the existing exploration framework. Please refer to appendix A for more details
on, and a brief introduction into, the customization of the developed design space
exploration tools.

7.1.1 Growing versus shrinking strategies

In essence, there are two approaches when proposing architecture variations as
new candidate architectures. Either resources are added to the original archi-
tecture, or they are removed from it. Moving a resource from one location (e.g.
issue-slot) to another counts as the combination of an addition and a removal.
Constructing each of the candidate processor architectures consumes a significant
part of the exploration time in a traditional architecture exploration process.
Even for relatively basic (though ANSI C compliant) 32-bit RISC processor ar-
chitectures, the construction of a processor RTL description, simulator, and its
support libraries from a high level description can take several minutes. In
case any significant number of designs should be explored, avoiding the repeated
construction of processors is critical for achieving a fast and effective design space
exploration.

In this work we have decided for a shrinking approach, as this enables us
to completely overcome the problem of repeated architecture construction. The
retargetable HiveCC compiler provides us with the option to (partially) disable
specific resources during the compilation process. This makes it possible to
construct an oversized initial architecture, and then only virtually ‘remove’ com-
ponents by disabling them. The resulting impacts on both the area and energy
requirements of the thus reduced architecture are taken into consideration by
forcing the area and energy models to ignore the removed resources. Currently,
our model is capable of modeling the effects of removing function-units, issue-

106 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

slots, (partial) register files, and (partial) data memories. It also takes the effect
of such removals into account when judging the required size of the program
memory and the complexity of the interconnect. Using this combination of archi-
tecture shrinking and our adaptive modeling allows us to limit the construction
of candidate architectures to two architectures. Only the initial architecture and
the final, reduced, architecture need to be constructed. This way, we are able to
significantly reduce the required exploration time.

Guaranteeing that the initial architecture provides a sufficient temporal per-
formance that satisfies possible related constraints is key to enabling the shrinking
approach. Our methods for parallelism estimation, presented in Chapter 4, have
therefore been selected on their ability to provide an upper bound on the ap-
plication’s parallelism. This enables us to directly construct an initial processor
architecture that has a sufficiently large number of issue-slots and memory in-
terfaces to provide the required performance. The addition of custom operation
patterns to the processor should also be performed before the reduction process is
started. Currently, we manually add such custom operation patterns and related
hardware to the initial prototype and let the shrinking process decide if these
operations should be kept or not.

7.1.2 Active versus passive exploration

The most direct implementation of a shrinking strategy is to simply remove all
resources that have not been used by the target application. As could already be
seen from the example architecture exploration discussed in Chapter 3, this pas-
sive approach to instruction-set specialization already results in a much improved
design. However, only using the passive shrinking still does leave significant room
for further improvement. Some costly operations may still be duplicated across
issue-slots if the scheduler is not specifically instructed to try to schedule the
executions of these operations onto less function units. A more active approach to
the instruction-set architecture exploration, which explicitly attempts to remove
some unnecessary function units which are still in use, can solve this problem.

One of the key advantages of the passive shrinking approach is that it can be
incorporated completely in the architecture and energy model of the processor
architecture. As such, a simple switch in the model can be used to observe the
effects of removing the unused function units in detail. The active exploration
does not allow this and requires a rescheduling of the application onto the re-
duced architecture, before the effects of a function unit removal can be observed.
During this rescheduling of the application, different optimization and scheduling
decisions may result in a change of the program structure. In consequence, a re-
simulation of the application may be required if the application structure changes
substantially, in order to be able to accurately estimate the energy consumption
for the proposed design. Deciding when to perform re-simulations is handled
by the simulation cache in our BuildMaster exploration framework which was
presented in Chapter 6.

7.1. EXPLORATION METHOD 107

Taking the significant improvement in the evaluation time due to our inter-
mediate result caching techniques into account also opens up the possibility of
performing the exploration directly using only an active exploration. However,
only using active exploration introduces extra complexity in the exploration algo-
rithm. Where the effect of removing a resource was directly noticeable previously
through our passive reduction, this effect may be less clear when only using active
exploration as more function units will need to be removed before an architecture
is reduced into a representative final candidate. As a result, a significant amount
of back-tracking needs to be performed when an exploration needs to be able to
reconsider earlier decisions. Separating the exploration into the combination of an
active and passive element avoids the added complexity of intensive backtracking
in the exploration algorithm.

Performing an active architecture exploration is limited by the components
that can be removed from the architecture. Due to the availability of flags for
enabling/disabling instructions at the function unit level, we have decided to limit
the active component of our explorations to the issue-slot and function unit levels.
The exploration of the other resources such as register file sizes and interconnect
is left to the processor modeling as a part of the passive architecture reduction.
However, flags for controlling the available number of entries in each register file
are also present in the SiliconHive tools. These are currently not used during
the exploration, the register file size is part of the passive architecture reduction,
but may be added as an extra exploration consideration in the future work. The
current reasoning for not exploring the register file sizes actively is that we try to
prevent any register file spilling from happening in the final architecture. Register
file spilling saves (temporarily unused) values from the register file into one of
the memories and comes with cycle-count and energy penalties for the resulting
application, especially if the spilled value needs to be moved into a memory by a
load/store unit that is not directly connected to the register file from which it is
spilled.

7.1.3 Exploration algorithms

For the validation of our parallelism estimation methods in Chapter 4, we used a
constraint programming approach to find the optimal issue-width while scheduling
operations at the LLVM IR abstraction level. While attempting to extend this
method to provide a similar reference point for the final instruction-set archi-
tecture refinement we ran into several problems. First of all, the LLVM IR is
an abstraction of the actual processor instruction-set. We found that it was
very difficult to obtain representative exploration results at this abstraction level
during the final architecture refinement. However, increasing the detail at which
the architecture was modeled also proved difficult as this greatly increased the
complexity of the constraint-programming formulation. Evaluating the original
abstract formulation already was very time consuming and the time required
for solving the more complex formulation increased rapidly. Adding the extra

108 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

freedom of a variable instruction-set to the constraint programming problem
further complicated the problem and resulted in another huge increase of the
exploration time, which was already measured in days. For example, finding
the minimal set of function-units required for computing the 1D 8-point IDCT
already took several hours, without the added complexity of then distributing
these function units over a set of issue-slots. Secondly, implementing our own
scheduler in the constraint programming formulation led us to obtain different
scheduling results than obtained from the HiveCC compiler. This made it difficult
to reproduce the obtained instruction-set architecture exploration results on the
actually constructed processor architectures. To avoid these problems, we decided
to keep the existing SiliconHive scheduler in the exploration loop and base our
exploration decisions on the results obtained using this scheduler.

When manually exploring the instruction-set architecture of a processor, an
engineer is limited in the analysis extent, quality, and number of design decisions
that can be made. Making smart decisions is therefore a key aspect of the engi-
neer’s work. A part of the intelligence behind these smart decisions can be codified
as a set of heuristics and used to drive an automatic exploration algorithm.
Such an approach often results in highly efficient exploration algorithms which
can produce reasonable results. However, in many cases, it can be difficult to
accurately demonstrate the effectiveness of such ‘rule of thumb’ heuristics. This
makes it difficult to obtain a sufficient degree of trust in the exploration algorithm
such that it will be used for the actual processor architecture exploration in an
industrial setting. As an alternative, genetic algorithms are commonly used to
automatically solve design problems, where the full complex problem description
cannot be directly modeled into the solver. Previous research [37,39,40] has
shown that exploration using genetic algorithms (and derivatives thereof) can
consistently deliver good results when the algorithm is given a long enough run-
time. The exploration time for problems with huge design spaces can be very
long, often making exploration using a genetic algorithm practically infeasible.
However, incorporation of our efficient energy exploration method (Chapter 5)
and by using our intermediate result caching methods (Chapter 6) allows us to
significantly speed-up the process and obtain exploration results within a more
reasonable time. This allows us to use a genetic search tool to establish a baseline
of known feasible ASIP architecture designs, which makes it possible to judge the
quality of the results obtained when using our heuristic search methods.

7.2 Heuristic search

The proposed heuristic based design space exploration closely follows the tra-
ditional design process as performed by an expert ASIP designer. Candidate
architectures with specific resources removed are proposed and the effects of the
removal of one or more resources is considered. If found beneficial, the resources
are actually removed from the system and the process is repeated until either the

7.2. HEURISTIC SEARCH 109

design criteria are met or no further improvement of the current candidate is found
to be possible. Again, we build upon the fact that the initially proposed coarse
architecture already meets the temporal requirements of the target application
and that the focus of the design space exploration lies on refining this architecture
towards lower energy consumption and lower area.

Like with the genetic algorithm, we can select to perform this exploration at
different granularities within the processor architecture template. We can choose
to either explore the removal of complete issue-slots or the removal of separate
function-units. These are the architectural parameters that are explored as part
of our active refinement. The other architectural components (e.g. register files
and interconnect) are reduced passively using our smart area and energy models.

In our early research [35], we found that exploring either the issue-slots or the
function-units in a single run has its limitations. Limiting the active exploration to
the issue-slot level removes the ability of the exploration to try to combine costly
operations executed in multiple issue-slots onto fewer issue-slots. For example,
the initial architecture construction uses issue-slots from a library which contain
a standardized set of function-units. Thus, architectures constructed with this
template library will often have the same function-unit available within different
issue-slots. When only actively exploring the issue-slot level it will not be able
to notice when two parallel multiplication operations, executed in different issue-
slots, can be serialized and scheduled onto a single issue-slot if each of these
issue-slots is also used for other operations. As such, active exploration at only
the issue-slot level provides only a limited capacity for customization and leads
to low specialization of the resulting ASIP architecture design. On the other
hand, actively exploring the function-unit composition of a processor architecture
results in a much larger exploration space. While exploring at the function-unit
level does provide the possibility to overcome the above limitation of exploration
at the issue-slot level, we found that it was very difficult to make good quality
design decisions during the early stages of the exploration process. One of the
key problems of the exploration at the function-unit level is that there is often a
high degree of symmetry caused by the replication of function-units into several
issue-slots, in the early design choices. During the early exploration stages, it
can be very difficult to decide in which of the available issue-slots to keep a
given function-unit, especially when only a single function-unit of a specific type
is needed. As a result, we found that an exploration at the function-unit level
has a high probability of getting stuck on a sub-optimal solution. Backtracking
of design choices [32] helps to improve the results for the function-unit level and
provides an option for getting the design space exploration out of a locally optimal
solution, though at the cost of a further increase in the exploration time.

As an alternative, we propose a two-stage approach for our heuristic design
space exploration method. In the first stage we perform a coarse exploration of
the issue-slots to find the proper issue-width of a refined architecture. While in
the second stage, for the found issue width, we refine the composition of each
of the remaining issue-slots through an exploration of their function-units. Our

110 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

initial experiments [35] showed that this offers the benefits of both having a high
degree of possible specialization in the resulting design and having a fairly limited
number of design alternatives to reach the conclusion.

Similarly to [32], we provide two exploration strategies, best match and first
match, both based on the same cost metrics. The best match exploration considers
the removal of each separate component and selects the component that shows
the best improvement of the cost metric. For example, when removing an issue-
slot from an n issue-slot initial prototype during the first exploration phase,
selecting the best match exploration strategy will construct a set of candidate
prototypes with n — 1 issue-slots containing each possible subset of n — 1 issue-
slots from the initial prototype. The first match exploration considers different
alternative components sequentially and selects the first component that shows
an improvement of the cost metric. The first match strategy results in a faster
search due to a much smaller number of considered design points. This is not
a problem when the choices are symmetric, i.e. there is no quality difference
between two choices (e.g. removing one of two equal issue-slots), but may result
in suboptimal solutions when the design choices are asymmetric (e.g. when using
a mix of different types of issue-slots).

7.3 Genetic algorithm

Inspired by biological evolution, genetic algorithms are a generalized search heuris-
tic that mimics the process of natural selection. Possible solutions to the problem
to be explored are encoded in a genome. These solutions are then explored by
deriving new generations of solutions through techniques such as inheritance,
selection, mutation, and cross-over. In our case, the genome is used to identify
different candidate processor architectures. For our exploration we use a bit-
vector as a genome, where each bit in the genome represents the presence (or
absence) of a specific function unit in the processor, as these are the decisions
that we explore in our active exploration.

We have implemented the genetic search algorithm in our architecture explo-
ration framework using the Al:Genetic::Pro library [50]. Usage of such a library
simplifies the implementation of some of the complex optimizations possible with
genetic algorithm. Only two support functions (fitness and terminate) and some
basic configuration settings need to be provided to customize the genetic algorithm
for our purpose. These customizations are presented in the section below.

7.3.1 Genetic algorithm configuration

During the lifetime of a genetic algorithm, a population of candidate solutions
is evolved, via several intermediate population generations, into a (set of) final
design(s). The size of the population, the number of generations, and the ways
one generation leads into others all contribute to the quality of the final result

7.3. GENETIC ALGORITHM 111

and to the time required to arrive at that result. For our ASIP instruction-set
architecture exploration, the values of these parameters have been determined
experimentally. However, finding a good combination is a very time consuming
process. The configuration presented in this section resulted in a reasonably
high success rate for the genetic algorithm during our experiments, but better
configurations may be possible.

The size of the population is selected based on the size of the genome through
the reasoning that a more complex problem benefits from a larger variation in
the (initial) population. The initial population needs to be large enough to
provide sufficient variation in the population, but using a very large population
will increase the exploration time without providing substantial further benefits.
We initially found that using a population being three times the number of bits
in the genome (the number of actively explored resources) gives both reasonable
results and an acceptable exploration time. Furthermore, there is much less need
for a large population in the later stages of the evolution, when the population
is already trending towards a final solution. We therefore shrink the size of the
population after each round of evolution by 10% which results in a significantly
reduced exploration time.

A new set of candidate architectures is generated after each round of evolution.
New genomes inherit possibly beneficial features through combining features of
the best genomes from previous generations. These combinations are formed by
cross-over and mutation. Cross-over takes parts of the best genomes and combines
them. The best genomes are selected randomly in a roulette selection where each
genome has a chance of being selected proportional to its fitness. FEach selected
pair of genomes is then combined in the cross-over stage and results in a new
individual. Random mutations are applied to these new individuals in order
to increase the variation in the population. These mutations greatly help the
genetic algorithm to avoid getting stuck in locally optimal solutions. We selected
a relatively high mutation rate (15%) for our experiments because the exploration
space can be very irregular at times, and this high mutation rate greatly reduced
the frequency at which the genetic algorithm got stuck in a sub-optimal solution.
To make sure that the best solutions do not get lost during the evolution, we also
copy the 3 best solutions of the current generation into the next generation.

Finally, the Al::Genetic::Pro library also provides it’s own form of caching. It
remembers previously considered genomes and doesn’t evaluate their performance
when they appear again during the later stages in the evolution. Using this kind
of caching greatly decreases the run-time of the exploration without influencing
the results.

7.3.2 Fitness function

The fitness function evaluates the fitness of the proposed candidate solutions.
It uses the BuildMaster framework (Chapter 6) to compile and simulate the
target application on the proposed architecture, so that its execution time, as

112 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

well as, the area and energy costs can be estimated. The BuildMaster framework
decides if compilation and/or simulation are required for this specific instance and
performs the necessary steps to obtain the performance metrics for the proposed
candidate. Based on the returned metrics and a user selected cost-function, the
fitness function then decides on the fitness of the proposed candidate.

The cost functions, as used in our exploration framework, result in a lower
value for a better design. However, the genetic algorithm implementation requires
a fitness function (i.e. higher is better) and does not allow negative fitness values.
We therefore translated the cost metrics into corresponding fitness functions by
using the reciprocal value of the cost function as a fitness measure.

7.3.3 Terminate function and number of generations

After several generations, the population of candidate architectures converges
into a final design. After each generation, a terminate function is called which
is used to detect if the solution has stabilized. We detect this by comparing the
current best solution with several of the previously found ones. We have reached
a stability region when all these solutions are the same. We can conclude that
the exploration got stuck (hopefully through finding the best solution) when such
a region of stability spans many generations. Our architecture exploration tool
allows the user to set this stability region length and provides a default value of
10 generations.

7.3.4 Further optimizations to the genetic algorithm

In order to get at least one design point that is guaranteed to work we insert the
initial prototype into the initial population. This ensures that there is at least
one working architecture that satisfies the temporal performance constraints in
the initial population. However, even with this addition, the exploration times
were still very high in our initial experiments. We improved upon this by inserting
more known-to-work architectures into the initial population. These architectures
were obtained from a quick heuristic exploration of the VLIW issue-width using
the first-match search strategy presented in the next section. This allowed us to
get a much better initial population and greatly reduced the exploration time. It
also allowed us to reduce the required population size to be equal to the number
of bits in our genome (one third of the size originally used), without significantly
impacting the result quality. This led to a substantial further reduction of the
exploration time.

We also applied a second, more aggressive, optimization. It is possible to
obtain a list of the resources that were actually used after the evaluation of a
candidate solution. In order to aggressively reduce the available resources, we
rewrite the genome of the candidate to reflect which resources were actually used.
This way, the genetic algorithm is forced to quickly learn which resources can be
removed, but this also increases the risk of running into a locally optimal solution.

7.4. EXPERIMENTS 113

7.4 Experiments

This section presents the experimental results that have been used to verify the
proposed instruction-set architecture exploration algorithms. First, we investigate
the effectiveness of the architecture exploration separation into a passive and
active component. We use our modified area and energy models to implement
both our passive shrinking approach which ‘removes’ all unused elements from
the proposed coarse processor architecture design, and our active exploration
using one our above discussed design space exploration algorithms. Secondly,
we compare the quality of the optimized processor architectures obtained from
our various design space exploration methods to investigate their effectiveness.
Finally, we conclude this section with a comparison of the required exploration
time.

Five test cases were used for this evaluation. These test-cases are two heart-
rate detection (ECG) applications (ecg-1 [20] and ecg-2 [35, 36,63]), one AES
encryption/decription application (aes [36]), and two image processing kernels
from the Polybench? benchmark suite (down performing 2D down-sampling, and
Ipsf performing spatial filtering). Both the ECG applications, ecg-1 and ecg-
2, implement a combination of a filtering and decision process, and are mainly
constrained by the decision process. This causes that loop optimizations have less
effect, which results in a relatively straight-forward exploration. The aes bench-
mark has a much more computationally complex kernel, making this benchmark
a difficult problem for the compiler. However, the aes benchmark also doesn’t
provide much opportunities for loop optimizations. The image processing kernels
down and Ipsf do provide substantial opportunities for loop transformations, vec-
torization, and software-pipelining. This makes the exploration space much more
irregular which results in a much more difficult exploration problem. However,
the Ipsf benchmark requires the complete image data for processing which makes
it difficult to tile, as such it has a much larger local data memory than the down
application which can easily be tiled (as was demonstrated in Chapter 3). This all
can be observed from the experimental results. A hand-crafted initial prototype
was constructed for each of these test cases to accurately represent the input of
the final micro-architecture exploration. These initial prototypes include both the
(overdimensioned) processor architecture, as well as, a hand optimized version of
the C code that reflects the selected loop transformations for vectorization and
which allows for an effective software-pipelining (if applicable).

7.4.1 Separation into passive and active exploration

A set of initial processor architectures was constructed using the issue-width esti-
mations presented earlier. These initial processor architectures were constructed
from a library of issue-slots based on the result of the application restructuring and

20nline: http://www.cse.ohio-state.edu/~pouchet/software/polybench/

http://www.cse.ohio-state.edu/~pouchet/software/polybench/

114 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

ecg-1 ecg-2 aes down 1psf
1.0 7 1.0 = 1.0 = 1.0 1.0 =
0.8 — 0.8 — 0.8 — 08 = [}
0.6 0.6 0.6 - || 0.6 O fifo
— O dmem
O pmem
O register.files
0.4 — 0.4 0.4 —— 0.4 — B issueslots
0.2 0.2 0.2
o o s
ER-a- ER-a- ER-a- ER-a- ER-a-
2 % % =z B 8 = % 8 = B 8 = B 8
B=} g & = g & = g & = g < =4 g <
(a) area
ecg-1 ecg-2 aes down 1psf
1.0 1.0 1.0
0.8 0.8
O dmem
0.6 0.6 0 fifo
O instruction.decoder
O interconnect
O ck
0.4 0.4 B pmem
B registerfiles
B issueslots
0.2 0.2
0.0 0.0
s 2 2 s 2 2 s 2 2 s 2 2 s 2 2
£ 7 3 £ 7 £ £ 7 5 £ 7 8 =
g 8 g 8 g 8 g 8 g 8
£ g E] | g E] | g E] E| g & g g &

(b) active energy

Figure 7.1: Area and energy distribution and improvements after passive and
active exploration stages

7.4. EXPERIMENTS 115

coarse ASIP synthesis phase of the micro-level architecture exploration. In this
first set of experiments we compare the area and energy estimates for each exper-
iment during different stages of the architecture refinement. Figure 7.1 shows the
distribution of both the area and active energy consumption as distributed over
the proposed processor architecture of each experiment. Each plot shows three
bars and both the area and energy scales have been normalized to the estimates
of the initial prototype for each experiment (the first bar). The second and third
bar of each plot show the estimates after using passive shrinking exploiting the
power model and after the complete processor architecture exploration using the
first-match exploration strategy, respectively.

Figure 7.1 shows the large architecture variation that results from our method
of constructing the initial processor architectures. Each application has been
optimized for data locality and comes with a processor architecture that pro-
vides a set of local memories, register files, and issue-slots that matches the
throughput requirements of the application. Streaming interfaces are used for
the communication of handshake signals during streaming operation of the appli-
cation and control the management of the local input and output buffers mapped
onto the data memories. The global memory hierarchy has not been taken into
account in these processor designs, and is decided in the ASAM project by the
macro-level exploration in cooperation with a separate global memory system
and communication exploration. In general, this has resulted in relatively small
local memories for the explored architectures, with the low-pass spatial filter Ipsf
application being a notable exception, as it requires a relatively large segment of
the data while processing. The aes application also requires a significant memory
area as it uses several lookup tables for its computations, which are stored in
their own local memories to allow parallel access. One other notable variation
in the initial processor architectures that have been considered is the 2D down
sampling application (down) which was already partially discussed in Chapter 3.
Vectorization was found to be very effective for this application. As a result, the
processor area is dominated by its datapath with very large register files and large
issue-slots containing the function-units implementing the vector operations.

It can be concluded that both the passive and active exploration strategies
can have a significant impact on the area and energy cost of the final processor
architecture design. The initial processor architecture uses a set of standardized
issue-slots taken from the processor architecture template library. These issue-
slots provide a quite rich set of operations, which results in a very rich instruction-
set for the initial processor. Combining this rich instruction-set with relatively
large register files and a fully connected interconnect results in an architecture
that is guaranteed to meet the required temporal performance of the target
application. However, it usually also guarantees a significantly oversized processor
architecture which needs a very wide program memory to be able to store the
encoded instructions. The passive architecture shrinking step can already take
care of reducing the number of supported operations and the register file sizes
which results in a significant reduction of the processor area and energy cost

116 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

— O initial

— § —| O passive
ij/ B active
5 o
T 87
5 _
E g |
g =
a8,

o

ecg-1 ecg-2 aes down Ipsf

Figure 7.2: Program memory width after passive and active exploration stages

without any impact on its temporal performance.

Significant further improvements can be achieved when allowing for slight
variations in the temporal performance of the target application. This allows
the active exploration to explore the trade-off between the area, energy, and
execution time. By recombining the execution of costly operations onto fewer
execution resources it becomes possible to further optimize the instruction-set
architecture. Among others, the active exploration allows us to significantly
decrease the instruction-word length, which often results in a significant decrease
of both area and energy cost of the resulting processor architecture as can be
seen in Figure 7.2. From this figure, which shows the program memory width
reduction achieved using the first-match heuristic, we can see that the wider
architectures (down and Ipsf) already benefit significantly from passive reduction.
This is caused by the high degree in resource duplication across the standardized
issue-slots of the initial architecture. The smaller architectures (ecg-1 and ecg-
2) provide less obvious redundancy and do not reduce much when only using
passive reduction. Also applying the active exploration results in significant
further improvements, reducing the required program memory width by up to
47% with respect to the passively reduced case (geomean 36%).

7.4.2 Quality of the active exploration results

In our active instruction-set architecture exploration experiments we have used
the energy-delay product as the cost metric. Similar results and observations
are expected when using a different cost metric. Final scores are presented as
the improvement factor in comparison to the initial architecture after passive
shrinking. Higher final scores therefore represent better results achieved by using
the active exploration stage.

Figure 7.3 shows the final scores obtained using the two heuristic approaches

7.4. EXPERIMENTS 117

O] first-match

| @ best-match o

o . ——
o < B genetic
3
2 —
=
= o
=] =

S

S

ecg-1 ecg-2 aes down Ipsf

Figure 7.3: Final optimization score for each benchmark (higher is better)

(first-match and best-match), and compares them against the results obtained
with the genetic algorithm. The heuristic exploration algorithm is a deterministic
process which will produce exactly the same configuration given the same inputs.
However, the genetic algorithm is non-deterministic through its probabilistic na-
ture and may not always stabilize on the best solution. Figure 7.3 therefore
presents the average final score (higher is better) through height of the bar itself,
while the error-bars illustrate the minimum and maximum scores observed over
6 runs of the algorithm.

As can be seen from Figure 7.3, the final exploration scores are quite stable
across the different methods for all our experiments except for the Ipsf kernel.
The design-space for the Ipsf application is very irregular and presents many
opportunities to the design-space exploration tools to get stuck at a locally optimal
solution. Both heuristic approaches easily end up in such a locally optimal
solution, while the genetic algorithm has a chance of finding a better solution.
However, the genetic algorithm also does get stuck at less efficient solutions and
results in only slightly better solutions than the first-match heuristic on average.

7.4.3 Exploration time

Figure 7.4 compares the time required for exploring the processor instruction-set
architecture using each method. Again, the height of the bars shows the average
time spent over 6 executions of an exploration while the error bars show the
minimal and maximal execution times encountered during the experiments.
From Figure 7.4, one can clearly see that the heuristic exploration takes
much less time (at most 37 minutes for Ilpsf) than the genetic algorithm does
(over 4 hours on average for Ipsf) and that this difference is consistent over the
experiments. The experiments also show the effect of the variable number of
generations used in the genetic algorithm due to the early termination. This

118 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

| O first-match
§ _| O Dbest-match
o B genetic
= i
o o
£ B 7
+ —
o
o —
A
o _
[a\]
ecg-1 ecg-2 aes down Ipsf

Figure 7.4: FExploration times using different strategies (on logarithmic time
scale)

optimization allowed us to significantly shorten the exploration time, in several
cases by reducing the required number of generations by half, without an impact
on the final design score.

Key to making the genetic exploration practically feasible was our usage of
caching (presented in the next chapter) of both compilation and simulation results.
Especially the simulation cache proved effective, consistently scoring over 90% hit-
rates (95% geomean). The compilation cache proved less effective with a geomean
hit-rate of 15%. However, the compilation cache hit-rate statistics were heavily
influenced by the genetic algorithm for which it has a significantly lower hit-rate
(geomean 6%) due to the unstructured behaviour of the genetic algorithm. The
lack of ordering in the consideration of candidate architectures by the genetic
algorithm strongly reduces the probability of compiler cache hits. The heuristic
exploration strategies have a much better hit-rate (geomean 25%) and especially
the more difficult explorations (down and Ipsf) benefit greatly from the compiler
cache with hit-rates up to 70%.

From the experiments it follows that using both the compilation and sim-
ulation caching we could efficiently explore up to 1500 architecture candidates
within 6 hours for the Ipsf benchmark (the most difficult benchmark) which
translates to an average of 4 considered candidate architectures per minute.
Without caching the average time required per considered architecture is several
times higher. A single simulation of the Ipsf benchmark alone takes up to 1
minute and compilation of the Ipsf benchmark can take close to 1 minute as
well. Considering these numbers, we estimate that exploring the Ipsf benchmark
without the use of caching would take approximately 50 hours.

7.5. CONCLUSION 119

7.5 Conclusion

In this chapter we have proposed and discussed a practically feasible instruction-
set architecture exploration method for application-specific VLIW instruction-set
processors using a genetic algorithm, and compared its result quality and explo-
ration time to two heuristic exploration approaches developed by us. Moreover, we
investigated the effect of caching of the intermediate compilation and simulation
results on the exploration time. Our experiments show that both the genetic
algorithm and the heuristic algorithms produce similar final solutions, but the
genetic algorithm is more tolerant to highly irregular design spaces such as for
the Ipsf benchmark which includes several software-pipelined kernels. We also find
that usage of our automated intermediate result caching methodology significantly
reduced the exploration time of the genetic algorithm.

120 CHAPTER 7. AUTOMATED DESIGN SPACE EXPLORATION

If one could always choose the right question, then every
answer should be as obvious

Steven Erikson, “Malazan Book of the Fallen; Midnight
Tides”, 2004

Conclusions and future work

This chapter concludes the dissertation. It is subdivided in two main sections. The
first section revisits the issues identified in the problem statement of Chapter 1
and argue how they have been addressed in this dissertation. The second section
of this chapter presents some of the problems that still remain open, as well as,
some ideas that remain untested as suggestions for future work.

8.1 Conclusions

In Chapter 1 we presented our problem statement and identified five major prob-
lems which needed to be addressed for an effective and efficient automatic proces-
sor architecture exploration. The research reported in this dissertation proposed
a solution to each of these problems and resulted in a new effective and efficient
method and prototype tool for the automatic instruction-set architecture synthesis
of VLIW ASIP based hardware/software systems. Specifically, the presented
research contributes the following improvements to the ASIP architecture design
process:

1. Both the distribution of tasks on a, yet to be constructed, MPSoC platform,
as well as, the application restructuring step, require early estimates on
the kinds of parallelism available in a particular application part and the
expected performance of the application part on the (yet to be constructed)
parallel VLIW ASIP. High quality parallelism and execution time estimates
help by both improving the selection of the proper task distribution among
the processors in a MPSoC, but also aid the construction of initial ASIP

121

122

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

and MPSoC architecture proposals that have a high chance to be closer to
the final design.

This dissertation proposed a new parallelism estimation method for
estimating the application instruction-level parallelism. This method pro-
vides information needed for the exploration of the application restructuring,
but is also used for determining the appropriate number of issue-slots in
the initial architecture. As a result, we are able to construct an initial
processor architecture that both meets the performance requirements for
the target application, and at the same time, is reasonably close to the
final optimized processor design. In Chapter 4 we have shown that our
parallelism estimation techniques offer high quality estimations for both the
expected instruction-level parallelism and latency of particular application
parts. Especially our utilization based parallelism estimation comes on
average within 1% of predicting the actually required issue-width of the
initial processor. As such, it allows us to produce a high-quality initial
processor architecture design before even starting the instruction-set ar-
chitecture exploration algorithms. From this fact we can conclude that
the techniques presented in Chapter 4 efficiently solve the first problem by
providing parallelism and performance estimates of sufficient accuracy.

The automated design flow within the ASAM project [38,56] directly ben-
efits from these techniques, but the presented methods can easily be used
as part of other early design space exploration approaches [24] and can
support the traditional manual MPSoC system architecture exploration
process. As such, the presented early parallelism (issue-width) estimation
method provides a significant improvement to the existing (both manual and
automated) design flows, as well as, a required initial step for the remainder
of the work presented in this dissertation.

. The current state-of-the-art implementations for the evaluation of proposed

candidate architectures commonly depend on an activity trace of (part of)
the target application. Both obtaining and processing such a trace can
be very time consuming, which limits the effectiveness of the architecture
exploration by forcing the use of (less representative) shorter execution
traces.

Chapter 5 presents a rapid energy consumption estimation method-
ology which combines the block execution profile of the target application
simulation with the application’s scheduled assembly listing. This makes
our energy estimation method independent of the number of simulated
processor clock cycles and enables the use of larger, more representative,
input data sets, allowing for both faster and more realistic evaluation of the
candidate designs. Thus, the techniques presented in Chapter 5 effectively
address the second problem by drastically changing the evaluation time
of candidate architectures from minutes (or even hours) into milliseconds.

8.1. CONCLUSIONS 123

Furthermore, this profile-based energy estimation technique also represents
an important step towards the further high gains in architecture analysis and
evaluation delivered by our intermediate result caching techniques presented
in Chapter 6.

The presented energy consumption estimation technique can, in most cases,
replace the existing trace-based estimation methods as used by most of the
design flows presented in the related work section. Doing so will significantly
reduce the evaluation time of candidate designs, but also makes the evalua-
tion time less dependant on the size of the test data used for the evaluation.
This allows a designer to use much larger, often more representative, sets
of input data which will better demonstrate the actual trade-offs decided
during the design process.

3. Efficient implementation of different exploration strategies requires tracking
of previously explored design points. When getting closer to the final
architecture, many design points will differ only slightly. Recognizing when
previously obtained results will be so similar to the current results that they
are available for re-use offers an opportunity for a substantial exploration
efficiency improvement. This intermediate result tracking is, to a large
degree, independent of the exploration strategy.

Chapter 6 presents our extensible architecture exploration frame-
work called BuildMaster, which simplifies the implementation of our ar-
chitecture refinement exploration strategies. This framework automatically
detects when compilation and simulation results obtained for previously
considered candidate architectures can be re-used for the evaluation of newly
proposed candidate architectures. This intermediate result caching system
allows us to avoid on average over 90% of the originally required simulation
time by re-using the previously obtained profile information for the energy
estimation.

The BuildMaster framework addresses this third problem by implementing
this functionality as part of an exploration framework which greatly simpli-
fies the creation of new processor architecture exploration methods, as many
of the bookkeeping tasks are automatically managed by the framework.
Similar automated caching approaches may be used as part of automated
design space exploration tools targeting different architectures or that are
built upon related design flows.

4. Current state-of-the-art methods need to construct, analyze, and evaluate
each proposed candidate processor architecture. This is a very time con-
suming process which significantly impacts the exploration efficiency.

Chapter 7 introduces a processor architecture refinement method
which allows us to avoid the (time consuming) construction and simulation
of numerous intermediate candidate processor architectures. Through con-
figuring the compiler to disable some selected processor resources during

124 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

scheduling, combined with our static shrinking technique, we are able to
estimate the execution time, as well as, the energy and area costs for the
reduced candidate architectures without actually constructing the candidate
architectures. In consequence, our approach only needs to construct the
initial and final designs, while all intermediate candidate architectures need
not be constructed. This approach addresses the fourth problem in an
effective way and saves a large amount of the exploration time (often several
minutes for each considered architecture).

This style of exploration can also be applied to other processor architecture
templates as long as a) the compiler provides the opportunity to disable a
user defined set of resources during the compilation process, and b) the area
and energy models for the target architecture are adapted to enable cost
estimation for the thus reduced architecture candidate.

5. Refining the instruction-set architecture of an initially proposed prototype
ASIP architecture is a process that involves proposing and comparing many
different candidate architectures. A smart candidate construction and se-
lection strategy is key to an efficient exploration.

Chapter 7 also presents a set of exploration strategies which effectively
refine the processor architecture and a comparison between these strate-
gies with respect to both the quality of the obtained result, as well as,
the required exploration time. We show that the proposed exploration
heuristics find results of quality comparable to the results found using a
genetic algorithm, while requiring an order of magnitude shorter exploration
time. These heuristics present a fast method of performing the architecture
refinement process and, as such, efficiently address the last problem.

The instruction-set exploration techniques presented in this final chapter
are highly specific for the VLIW architecture template and mainly serve
to demonstrate the power of the previously presented estimation/construc-
tion/exploration methods. However, similar exploration strategies may be
implemented for an alternate processor architecture template when the
prerequisite exploration framework, intermediate result caching, rapid area
and energy estimation models, and initial architecture construction are
provided.

Chapters 3 and 7 demonstrate that combining the presented techniques results
in a highly efficient and easily extensible instruction-set architecture exploration
methodology. Our experiments showed that our framework is able to explore
hundreds of processor architecture variations per hour, while consistently produc-
ing compact results that meet the expected performance. As such, the methods
presented in this dissertation provide a definite advantage over those used in the
current state-of-the-art.

8.2. FUTURE WORK 125

8.2 Future work

More opportunities for improvement of the various ASIP design process steps
have been identified during the progress of both the research for, and writing of,
this dissertation. Some of these opportunities deserve to be mentioned as possible
extensions of the presented work.

¢ Automatic detection and insertion of custom operation patterns:
The presented instruction-set architecture exploration is capable of explor-
ing architectures supporting custom operation patterns that have been man-
ually inserted as custom function units. In the ASAM project candidate
operation patterns are already automatically detected using [60,61]. How-
ever, the creation of a proper hardware description of the corresponding
function unit, and the insertion of this custom function unit into the initial
architecture are left to the designer. Furthermore, the HiveCC compiler only
has a limited capability for recognizing operation patterns in the C code of
the application. Manual insertion of intrinsics into the C code is currently
required for complex operation patterns to make sure that they are properly
detected during compilation. Using intrinsics forces the compiler to use the
selected custom operations which prevents the exploration framework from
removing the thus selected operation patterns from the final instruction-set.

¢ Compile time data locality optimizations: In the ASAM project data
locality is optimized during the early stages of the micro-level architecture
exploration by exploring loop fusion, loop tiling, and loop vectorization.
These transformations are then applied as source-to-source transformations
of the input C code. Properly predicting the effect of such transformations
on the final compiled application requires a strong relation between the
application of transformations at the code level and the effects of later
transformations by the compiler. Such a relation is difficult to guarantee
and often results in either miss-predictions or in a low level of optimization
by the compiler (caused by skipping potentially disrupting optimizations).
A better approach would be to extend the compiler with the capability of
performing such transformations automatically. Adding this capability to
the compiler will also aid the manual application development process as it
should significantly improve the optimization capabilities of the compiler.

e Improved energy model accuracy: Although the energy models used
in this dissertation are exploiting the same activity counting based methods
as are used by the related work, their actually obtained accuracy still needs
to be further analyzed and can possibly be further improved. Currently
we rely less on the absolute accuracy of the area and energy models but
mostly on their direction (i.e. removing a resource results in a reduction
of the predicted values). This is sufficient for basic exploration but more
detailed trade-off decisions and hard exploration constraints are difficult

126

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

to properly implement using such a less accurate model. However, the
presented methods for profile based energy estimation apply to any energy
estimation method based on component activities. Therefore, similar gains
in exploration efficiency can be expected from improved, more accurate,
versions of these energy models. Furthermore, depending on the accuracy
of a generic model a calibration phase may be added at the begin of the
architecture refinement phase which allows for an improved accuracy with
regard to the explored architectures. More intermediate calibration steps
may be required if the reduced architectures are found to be difficult to
model. However, the architecture template for the SiliconHive processors
provides a quite well structured view on the final implementation and the
expectation is that it can be modeled without requiring any intermediate
calibration.

Avoid the simulation cache altogether: Chapter 5 introduced our pro-
file based energy estimation. After recognizing that the application profile
is relatively constant across different architecture variations, we presented
a framework which automatically recognizes when a previously obtained
version of the application profile can be re-used (the simulation cache from
Chapter 6). However, as mentioned in Chapter 5, this caching may com-
pletely be avoided if we can alter the compiler to output an updated profile
of the application. Profile guided optimizations are frequently used when
attempting to get optimal performance from an application. Since the
compiler is aware of the code transformations it performs, it should also be
able to track their impact on the application profile. Enabling the compiler
to output an updated application profile completely removes the need for
a re-simulation of the application and opens up opportunities for a tighter
coupling between the energy model and compilation process which may aid
in the development of related energy-aware compilation techniques.

Extending the active exploration: The current architecture exploration
tools focus on finding the right combination of function-units and their
distribution over issue-slots, and shrink the register file sizes and inter-
connect through for passive reduction. However, the register file size can
also be explored actively using existing compiler flags in the SiliconHive
compiler. In some cases, it may be beneficial to allow for small amounts
of register file spilling in some non-critical application parts to allow for
an even more compact solution through actively exploring the register file
sizes. Moreover, adding the interconnect to the active exploration can also
be considered although this will currently require added controls in the
SiliconHive compiler. Without these added controls the exploration will
need to fall-back to the complete construction of candidate architectures
which will significantly impact the exploration time.

o Exploring hardware support for multiple vector lengths: This work

8.2. FUTURE WORK 127

currently only explores architectures providing SIMD operations support for
vector operations of a single total bitwidth, but different application parts
may require different vectorization levels. This is solved by selecting a com-
mon vector length for the hardware implementation. However, extending
the processor architecture exploration to enable heterogeneous vectorization
can also provide benefits [21-23] when this better matches the parallelism
available in the application.

¢ Reducing the instruction word length by generating compact ISA:
Although the architecture refinement techniques presented in this disserta-
tion are currently aimed at physically removing functionality from a proces-
sor architecture design, they may also be used to create limited processor
‘views’ for the purpose of code compaction. By only exposing a sub-set of
the full instruction-set in a reduced processor mode, the instruction length
may be significantly reduced for large parts of the program. Automatically
finding good instruction-set sub-sets for parts of the application could aid
a processor designer when deciding the available processor views.

¢ Energy aware scheduling: Similarly to the generation of processor views
for code compaction, the presented architecture reduction techniques may
also aid a related energy aware compilation through fine grain clock-gating
of processor resources. By scheduling the code such that some parts of the
processor are idle for longer, more consecutive, periods of time may en-
able more aggressive clock-gating of these idle processor resources, enabling
further energy saving opportunities.

128 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

1]

Bibliography

S. Aditya and V. Kathail. High-Level Synthesis: From Algorithm to Digital
Clircuit, chapter Algorithmic Synthesis using PICO, pages 53-74. Springer
Science, 2008.

G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS 67 (Spring), pages 483-485, New York,
NY, USA, 1967. ACM.

T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary
programs. In ISCA 1992 — Proceedings of the 19th Annual International
Symposium on Computer architecture, pages 342-351, 1992.

R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros.
The archc architecture description language and tools. International Journal
of Parallel Programming, 33(5):453-484, 2005.

M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA
code generation for affine programs. In Compiler Construction, pages 244—
263. Springer, 2010.

C. Bastoul. Code generation in the polyhedral model is easier than you think.
In Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, pages 7-16. IEEE Computer Society, 2004.

M. Bekooij. Constraint Driven Operation Assignemnt for Retargetable VLIW
Compilers. PhD thesis, Eindhoven University of Technology, 2004.

L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, and R. Zafalon.
A power modeling and estimation framework for VLIW-based embedded
systems. In Proceedings of the International Workshop on Power And Timing
Modeling, Optimization and Stmulation PATMOS, volume 1, pages 2—-3, 2001.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. ACM SIGPLAN
Notices, 43(6):101-113, 2008.

129

130

[10]

[11]

BIBLIOGRAPHY

P. Boulet. Array-ol revisited, multidimensional intensive signal processing
specification. Rapport de Recherche Institut National de Recherche en
Informatique et en Automatique, 6113:1-27, Februari 2007.

V. C. Cabezas and P. Stanley-Marbell. Parallelism and data movement
characterization of contemporary application classes. In SPAA 2011 -
Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and
Architectures, pages 95104, New York, NY, USA, 2011. ACM.

S. Carr, C. Ding, and P. Sweany. Improving software pipelining with unroll-
and-jam. In System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii
International Conference on,, volume 1, pages 183-192. IEEE, 1996.

L. Charvat, A. Smrcka, and T. Vojnar. Automatic formal correspondence
checking of ISA and RTL microprocessor description. In Microprocessor Test
and Verification (MTV), 2012 13th International Workshop on, pages 6-12.
IEEE, 2012.

A. Chattopadhyay, I. G. Ascheid, and P. Ienne. Language-driven Ezploration
and Implementation of Partially Re-configurable ASIPs (rASIPs). PhD
thesis, Lehrstuhl fiir Integrierte Systeme der Signalverarbeitung, 2008.

H. Corporaal. Transport Triggered Architectures; Design and FEvaluation.
PhD thesis, Technische Universiteit Delft, 1995.

H. Corporaal and J. Hoogerbrugge. Cosynthesis with the MOVE framework.
In Symposium on Modelling, Analysis, and Simulation, pages 184—189, 1996.

R. Corvino, E. Diken, A. Gamatie, and L. Jézwiak. Transformation based
exploration of data parallel architecture for customizable hardware: A JPEG
encoder case study. In DSD 2012 - 15th Euromicro Conference on Digital
System Design, Cesme, Izmir, Turkey, September 2012.

R. Corvino, A. Gamatie, M. Geilen, and L. Jozwiak. Design space exploration
in application-specific hardware synthesis for multiple communicating nested
loops. In SAMOS XII - 12th International Conference on Embedded
Computer Systems, Samos, Greece, July 2012.

G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1st edition, 1994.

E. Diken, R. Jordans, R. Corvino, and L. Jozwiak. Application analysis
driven ASIP-based system synthesis for ECG. In Embedded World Confer-
ence, Germany, February 2012.

E. Diken, R. Jordans, R. Corvino, L. J6zwiak, H. Corporaal, and F. A.
Chies. Construction and exploitation of VLIW ASIPs with heterogeneous
vector-widths. Microprocessors and Microsystems, 38(8-B):947-959, 2014.

BIBLIOGRAPHY 131

22]

[24]

E. Diken, R. Jordans, L. Jé6zwiak, and H. Corporaal. Construction and
exploitation of VLIW ASIPs with multiple vector-widths. In MECO 2014
- 3rd Mediterranean Conference on Embedded Computing, pages 244-247,
Budva, Montenegro, June 2014.

E. Diken, M. O’Riordan, R. Jordans, L. Jézwiak, H. Corporaal, and
D. Moloney. Mixed-length SIMD code generation for VLIW architectures
with multiple native vector-widths. In ASAP 2015 - 26th IEEE International
Conference on Application-specific Systems, Architectures and Processors,
Totonto, Canada, July 2015.

J. F. Eusse, L. G. Murillo, C. McGirr, R. Leupers, and G. Ascheid.
Application-specific architecture exploration based on processor-agnostic
performance estimation. In Proceedings of the 18th International Workshop
on Software and Compilers for Embedded Systems, pages 84-87. ACM, 2015.

A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set
processors using nML. In FEuropean Design and Test Conference, 1995.
EDETC 1995, Proceedings., pages 503-507. IEEE, 1995.

FlexASP project. TTA-based co-design environment. Online: http://tce.
cs.tut.fi.

M. Gillespie. Amdahl’s law, Gustafson’s trend, and the performance limits
of parallel applications. Online: http://software. intel. com/sites/
default/ files/m/d/4/1/d/8/Gillespie-0053-AAD_Gustafson-
Amdahl_w1__2 .rh. final. pdf, 2008.

G. Goossens, D. Lanneer, W. Geurts, and J. Van Praet. Design of ASIPs
in multi-processor socs using the chess/checkers retargetable tool suite. In
System-on-Chip, 2006. International Symposium on, pages 1-4. IEEE, 2006.

T. Grosser, A. Groesslinger, and C. Lengauer. Polly: Performing polyhedral
optimizations on a low-level intermediate representation. Parallel Processing
Letters, 22(04), 2012.

J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532-533, 1988.

J. Hoogerbrugge. Code Generation for Transport Triggered Architectures.
PhD thesis, Technische Universiteit Delft, 1996.

J. Hoogerbrugge and H. Corporaal. Automatic synthesis of transport
triggered processors. In Proceedings of ASCI, pages 1-10, 1995.

R. Jordans, R. Corvino, and L. J6zwiak. Algorithm parallelism estimation
for constraining instruction-set synthesis for VLIW processors. In DSD 2012
- 15th Euromicro Conference on Digital System Design, pages 1-4, Cesme,
Izmir, Turkey, September 2012.

http://tce.cs.tut.fi
http://tce.cs.tut.fi
http://software.intel.com/sites/default/files/m/d/4/1/d/8/Gillespie-0053-AAD_Gustafson-Amdahl_v1__2_.rh.final.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/Gillespie-0053-AAD_Gustafson-Amdahl_v1__2_.rh.final.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/Gillespie-0053-AAD_Gustafson-Amdahl_v1__2_.rh.final.pdf

132

[34]

[37]

[38]

BIBLIOGRAPHY

R. Jordans, R. Corvino, L. J6zwiak, and H. Corporaal. Exploring processor
parallelism: Estimation methods and optimization strategies. In DDECS
2018 - 16th IEEE Symposium on Design and Diagnostics of FElectronic
Circuits and Systems, pages 18-23, Karlovy Vary, Czech Republic, April
2013.

R. Jordans, R. Corvino, L. Jézwiak, and H. Corporaal. Instruction-set
architecture exploration strategies for deeply clustered VLIW ASIPs. In
ECyPS 2013 - EUROMICRO/IEEE Workshop on Embedded and Cyber-
Physical Systems, pages 38—41, Budva, Montenegro, June 2013.

R. Jordans, L. Jézwiak, and H. Corporaal. Instruction-set architecture
exploration of VLIW ASIPs using a genetic algorithm. In MECO 201 -
3rd Mediterranean Conference on Embedded Computing, pages 32—-35, June
2014.

L. J6zwiak. Advanced ai search techniques in modern digital circuit synthesis.
Artificial Intelligence Review, 20(3-4):269-318, 2003.

L. Jézwiak, M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J. Madsen,
E. Diken, D. Gangadharan, R. Jordans, S. Pomata, P. Pop, G. Tuveri,
L. Raffo, and G. Notarangelo. Asam: Automatic architecture synthesis and
application mapping. Microprocessors and Microsystems, 37(8):1002-1019,
October 2013.

L. J6Zzwiak and N. Nedjah. Modern architectures for embedded reconfigurable
systems - a survey. Journal of Circuits, Systems, and Computers, 18(2):209—
254, 2009.

L. J6zwiak, N. Nedjah, and M. Figueroa. Modern development methods
and tools for embedded reconfigurable systems: A survey. Integrated VLSI
Journal, 43:1-33, January 2010.

K. Karuri, A. Chattopadhyay, X. Chen, D. Kammler, L. Hao, R. Leupers,
H. Meyr, and G. Ascheid. A design flow for architecture exploration and
implementation of partially reconfigurable processors. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 16(10):1281-1294, 2008.

V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D. Cronquist, and
M. Sivaraman. PICO: automatically designing custom computers. Computer,
35(9):39-47, 2002.

B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: Deriving process
networks from Matlab for embedded signal processing architectures. In Pro-
ceedings of the 8th International Workshop on Hardware/Software Codesign,
pages 13-17. ACM, 2000.

BIBLIOGRAPHY 133

[44]

[52]

[53]

F. Klein, G. Araujo, R. Azevedo, R. Leao, and L. C. dos Santos. A multi-
model power estimation engine for accuracy optimization. In Proceedings of
the 2007 International Symposium on Low Power Electronics and Design,
pages 280-285. ACM, 2007.

F. Klein, G. Araujo, R. Azevedo, R. Leao, and L. C. Dos Santos. On the
limitations of power macromodeling techniques. In IEEE Computer Society
Annual Symposium on VLSI, pages 395-400, 2007.

M. Lam. Software pipelining: An effective scheduling technique for VLIW
machines. ACM SIGPLAN Notices, 23(7):318-328, 1988.

J. R. Larus. Loop-level parallelism in numeric and symbolic programs.
Parallel and Distributed Systems, IEEE Transactions on, 4(7):812-826, 1993.

J. Leijten, G. Burns, J. Huisken, E. Waterlander, and A. van Wel. Avispa:
A massively parallel reconfigurable accelerator. In System-on-Chip, 2003.
Proceedings. International Symposium on, pages 165-168. IEEE, 2003.

LLVM. Project website. Online: http://www.1llvm.org/.

S. Lukasz. Al:Genetic::Pro - Efficient genetic algorithms for professional
purpose. Online: http://search.cpan.org/~strzelec/AI-Genetic-Pro/
1lib/AI/Genetic/Pro.pm.

A. M. Malik, J. Mclnnes, and P. van Beek. Optimal basic block instruc-
tion scheduling for multiple-issue processors using constraint programming.
International Journal on Artificial Inteligence Tools, 17(1):37-54, February
2008.

J. Méntyneva. Automated design space exploration of transport-triggered
architectures. Master’s thesis, Tampere University of Technology, Tampere,
Finland, July 2009.

P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D. Owens. Commu-
nication scheduling. In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS IX, pages 82-92, New York, NY, USA, 2000. ACM.

L. Micconi. A Probabilistic Approach for the System-Level Design of Multi-
ASIP Platforms. PhD thesis, Technical University of Denmark, 2014.

L. Micconi, D. Gangadharan, P. Pop, and J. Madsen. Multi-ASIP platform
synthesis for real-time applications. In SIES 2013 - 8th IEEE International
Symposium on Industrial Embedded Systems, Porto, Portugal, June 2013.

L. Micconi, J. Madsen, and P. Pop. System-level synthesis of multi-ASIP
platforms using an uncertainty model. Integration, the VLSI Journal, 2015.

http://www.llvm.org/
http://search.cpan.org/~strzelec/AI-Genetic-Pro/lib/AI/Genetic/Pro.pm
http://search.cpan.org/~strzelec/AI-Genetic-Pro/lib/AI/Genetic/Pro.pm

134

[57]

[58]

[59]

[60]

[61]

BIBLIOGRAPHY

P. Mishra and N. Dutt. Processor Description Languages, volume 1. Morgan
Kaufmann, 2011.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A tool
to model large caches. HP Laboratories, 2009.

A. S. Nery, L. Jézwiak, M. Lindwer, M. Cocco, N. Nedjah, and F. M. Franca.
Hardware reuse in modern application-specific processors and accelerators.
Microprocessors and Microsystems, 37(6):684-692, 2013.

A. S. Nery, N. Nedjah, F. M. Franca, L. Jozwiak, and H. Corporaal. Au-
tomatic complex instruction identification for efficient application mapping
onto ASIPs. In Circuits and Systems (LASCAS), 2014 IEEE 5th Latin
American Symposium on, pages 1-4. IEEE, 2014.

A. S. Nery, N. Nedjah, F. M. G. Franca, L. J6zwiak, and H. Corporaal.
A framework for automatic custom instruction identification on multi-issue
ASIPs. In Proceedings of the 12th IEEE International Conference on
Industrial Informatics, pages 428-433. IEEE computer society, IEEE, 2014.

Y. Okmen. SIMD floating point processor and efficient implementation of
ray tracing algorithm. Master’s thesis, TU Delft, Delft, The Netherlands,
October 2011.

J. Pan and W. J. Tompkins. A real-time qrs detection algorithm. Biomedical
Engineering, IEEE Transactions on, BME-32(3):230-236, 1985.

S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek, and E. Earlie. Register
file power reduction using bypass sensitive compiler. IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, 27(6):1155, 2008.

P. Paulin and J. Knight. Force-directed scheduling for the behavioral
synthesis of asics. Computer-Aided Design of Integrated Circuits and Systems,
IEEFE Transactions on, 8(6):661-679, 1989.

S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA — machine
description language for cycle-accurate models of programmable DSP archi-
tectures. In Proceedings of the 36th Annual ACM/IEEE Design Automation
Conference, pages 933-938. ACM, 1999.

T. Pitkdnen, T. Rantanen, A. Cilio, and J. Takala. Hardware cost estimation
for application-specific processor design. FEmbedded Computer Systems:
Architectures, Modeling, and Simulation, pages 251-264, 2005.

L.-N. Pouchet. Polybench/C 3.2, 2013. Online: http://www.cse.ohio-
state.edu/~pouchet/software/polybench/.

http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

BIBLIOGRAPHY 135

[69)]

(73]

[74]

[77]

(78]

[79]

L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms for the
extension of embedded processor instruction sets. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 25(7):1209-1229,
2006.

B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proceedings of the 27th Annual International Symposium on
Microarchitecture, pages 63—-74. ACM, 1994.

E. M. Riseman and C. C. Foster. The inhibition of potential parallelism
by conditional jumps. IEEE Transactions on Computers, 21(12):1405-1411,
December 1972.

M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria. An instruction-level
energy model for embedded VLIW architectures. Computer-Aided Design
of Integrated Clircuits and Systems, IEEE Transactions on, 21(9):998-1010,
2002.

O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Architecture
implementation using the machine description language LISA. In Design
Automation Conference, 2002. Proceedings of ASP-DAC 2002. 7th Asia and
South Pacific and the 15th International Conference on VLSI Design, pages
239-244. TEEE, 2002.

R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau, D. Cronquist, and
M. Sivaraman. Pico-npa: High-level synthesis of nonprogrammable hardware
accelerators. Journal of VLSI Signal Processing Systems for Signal, Image
and Video Technology, 31(2):127-142, 2002.

D. She, Y. He, and H. Corporaal. Energy efficient special instruction
support in an embedded processor with compact ISA. In Proceedings of the
2012 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, pages 131-140. ACM, 2012.

M. Smotherman, S. Krishnamurthy, P. S. Aravind, and D. Hunnicutt.
Efficient dag construction and heuristic calculation for instruction scheduling.
In MICRO 1991 — Proceedings of the 24th Annual International Symposium
on Microarchitecture, pages 93-102, 1991.

J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in Science &
Engineering, 12(3):66, 2010.

Tampere University of Technology, Department of Computer Systems. T7TA-
based Co-design Environment v1.9 User Manual, Januari 2014.

A. Terechko. Clustered VLIW Architectures: a Quantative Approach. PhD
thesis, Eindhoven University of Technology, 2007.

136

[80]

[81]

[87]

[38]

BIBLIOGRAPHY

K. B. Theobald, G. R. Gao, and L. J. Hendren. On the limits of program
parallelism and its smoothability. In MICRO 1992 — Proceedings of the 25th
Annual Symposium on Microarchitecture, pages 10-19, 1992.

G. S. Tjaden and M. J. Flynn. Detection and parallel execution of
independent instructions. IEEE Transactions on Computers, 19(10):889—
895, October 1970.

A. Tridgell, J. Rosdahl, et al. ccache-a fast ¢/c++ compiler cache. Online:
http://ccache.samba.org.

E. van Dalen, S. G. Pestana, and A. van Wel. An integrated, low-power
processor for image signal processing. In Multimedia, 2006. ISM’06. Eighth
IEEFE International Symposium on, pages 501-508. IEEE, 2006.

S. Verdoolaege and T. Grosser. Polyhedral extraction tool. In Second In-
ternational Workshop on Polyhedral Compilation Techniques (IMPACT’12),
Paris, France, 2012.

D. W. Wall. Limits of instruction-level parallelism. In ASPLOS 1991 -
Proceedings of the 4th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 176-188, 1991.

C. Wolinski and K. Kuchcinski. Automatic selection of application-specific
reconfigurable processor extensions. In Design, Automation & Test in Furope
Conference & Ezhibition (DATE), 2008. IEEE, 2008.

H. Yang. Computer aided design of cluster-based ASIPs. Master’s thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, August
2013.

W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use
of simplepower: a cycle-accurate energy estimation tool. In Proceedings of
the 87th Annual Design Automation Conference, pages 340-345. ACM, 2000.

http://ccache.samba.org

A common mistake that people make when trying to
design something completely foolproof is to underestimate
the ingenuity of complete fools.

Douglas Adams, “Mostly Harmless”, 1992

ASIP construction and exploration tools

Several tools were created as part of the design-space exploration research pre-
sented within this dissertation. This appendix describes two important tool-sets
which can be used to both reproduce and extend the presented experimental
results.

The first part of this appendix presents the TimGen tool. This program is
used to translate a high-level XML description into its TIM equivalent. This tool
connects the high-level design obtained from the second micro-level architecture
exploration phase with the final architecture refinement phase.

The second part of this appendix presents the design-exploration tools built
upon our BuildMaster framework. It describes the currently available exploration
strategies and discusses the implementation of a new cost function. This second
part also demonstrates the instruction-set architecture exploration on one of the
applications from our benchmark set.

A.1 Processor architecture construction

The purpose of the TimGen tool is to simplify the construction of the initial
processor architecture for the ASIP architecture refinement phase. It transforms
a high-level XML description of a processor architecture into its TIM equivalent.
Version 3.0 (the current version) is based upon the original prototype XML-to-
TIM tool developed by Hubiao Yang [87]. Version 3.0 introduces a new XML
description format and is not backwards compatible with the earlier tool.

137

138 APPENDIX A. ASIP CONSTRUCTION AND EXPLORATION TOOLS

A.1.1 Features

e New XML format allows custom issue-slots

e Supports the addition of new issue-slots to the library without requiring any
changes to the tool

e Support for flexible connectivity

e Support for multiple register files per cluster

A.1.2 Installation and usage

The timgen3 tool is available on the server. Adding the following line to your
.bashrc will enable it on your account.

alias timgen3=’java -jar /home/tools/tue/TimGen3.0.jar’

Listing A.1: Installation of the TimGen tool

The tool is used from command-line and takes the input XML file as argument.

timgen3 sample.zxml

Listing A.2: Running TimGen

A.1.3 XML input specification

Basics

The input of the TimGen tool is a file in XML format, it starts with a file type
definition and XML comments are allowed.

<?xml version="1.0" encoding="UTF-8"7>
<!-- Optional comment -->

Listing A.3: XLM input snippet, document preamble

The entire architecture is wrapped in a <timplatform:ASIP> node. This
node has an argument which provides the name of the processor. This processor
name is also used when naming the output file, the generated output file will be
processorname.tim.

Constant values are defined next. The names of constants are used directly in
the generated TIM code and must be valid constant names for the TIM language.

A.2. DESIGN-SPACE EXPLORATION TOOLS 139

<timplatform:ASIP name="sample">

Listing A.4: XLM input snippet, declaring platform name

<constant name="value"/>

Listing A.5: XLM input snippet, declaring constants

Issue-slots are defined based on their name and their related register files and
memories. The sequencer is recognized by the presence of a program memory.
Each processor must have exactly one sequencer. The interface of an issue-slot is
described by the port list. Ports that are within a register file rf node are input
ports and ports outside the rf nodes are the output ports.

Issue-slots can be grouped into clusters. All elements within the same cluster
are fully connected and ports may be marked as global (by adding the attribute
global="true" to the port) to provide connectivity at higher cluster levels (see
also the example below).

Example

Listing A.6 shows an example XML description of a processor containing a single
scalar issue-slot and a second vector issue-slot.

A.1.4 Limitations

The TimGen tool assumes that the input files will be automatically generated
and provides only a very limited sanity check on the described architecture.
For example, it does not check if structure of the building blocks used in an
architecture description matches with the library

A.2 Design-space exploration tools

The final ASIP architecture exploration tool takes as its input an initial ASIP
prototype as generated by the second phase of the micro-architecture exploration.
Each initial ASIP prototype already represents a coarsely explored final ASIP
architecture. The initial ASIP prototype fixes the application mapping, the
number and sizes of local memories, and the vectorization of various application
parts. It also provides an upper bound to the number of issue-slots considered for
the final ASIP architecture.

The tasks of the final ASIP architecture exploration tool presented here are:

e Minimize the number of issue-slots in the final ASIP architecture.

140 APPENDIX A. ASIP CONSTRUCTION AND EXPLORATION TOOLS

<?xml version="1.0" encoding="UTF-8"7>
<timplatform:ASIP name="sample">

<constant intWidth="32" />
<constant vecWidth="256" />
<constant vecWays="8" />
<constant pmemWidth="210" />
<constant immBits="5" />
<constant immBits2="10" />

© 0 N e U A W N e

11 <cluster>

12 <is type="eva" width="vecWidth" ways="vecWays" imm="immBits">
13 <rf size="4">

14 <port name="ip0" width="intWidth" global="true"/>
15 <port name="ipl" width="intWidth"/>

16 </rf>

17 <rf size="8">

18 <port name="ip2" global="true"/>

19 <port name="ip3"/>

20 </rf>

21 <rf size="2">

22 <port name="ip4" width="vecWays" global="true"/>
23 </rf>

24 <port name="opO0" width="intWidth" global="true"/>
25 <port name="opl" width="vecWidth" global="true"/>
26 <port name="op2" width="vecWays" global="true"/>
27 <lm name="vmem" size="8192"/>

28 </is>

29 <is type="ana" imm="immBits2" width="intWidth">

30 <rf size="64">

31 <port name="ip0" global="true"/>

32 <port name="ip1l"/>

33 </rf>

34 <port name="op" global="true"/>

35 <lm name="dmem" size="8192"/>

36 <pmem size="4096" width="pmemWidth"/>

37 <fifo capacity="2" count="4"/>

38 </is>

39 </cluster>
40 </timplatform:ASIP>

Listing A.6: Example XML input with one scalar issue-slot (‘ana’) as sequencer
and one vector issue-slot (‘eva’)

A.2. DESIGN-SPACE EXPLORATION TOOLS 141

Explore the available operations in each issue-slot of the final ASIP archi-
tecture.

Explore the sizes of the register files available in the final ASIP architecture.
Minimize the local communication structures within the ASIP architecture.

Minimize the size of the program memory of the final ASIP architecture.

The aim of the exploration tool is to create a final, reduced, ASIP architec-
ture which efficiently implements the target application in terms of both area
and energy consumption while maximizing a given fitness model. Currently the
following fitness models are supported:

1/energy-delay product (ed)
1/energy-delay-squared (edd)
1/energy-squared-delay (eed)

1/energy-delay-area product (eda)

Defining new fitness models is very easy and is discussed below.

A.2.1 Interface

Input

« Initial ASIP prototype

Output

o Final optimized ASIP prototype

e Simulated performance characteristics

A.2.2 Initial prototype preparation

The ASIP architecture exploration tool requires a small addition to the SH project
of the initial prototype.

$ (EXTENDED_CFLAGS) needs to be added to the to the CFLAGS line for the hive
code in the Makefile as shown below.

Furthermore, the standard library and emulation libraries need to be disabled
using -nostdlib and -fno-emul-arith as functions from these libraries are
compiled for the complete processor and will disrupt the shrinking process.

© 0w N o U A W N e

e
= o

142 APPENDIX A.

ASIP CONSTRUCTION AND EXPLORATION TOOLS

SYSTEM = ecg_core_system
METHODS = sched
PROGRAMS = ecg

HOST_FILES = host.c
HOST_CFLAGS -W -Wall

ecg_CELL = ecg_core
ecg_FILES = ecg.hive.c
ecg_CFLAGS = -Werror -nostdlib -fno-emul-arith $(EXTENDED_CFLAGS)
ecg _LDFLAGS = -embed
Listing A.7: Makefile prepared for exploration

A.2.3 Usage

The ASIP architecture exploration tool is currently implemented as a command-
line tool to aid integration into the framework through scripting. Two versions
of the exploration tool are available, asam-asip-explorer which is based on a
heuristic exploration algorithm, and asam-asip-explorer-genetic which uses a

genetic search.

Common options

Both tools share a set of common options which control common search parame-

ters such as the following.

e The granularity of the exploration
(-style=issue-slot or -style=function-unit)

e Fitness model selection and parameters
(-fitness-model and -required-latency)

e Output detail
(-verbose)

o Compilation and simulation caching
(e.g. -no-compilation-cache and -no-simulation-cache)

The tools also provide a ~help option which prints the complete list of options

with their default values.

Heuristic search options

The heuristic version adds the following options.

e Heuristic search candidate selection strategy
(-strategy=first or -strategy=best)

A.2. DESIGN-SPACE EXPLORATION TOOLS 143

¢ One extra exploration style option
(-style=two-phase)

Genetic search options

The genetic version adds the following options.

e Controlling the minimum and maximum number of generations the explo-
ration will run
(-min-generations=10 and -max-generations=50)

¢ Controlling the mutation rate
(-mutation-rate=.15)

o Early exit when the genetic algorithm reaches a value which stays constant
for a given number of generations
(-plateau-length=10)

A.2.4 Examples

The ASIP exploration tool is demonstrated on the ECG use-case from ST, but
was also tested on several other applications. The ECG use-case consists of a
single kernel and its code can not be transformed by the second phase exploration
since the explorations performed in the second phase require a set of two or more
communicating loops. This results in a single considered application mapping
which makes the ECG explicitly suitable for demonstrating the effects of the
third phase of the micro-level architecture exploration.

During the first phase, the minimum and maximum execution time of the
application are estimated together with the parallelism requirement for achieving
the minimum execution time. The initial ASIP prototype is then constructed
according to this parallelism requirement. The parallelism requirement of the
ECG use-case is 3, as is shown in table A.1, resulting in a 3 issue-slot initial
ASIP prototype. Furthermore, software pipelining is not possible for the ECG
application, since the algorithm mainly involves decision processes and requires a
large amount of control-flow to which software pipelining does not apply [71].

Table A.1: Predicted cycle counts for the ECG use-case

issue-width ‘ cycle count

1 47648
2 31992
3 31977

N

© w N o u

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

144

$ asam-asip-explorer -style=issue-slot ecg
Exploring initial ASIP prototype ’ecg’
Found initial prototype mapped on: core_3b
Loading information from APEX file...

APPENDIX A. ASIP CONSTRUCTION AND EXPLORATION TOOLS

Initial prototype has 3 issue-slots

Searching for best ’ed’ fitness solution...

Using ’issue-slot--first’ strategy

P1: #IS: 3, Totals: 34336 cycles, 1.954E+03 nJ, 33680 um2 (logic),
195910 um2 (memory), improvement=1.000000

P3: #IS: 2, Totals: 34373 cycles, 1.460E+03 nJ, 25563 um2 (logic),

193597 um2 (memory),
Built 4 prototypes

Best solution FUs:
bp_core_3b_sl_aru
bp_core_3b_s1_bru
bp_core_3b_sl_1lgu
bp_core_3b_sl_1lsu
bp_core_3b_sl_psu
bp_core_3b_s1_shu
bp_core_3b_sl_suu
bp_core_3b_s2_aru
bp_core_3b_s2_1lgu
bp_core_3b_s2_psu
bp_core_3b_s2_shu

P3: #IS: 2, Totals:

193597 um2 (memory),

34373 cycles,

improvement=1.336916

1.460E+03 nJ,
improvement=1.336916

25563 um2 (logic),

Listing A.8: Example exploration output using issue-slot first-match strategy

A.2. DESIGN-SPACE EXPLORATION TOOLS 145

Using this information, we constructed the initial ASIP prototype being a
3 issue-slot processor with one internal memory large enough to store the test-
samples and internal variables. We then used our final ASIP exploration tool
to reduce the initial ASIP prototype architecture and find solution with the
maximum fitness. These results were obtained using the command shown in
listing A.8 (with the initial ASIP prototype stored in the directory ecg and using
the default ED fitness model).

So far the tool only explored the number of issue-slots and found an optimal
solution using 2 issue-slots which improves upon the fitness of the original design
by 34%. The required function-units for the best solution are listed and allow the
designer to instantiate the final processor design.

It is also possible to further reduce the contents of the issue-slots by removing
function units and related operations. This effect is achieved using the command
shown in listing A.9.

This will remove operations and function-units from candidate prototypes
found using the issue-slot exploration in an attempt to further improve upon
the cost metric. However, for this example it didn’t result in a better design.

A.2.5 Implementing custom fitness models

The fitness of a design is decided by the fitness models which are embedded in
the asam-asip-explorer script which is written using Perl. The provided fitness
models are defined in 1ib/fitness_models.pm.

A fitness model takes a reference to a hash containing the metrics of the current
design. These metrics can be used to compute the fitness and this fitness value is
then returned. A higher fitness implies a better design, a fitness of 0 implies that
the design did not function correctly.

Listing A.10 shows the energy-delay product which also checks a hard maxi-
mum latency (delay) constraint as an example.

The fitness model does not need to be a simple linear function as can be seen
from this listing. The third line, for example, tests if the metrics were supplied
correctly (which does not happen in case of a build or simulation failure), if the
latency requirement is given ($required_latency !'= 0) and, if the given requirement
is met ($required_latency < $metrics->{’cycle_count’}).

The processor metrics hash currently contains the following fields:

A.2.6 Current status and limitations

The current implementation of the ASIP architecture exploration tool implements
all the above described options. However, there are still several limitations
which should be addressed before this tool can actually be used in a industrial
environment.

The ASIP exploration tool uses the ASAM power model to estimate the
performance of candidate prototypes. It therefore shares the limitations of the

N

© w N o u

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

146 APPENDIX A. ASIP CONSTRUCTION AND EXPLORATION TOOLS

$ asam-asip-explorer ecg

Exploring initial ASIP prototype ’ecg’
Found initial prototype mapped on: core_3b
Loading information from APEX file...
Initial prototype has 3 issue-slots

Searching for best ’ed’ fitness solution...
Using ’two-phase--first’ strategy

P1: #IS: 3, Totals: 34336 cycles, 1.954E+03 nJ, 33680 um2 (logic),
195910 um2 (memory), improvement=1.000000

P3: #IS: 2, Totals: 34373 cycles, 1.460E+03 nJ, 25563 um2 (logic),
193597 um2 (memory), improvement=1.336916

Built 5 prototypes

Best solution FUs:
bp_core_3b_sl_aru
bp_core_3b_s1_bru
bp_core_3b_sl_1lgu
bp_core_3b_sl_1lsu
bp_core_3b_sl_psu
bp_core_3b_s1_shu
bp_core_3b_sl_suu
bp_core_3b_s2_aru
bp_core_3b_s2_1lgu
bp_core_3b_s2_psu
bp_core_3b_s2_shu

P3: #IS: 2, Totals: 34373 cycles, 1.460E+03 nJ, 25563 um2 (logic),
193597 um2 (memory), improvement=1.336916

Listing A.9: Ezample exploration output using two-phase first-match strategy

© 0 N e U A W N e

A.2. DESIGN-SPACE EXPLORATION TOOLS 147

sub ed {
my ($metrics) = @_;
return 0 if (not defined $metrics or ($required_latency != 0 and
$required_latency < $metrics->{’cycle_count’}));
return 1/($metrics->{’total_energy’}*$metrics->{’cycle_count’});

Listing A.10: Example fitness function implementing energy-delay product.

$metrics = {
’issue_width’ => $issue_width,
’cycle_count’ => $total_cycles,
’total_energy’ => $total_emnergy,
’logic_area’ => $logic_area,
‘memory_area’ => $memory_area,
’n_prototypes_built’ => $n_prototypes_built,
‘used_fus”’ => \%fu_list,

};

Listing A.11: Metrics available for implementing fitness functions.

ASAM power model. The most important one being that it is unable to predict
the energy consumption of code that is not part of the application (e.g. emulation
code or elements from the standard C library).

Secondly, the ASIP exploration tool uses the BuildMaster framework to avoid
repetitive simulation of the application by estimating the energy cost based on
a application profile and the assembler code of the compiled application. How-
ever, some optimizations performed by the compiler may change the application’s
profile and thereby result in incorrect energy cost prediction. The BuildMaster
framework tries to correct for this but cannot do this in all cases. Any final
solution obtained using the ASIP exploration tool will need to be simulated in
order to verify the predicted cost.

The final limitation of the ASTP architecture exploration tool is that currently
it does not automatically add custom operations. In order to explore custom
operations, the appropriate function units need to be added, the compiler needs
to be able to recognize occurrences of the custom operation pattern, and the area
and power models need to be provided for each custom function unit. If these
three constraints are met, the current implementation of the ASIP exploration
tool is capable of exploring the architecture including the effects of the addition
of the considered custom operations.

148 APPENDIX A. ASIP CONSTRUCTION AND EXPLORATION TOOLS

Samenvatting

Hoge eisen aan zowel de energie-efficiéntie als de prestaties voor de beeld en signaal
bewerking die tegenwoordig onderdeel is van mobiele en autonome geintegreerde
systemen, maken het niet langer mogelijk om alleen gebruik te maken van ongespe-
cialiseerde processor systemen. Hierdoor is er een sterke verschuiving opgetreden
richting het gebruik van heterogene processor systemen, welke opgebouwd worden
rond meerdere gespecialiseerde processoren. Alhoewel er een zekere hoeveelheid
automatisering reeds beschikbaar is worden dergelijke systemen veelal met de
hand ontworpen. Hierbij worden belangrijke ontwerp besluiten genomen waarbij
sterk gebruik gemaakt wordt van inaccurate schattingen. De combinatie van deze
hoge mate van interactiviteit binnen het ontwerpproces met de korte opvolging
tussen verschillende product generaties resulteren in een sterk gereduceerd aantal
alternatieve ontwerpen dat beschouwd kan worden. Als direct gevolg hiervan zal
vrijwel altijd een suboptimaal ontwerp ontstaan.

De huidige technologieén bieden slechts beperkte ondersteuning voor automa-
tisering van het ontwerp proces en richten zich vooral op de automatisering van
belangrijke tussenstappen zoals de constructie van een nieuw processor ontwerp
vanuit een hoog niveau omschrijving, het evalueren van een kandidaat ontwerp
door middel van simulatie of emulatie, en door middel van het voorstellen van
mogelijke uitbreidingen aan een bestaand ontwerp. Ondanks dat de huidige
methoden reeds significante verbeteringen hebben gebracht blijft er nog altijd
ruimte voor verdere versnelling van het ontwerpproces. De, in dit proefschrift
voorgestelde methoden, richten zich dan ook vooral op verbeteringen in zowel de
ontwerp evaluatie als de verdere automatisering van de ontwerp kandidaat selectie.

Een drie stappen aanpak voor processor architectuur ontwerp wordt voor-
gesteld, beginnend met een nieuwe applicatie analysemethode gericht op het
vinden van het beschikbare parallellisme en het vaststellen van vroege prestatie
schattingen voor rekenkundig intensieve programmadelen. Deze schattingen wor-
den vervolgens gebruikt gedurende het herstructureren van het doel programma,
waarbij het beschikbare parallellisme verder verhoogd wordt en een geschikte
verdeling van de benodigde programmagegevens over de processor geheugens
wordt bepaald als tweede stap. Door de getransformeerde programma code te
combineren met de vastgestelde geheugen hiérarchie en de originele parallellisme
schattingen is het vervolgens mogelijk een initiéle processor architectuur te con-
strueren. Als derde stap wordt vervolgens deze initi€le architectuur verfijnd tot
een sterk gespecialiseerde processor architectuur omschrijving.

149

150 SAMENVATTING

Het onderzoek dat is gepresenteerd in dit proefschrift concentreert zich op
verbeteringen in de volgende stappen van het ontwerpproces.

e Een methode voor het inschatten van parallellisme op het instructie niveau
dat beschikbaar is in een programma. Deze methode biedt vroegtijdige
feedback welke van pas komt gedurende de verkenning van mogelijke her-
structureringen van het doel programma, maar wordt ook gebruikt voor het
bepalen van het juiste aantal operaties dat parallel gestart dient te kunnen
worden in de initiéle processor architectuur. Als gevolg zijn we in staat om
een initieel processor ontwerp te construeren dat de geéiste prestaties kan
leveren, maar dat ook redelijk dichtbij het uiteindelijke verfijnde processor
ontwerp ligt.

e Een processor architectuur verfijningsmethode welke de mogelijkheid biedt
om de tijdrovende constructie van kandidaat processoren over te slaan. De
gepresenteerde methode vereist alleen de constructie van het initiéle archi-
tectuur voorstel en het uiteindelijke processor ontwerp. Alle tussenliggende
kandidaat architecturen hoeven niet geconstrueerd te worden.

e Een snelle methode voor het inschatten van het energieverbruik van een kan-
didaat ontwerp, gebaseerd op de executie frequentie van programma delen
en hun assembler instructies. Hierdoor wordt de energieschattingsmethode
onafhankelijk van het gesimuleerde aantal processor klok cycli waardoor
langere, meer representatieve, test sequenties gebruikt kunnen worden om
zodoende tot een snellere en meer realistische evaluatie te komen.

e Een architectuur exploratie platform genaamd BuildMaster dat het mak-
kelijker maakt om nieuwe zoekstrategieén te implementeren. Dit platform
detecteert automatisch wanneer compilatie of simulatie resultaten van eerder
beschouwde kandidaat architecturen geschikt zijn voor hergebruik bij de
evaluatie van een nieuw kandidaat ontwerp. Dit systeem stelt ons in staat
om, bijvoorbeeld, gemiddeld 90% van de traditioneel benodigde simulaties
over te slaan door het hergebruiken van reeds beschikbare executie frequentie
gegevens gedurende de energie schatting.

e Een aantal architectuur exploratie strategieén die op effectieve wijze de
processor architectuur verfijnen en een vergelijking tussen deze strategieén
met betrekking tot hun effectiviteit en benodigde exploratie tijd. Hierbij
wordt aangetoond dat de voorgestelde heuristiek in staat is een vergelijk-
baar resultaat te verkrijgen als wordt bereikt met behulp van een genetisch
algoritme terwijl het slechts een fractie van de exploratie tijd vereist.

Het combineren van de gepresenteerde technieken resulteert in een zeer ef-
ficiénte en uitbreidbare instructie-set architectuur exploratie methode. In onze
experimenten wordt aangetoond dat het exploratie platform in staat is om hon-
derden processor architecturen tegen elkaar af te kunnen wegen per uur, maar
ook consistent een compacte architectuur als resultaat kan presenteren.

Acknowledgements

The time has come to finalize writing this dissertation. Overall, it has been an
interesting experience, these last five years of my life. With many great moments
but also with more difficult ones. My thanks go out to those that supported me
in achieving this goal.

First of all, I would like to thank my promotor and co-promotor, Henk Cor-
poraal and Lech Jézwiak, for providing me with this opportunity and for their
support during the process over the years. I am grateful for the important lessons
and contributions that resulted from your critical views and insightful questions,
as well as, the many insights that I have obtained when it comes to planning
projects and the execution of plans.

My thanks to the members of my PhD committee, Ton Backx, Jarmo Takala,
Koen Bertels, Peter de With, Jeroen Leijten, and Bart Mesman for their partici-
pation and contributions to the final version of my dissertation. Bart, thank you
for suggesting this position to me when it became available.

I would also like to thank the many people that I cooperated with through
the ASAM project. Our project discussions have had a significant impact on
the directions chosen for this research and provided me with lots of ideas and
different views on the considered problems. In particular I would like to thank
Menno, Erkan, Alexandre, Felipe, Rosilde, Giuseppe, Laura, Paolo, Lech, and
Jan, for their contributions within this project. Especially Erkan, thank you
for the fruitful cooperation, discussions, your contributions to the exploration
framework and tools presented in Chapter 6 and Appendix A, together with the
many shared publications that resulted from this; Menno, thank you for your
many insights and very thorough review of this dissertation; and to Giuseppe:
EBBE’ECCO!

Also thanks to the members of our bi-weekly PARSE meetings; Cedric, Gert-
Jan, Maurice, Erkan, Dongrui, Luc, Mark, Yifan, Zhenyue, Rosilde, and Henk.
We’ve had many interesting discussions and explaining my problems and ideas to
you usually greatly helped my own understanding of them.

Thanks also to the people that shared their offices (in Potentiaal and Flux),
lunch, and coffee table time with me. There were to many interesting (and
possibly disturbing) discussions during these times to remember them all, and
I guess it’s good that not all of them are remembered equally well. It has been
a great experience to have you as colleagues and I guess I will keep seeing you
around. Either at the university, at conferences, in companies, or during some

151

152 ACKNOWLEDGEMENTS

other random encounter. Thank you, Andrew, Cedric, Gert-Jan, Luuk, Manil,
Davit, Sven, Luc, Mark, Raymond, Martijn, Reinier, and Joost (was ik je bijna
vergeten joh).

During the writing of this dissertation I managed to flee the country for a
while to visit Movidius in Dublin and work on the LLVM project as part of a
HiPEAC collaboration grant. This didn’t directly result in new contents for my
dissertation but an important part of the writing did happen over there in parallel
to lots of interesting compiler related work and discussions. Thanks to Martin,
Stephen, David, and all the others at Movidius for their welcome reception, many
great discussions, and teaching me how to appreciate a good pint of Guinness.
Cheers guys!

Special thanks to all the people that kept me distracted from my work during
the times that I needed that. Sometimes it’s needed to step outside of the tight
technological view of designing application specific instruction-set processors, in
order to find the actual problems that need to be solved. Thanks to the members
of ESAC, in particular het 33e bestuur, de ESAC, and de AC, for preventing
my back from taking too much of the shape of my office chair. Thanks to
de Donderdagavond ploeg and de Bier Brigade for listening to my complaints
when things weren’t working out at times, and for temporarily relieving my mind
from those problems. And finally, thanks to the Eindhoven Museum, WEA, and
Waldfyrd groups for helping me completely forget about modern technology so
that I could focus my thoughts on campfires, and working with hammer and anvil.
Also thanks to my family, for supporting me in my quest for knowledge, letting
me find my own path, and for not panicking too much when deviations extended
the duration of my study yet another bit. I’'m not going to name you here, I'm
just too afraid that I will miss important people here and I have no clue about
the order I should put you in. You're the guardians of my sanity, thank you for
that.

That’s all, I'm sure that there are many people that deserved to be mentioned,
either directly or indirectly, but which I have failed to thank here anyway. So to
those people that feel missed, thank you as well... So long, and thanks for all
the fish.

About the author

Roel Jordans received the MSc degree in field of Electrical
Engineering from Eindhoven University of Technology in
2009. He worked within the PreMaDoNA project on
the MAMPS tool flow as a researcher afterwards. As
of September 2010 he continues his education as a PhD
student at the Electronic Systems group of the Depart-
ment of Electrical Engineering within the ASAM project.
His research interest include VLIW architectures and the
automatic synthesis of application specific instruction-
set processors, as well as, related compilation and code
optimization techniques for these platforms.

153

154 ABOUT THE AUTHOR

Author’s publications

Journal Articles and Book Chapters

1]

Diken, E.; Jordans, R.; Corvino, R.; JéZwiak, L.; Corporaal, H. and Chies,
F. A.: Construction and Exploitation of VLIW ASIPs with Heterogeneous
Vector- Widths. In Microprocessors and Microsystems, 38 (8-B): 947-959,
2014.

Jordans, R.; Corvino, R.; Jézwiak, L. and Corporaal, H.: FEzploring
processor parallelism: Estimation methods and optimization strategies. In
International Journal of Microelectronics and Computer Science, 4 (2): 55-
64, 2013.

Jézwiak, L.; Lindwer, M.; Corvino, R.; Meloni, P.; Micconi, L.; Madsen, J.;
Diken, E.; Gangadharan, D.; Jordans, R.; Pomata, S.; Pop, P.; Tuveri, G.;
Raffo, L. and Notarangelo, G.: ASAM: Automatic architecture synthesis and
application mapping. In Microprocessors and Microsystems, 37 (8): 1002-
1019, 2013.

Stuijk, S.; Kumar, A.; Jordans, R. and Corporaal, H.: Implementing
Time-Constrained Applications on a Predictable MPSoC. In Multicore Tech-
nology: Architecture, Reconfiguration, and Modeling, chapter 2, pages 41-
60, CRC Press, Boca Raton, F1, USA, 2013.

Conference and Workshop proceedings

1]

Diken, E.; O’Riordan, M.; Jordans, R.; Jézwiak, L.; Corporaal, H. and
Moloney, D.: Mized-Length SIMD Code Generation for VLIW Architec-
tures with Multiple Native Vector-Widths. In ASAP 2015 - 26th IEEE
International Conference on Application-specific Systems, Architectures and
Processors, Totonto, Canada, 2015.

Jordans, R. and Corporaal, H.: High-level software-pipelining in LLVM.

In SCOPES ’15 - 18th International Workshop on Software and Compilers
for Embedded Systems, pages 97-100, Sankt Goar, Germany, 2015.

155

156

3]

[10]

[11]

AUTHOR’S PUBLICATIONS

Diken, E.; Jordans, R.; Jézwiak, L. and Corporaal, H.: Construction and
Exploitation of VLIW ASIPs with Multiple Vector- Widths. In MECO 2014
- 3rd Mediterranean Conference on Embedded Computing, pages 244-247,
Budva, Montenegro, 2014.

Jordans, R.; Jézwiak, L. and Corporaal, H.: Instruction-set Architecture
Ezploration of VLIW ASIPs Using a Genetic Algorithm. In MECO 2014
- 3rd Mediterranean Conference on Embedded Computing, pages 32-35,
Budva, Montenegro, 2014.

Jordans, R.; Diken, E.; J6zwiak, L. and Corporaal, H.: BuildMaster: Ef-
ficient ASIP Architecture Exploration Through Compilation and Simulation
Result Caching. In DDECS 2014 - 17th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems, Warsaw, Poland, 2014.

Jordans, R.; Corvino, R.; Jézwiak, L. and Corporaal, H.: An Efficient
Method for Energy Estimation of Application Specific Instruction-set Proces-
sors. In DSD 2013 - 16th Euromicro Conference on Digital System Design,
pages 471-474, Santander, Spain, 2013.

Jordans, R.; Corvino, R.; Jozwiak, L. and Corporaal, H.: Instruction-set
Architecture Exploration Strategies for Deeply Clustered VLIW ASIPs. In
ECyPS 2013 - EUROMICRO/IEEE Workshop on Embedded and Cyber-
Physical Systems, pages 38-41, Budva, Montenegro, 2013.

Jordans, R.; Corvino, R.; Jézwiak, L. and Corporaal, H.: Ezploring
Processor Parallelism: Estimation Methods and Optimization Strategies. In
DDECS 2013 - 16th IEEE Symposium on Design and Diagnostics of Elec-
tronic Circuits and Systems, pages 18-23, Karlovy Vary, Czech Republic,
2013. Received best paper award.

Jordans, R.; Corvino, R. and Jézwiak, L.: Algorithm Parallelism Estima-
tion for Constraining Instruction-Set Synthesis for VLIW Processors. In
DSD 2012 - 15th Euromicro Conference on Digital System Design, pages
152-155, Cesme, Izmir, Turkey, 2012.

Jézwiak, L.; Lindwer, M.; Corvino, R.; Meloni, P.; Micconi, L.; Madsen, J.;
Diken, E.; Gangadharan, D.; Jordans, R.; Pomata, S.; Pop, P.; Tuveri,
G. and Raffo, L.: ASAM: Automatic Architecture Synthesis and Application
Mapping. In DSD 2012 - 15th Euromicro Conference on Digital System
Design, pages 216-225, Cesme, Izmir, Turkey, 2012.

Jordans, R.; Siyoum, F.; Stuijk, S.; Kumar, A. and Corporaal, H.: An
automated flow to map throughput constrained applications to a MPSoC. In
Bringing Theory to Practice: Predictability and Performance in Embedded
Systems, pages 47-58, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2011.

AUTHOR’S PUBLICATIONS 157

Other publications (non peer-reviewed)

[1]

Jordans, R. and Moloney, D.: A high-level implementation of software-
pipelining for LLVM (presentation). EuroLLVM 2015 - European LLVM
Conference. London, United Kingdom, 2015.

Diken, E.; Jordans, R. and O’Riordan, M.: moviCompile: An LLVM based
compiler for heterogeneous SIMD code generation (presentation). FOSDEM
2015. Brussels, Belgium, 2015

Diken, E.; Jordans, R.; Corvino, R. and Jézwiak, L.: Construction and Ezx-
ploitation of VLIW ASIPs with Multiple SIMD Widths (poster). ICT.Open
2013 - The interface for Dutch ICT-Research. Eindhoven, The Netherlands,
2013.

Jordans, R.; Diken, E.; Corvino, R.; J6zwiak, L. and Corporaal, H.: Build-
master: Efficient ASIP Architecture Exploration (poster/presentation).
ICT.Open 2013 - The interface for Dutch ICT-Research. Veldhoven, The
Netherlands, 2013.

Diken, E.; Jordans, R.; Corvino, R. and Jozwiak, L.: Application Analysis
Driven ASIP-based System Synthesis for ECG (paper/presentation). In
Embedded World Conference, pages 1-8, Germany, 2012.

Jordans, R.; Diken, E.; Corvino, R. and Jézwiak, L.: Automated Ar-
chitecture Synthesis and Application Mapping for ASIP Based Adaptable
MPSoCs (poster). ICT.Open 2011 - The interface for Dutch ICT-Research.
Veldhoven, The Netherlands, 2011.

Diken, E.; Jordans, R.; Corvino, R.; J6zwiak, L. and Lindwer, M.: Auto-
mated architecture synthesis and application mapping for ASIP based adapt-
able MPSoCs (abstract/poster). In ACACES 2011 - 7th International Sum-
mer School on Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems, pages 135-138, Fiuggi, Italy, 2011.

Jordans, R.; Siyoum, F.; Stuijk, S.; Kumar, A. and Corporaal, H.: An
automated flow to map throughput constrained applications to a MPSoC
(poster). STW.ICT Conference 2010. Veldhoven, The Netherlands, 2010.

	Summary
	Contents
	Introduction
	Parallelism in processor architectures
	Different kinds of parallelism
	Real life examples

	Context of this work
	Problem statement
	Contributions
	Dissertation outline

	Related work
	Commercial EDA tools
	Cadence
	Synopsys

	Research projects
	Architecture description languages
	TCE: TTA-based Co-design Environment
	PICO: Program-In Chip-Out

	The SiliconHive tools
	Overview
	Architecture template

	Compiler support
	Source code annotation
	Code transformations
	Extensions for architecture exploration

	Conclusion

	VLIW processor design in the ASAM project
	Overview
	Macro- and micro-architecture exploration

	ASIP architecture exploration: An example
	Application code restructuring and initial architecture construction
	ASIP instruction-set synthesis through architecture refinement

	Conclusion

	Early performance estimation
	Parallelism estimation of straight-line code
	Methods
	Experimental results
	Conclusion on parallelism estimation

	VLIW issue-width optimization
	Possible search strategies
	Experimental results
	Conclusion on the issue-width optimization

	Parallelism estimation of pipelined loops
	Determining the minimum initiation interval
	Methods
	Experimental results

	Conclusion

	Area and energy modeling
	Estimating area and energy
	Issue-slots and operations
	Register files and memory-like interfaces
	Interconnect
	Miscellaneous
	Model calibration

	Activity estimation
	Trace-based energy estimation
	Profile-based energy estimation
	Improved profile-based energy estimation
	Further improvements

	Initial experiments
	Conclusion

	Intermediate result caching
	The simulation cache
	The compilation cache
	Experiments
	Exploration time speedup
	Cache hit-rates
	Caching induced exploration path divergence

	Conclusion

	Automated design space exploration
	Exploration method
	Growing versus shrinking strategies
	Active versus passive exploration
	Exploration algorithms

	Heuristic search
	Genetic algorithm
	Genetic algorithm configuration
	Fitness function
	Terminate function and number of generations
	Further optimizations to the genetic algorithm

	Experiments
	Separation into passive and active exploration
	Quality of the active exploration results
	Exploration time

	Conclusion

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	ASIP construction and exploration tools
	Processor architecture construction
	Features
	Installation and usage
	XML input specification
	Limitations

	Design-space exploration tools
	Interface
	Initial prototype preparation
	Usage
	Examples
	Implementing custom fitness models
	Current status and limitations

	Samenvatting
	Acknowledgements
	About the author
	Author's publications

