
Copyright
by

Dongwook Lee
2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211344521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Dongwook Lee
certifies that this is the approved version of the following dissertation:

Learning-Based System-Level Power Modeling of
Hardware IPs

Committee:

Andreas Gerstlauer, Supervisor

Jacob A. Abraham

Lizy K. John

Keshav Pingali

Taemin Kim

Learning-Based System-Level Power Modeling of
Hardware IPs

by

Dongwook Lee, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

To my beloved family.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my

advisor, Prof. Andreas Gerstlauer. Without his profound insights, guidance,

and support, this research and thesis could not have been possible. Through

his many roles as an advisor, an engineer, and a researcher, he has had a

significant influence on my professional development. I would also like to

thank my committee members, Prof. Jacob Abraham, Prof. Lizy K. John,

Prof. Keshav Pingali, and Dr. Taemin Kim, for their invaluable comments

and suggestions. In addition, I wish to thank my friends, colleagues and

collaborators.

v

Learning-Based System-Level Power Modeling of
Hardware IPs

Publication No.

Dongwook Lee, Ph.D.
The University of Texas at Austin, 2017

Supervisor: Andreas Gerstlauer

Accurate power models for hardware components at high levels of ab-

straction are a critical component to enable system-level power analysis and

optimization. Virtual platform prototypes are widely utilized to support early

system-level design space exploration. There is, however, a lack of accurate

and fast power models of hardware components at such high-levels of abstrac-

tion.

In this dissertation, we present novel learning-based approaches for ex-

tending fast functional simulation models of white-, gray-, and black-box cus-

tom hardware intellectual property components (IPs) with accurate power esti-

mates. Depending on the observability, we extend high-level functional models

with the capability to capture data-dependent resource, block, or I/O activity

without a significant loss in simulation speed. We further leverage state-of-the-

art machine learning techniques to synthesize abstract power models that can

vi

predict cycle-, block-, and invocation-level power from low-level hardware im-

plementations, where we introduce novel structural decomposition techniques

to reduce model complexities and increase estimation accuracy.

Our white-box approach integrates with existing high-level synthesis

(HLS) tools to automatically extract resource mapping information, which is

used to trace data-dependent resource-level activity and drive a cycle-accurate

online power-performance model during functional simulation. Our gray-box

approach supports power estimation at coarser basic block granularity. It

uses only limited information about block inputs and outputs to extract light-

weight block-level activity from a functional simulation and drive a basic block-

level power model that utilizes a control flow decomposition to improve accu-

racy and speed. It is faster than cycle-level models, while providing a finer

granularity than invocation-level models, which allows to further navigate ac-

curacy and speed trade-offs. We finally propose a novel approach for extending

behavioral models of black-box hardware IPs with an invocation-level power

estimate. Our black-box model only uses input and output history to track

data-dependent pipeline behavior, where we introduce a specialized ensemble

learning that is composed out of individually selected cycle-by-cycle models

with reduced complexity and increased accuracy. The proposed approaches are

fully automated by integrating with existing, commercial HLS tools for custom

hardware synthesized by HLS. Results of applying our approaches to various

industrial-strength design examples show that our power models can predict

cycle-, basic block-, and invocation-level power consumption to within 10%,

vii

9%, and 3% of a commercial gate-level power estimation tool, respectively, all

while running at several order of magnitude faster speeds of 1-10Mcycles/sec.

viii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1
1.1 Thesis Statement . 3
1.2 Overview of Power Modeling Flow 4

1.2.1 Activity Model Generation 6
1.2.2 Power Model Synthesis Flow 8

1.3 Contributions . 9
1.3.1 Power Modeling of White-box IPs 9
1.3.2 Power Modeling of Gray-box IPs 10
1.3.3 Power Modeling of Black-box IPs 11

1.4 Methodology . 11
1.5 Thesis Outline . 13

Chapter 2. Related Work 14
2.1 Gate-Level Models . 16
2.2 RTL and Micro-Architecture Models 17
2.3 System-Level Models . 18
2.4 Source-Level Simulation . 19

ix

Chapter 3. Power Modeling of White Box IPs 21
3.1 Resource-Level Activity Model Generation 22

3.1.1 Annotation for White-Box IPs 22
3.1.2 Resource-Level Activity Computation 24

3.2 Cycle-Level Power Model Synthesis 27
3.2.1 Cycle-Level Power Modeling and Decomposition 28
3.2.2 Feature Selection . 31
3.2.3 Learning . 32

3.3 Experimental Results . 33
3.4 Summary . 43

Chapter 4. Power Modeling for Gray-Box IPs 44
4.1 Block-Level Activity Model . 45

4.1.1 Block-Level Annotation 46
4.1.2 Block-Level Activity Computation 46

4.2 Block-Level Power Model Synthesis 48
4.2.1 Block-Level Power Modeling 48
4.2.2 Power Model Decomposition 51

4.3 Experimental Results . 53
4.4 Summary . 60

Chapter 5. Power Modeling for Black-Box IPs 62
5.1 External I/O Activity Computation 63

5.1.1 External I/O Annotation 64
5.1.2 External I/O Activity Computation 65

5.2 Invocation-Level Power Modeling 66
5.2.1 Invocation-Level Power Model 66
5.2.2 Ensemble Model . 68
5.2.3 Model Selection and Training 71

5.3 Experimental Results . 72
5.4 Summary . 80

x

Chapter 6. Overall Model Summary and Comparison 81
6.1 Overall Speed and Accuracy Comparison 81
6.2 Learning Overhead . 84
6.3 Summary . 87

Chapter 7. Summary and Future Work 88
7.1 Summary . 88
7.2 Future Work . 90

7.2.1 Power Modeling for Embedded Processors 91
7.2.2 RTL Power Modeling with Structural Decomposition . . 91

Bibliography 93

Vita 103

xi

List of Tables

3.1 Benchmark summary for white-box IPs 35
3.2 Train and test summary for white-box IPs 35
3.3 Accuracy of cycle-level modeling 39
3.4 Simulation speed of models [cycles/sec] 39

4.1 Benchmark summary for gray-box IPs 54
4.2 Accuracy of block-level modeling 56
4.3 Simulation speed of models [cycles/sec] 57

5.1 Benchmark summary for black-box IPs 73
5.2 Accuracy of invocation-level modeling 76
5.3 Simulation speed of models [cycles/sec] 77

6.1 Summary of modeling accuracy 82
6.2 Summary of simulation speed 83

xii

List of Figures

1.1 Power modeling space. 2
1.2 Power modeling flow. 5
1.3 Activity model generation flow. 7
1.4 Power model synthesis flow. 8

2.1 Power modeling approaches. 14

3.1 Resource-level annotation process. 23
3.2 Intra-block level out of order execution scenarios. 25
3.3 Inter-block level out of order execution scenarios. 26
3.4 Example of power model decomposition. 30
3.5 Cycle-by-cycle power accuracy. 36
3.6 Estimation speed of models. 37
3.7 Cycle-by-cycle power traces of cycle-level power model. 40
3.8 Invocation-by-invocation power traces of cycle-level power model. 41
3.9 Learning overhead vs. cycle-level model accuracy for pipelined

DCT. 42

4.1 Basic block-level signal trace rearrangement. 47
4.2 I/O switching activity correlation. 48
4.3 Block-level power modeling. 51
4.4 Basic block-level decomposition for multi-path control flow. . 53
4.5 Basic block-by-basic block power accuracy. 55
4.6 Estimation speed of models.. 55
4.7 Cycle-by-cycle power traces of block-level power model. 58
4.8 Invocation-by-invocation power traces of block-level power model. 59
4.9 Learning overhead vs. block-level model accuracy for pipelined

DCT. 60

5.1 Invocation-by-invocation power accuracy. 74

xiii

5.2 Estimation speed of models. 75
5.3 Invocation-by-invocation power traces of invocation-level model. 78
5.4 Learning overhead vs. invocation-level model accuracy for pipelined

DCT. 79

6.1 Cycle-by-cycle power traces for a single invocation. 84
6.2 Invocation-by-invocation power traces. 85
6.3 Learning overhead vs. model accuracy for pipelined DCT. . . . 86

xiv

Chapter 1

Introduction

The continued rise in hardware and software complexities of embed-

ded on-chip systems has necessitated raising the design process to higher lev-

els of abstraction. At the same time, energy efficiency has become a criti-

cal design concern. To address this challenge, heterogeneous multi-processor

architectures utilizing massive custom hardware acceleration have recently

emerged [1–3]. Depending on applications, custom hardware accelerators can

take more than 25% of total area and power consumption of such accelerator-

rich architectures [1]. Fast and accurate system-level power estimation ap-

proaches are needed to drive associated validation and optimization. Virtual

platform models capable of simulating whole systems are widely employed

to provide rapid feedback for design space exploration. Instead of slow co-

simulation with low-level register-transfer level (RTL) or cycle-accurate models

of custom hardware accelerators, intellectual property components (IPs) and

processors, a purely functional modeling of hardware and software behavior is

typically utilized.

To support efficient exploration, there is a need for extended models

that can provide quick yet accurate estimates of critical system metrics such as

1

Gate

Task

RTL

Cycle Basic
Block

Invoc. PhaseGate

Fu
nc

tio
na

l L
ev

el
Learning

 Activity/Power Level

White-
Box

Gray-
Box

Black-
Box

Our work

Existing work

Figure 1.1: Power modeling space.

performance and power at a high level of abstraction. However, the modeling

gap between fast, purely functional models for integration into virtual plat-

forms and corresponding physical hardware implementations makes accurate

power modeling challenging.

Figure 1.1 classifies power modeling approaches based on the granu-

larity and abstraction level of their functional simulation versus activity and

power estimation. At the lowest level, a detailed but expensive simulation

of gate-level switching activity is used to estimate gate-level power consump-

tion. Various power modeling approaches at higher levels of abstraction have

been proposed. Most previous work at the system level utilizes a fast func-

tional C/C++ task simulation to drive state-based power estimations that

only model transitions between different coarse-grain operation modes [4–9].

2

Other approaches use accurate but slow activity estimation at a finer micro-

architecture or RTL granularity. More recently, solutions at the intermediate

representation (IR) level have emerged [10–14]. However, they similarly rely on

slow, fine-grain simulation of the cycle-by-cycle behavior of individually sched-

uled IR operations in control/dataflow graph (CDFG) or finite state machine

with data (FSMD) form to obtain accurate results.

Existing approaches all estimate power at the same level of detail at

which the functionality of hardware is modeled. This allows a detailed func-

tional simulation to drive an accurate, potentially data-dependent power es-

timation model, but also creates a fundamental trade-off between speed and

accuracy depending on the simulation granularity.

The goal of this dissertation is to explore approaches that bridge the

modeling gap by enabling fast and accurate power estimation at the system

level. Instead of detailed micro-architecture or FSMD/CDFG simulation, we

statically synthesize data-dependent switching activity-based power models of

a given gate-level implementation using machine learning approaches. Based

on given architectural information, traces of signal transitions captured from

a functional simulation are then used to drive the abstracted power model.

1.1 Thesis Statement

In this dissertation, we demonstrate that it is possible to provide fine-

grain, data-dependent power models for custom hardware components that

can run at speeds close to a fast, purely functional simulation while being

3

able to achieve close to gate-level accuracy. To achieve this objective, we ex-

tract data-dependent activity features from functional hardware models based

on given architecture information. Depending on the observability of hard-

ware internals and their mapping to high-level constructs, extended white-,

gray-, or black-box models are able to capture data-dependent operation, ba-

sic block, or I/O activity, respectively. Extracted activity data is then used

to drive corresponding cycle-, block-, or invocation-level power models, where

we statically synthesize data-dependent, activity-based power models at three

different levels from a given gate-level implementation using machine learning

approaches. This allows the traces of signal transitions captured from a func-

tional simulation to be used to dynamically or statically drive an accurate,

data-dependent power model at different prediction granularities.

1.2 Overview of Power Modeling Flow

Figure 1.2 shows an overview of our proposed power modeling flow. The

inputs to the flow are a high-level functional simulation model of a hardware

component, its corresponding gate-level implementation and optional micro-

architecture mapping information. Depending on the observability, architec-

ture information can consist of a complete mapping of high-level operations

into RTL states and resources, the mapping of basic block inputs and out-

puts to resources and ports, or only limited information about the mapping

of external I/O, e.g. in case of black-box IPs. Micro-architecture information

can be manually provided or automatically extracted during synthesis. In our

4

Annotation

TB
[1,2]
[3,4]
…

Activity
Model

Signal Activity

Gate
Module

C/C++
Functional
Model

Gate-level Power Trace

mW

nSec

Power Model Synthesis

Decomposition

Learning

Power Model Prediction

Simulation

Gate-lv
Simulation

DIN 0x1 0x2

0x3

0xF

0x5

Cycles

DOUT
ADDIN

Arch. Info
Resource

I/O

Predicted Power Trace

mW

CyclesCycle-level
Block-level
Invoc-level

Synthesis Block

Figure 1.2: Power modeling flow.

flow, we integrate with existing, commercial high-level synthesis (HLS) tools

to provide a fully automated power model generation for custom hardware

synthesized by HLS.

Using micro-architecture mapping information, we annotate the high-

level functional simulation code with the ability to capture activity traces of

individual operand and result, basic block I/O or external I/O value transi-

tions. In a training phase, the given gate-level model and the generated ac-

tivity model are then simulated with the same input vectors. Power synthesis

utilizes operation, block, or I/O activity traces from the high-level simulation

together with cycle-level power traces from gate-level estimation to learn a

power model. Instead of building a single power model, the synthesis flow de-

composes power models into multiple models. Each decomposed power model

is further simplified using a feature selection to reduce the amount of switching

information that needs to be collected. In the process, the activity model is

also simplified by removing unnecessary signal tracing not utilized after fea-

5

ture selection. In the prediction phase, the synthesized power models are then

used to estimate data-dependent cycle-, block-, or invocation-level power traces

from corresponding operation, basic block, or external I/O activity captured

in high-level simulations.

1.2.1 Activity Model Generation

Our flow uses an annotation process to first refine a high-level C/C++

hardware functional model into an activity model. Depending on available

architecture information, the refined activity model supports three different

levels of switching activity tracing: individual resources, blocks, or only exter-

nal I/Os. Figure 1.3 shows an overview of our activity model generation flow,

accompanied by representative models and code snippets at various stages.

In our framework, we synthesize a given functional hardware model down to

an RTL description using a standard high-level synthesis process. In the pro-

cess, we extract the IR of the design generated by the front-end compiler for

high-level synthesis. Working at the IR level allows us to accurately reflect

source-level optimizations, such as bit width reductions that affect tracking

of internal signals in the synthesized RTL datapath. At the same time, the

IR is extracted in C/C++ form before back-end synthesis in the HLS tool,

i.e. it remains at a fast functional level. The IR code is further synthesized

into an RTL implementation by the HLS tool. In this process, we automat-

ically extract architecture information in the form of an extensible markup

language (XML) file that stores mapping information between the IR and the

6

RTLDatapath
MUL0 MUL1

REG REG

ADD/SUB

CSTEP

MICRO
CODE

Frontend
Compiler

Annotation

IR

Activity
Model

C++/
SystemC

void	
c_mult(a,b,c,d,e,f)		
{
		e	=	a*c		-		b*d;
		f		=	a*d	+		b*c;
}

func	c_mult:
			%1=	mul	a,	c
			%2=	mul	b,	d
			%3=	sub	%1,%2
			….

Backend
Synthesis

Arch. Info

func	c_mult:
L0:%1=	mul	a,	c
			call	trace	…
			%2=	mul	b,	d
			call	trace	…
		…		

RTL

Archi. Info [XML]
<RTL=1, Core=Mult
 RTLName=mul0
 Bits = (32,16,16)>
<\RTL>
…
<OP=1, RTL ID=1,
Step=1>
%1 = MUL a, c
<\OP>
…

X

-

X

+

XX

S0

S1

S2

HLS

Figure 1.3: Activity model generation flow.

synthesized RTL implementation. Mapping information can be automatically

generated during HLS as in our case or optionally manually provided. De-

pending on observability, it captures the mapping of IR operations to RTL

control steps and datapath, the mapping of basic block inputs and outputs to

resources and ports, or the mapping of functional interfaces to external I/O

ports. The annotation process then automatically inserts corresponding signal

trace() functions to generate an activity model that allows capturing cycle-by-

cycle switching activity of individual datapath resources, basic block-by-basic

7

Power Model SynthesisTiming … Switching

10 .. [(0,0,0),…]

11 .. [(1,2,2),…]

12 .. [(1,2,2),…]

13 .. [(0,0,0),…]

14 .. [(0,0,0),…]

Switching Activity
Timing Power

10 3mW

11 4mW

12 5mW

13 1mW

14 1mW

Gate Lv Power

Training Data

Decomposition

Learning

Power Model

Activity
Model

Gate
Netlist

Exec.
Gate level
power sim.

Architecture
Info

Figure 1.4: Power model synthesis flow.

block activity of block input and outputs, or invocation-by-invocation activ-

ity of external I/O during functional IR simulation. Depending on available

architecture information, the refined activity model supports three different

levels of switching activity tracing: individual resources, blocks, or only exter-

nal I/Os. We will describe details of annotation and activity tracing for each

model in Chapter 3, Chapter 4, and Chapter 5, respectively.

1.2.2 Power Model Synthesis Flow

After collecting switching activity traces from the activity model using

simulations of a training set, power models are then synthesized in a one-time

offline learning process. Figure 1.4 shows an overview of power model synthesis

flow. A full power model is first decomposed into several simpler models using

architecture information. Each decomposed power model is further simplified

8

using a feature selection to reduce the amount of switching information that

needs to be collected. Power models are then trained from given power and ac-

tivity traces. Activity traces are collected from activity model simulation and

contain resource-, block-, or external I/O-level switching vectors. Power traces

contain actual power measurements from an equivalent gate-level simulation.

We will describe the power model synthesis processes utilizing state-

of-the-art machine learning techniques for cycle-, block-, and invocation-level

power models corresponding to white-, gray-, and black-box hardware IPs in

Chapter 3, Chapter 4, and Chapter 5, respectively.

1.3 Contributions

In this dissertation, we present a comprehensive and fully automated

power modeling framework that provides fast yet accurate learning-based power

estimation at three levels of abstraction. In the following, we summarize the

contributions presented in the subsequent chapters.

1.3.1 Power Modeling of White-box IPs

We propose an approach that extends fast functional custom hard-

ware models of white-box custom hardware IPs with the ability to produce

detailed, cycle-level timing and power estimates. Our approach is based on

back-annotating behavioral hardware descriptions with a dynamic power and

performance model that allows capturing cycle-accurate and data-dependent

activity without a significant loss in simulation speed. By integrating with ex-

9

isting HLS flows, back-annotation is fully automated for custom hardware syn-

thesized by HLS. We further leverage state-of-the-art machine learning tech-

niques to synthesize abstract power models, where we introduce a structural

decomposition technique to reduce model complexities and increase estimation

accuracy. The specific contributions are:

• We develop a light-weight approach for extracting cycle-accurate signal

transition information from a high-level functional simulation without

the need for full architecture simulation.

• We introduce a novel approach for decomposing learning-based power

models using scheduling and binding information to reduce model com-

plexity while improving estimation accuracy.

1.3.2 Power Modeling of Gray-box IPs

We further introduce an intermediate gray-box approach that supports

power estimation at basic block-level granularity. It utilizes less total switching

activity and fewer invocations of the power model than cycle-level models,

while providing a finer granularity than invocation-level models, which allows

to further navigate estimation accuracy and speed trade-offs. The specific

contributions are:

• Using only limited mapping information about basic block inputs and

outputs, we develop a light-weight approach for extracting block-level

activity from a functional simulation.

10

• We propose a basic block-level power model that utilizes a novel decom-

position using control flow information to reduce model complexity while

improving estimation accuracy.

1.3.3 Power Modeling of Black-box IPs

We finally propose a novel approach for extending behavioral models

of black-box custom hardware IPs with an accurate invocation-level power

estimate. Our model utilizes only external I/O activity captured from a

transaction-level simulation to track data-dependent pipeline behavior. The

specific contributions are:

• We introduce an approach to extract fast, data-dependent invocation-

level power models from gate-level power traces, where models are driven

only by transaction-level I/O activity that does not require simulation

overhead for cycle-level trace rearrangement or cycle-by-cycle activity

computation.

• We develop a specialized ensemble learning approach in which invocation-

level power models are decomposed into individual cycle-by-cycle models

for efficient training and accurate prediction.

1.4 Methodology

In order to evaluate the accuracy of our power models, we measure

and compare against cycle-by-cycle power traces obtained using a commercial

11

gate-level power estimation tool. A given gate netlist implementation and

the synthesized functional model are simulated with the same input vectors.

We then measure the gate-level cycle-by-cycle power traces from gate-level

net signal transition traces. For all comparisons, we use cycle-by-cycle mean

abolute error (MAE) of values Pestimated predicted by each model compared to

power measured from gate-level simulations, normalized against average power

over the full simulation using the following equation:

MAE [%] =
1
n

∑n
i=1 |Pestimated,i − Pmeasured,i|

1
n

∑n
i=1 Pmeasured,i

× 100 (1.1)

To evaluate block-by-block and invocation-by-invocation MAE, we con-

vert the gate-level cycle-by-cycle trace by assigning the average power dissi-

pation of each basic block and invocation period to corresponding blocks and

invocations, respectively. We then measured the basic block-by-basic block or

invocation-by-invocation MAE using equation (1.1).

To evaluate average errors, we compute a difference of the measured

and estimated average power consumption over the whole simulation. The dif-

ference is normalized against measured average power over the full simulation

using the following equation:

Average Error [%] = |1−
1
n

∑n
i=1 Pestimated,i

1
n

∑n
i=1 Pmeasured,i

| × 100 (1.2)

To evaluate the simulation speed of our extended functional models, we

measure the number of simulated cycles from gate netlist simulation. Based

12

on the total simulation runtime of our functional models, we present speed

numbers as simulation throughput measured in cycles per second (cycles/sec)

using the following equation:

Speed [cycles/sec] = Simulated Cycles

Simulation T ime
(1.3)

1.5 Thesis Outline

The remainder of this dissertation is organized as follows. Chapter 2

reviews relevant prior work. Next, Chapter 3 presents a power model for white-

box IPs, where we extend a high-level functional model with the capability to

produce cycle-level power estimates using detailed architecture information.

Chapter 4 introduces an intermediate gray-box approach that supports power

estimation at basic block-level granularity using limited architecture informa-

tion. Chapter 5 presents our approach for black-box IPs, which enables data-

dependent power modeling without internal architecture information. Chap-

ter 6 then summarizes and compares accuracy and speed of proposed white-,

gray-, and black-box models. Finally, Chapter 7 concludes this dissertation

and proposes directions of future research.

13

Chapter 2

Related Work

RTL

Task Modal

Invoc

BB

Cycle

GateGate
Wires

Signals

Resource

Mode

I/OInter-BB Comm.

Power
Model

Functional
Model

Activity

Learning

[4-9,39]

[33-38][10-14,23-32]

Our work
Existing work

Figure 2.1: Power modeling approaches.

In this chapter, we briefly review prior power modeling work. Figure 2.1

shows a more detailed taxonomy and overview of existing power modeling work

in relation to our approach. Traditional accurate power models are constructed

by coupling gate-level simulations with gate library power models. To gener-

ate higher-level timing and energy models of custom hardware accelerators

and processors, library or learning-based approaches can be utilized. In a

library-based approach, an overall model is assembled from pre-characterized

14

component data [7-11, 19-28]. This enables rapid exploration but does not

accurately account for all glue logic and implementation-level optimizations in

a combined architecture.

In learning-based approaches, a RTL or detailed micro-architecture im-

plementation is simulated in a sampling fashion to derive a regression-based

model for a complete processor or each macro-block [29-34]. Such approaches

can accurately reflect the behavior of the final implementation, but still require

simulation at the RTL or micro-architecture level to extract internal signal in-

formation driving the generated models. By contrast, approaches that drive a

learned power model from high-level functional task simulations are fast, but

only allow to capture coarse-grained power transitions between phases [1-6,

35].

In all cases, a slow low-level detailed functional simulation allows to

drive an accurate, data-dependent power estimation model while a fast high-

level functional simulation only captures coarse-grained power transitions.

This creates a fundamental trade-off between speed and accuracy depend-

ing on the granularity and level of the power model. We aim to drive fine-

grained, data-dependent power models directly from high-level C/C++ func-

tional simulations. Our approach supports both library-based and learning-

based methods, where our focus is on the learning-based generation of light-

weight implementation-level representations of complete hardware processors.

We propose cycle-, basic block-, and invocation-level power models combined

with extraction of resource, inter-basic block communication, and external I/O

15

activity from high-level functional simulations.

In the following, we will review previous power modeling works in-

cluding low gate-level, RTL and micro-architecture power models, as well as

high-level functional models, including a discussion of their performance and

accuracy trade-offs. In addition, we discuss source-level software simulation

approaches that provided some of the initial ideas for our proposed work.

2.1 Gate-Level Models

Instead of prohibitive slow circuit-level or SPICE simulations, gate-

level power estimation is widely used for accurate power analysis. In such

approaches, toggling activity of individual bit-level signals is collected during

gate-level netlist simulation to drive a gate-level library power model [15–17].

This enables accurate, data-dependent, and fine-grain power estimation but re-

quires detailed interconnect and logic timing computation to extract accurate

bit-level signal transitions, which is too slow. To simplify timing and switch-

ing computation for each gate learning-based stochastic models for groups of

combinational logic have been proposed [18]. Such gate-level power estimation

is much faster than circuit-level approaches [19–21], but still too slow to es-

timate power consumption of complete, large-scale hardware implementation

with many test vectors. To reduce gate-level simulation time, a fast average

power estimation approach was recently proposed [22]. This approach samples

snapshots of internal signals using an FPGA-accelerated RTL simulator and

then drives gate-level power estimation tools with the small sampled snap-

16

shots. This reduces the overall gate-level simulation times, but introduces

several hours of a FPGA compilation overhead.

2.2 RTL and Micro-Architecture Models

Many approaches has been proposed to collect resource- or block-level

activity from a finer-grain micro-architecture or register-transfer level simula-

tion. To generate corresponding power models of custom hardware accelerators

and processors, library or learning-based approaches can then be utilized.

In library-based approaches, the activity traces of each fine-grain arith-

metic and logic resource are collected from RTL [13, 23–25], CDFG-level [10–

12, 14], or fine-grain micro-architecture [26] simulations and then drive corre-

sponding resource-level power models. The RTL power estimation then ex-

tracts various characterizations (i.e. input and output transition probabilities

or resource-level activity traces) from those traces and computes component-

level power consumptions using either simple table-lookup based [27, 28], an-

alytical [29, 30], or regression-based [31,32] models.

In learning-based approaches, regression-based models for complete

processors or macro blocks are pre-characterized using sampled gate-level power

traces. Such regression-based models utilize the internal signals obtained from

the RTL of complete processors or hardware accelerator IPs. Such approaches

can accurately reflect the behavior of the final implementation using collected

internal activity traces.

17

A key concern of regression-based approaches is managing model com-

plexities without sacrificing accuracy. Existing approaches rely on sampling a

subset of key signals or state variables that are identified either manually or in

a trial-and-error process. PowerDepot [33] and PrEsto [34] build hardware IP

power models using manually selected relevant signals, where PrEsto utilizes

additional linear regression-based importance sampling. In [35,36], the impor-

tant signals in the micro-processors are selected based on a learning process

or singular value decomposition. Other approaches decompose the full power

model into several parts based on manual decisions [37, 38]. This requires de-

tailed architectural knowledge or designer insight, which is often not available,

especially for black-box IPs.

Both library and learning-based approaches enables cycle-level, data-

dependent power estimations. However, all approaches require slow, fine-grain

simulation of the cycle-by-cycle behavior of each resource or block, which is

typically too slow to be integrated into virtual platforms at the system level.

2.3 System-Level Models

System-level component models are often only functionally equivalent

ones, where necessary internal architectural information for fine-grain model-

ing is not available, especially in case of pre-designed IPs. The limited ob-

servability of such high-level, black-box models restricts power estimation to a

coarse-grain state-based approach, where the projection of either given, docu-

mented states or state information estimated from external transaction events

18

only supports capturing coarse-grained power phase transitions between dif-

ferent operating modes, such as read and write modes in memories or buses.

Many early work annotates a single average power consumption to each coarse-

grained state using an automated characterization flow [4, 5]. Improving the

accuracy of power models attached to high-level functional simulations that

do not provide internal architecture information has been the focus of many

researchers. Copty et al. [7] proposed characterizing pairs of coarse-grained

states using statistical methods. Schürmans et al. [6, 9] extract the power

state machines of processors and communication architectures using multiple

observed or estimated architecture states and measured power traces. Kos-

mann et al. [39] generate power state machines by only observing state trace

of external ports. To take into account data-dependent effects in power es-

timation of system-level black-box components, a corresponding extension of

coarse-grain state-based models was recently proposed [8]. In this approach,

cycle-level input switching activity information is utilized to refine states in

which significant data-dependent power variations are observed. This requires

augmenting state-based models with the ability to capture cycle-by-cycle ac-

tivity, which introduces a significant overhead in the simulation. Furthermore,

a simple linear regression is inherently limited in accuracy.

2.4 Source-Level Simulation

For software running on processors, so-called source-level or host-compiled

modeling approaches have recently emerged as an alternative to instruction-set

19

or micro-architecture simulation. In such approaches, a source or IR model

of the application is statically back-annotated with timing and energy esti-

mates extracted from low-level simulations [40]. In [41–43], a constant or

statistical energy consumption at the granularity of instructions, source-level

operations, program phases or processor states are annotated to sources. The

authors in [43] shows that such static back-annotation approach can achieve

400x speedup compared to a target ISS with up to 13% error compared to refer-

ence simulators. More recent work [40] proposed characterizing blocks in static

pairs with low-level reference micro-architecture power models, which enables

low-level accurate power estimation at fast source-level simulation. However,

such static back-annotation approaches are typically performed at the basic

block level, which is only able to capture control-dependent power behavior.

Our proposed approach is motivated by host-compiled software models, but

also aimed at accurately capturing data-dependent power effects. Instead of

back-annotating static per block estimates, we annotate the functional simu-

lation with dynamic, data-dependent cycle-, block- or invocation-level power

models.

20

Chapter 3

Power Modeling of White Box IPs

Accurately capturing cycle-level power variations is important for many

design decisions. Previous approaches for data-dependent cycle-level power

models require a tight coupling with cycle-level functional models such as fine-

grain micro-architecture simulators or RTL implementations. By contrast, we

propose an approach that extends fast functional hardware models with the

ability to produce detailed, cycle-level timing and power estimates.

In this chapter, we introduce a framework that realizes such a novel,

fast yet accurate cycle-level power modeling for white-box hardware IPs [44].

We propose a light-weight approach for extracting white-box, resource-level

signal activity tracing from a high-level functional simulation without the need

for full architecture simulation. We leverage machine learning technique to

synthesize cycle-level power model. We further propose a novel approach for

decomposing power models using scheduling and binding information to reduce

model complexity while improving estimation accuracy.

The rest of the chapter is organized as follows: we describe the details

of our resource-level activity model generation and cycle-level power model

synthesis in Section 3.1 and Section 3.2. Next, in Section 3.3, we evaluate

21

accuracy and speed of the power models with a set of industrial-strength design

examples. Finally, Section 3.4 concludes the chapter with a summary.

3.1 Resource-Level Activity Model Generation

In the proposed power modeling flow (Figure 1.2), a given behav-

ioral hardware model is first synthesized down to an RTL description using

a standard high-level synthesis process. In the process, FSMD-level micro-

architecture information is automatically extracted and the annotation process

then refines a high-level C/C++ hardware functional model into an activity

model (Figure 1.3). In the following, we describe the resource-level annotation

process and corresponding activity computation.

3.1.1 Annotation for White-Box IPs

In a white-box case, we support capturing cycle-accurate activity of

RTL datapath resources, such as adders and multipliers, during high-level

functional simulation by back-annotating abstract micro-architecture informa-

tion into the IR. We assume that micro-architecture mapping information is

provided, where we can extract an FSMD-level description from the HLS tool.

The extracted architecture information includes each IR operation node’s re-

source scheduling, binding, and bit width information. Based on this informa-

tion, the annotation process inserts trace() functions that store the operands

and results of each IR operation together with the scheduled control state and

bound resource ID to compute switching activity. We capture the flow of data

22

Architecture Info [XML]
<RTL=1, Core=Mult,
 RTLName=mul0,
 Bits = (6,3,3)>
<\RTL>
…
<OP=1, RTL ID=1,
Step=1>
 %1 = MUL %2, %3
<\OP>

<OP=1, RTL ID=1,
Step=2>
 %4 = MUL %5, %6
<\OP>
…

Annotated IR Code
…
Label1:
 …
 %5=MUL %1, %2
 %1_t=%call getBits(%2,3,0)
 %2_t=%call getBits(%3,3,0)
 %5_t=%call getBits(%5,6,0)
 %call trace(%5_t, %1_t, %1_t, M1,3)
 %6=MUL %3, %4
 %3_t=%call getBits(%3_t,3,0)
 %4_t=%call getBits(%4_t,3,0)
 %6_t=%call getBits(%6_t,6,0)
 %call trace(%1, t1, t2, M1,3)
…

IR Code
…
Label1:
 …
 %5=MUL %1, %2
 %6=MUL %3, %4
 …

Back-Annotation

Figure 3.1: Resource-level annotation process.

and associated switching activity by tracing IR operands and results. To map

data activity into signal transitions of actual hardware resources, we include

resource scheduling and binding information in the captured traces. In addi-

tion, bit width information is annotated to extract the actual number of bits

utilized in hardware. This information is then used to track cycle-by-cycle

activity of each resource while taking into account resource sharing and other

back-end synthesis optimizations.

Figure 3.1 shows code snippets for the signal extraction and tracing

process. The mapping information is provided by the HLS tool in the form

of an FSMD architecture XML file. The mapping information file stores each

23

RTL resource’s bit width information and resource ID and each operation

node’s scheduling and binding. In back-annotation process, we annotate the IR

code with calls to a trace() function, which stores the operands and results of

each IR operation together with the scheduled control state and bound resource

ID. To take bit width optimizations into account, an additional getBits()

function is annotated to extract the actual number of bits utilized in the

hardware.

3.1.2 Resource-Level Activity Computation

The hardware implementation generally exploits operation-level paral-

lelism and scheduling flexibility to maximize performance under given resource

or timing constraints. As a result, operators in the IR are not necessarily simu-

lated in the same order in which they execute in the final hardware. Figure 3.2

and Figure 3.3 show such intra- and inter-block level out of order execution

scenarios, respectively.

In order to rearrange out-of-order execution traces captured in the IR

simulation into in-order traces for hardware estimation, we perform an on-

line reordering of traced information using annotated scheduling and binding

information. As shown in Figure 3.2, the execution order of two operators

in the same basic block can be reversed in the hardware implementation if

there is no dependency between the operations. To rearrange the trace, we

utilize a global signal table and a trace reordering buffer. The global table

tracks signal values of all hardware resources in the most recent cycle. The

24

IR
 B1: // [S1, S2, S3]

 %call bb_begin(1)
 %2=MUL %0, %1
 call trace(%2,%0,%1, M0, 1)
 %3=ADD %0, %2
 call trace(%3,%0,%2, A0, 2)
 %4=MUL %0, %3
 call trace(%4,%0,%3, M0, 3)
 %5=MUL %0, %2
 call trace(%5,%0,%2, M0, 2)
 br exitcond, B2, B3

Power Model

M0
8,2,4

…
…S3

A0
6,2,4

State

Compute Hamming distance

M0A0

+

S1

S2

S3 X

Trace Buffer
Head

Tail

M0,3,1,3

M0,4,1,4

S1

S3

S2

B2:
 %call bb_begin(2)
 …

X

X

A0,4,1,3 M0,3,1,3

C
om

m
it

B3

Global Signal Table

Figure 3.2: Intra-block level out of order execution scenarios.

trace buffer temporally stores and reorders signal updates associated with the

current basic block. It consists of control state tags and corresponding signal

trace lists. Each entry in the signal trace lists contains the utilized resource

ID together with operands and result of the operation. At the beginning of

each basic block, an additional function is annotated to initialize the buffer

and insert state tags corresponding to the block’s control states. Within the

block, each call to the trace() function then attaches a new entry to the signal

trace linked list corresponding to the annotated control state. At the end of

the current and beginning of the next basic block, all signals updated in each

control steps are sequentially committed to the global signal table, the head

of the buffer is moved to the tail, all current control step and trace lists are

discarded, and new control state tags assigned to the next block are inserted.

In this process, the Hamming distances of all signals toggling in each control

25

IR (Pipelined Loop II=2)

B2: //Loop body [S1, S2, S3]
 …
 %0=MUL %1, %2
 %call trace(%0,%1,%2,M0,1)
 …
 %6=MUL %7, %8
 %call trace(%6,%7,%8,M1,3)
 br Label1

Power Model

M1
3,5,8

…
…S2

M0
1,4,4

State

Compute Hamming distance

Trace Buffer
Head

Tail

M1,3,1,3

M1,8,4,2

S1

S3

S2

B3:
 …

C
om

m
it

B1: //Loop header [S1]
 %call bb_begin(1)
 …

M0,6,2,3

Iter0 S1 S2 S3
Iter1 S1 S2 S3

Iter2 S1 S2 S3

Global Signal Table

Figure 3.3: Inter-block level out of order execution scenarios.

step are computed, and this switching activity information is committed to

either a tracing file or the final power model. In addition, for performance

estimation, a global cycle counter is increased by the number of cycles spent

on the block.

As shown in Figure 3.3, the execution of basic blocks can be overlapped

in the case of pipelined hardware loops. This results in some operators in the

second iteration to be executed before the last operator in the first iteration.

In [44], we had introduced an additional intermediate pipeline buffer that

retains signal traces of previous iterations to emulate the pipeline structure.

26

To improve simulation speed, we now account for such pipeline effects by

instead controlling the head and tail management in the trace buffer itself.

When first entering the header block of a pipelined loop, control state tags

for a single iteration of the loop body block are inserted into the buffer. If

a pipelined execution is detected, the trace buffer is not committed during

execution of the loop body. Instead, during execution of the header block

at the start of each new loop iteration, only the completed control steps, i.e.

entries corresponding to the loop initiation interval (II) are committed, and

the head is moved and entries are discarded accordingly. Remaining entries

are retained and their state tags relabeled to overlap with the start of the next

iteration. Finally, new control state tags for the bottom part of the loop body

are inserted into the trace buffer. With each such iteration, new traces will

be added to the remaining buffer contents, which will contain uncommitted

signal data from previous iterations. After the end of execution of a loop, all

remaining entries in the buffer are committed. Loop information (II as well as

IDs of all loop header and body blocks) is automatically extracted from the

HLS tool together with other scheduling and binding information. Overall,

this approach allows us to accurately trace the signal transitions of hardware

resources without the need for a slow lockstep pipeline simulation.

3.2 Cycle-Level Power Model Synthesis

After collecting switching activity traces from the activity model using

simulations of a training set, power models are then synthesized in a one-

27

time offline learning process. In the following, we describe the cycle-level

power model associated with resource activity including proposed power model

synthesis processes utilizing state-of-the-art machine learning techniques.

3.2.1 Cycle-Level Power Modeling and Decomposition

Previous approaches for power estimation at the gate, RTL or micro-

architecture level mostly choose a linear function to model the relation between

the internal signal switching activity and power consumption of a hardware

component. Given the internal and external signal switching activity column

vector a(t) at time t, power consumption p(t) can be modeled as

p(t) = θ · a(t), (3.1)

where θ denotes a coefficient row vector. To simplify the model, we assume

that related pins, e.g. of buses are grouped, and Hamming distances within a

group are utilized as an alternative to individual bit-wise switching activity.

With this assumption, power behavior of complex arithmetic units is generally

not linear [25], but without loss of generality, we use a linear model for the

following model derivations.

Ignoring glitching or asynchronous activities, we can convert the con-

tinuous power function into a discrete cycle-level model. In general, average

power consumption pn in cycle n can be modeled as

pn = 1
T

∫ nT

(n−1)T
p(t) dt = θ · a(nT) = θ · an = PCS(an), (3.2)

28

where an is a discrete activity vector. We utilize resource-level activity vectors

captured during functional tracing to drive a single cycle-level power model

PCS(an).

The complexity of the power model in (3.2) is directly proportional to

the dimension of the activity vector, where high dimensionality may create

generalization errors in learning processes. To avoid over-fitting, feature sam-

pling, which reduces model dimensions by selecting a key subset of signals, can

be utilized, but this may result in a loss of accuracy. As an alternative to tra-

ditional feature selection, we introduce a structural model decomposition that

uses architectural information to reduce unnecessary signals while improving

accuracy.

In white-box models, hardware can be described in FSMD form. Given

a finite set of FSMD states S, where the state executed in cycle n is defined

as sn, the power consumption in a given cycle n is dependent on resource

utilization in FSMD state sn. Further, given a finite set of hardware resources

R, a resource scheduling and binding function can be defined as m : S ×R→

{0, 1}. For instance,m(r, s) = 1 indicates that resource r is utilized in the state

s. With such mapping information, we can formulate the power consumption

in a given cycle n in the following manner:

pn =
∑
r∈R

m(r, sn) θr · an,r =
∑
r∈R

θ′sn,r · an,r, (3.3)

where θr and an,r denote the coefficient and switching activity subvectors

corresponding to resource r, respectively. In this formulation, the coefficient

29

+

X X

X

s1

s2

s3 +

RTL
MUL0 MUL1

REG0 REG1

ADD

CSTEP

MICRO
CODE

a b c d

e f

g h

i

Figure 3.4: Example of power model decomposition.

factors vectors θsn,r = m(r, sn) θ′sn,r are not only resource, but also state-

dependent. Coefficients are masked and zeroed depending on resources utilized

in each state. Crucially, such a re-formulation also allows unmasked entries to

vary in order to be able to account for any power consumption of resources as

well as connected control and glue logic being dependent on the control state.

With this, we can decompose equation (3.3) into separate and inde-

pendent, decomposed cycle-level power models for each control state PCD,sn .

In the process, we can further exploit mapping information m(r, s) to identify

and remove unnecessary signals an,r corresponding to unused resources r and

thus masked activity in a particular state sn:

pn = PCD,sn(a′sn,n) = θ′sn
· a′sn ,n, (3.4)

where a′sn ,n = (an,r |r : m(r, sn) 6= 0) is a subvector composed of activity of the

signals used in the state sn. We illustrate this with the help of a small example.

Figure 3.4 shows a hardware micro-architecture in which three resources are

allocated (MUL0, MUL1 and ADD). The power consumption of the complete

hardware processor can be estimated using a single cycle-level model (PCS)

30

from (3.2) using all switching vectors connecting to all resources. By contrast,

the decomposed power model (PCD) of a given control state instead utilizes the

much smaller subset of signals connecting the resources scheduled in the given

state only. For example, the power consumption of state S3 can be estimated

with three signals instead of all nine switching vectors. As such, a power

model decomposition based on structural micro-architecture information is

able to reduce the complexity of the model with little to no information loss.

At the same time, it also allows for state-dependent variations in coefficients

θ′s that can account for differences in power consumption of resources and

other shared logic.

3.2.2 Feature Selection

Decomposition based on the FSMD information still has limitations in

handling states with high resource utilization, such as pipelined states with

many scheduled operators. Moreover, decomposition still requires all signals

to be traced across states, which decreases simulation speed. We therefore

apply additional feature selection to further reduce complexity and improve

estimation latency. As part of basic timing back-annotation, we already select

only key signals to trace based on the expected power contribution of resources

in the micro-architecture. The power consumption of complex units, such as

adders, multipliers or registers will be much higher with larger variations than

the power of simple logic units, such as multiplexers or bitwise logic operators.

Hence, we only sample the signals connected to such resources. Based on the

31

resource mapping information extracted from the FSMD, we trace input and

output signals for IR operations mapped to arithmetic units. To also take

registers into account, we extract the variable mapping information from the

FSMD and trace any outputs of operations that store their results in registers.

To further reduce feature sets, we additionally leverage a decision tree

approach from machine learning [45]. Decision trees are well known for their

ability to automatically determine relative importance of features from the

training data. We apply such feature selection after model decomposition.

Feature selection first trains a decision tree model, extracts the importance of

the signals, and then selects the key signals that exceed a given threshold.

3.2.3 Learning

Each power model is trained from given power and activity traces using

established machine learning algorithms. Activity traces contain cycle times,

states and corresponding switching vectors. Power traces contain actual power

measurements from an equivalent gate-level simulation for the same set of

training inputs. Activity and power traces are partitioned into states and

inputs based on decomposed power models in each control step. Each power

model is then trained with the corresponding partitioned traces and checked

for accuracy using cross-validation methods.

Power behavior of complex arithmetic units is generally not linear [25].

We thus support linear as well as non-linear regression models. Depending

on hardware functionality, input data statistics and complexity of models,

32

a non-linear machine learning model can represent the power consumption

behavior better than a typical linear least squares model. Our learning flow

also supports a cross-validation based model selection to find the best accuracy

power model for given a training set. In doing so, power model synthesis trains

each available learning model with the given training vectors and picks the final

model according to cross-validation scores.

For online power estimation, a regression model library is inserted into

the activity model. At the start of hardware simulation, pre-compiled power

model parameters, coefficients, and data structures are loaded into regression

models. As part of this process, unnecessary signal tracing calls inserted dur-

ing annotation process are removed to improve estimation simulation speed.

At run-time, the power model then estimates the power consumption of the

hardware implementation from the dynamically computed switching activities.

3.3 Experimental Results

We have implemented a fully automated realization of our power mod-

eling flow. We integrated our flow with the Vivado HLS engine [46] utilizing

the LLVM compiler framework [47] for automatic activity annotation, predic-

tion insertion and IP model generation. Power model synthesis utilizes the

scikit-learn [48] machine learning library for Python. For fast online predic-

tion, we natively implemented C++ based power estimation models to reduce

Python binding overhead.

We applied our flow to generate models for pipelined and non-pipelined

33

hardware designs of a 6x6 general matrix multiplication (GEMM), a 2D dis-

crete cosine transform (DCT), a JPEG quantizer (Quant) and a weight com-

putation block of a high dynamic range (HDR) imaging application [49]. The

quantizer has two control inputs for choosing a quantization table and the

image scaling quality. All hardware designs were synthesized using Synopsys

Design Compiler [50] with the Nangate 45nm Open Cell Library [51] at 200Mhz

clock frequency. Gate-level power was estimated using Synopsys PrimeTime

PX [52] with VCD files generated from full gate-level simulation. We mea-

sured power consumption of logic gates and registers, but power consumption

of memories is excluded. All experiments were performed on a quad-core Intel

i7 workstation running at 3.5 GHz. To learn each power model, we used train-

ing sets generated from different random seeds or images. In all cases, training

vectors were selected to guarantee 100% of lines of code coverage. To generate

test vectors, the GEMM design was simulated with 5000 random test matrices.

A 640x320, a 512x512, and a 200x100 24-bit RGB image are used to generate

DCT, QUANT, and HDR test vectors, respectively. Three different quality

factors and two different table setting are utilized to generate the test set for

the QUANT design. Table 3.1 summarizes benchmarks and synthesis results

including number of states in each design, execution cycles per invocation, key

IR operators and (shared) RTL resources selected for annotation and tracing.

To generate test vectors, GEMM design was simulated with 5000 random test

matrices. A 640x320, a 512x512, and a 200x100 24-bit RGB image are used to

generate DCT, QUANT, and HDR test vectors, respectively. Three different

34

Table 3.1: Benchmark summary for white-box IPs

Pipe States
Cycles per

Gates
RTL Traced

Invocation Resources IR Op.

GEMM
No 6 734 703 11 11

Yes 4 436 964 20 20

DCT
No 23 179 7,007 88 139

Yes 12 94 6,309 61 127

HDR
No 18 995 4,883 35 70

Yes 20 825 7,887 41 104

QUANT
No 6 194 1,032 7 7

Yes 4 68 1,035 8 8

Table 3.2: Train and test summary for white-box IPs

Pipe
Train Test Total Avg.

Invoc. Invoc. Test Cycles Power

GEMM
No 2,000 5,000 3,670,000 0.36mW

Yes 2,000 5,000 2,180,000 0.72mW

DCT
No 3,000 10,800 1,933,200 0.67mW

Yes 3,000 10,800 1,015,200 2.05mW

HDR
No 988 1,200 1,194,000 0.81mW

Yes 988 1,200 990,000 1.07mW

QUANT
No 3,600 12,288 7,150,452 0.24mW

Yes 3,600 12,288 2,506,752 0.43mW

quality factors and two different table setting are utilized to generate the test

set for the QUANT design. Table 3.2 summarizes the size of training and test

sets, and the average power consumption of each test set simulation.

Figure 3.5 and Figure 3.6 show accuracy and speed of proposed decom-

posed cycle-level power models (CD) as compared to a single cycle-level power

model (CS) across various benchmarks. We measured data-dependent cycle-

by-cycle MAE of values predicted by each model compared to gate-level simu-

35

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

GEMM DCT HDR QUANT GEMM DCT HDR QUANT

Non-Pipelined Pipelined

M
AE

	[%
]

CS-L CS-DT CD-L CD-BL CD-DT CD-GB

Figure 3.5: Cycle-by-cycle power accuracy.

lations, normalized against average power over the full simulation.We compare

both power models utilizing either a least squares linear (CS-L and CD-L) or

a decision tree (CS-DT and CD-DT) regression against a decomposed model

using a linear Bayes ridged regression (CD-BL), or a gradient boosting regres-

sion composed of multiple decision trees (CD-GB). In all cases, we applied a

decision tree based feature selection to remove uncorrelated features and then

unused signals.

We can observe that, in all cases, linear decomposed models (CD-L)

show on average 1.8x better accuracy than single cycle-level models with least

squares regression (CS-L). The proposed structural decomposition technique

results in up to 26% less MAE. A decision tree regression can improve the

accuracy of the single model (CS-DT). However, it still shows higher er-

rors in several cases, which indicates that decomposition is a key factor in

improving model accuracy. Significant accuracy improvements are observed

36

0.0K

0.5M

1.0M

1.5M

2.0M

2.5M

GEMM DCT HDR QUANT GEMM DCT HDR QUANT

Non-Pipelined Pipelined

Cy
le
s/
Se
c

CS-L CS-DT CD-L CD-BL CD-DT CD-GB

Figure 3.6: Estimation speed of models.

in the non-pipelined DCT case. In the non-pipelined DCT, there is a sub-

stantial power variation across states. It is generally hard to capture such

state-dependent trends in a single cycle model. Compared to simpler designs

(QUANT, GEMM), higher accuracy improvements are observed in complex

hardware implementations (HDR, DCT), which again indicates that decom-

position is more effective in large designs. Among all models, decomposed

power models utilizing decision tree (CD-DT) or gradient boosting (CD-GB)

regression show better accuracy than others. Linear models (CD-BL, CD-

L) show the worst results in all cases, with up to 4.8% higher errors, where

Bayesian models (CD-BL) generally perform similar or worse than standard

least squares regressors.

Speed (Figure 3.6) generally depends on the complexity versus execu-

tion cycles of the design. Single models are slightly faster than decomposed

ones on average. In the single models, more activity features are treated as

37

correlated and thus removed during feature selection, which results in sig-

nificantly less accuracy but better speed. Models using gradient boosting

regression (CD-GB) are on average 3.7x slower than others. Gradient boost-

ing needs to call multiple subcomponent models, which generally introduces

much larger prediction overhead. The decision tree model (CD-DT) is thereby

3.6x faster than a gradient boosting (CD-GB) one at similar accuracy. Least

squares models (CD–L) are on average slightly faster, but decision tree mod-

els (CD-DT) provide on average 1.3x better accuracy. Overall, when compar-

ing different regression methods and models, results show that a decomposed

power model utilizing a decision tree regression (CD-DT) provides the best

trade-off between accuracy and speed. The CD-DT model achieves on average

1.5Mcycles/sec at 93.4% accuracy. For further analysis, we utilize CS-DT and

CD-DT models.

Table 3.3 and Table 3.4 further summarize and detail accuracy and

speed of models across benchmarks. We measure cycle-by-cycle MAE, invocation-

by-invocation MAE, and total average error across a full simulation. Overall,

the CD-DT models improve accuracy over the CS-DT models by a factor of

1.4x on average across all error metrics. The CD-DT models estimate cycle-

level and invocation-level power consumption within 10.1% and 3.6% com-

pared to gate-level power results. In all cases, average errors across the whole

simulation are below 1%.

38

Table 3.3: Accuracy of cycle-level modeling

Pipe

Cycle-by-Cycle Invocation-by-Invocation Average

MAE [%] MAE [%] MAE [%]

CS-DT CD-DT CS-DT CD-DT CS-DT CD-DT

GEMM
No 10.4% 10.1% 3.2% 3.1% 0.4% 0.4%

Yes 8.0% 7.9% 2.3% 2.2% 0.1% 0.1%

DCT
No 10.7% 0.6% 0.8% 0.0% 0.5% 0.0%

Yes 5.5% 3.9% 1.0% 1.1% 0.4% 0.5%

HDR
No 8.0% 7.6% 2.5% 2.0% 1.2% 0.9%

Yes 9.0% 6.6% 2.6% 2.4% 1.3% 1.0%

QUANT
No 11.5% 10.0% 4.3% 3.6% 1.2% 0.1%

Yes 7.0% 6.0% 1.8% 1.7% 0.0% 0.4%

Avg. - 8.8% 6.6% 2.3% 2.0% 0.6% 0.4%

Table 3.4: Simulation speed of models [cycles/sec]
Pipe CS-DT CD-DT C Code RTL Gate

GEMM
No 1.21M 1.20M 220M 51K 0.61K

Yes 0.92M 0.84M 130M 35K 0.36K

DCT
No 1.38M 1.40M 32M 16K 0.41K

Yes 1.35M 1.25M 17M 5.9K 0.19K

HDR
No 1.80M 1.66M 32M 13K 0.28K

Yes 1.60M 1.65M 27M 11K 0.20K

QUANT
No 1.99M 2.08M 48M 19K 1.80K

Yes 1.45M 1.48M 17M 9.3K 1.52K

Avg. - 1.46M 1.45M 65M 20K 0.67K

Table 3.4 summarizes the simulation speeds of cycle-level models as

compared to those of pure source-level, RTL or gate-level simulations. As

discussed before, the CD-DT models are on average slightly slower than the

CS-DT models. Compared to a pure source-level simulation, the CD-DT mod-

els are on average 45x slower. They are, however, about 73x and 2,200x faster

39

Cycles
0 10 20 30 40 50 60 70 80 90

m
W

0

1

2

3

4

5
Measured Estimated

(a) DCT simulation.

Cycles
0 100 200 300 400 500 600 700 800

m
W

0

1

2

3 Measured Estimated

(b) HDR simulation.

Figure 3.7: Cycle-by-cycle power traces of cycle-level power model.

than RTL and gate-level power simulation, respectively.

Figure 3.7 and 3.8 show the cycle-by-cycle and invocation-by-invocation

profiles of estimated versus measured power waveforms for the pipelined DCT

and HDR designs. As the profiles show, our extended models are 100% tim-

ing accurate and can accurately track cycle-level power behavior within each

invocation as well as data-dependent effects across different invocations of the

same design.

The major learning overhead is collecting gate-level simulation results

to construct the training vectors. Depending on the trace length and design

complexity, we were able to generate gate-level power traces for training within

40

Invocations
0 100 200 300 400 500

m
W

0

0.5

1

1.5

2

2.5

Measured Estimated

(a) DCT simulation.

Invocations
0 100 200 300 400 500 600

m
W

0

0.5

1

1.5

Measured Estimated

(b) HDR simulation.

Figure 3.8: Invocation-by-invocation power traces of cycle-level power model.

6 to 20 minutes. The learning times of cycle-level models are proportional to

the number of decomposed models, i.e. states. The synthesis time of cycle-

level models takes 30 to 200 seconds. Overall, we were able to synthesize power

models in each case within 24 minutes including trace generation.

Figure 3.9 further details the learning overhead and accuracy of the

proposed decomposed model (CD) as compared to the single model (CS).

By increasing the size of training sets, we explore trade-offs between learning

overhead and final accuracy of trained models. We measure accuracy as cycle-

by-cycle MAE of the models. All of these models utilize either the decision

tree regression (-DT) or a least squares linear regression (-L). In all cases,

41

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

0 1000 2000 3000 4000

M
AE

[%
]

Size	of	training	set [invocations]

CS-L CD-L CS-DT CD-DT

Figure 3.9: Learning overhead vs. cycle-level model accuracy for pipelined
DCT.

the decomposed models show the better accuracy than the single models with

sufficient training. The models with linear regression (CS-L and CD-L) suffer

from overfitting trends and show worse accuracy than corresponding models

with decision tree regression (CS-DT and CD-DT). We can observe that the

cycle-level decomposed model utilizing the decision tree regression (CD-DT)

provides the best accuracy for the same size of the training set, reaching more

than 96% accuracy for a training set with 2,700 vectors.

42

3.4 Summary

In this chapter, we presented a novel approach for generating fast

functional hardware models back-annotated with cycle-accurate and data-

dependent power and performance estimates. Our back-annotation approach

is fully automated by integrating with commercial off-the-shelf tools for cus-

tom hardware synthesized by high level synthesis. The proposed power model

synthesis flow exploits structural scheduling and binding information to gen-

erate accurate and fast power models using advanced machine learning tech-

niques. The proposed structural model decomposition enables accurate data-

dependent power prediction while reducing simulation overhead. Associated

activity models capture resource-level signal transitions without detailed full

micro-architecture simulation. Our flow has been evaluated on several industry-

strength benchmarks and generated models. Results show that our approach

is able to achieve orders of magnitude speedup compared to gate-level or RTL

power simulation, all while producing fully cycle-accurate timing results and

estimating power with less than 10% cycle-by-cycle and less than 1% aver-

age error.

43

Chapter 4

Power Modeling for Gray-Box IPs

In the preceding chapter, we focused on enabling cycle-level, data-

dependent power and performance estimation for high-level functional hard-

ware models. In a white-box case, we support capturing cycle-accurate activity

of RTL datapath resources, such as adders and multipliers, during high-level

functional simulation by back-annotating abstract micro-architecture infor-

mation into the IR. Resource-level tracing provides cycle-accurate switching

activity of each datapath component, but requires extending the functional

model to capture cycle-specific activities, resulting in simulation overhead.

In this chapter, we introduce an intermediate gray-box approach that

supports power estimation at basic block-level granularity [53]. It utilizes

less total switching activity and fewer invocations of the power model than

cycle-level models, while providing a finer granularity than invocation-level

models. The proposed approach first annotates limited mapping information

about basic block inputs and outputs to extract block-level activity from a

functional simulation. Instead of a cycle-level power model, we learn a block-

level power model based on captured block-level activity and corresponding

gate-level power traces. In this process, power models are decomposed into ba-

44

sic block specific models using control flow information to improve estimation

accuracy.

The rest of the chapter is organized as follows: we first introduce pro-

posed block-level annotation and activity computation in Section 4.1. Next, we

propose the block-level power model synthesis in Section 4.2. Thereafter, we

shows experimental results of applying the flow to a set of industrial-strength

design examples in Section 4.3. Finally, Section 4.4 summarize the chapter.

4.1 Block-Level Activity Model

Internal signal switching activity estimation is a key for data-dependent

power modeling. Resource-level tracing provides cycle-accurate switching ac-

tivity of each datapath components, but requires extending the functional

model to capture cycle-specific activities, resulting in simulation overhead.

Moreover, Hamming distance and switching activity computation for whole

resources is typically the most significant bottleneck for power estimation,

and it is often much slower than actual functional simulation [54]. Instead

of computing cycle-by-cycle switching activity for all resources, we propose

a basic block-level model that only utilizes inter-basic block communication,

i.e. inputs and outputs of basic block for activity and power estimation. This

reduces the total amount of signal traces and switching activity that need to

be collected and computed, which results in faster estimation speed.

45

4.1.1 Block-Level Annotation

In order to track inter-basic block communication activity in each block,

we trace all input variables that are updated in a previous block but read in

the current block, all output variables that are written in the current and

read in a subsequent block, as well as all block-internal memory accesses.

We extract the mapping of each input and output variable and each array

access in the basic blocks to corresponding registers and memory ports in the

hardware component taking into account register and memory port sharing.

The annotation process inserts trace() function calls to store the inter-basic

block communication traces along with the mapping IDs. Input variables are

traced at the beginning of each basic block while output variables and memory

access are traced at the end of each block.

4.1.2 Block-Level Activity Computation

Shared memory accesses can be flexibly scheduled during RTL synthe-

sis to maximize hardware performance if there is no dependency between the

operations. To compute accurate memory port activity, a reordering is there-

fore also required, but cycle-accurate reordering is not necessary. Instead of

using a reordering buffer, the annotation process statically reorders the shared

memory accesses by inserting the trace functions in access order.

Figure 4.1 shows the block-level activity computation process. Basic

block inputs and outputs are collected in the trace buffer at run-time. At a

beginning of the basic block, the trace functions attach basic block inputs to

46

Power Model

L0
3

…
…1

R0
4

BB_ID

Compute Hamming distance

Commit All

Trace Buffer
R0,4 L0,8 R3,20

IR

B2:
 …
 %call trace(%1,R0)
 …
 %2=MUL %1, 5
 %7=LOAD A[1]
 …
 %call trace(%7,L0)
 %call trace(%2,R2)
 br B3

B1:
 …
 %1 = …
 …
 br %1 B2, B3

B3:
 %call bb_begin(3)
 %8 = ADD %2, B2, …
 …

Global Signal Table

Figure 4.1: Basic block-level signal trace rearrangement.

the signal trace linked list, along with annotated resource information. At

the end of each block, memory accesses and outputs are also attached to

the linked list. At the beginning of the next basic block, the whole list of

captured traces is committed into the global signal table to compute inter-

basic block activity during a single basic block execution. For cycle-accurate

performance estimation, the execution time of each basic block is also extracted

from the HLS tools and annotated in a similar manner as for resource-level

activity tracing.

47

X

+

a b

d

e

c

Correlated

(a) Combinational logic.

Comb
Logic

Comb
Logic

Comb
LogicR0 R1

Correlated

a d

b c

(b) Multi-stage architecture.

Figure 4.2: I/O switching activity correlation.

4.2 Block-Level Power Model Synthesis

In the following, we describe block-level power model using only basic

block inputs and outputs, including proposed power model decomposition.

4.2.1 Block-Level Power Modeling

Instead of internal resource-level activity, our block-level power model

only utilizes switching activity of sampled basic block inputs and outputs for

power estimation. Given the mapping of block inputs and outputs to registers

or ports, internal signal activity in such an approach is indirectly observed

from switching activity of input and output signals. Internal signal activity

for pipelined and multi-stage hardware architectures in the current cycle can

thereby be approximated from future and past switching activities of output

and input registers/ports, respectively. We leverage the fact that internal

switching activities are highly correlated with input and output activities.

Figure 4.2(a) and Figure 4.2(b) show such correlations in combinational logic

48

and multi-stage architecture implementations, respectively.

The input and output switching activities of combinational arithmetic

operators are linearly correlated [25]. Hence, the input switching activity

of an operator can be modeled as a linear function of the input switching

activity of the driving ancestor. For example, the power consumption of the

dataflow graph in Figure 4.2(a) can be formulated as pn = ∑
v=a...e θv · an,v.

Using such a linear input-output relationship, we can simplify this equation

to pn = ∑
v=a,b,c,e θ

′′
v · an,v.

For pipelined or multi-stage architectures, input activity and activity of

the first pipeline stage register are also linearly correlated. Similarly, activity

of the second stage is linearly correlated to activity in the first stage. We can

therefore approximately estimate internal switching activities throughout the

pipeline from the input activity history. However, the activity of registers far

away from the input are weakly correlated or not correlated at all. Instead,

they are more likely to be correlated to activity at the outputs of the pipeline.

Hence, to handle deeply pipelined logic and improve accuracy, we also consider

future output activities for prediction. For a given pipeline of depth d, we can

derive an I/O-based cycle-level power model PCI as

pn = PCI(an−d+1,I , ..., an,I , an,O, ..., an+d−1,O)

= ∑d−1
i=0 θ′′i · (an−i,I , an+d−i−1,O),

(4.1)

where an,I and an,O denote the input and output activity vectors, and θ′′i

denotes coefficient vectors corresponding to pipeline stage i. For example, the

power consumption of the pipelined hardware implementation in Figure 4.2(b)

49

can be computed as pn = ∑
v=a,b,c,d θv · an,v. Using I/O history and future, we

can instead re-formulate power consumption as pn = ∑2
i=0 θ

′′
i ·(an−i,a, an+2−i,d).

The power consumption of the micro architecture in Figure 3.4 can similarly be

formulated as pn = ∑1
i=0 θ

′′
i · (an−i,a, an−i,b, an−i,c, an−i,d, an+1−i,i) using activity

history of primary I/O ports ‘a’, ‘b’, ‘c’, ‘d’, and ‘i’. Note that this model

applies to power estimation in all cycles/states Sn, n = 1...3, i.e. the stage-

wise decomposition here is different from the state-wise in (4).

A block-level power model can then be formulated to estimate an aver-

age power consumption per basic block using switching activity of basic block

inputs and outputs. Given a set of basic blocks B, where the m-th executed

basic block is defined as bm, the average power consumption p̄m of basic block

bm can be formulated from (4.1) as

p̄m = 1
L̄m

nm+L̄m−1∑
n=nm

d−1∑
i=0

θ′′i · (an−i,I , an+d−i−1,O), (4.2)

where nm and L̄m denote the start cycle time and execution cycles of the m-th

basic block, respectively. To simplify the equation, we can remove the summa-

tions over the pipeline and execution cycles by introducing a new coefficient

vector θ̄ and thus define a single block-level power model PBS in the follow-

ing manner:

p̄m = 1
L̄
θ̄ · ām = PBS(ām), (4.3)

where L̄ = maxm L̄m denotes the maximum execution cycles over all basic

blocks and ām = (anm+j,I , anm+j+d−1,O|1−d 5 j < L̄) denotes a concatenation

50

+

X X

X

s1

s2

s3 +

RTL
MUL0 MUL1

REG0 REG1

ADD

CSTEP

MICRO
CODE

a b c d

e f

g h

i

B1

+

X X

X

+

B1

B2

s1

s2

s3

Figure 4.3: Block-level power modeling.

of all the activity of input and output ports that can flow through the pipeline

for the length of the block. For blocks with length L̄m < L̄, we zero pad vectors

(anm+j,I = anm+j+d−1,O = ~0, L̄m < j < L̄) to keep the same dimension for all

ām.

4.2.2 Power Model Decomposition

In block-level gray-box activity models, we can only observe inputs and

outputs of each basic block, not the actual cycle-by-cycle activity of all primary

input and output registers or ports. For example, in Figure 4.3, ‘a’, ‘b’, ‘c’,

‘d’, and ‘i’ are primary I/O ports of the whole hardware. Assuming that a

basic block starts and ends with S1 and S3, block inputs are ‘a’, ‘b’, ‘c’, and

‘d’ in state S1, and ‘c’ and ‘d’ again in state S2. Block output is ‘i’ once in S3.

We capture only these values, which are represented as different variables in

the activity model code. Similarly, assuming the block starts with S2, block

inputs would be ‘c’, ‘d’, ‘g’, and ‘h’. In this case, instead of using history of

primary input ports for estimating activity of internal registers REG0 and

REG1, we directly capture and trace block inputs ‘g’ and ‘h’. In all cases, we

51

can therefore only use actual inputs and outputs of the current basic block to

estimate the power consumption, where feature selection is implicitly applied

to remove unnecessary signals not utilized in the block, thus reducing model

complexity. With this, we can further decompose equation (4.3) into separate

and independently learned block-specific power models PBD,bm for each basic

block bm in the following way:

p̄m = PBD,bm(ā′m,bm
) = 1

L̄m

θ̄
′
bm
· ā′m,bm

(4.4)

where ā′m,bm
and θ̄

′
bm
denote the block-level activity vector and corresponding

coefficient vector for basic block bm, respectively.

In case of pipelined or speculative scheduling, executions of successive

basic blocks can overlap. Since we can not separate power consumption of

overlapped blocks during training, we need to account for such periods by at-

tributing power contributions of previous blocks that are still executing to the

model of a current block. We redefine the execution length L̄m of a charac-

terized block bm as the cycle difference between the start of its first operation

and the start of the first operation of the next block. In other words, a block is

defined to end when the next block starts. In addition, we extend the activity

vector of a block by including activity vectors of all overlapping blocks. Such

extended activity vectors may increase the complexity of the model, but only

a small part of the transaction activities contribute to the power consumption

in any given cycle, which results in many of the elements of the feature vector

being zero or small. To prune away such uncorrelated features, we apply an

additional feature selection for each decomposed model.

52

B0

B2

B1
B0

B2

B1
B2C

yc
le
s

C
yc
le
s

B4B3

Path 2Path 1 B3 B4

Path 2Path 1

PB2,1
(ā)PB2,0

(ā)

Figure 4.4: Basic block-level decomposition for multi-path control flow.

Finally, overlapped execution of blocks can also depend on control flow.

Figure 4.4 shows the control flow graph of five basic blocks with two different

paths (Path 1 and Path 2). Depending on the taken path, the length and

overlapping of block B2 varies. To account for such variations, we extract

all possible unique combinations of predecessor and successor blocks that can

overlap with each basic block during training. We then build different power

models PBD,bm,k
for each possible unique overlappings k for a block bm.

4.3 Experimental Results

We integrated block-level activity tracing and power model synthesis

into our fully automated, HLS-based power modeling flow. We utilized the

same benchmarks and experimental setup as described in the previous chapter

(Section 3.3). Table 4.1 summarizes benchmarks and synthesis results includ-

ing number of basic blocks in each design, the number of block I/O signals

traced and the size of training and test sets.

Figure 4.5 and 4.6 show model accuracy and speed of proposed block-

53

Table 4.1: Benchmark summary for gray-box IPs

Pipe
Basic Traced

Gates
Train Test Total

Blocks Block I/O Invoc. Invoc. Test Cycles

GEMM
No 10 4 703 2,000 5,000 3,670,000

Yes 6 4 964 2,000 5,000 2,180,000

DCT
No 6 32 7,007 3,000 10,800 1,933,200

Yes 6 32 6,309 3,000 10,800 1,015,200

HDR
No 13 24 4,883 988 1,200 1,194,000

Yes 10 52 7,887 988 1,200 990,000

QUANT
No 6 10 1,032 3,600 12,288 7,150,452

Yes 6 10 1,035 3,600 12,288 2,506,752

level decomposed power models (BD) as compared to the single basic block

models (BS) across various benchmarks. To evaluate block-by-block MAE,

we convert the gate-level cycle-by-cycle trace by assigning the average power

dissipation to corresponding blocks. We compare both power models utilizing

either a least squares linear regression (BS-L and BD-L) or a decision tree

regression (BS-D and, BD-DT) against a decomposed model using a linear

Bayes ridged (BD-BL) or a gradient boosting (BD-GB) regression. Decision

tree based feature selection is applied in all cases.

The decomposed model using least squares regression (BD-L) shows

up to 18% higher accuracy than a single model (BS-L). In case of pipelined

QUANT and GEMM, accuracy is not improved since one single loop body

block takes up most of the execution time. Using a decision tree regression

(BS-DT) can similarly improve accuracy, but still shows higher errors in the

complex cases (DCT, HDR). Among decomposed models, non-linear regression

models (BD-DT and BD-GB) again show better accuracy than the linear ones

54

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

GEMM DCT HDR QUANT GEMM DCT HDR QUANT

Non-Pipelined Pipelined

M
AE

	[%
]

BS-L BS-DT BD-L BD-BL BD-DT BD-GB

Figure 4.5: Basic block-by-basic block power accuracy.

0.0K

1.0M

2.0M

3.0M

4.0M

5.0M

6.0M

7.0M

8.0M

9.0M

10.0M

GEMM DCT HDR QUANT GEMM DCT HDR QUANT

Non-Pipelined Pipelined

Cy
le
s/
Se
c

BS-L BS-DT BD-L BD-BL BD-DT BD-GB

Figure 4.6: Estimation speed of models..

(BD-L, BD-BL), with up to 4.6% lower errors.

Figure 4.6 compares speed across various benchmarks. Here, decom-

posed models show faster estimation speed than single ones, since the latter

require the union of all possible block inputs and outputs to be provided for

each block. As before, the decision tree model (BD-DT) provides the best

55

Table 4.2: Accuracy of block-level modeling

Pipe

Basic Block-by-Basic Block Invocation-by-Invocation Average

MAE [%] MAE [%] MAE [%]

BS-DT BD-DT CD-DT BS-DT BD-DT CD-DT BS-DT BD-DT CD-DT

GEMM
No 7.8% 7.8% 7.9% 3.0% 3.0% 3.1% 0.4% 0.5% 0.4%

Yes 6.8% 6.5% 6.5% 2.3% 2.2% 2.2% 0.1% 0.1% 0.1%

DCT
No 4.5% 0.5% 1.3% 3.5% 0.0% 0.0% 3.3% 0.0% 0.0%

Yes 10.0% 3.6% 2.5% 5.9% 1.4% 1.1% 4.0% 0.2% 0.5%

HDR
No 8.0% 6.1% 3.2% 2.8% 1.9% 2.0% 1.9% 0.7% 0.9%

Yes 7.6% 5.4% 3.1% 2.8% 1.9% 2.4% 2.3% 1.4% 1.0%

QUANT
No 12.3% 9.0% 10.0% 4.1% 3.0% 3.6% 1.6% 0.9% 0.1%

Yes 6.9% 6.8% 6.0% 2.6% 3.0% 1.7% 0.4% 0.7% 0.4%

Avg. - 8.0% 5.7% 5.1% 3.4% 2.1% 2.0% 1.8% 0.6% 0.4%

balance. It is on average almost as fast as linear models, and 2.3x faster than

a gradient boosting (BD-GB) one at similar accuracy. Overall, block-level

models provide similar accuracy than cycle-level estimates at significantly im-

proved speed. The BD-DT model achieves on average 4.7Mcycles/sec at 94.3%

accuracy.

Table 4.2 and Table 4.3 further summarize and detail accuracy and

speed of models across benchmarks. We measure the data-dependent basic

block-by-basic block MAE, invocation-by-invocation MAE, and total average

error across a full simulation. We compare the block-level models (BS-DT,

BD-DT) against our cycle-level decomposed model using decision tree regres-

sion (CD-DT). We can observe that the BD-DT models improve accuracy over

the BS-DT models by a factor of 2x on average across all error metrics. Com-

pared to the cycle-level model (CD-DT), the BD-DT models shows on average

56

Table 4.3: Simulation speed of models [cycles/sec]
Pipe BS-DT BD-DT C Code CD-DT RTL Gate

GEMM
No 2.34M 2.34M 220M 1.20M 51K 0.61K

Yes 1.77M 1.70M 130M 0.84M 35K 0.36K

DCT
No 6.67M 7.44M 32M 1.40M 16K 0.41K

Yes 4.83M 4.83M 17M 1.25M 5.9K 0.19K

HDR
No 7.19M 7.61M 32M 1.66M 13K 0.28K

Yes 7.15M 8.94M 27M 1.65M 11K 0.20K

QUANT
No 2.87M 2.91M 48M 2.08M 19K 1.80K

Yes 1.61M 1.64M 17M 1.48M 9.3K 1.52K

Avg. - 4.30M 4.68M 65M 1.45M 20K 0.67K

1.4x higher errors across all error metrics. Overall, the BD-DT models es-

timate block-level and invocation-level power consumption within 9.0% and

3.0% compared to gate-level power results, respectively. In all cases, average

errors of the proposed BD-DT models across the whole simulation are below

1.4%.

Table 4.3 summarizes the simulation speeds of gray-box models as com-

pared to those of pure source-level, cycle-level, RTL or gate-level simulation.

We can observe that the BD-DT models are on average 1.1x faster than the BS-

DT models. Compared to our cycle-level power model (CD-DT), the BD–DT

models show on average 3x speedup. Overall, the BD-DT models are on av-

erage 15x slower then pure source-level simulation. However, they are about

220x and 6,500x faster than RTL and gate-level power simulation, respectively.

Figure 4.7 and 4.8 show the cycle-by-cycle and invocation-by-invocation

profiles of estimated versus measured power waveforms for the pipelined DCT

57

Cycles
0 10 20 30 40 50 60 70 80 90

m
W

0

1

2

3

4 Measured Estimated

(a) DCT simulation.

Cycles
0 100 200 300 400 500 600 700 800

m
W

0

1

2

3 Measured Estimated

(b) HDR simulation.

Figure 4.7: Cycle-by-cycle power traces of block-level power model.

and HDR designs. Note that the cycle-level trace of the block-level model

shows the averaged power at block granularity. At the invocation-level, our

extended models accurately track data-dependent effects across different invo-

cations of the same design. All models show 100% accurately tracked timing

of the hardware implementations.

As discussed in the previous chapter, the major learning overhead is

constructing the training vectors using gate-level power simulation. As de-

scribed before, we were able to generate gate-level power traces for training

within 6 to 20 minutes. The learning times are proportional to the number

of decomposed models, i.e. number of basic blocks. The synthesis time of

58

Invocations
0 100 200 300 400 500

m
W

0

0.5

1

1.5

2

2.5

Measured Estimated

(a) DCT simulation.

Invocations
0 100 200 300 400 500 600

m
W

0

0.5

1

1.5

Measured Estimated

(b) HDR simulation.

Figure 4.8: Invocation-by-invocation power traces of block-level power model.

block-level models takes 30 to 90 seconds. Overall, we were able to synthesize

power models in each case within 23 minutes including trace generation.

Figure 4.9 shows the learning overhead and accuracy of the proposed

decomposed model (BD) as compared to the single model (BS). We measure

accuracy as basic block-by-basic block MAE of the models while increasing

the size of training sets. All of these models utilize either a a least squares

linear (BS-L, BD-L) or decision tree regression (BS-DT, BD-DT). In all cases,

the decomposed models show better accuracy than the single models, which

again indicates that the block-level decomposition improves the accuracy of

the model. As has already been seen in cycle-level models, models utilizing

59

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

0 1000 2000 3000 4000

M
AE

[%
]

Size	of	training	set [invocations]

BS-L BD-L BS-DT BD-DT

Figure 4.9: Learning overhead vs. block-level model accuracy for pipelined
DCT.

decision tree regression always show better results than linear models. Overall,

the block-level decomposed model utilizing the decision tree regression (BD-

DT) provides the best accuracy for the same size of the training set, reaching

more than 96% accuracy for a training set with 1,200 vectors.

4.4 Summary

In this chapter, we presented a power modeling approach for gray-

box IPs. The proposed modeling flow extends functional hardware models

to capture data-dependent block-level switching activity traces using block-

level mapping information. The power model synthesis flow then exploits

60

basic block-level dataflow and control information to generate data-dependent

power models at basic block-level granularity using advanced machine learning

techniques. Experimental results demonstrate the accuracy and speed of the

extended functional hardware models on several industry-strength benchmarks

and generated models. Results show that the block-level power modeling ap-

proach is able to achieve 3x speedup compared to our cycle-level power model,

all while estimating power within 9% basic block-by-basic block and 2% aver-

age error.

61

Chapter 5

Power Modeling for Black-Box IPs

A continued increase in system complexities has brought an increasing

reuse of pre-designed hardware components acquired from third party vendors

rather than being developed from scratch. Such IPs are not usually well doc-

umented, and only functional simulation models without detailed architecture

descriptions are provided together with pre-synthesized gate-level implementa-

tions. This limited observability makes power modeling for such black-box IPs

challenging. In the preceding chapters, we focused on enabling data-dependent

power and performance estimation using full or partial hardware-internal in-

formation. In case of black-box IPs, such internal architecture information for

fine-grain modeling is usually not available. This limits existing power estima-

tion to coarse-grained simulation techniques using state-based models, which

is inherently inaccurate.

In this chapter, we propose a novel power modeling approach for black-

box IPs that is aimed at capturing accurate power consumption using state-of-

the-art-machine learning techniques. We extract a data-dependent, invocation-

level power model from gate-level cycle-by-cycle power traces. A given gate-

level model and corresponding TLM of a black-box IP are simulated with the

62

same input vectors. Power synthesis then utilizes data I/O and control signal

traces from TLM simulation together with cycle-level power traces from gate-

level estimation to learn a power model. Based on the captured traces, we

extract an invocation-by-invocation power model that enables fast yet accu-

rate fine-grain data-dependent power estimation. Instead of building a single

invocation-by-invocation model, the synthesis flow decomposes power models

into multiple models and individually trains them. In the prediction phase, the

decomposed models are combined into an ensemble estimation that predicts

invocation-level power traces based on transaction-level I/O activity vectors

with increased accuracy.

The rest of the chapter is organized as follows: we first propose the

invocation-level activity model generation in Section 5.1. Next, we describe the

details of our invocation-level power model synthesis in Section 5.2. Thereafter,

Section 5.3 presents accuracy and speed of the proposed power models with

a set of industrial-strength design benchmarks. Finally, Section 5.4 concludes

the chapter with a summary.

5.1 External I/O Activity Computation

If no internal architecture information is available, we perform black-

box power estimation utilizing only external I/O activity captured for each

function invocation. In this case, the internal signal activity is indirectly ob-

served from switching activity of input and output signals. As described in

Chapter 4, Section 2.1, internal signal activity for pipelined and multi-stage

63

hardware architectures in the current cycle can be approximated from future

and past switching activities of external output and external input ports, re-

spectively. In a system-level model, re-arrangement of transactions and cycle-

by-cycle I/O tracking is usually required to estimate cycle-level switching

activity on input and output ports, which introduces significant simulation

overhead. By contrast, our approach directly computes power estimates from

unmodified high-level transaction-by-transaction activity. This approach can

reduce tracing and computation overhead, but without internal timing infor-

mation, only supports power modeling at invocation-level granularity.

5.1.1 External I/O Annotation

We assume that I/O interface mapping information between system-

level transactions and the black-box data ports is given. System-level hardware

models are usually written in system-level design languages (SLDLs), such

as SystemC or SpecC. In such TLMs, communication interfaces are approxi-

mately modeled, and the detailed computation architecture is fully abstracted

out. Models can also be purely functional, where no timing information is

available. However, even a functional model has interfaces that map to corre-

sponding data I/O ports. In general, we can find such mapping information

in documents or test benches for gate level simulation.

We assume that data port mapping, bit widths and information about

control signals is given, but internal architecture details are not available. An-

other assumption regarding observability in the system-level hardware model

64

is that some important control registers or control ports are available. Such

control dependencies are also necessary to model functional or performance

behavior. The activities of control signals, such as mode selections, do not

by themselves affect power consumption. However, their value is utilized to

estimate operating mode dependent power variations.

Required architecture information only consists of external I/O port

mapping, bit width and control port/register information. Designers can man-

ually describe the architecture file to utilize our automated annotation flow

or manually insert trace functions into the source code. Both approaches can

be seamlessly integrated into the automated power model synthesis process

without further manual interventions.

5.1.2 External I/O Activity Computation

Mapping information and external I/O data are passed into annotated

trace() calls, which are inserted at the beginning and end of each function. To

compute I/O activity, we utilize a similar mechanism as at the basic block-

level, but we commit signal traces into the global signal table only at the

end of each function invocation. In addition to external data I/O activity,

important control registers or control ports are also traced. We assume that

such control dependencies are available to model functional or performance

behavior. The activities of control signals, such as mode selections, do not

by themselves affect power consumption. However, their value is utilized to

estimate operating mode dependent power variations.

65

5.2 Invocation-Level Power Modeling

In the following, we describe our invocation-level power model utilizing

external I/O activity, including proposed power model synthesis process.

5.2.1 Invocation-Level Power Model

As discussed in Chapter 4, we can formulate the power consumption of

a hardware implementation using only past external input and future external

output switching activities. The proposed invocation-level power model esti-

mates an average power consumption per invocation using switching activity

of such external I/O and control signals only. Given a per-invocation execu-

tion latency ¯̄Ll and assuming that the l-th invocation starts in cycle nl, we can

formulate an invocation-level power model PIC that itself is not learned, but

instead computes the average power ¯̄pl of invocation l by averaging cycle-by-

cycle power obtained from a single learned, I/O-based cycle-level power model

PIC according to (4.1) over the length of the invocation ¯̄Ll:

¯̄pl = 1
¯̄Ll

∑nl+¯̄Ll−1
n=nl

PCI(..., an,I , an,O, ...)

= PIC, ¯̄Ll
(AI,l,AO,l).

(5.1)

Here, AI,l and AO,l denote an external input and output activity matrix com-

posed of ¯̄Ll input and output activity column vectors an,I and an,O, nl 5 n 5

nl + ¯̄Ll − 1, respectively. In this formulation, we assume that invocations do

not overlap, and we enforce the following initial condition on the input and

output activity vectors: an,I = an,O = ~0 for all n < nl or n > nl + ¯̄Ll.

66

In this model, re-arrangement of transactions and cycle-by-cycle I/O

tracking is required to compute cycle-level switching activity on external in-

put and output ports, which introduces a significant computation overhead.

However, by fully expanding equation (5.1) following (4.1), it can be seen that

invocation-level power does not actually depend on the order of activity infor-

mation. Furthermore, if there is no transition in cycle n for input or output

ports, the corresponding elements in external activity matrices AI,l or AO,l

will be zero and terms will be masked. This indicates that we can formu-

late a single invocation-level power model PIS by finding the contributed and

reordered coefficients ¯̄θ purely from transaction-level activity vectors ¯̄a:

¯̄pl = 1
¯̄Ll

¯̄θ · ¯̄a = PIS(¯̄a). (5.2)

We create the multiple such power models, one for each possible invocation

latency ¯̄Ll.

Transaction-level activity vectors are computed using Hamming dis-

tances over transaction data traces, where ¯̄a is a concatenated vector composed

over all transactions in an invocation, which does not require cycle-level re-

arrangement or cycle-by-cycle activity computation. However, the worst-case

dimension of ¯̄a is the product of the total number of external ports and exe-

cution cycles ¯̄Ll, which may create generalization errors in learning processes.

67

5.2.2 Ensemble Model

To address complexity issues, we previously decomposed cycle- and

block-level power models into separate and independent models for each state

or block. However, this is not possible in black-box models, where control

flow or state composition as well as scheduling and binding information is not

available. However, since the current state is a function of the cycle n, we can

indirectly capture the state based on n and an additional control vector c. We

thereby assume that control signals c, if any, determine the IP operating mode

on a per invocation basis, but remain constant over one invocation. With this,

we can decompose the power model into separate and independently learned

models PID,n(c, ¯̄a) for each cycle n. In the process, we convert equation (5.2)

into an ensemble of decoupled multiple regressions as follows:

¯̄pl = PIE, ¯̄Ll
(c, ¯̄a) = 1

¯̄Ll

∑nl+¯̄Ll−1
n=nl

PID,n(c, ¯̄a),

PID,n(c, ¯̄a) = ¯̄θ′n · (c, ¯̄a),
(5.3)

where ¯̄θ′n denotes a decomposed coefficient vector and (c, ¯̄a) the concatena-

tion of control inputs and transaction activity. In (5.3), the dimension of each

model PID,n is the same as the single power model PIS, ¯̄Ll
from (5.2), i.e. the

decomposed models use the complete transaction activity ¯̄a at their input.

However, only a small part of the transaction activities actually contribute

to the power consumption in any given cycle. We leverage a decision tree

based feature selection for each decomposed model to remove such unimpor-

tant features and reduce model complexity. As a result, the uncertainty of

68

the individual cycle-models is improved and there is less chance to run into

generalization errors. Note that (5.3) is similar to (5.1), but (5.1) uses a single,

uniform instead of separate and independent models for each cycle. Overall,

the total number of models to learn is increased. However, each decomposed

model uses the same input vectors, which enables parallel learning and predic-

tion without additional overhead. Note that models could be further decom-

posed along control inputs. However, as the control space is exponential in the

number of control signals, this would result in significant learning overhead.

The decomposition in (5.3) represents a form of ensemble learning. En-

semble learning is known to achieve better accuracy by utilizing the diversity

over multiple learning models [55]. Traditional ensemble learning introduces

diversity by dividing the training set, training each model with the parti-

tioned training set, and then predicting the target value as the average over

the prediction values of each model. By contrast, we introduce diversity by

decomposing the model into separate cycle models.

Ensemble models are well known for providing better performance than

single models in many cases [55]. In our case, we can prove that the proposed

ensemble model in (5.3) shows better performance than the single invocation

model PIS(¯̄a). We can define the error-free perfect target function as h(¯̄a). The

sum-of-square errors of the single average model (EPIS) can then be defined as

EPIS = E¯̄a[{PIS(¯̄a)− h(¯̄a)}2] = E¯̄a[ε(¯̄a)2], (5.4)

where E¯̄a denotes the expectation with respect to the distribution of the input

69

activity vector ¯̄a, and control parameter is ignored for simplification. We

further assume that a per-invocation execution latency ¯̄Ll is constant ¯̄L. In

the same way, the sum-of-squared error of the ensemble model (E ¯̄PIE
) can be

given by

EPIE = E¯̄a

[
{ 1

¯̄L

¯̄L−1∑
n=0

PID,n(c, ¯̄a)− h(¯̄a)}2
]

= E¯̄a

[
{ 1

¯̄L

¯̄L−1∑
n=0

εn(¯̄a)}2
]
.

(5.5)

To simplify the problem, we assume that errors have zero mean and are un-

correlated,

E¯̄a[εm(¯̄a)] = 0, E¯̄a[εm(¯̄a)εk(¯̄a)] = 0, m 6= k . (5.6)

We further assume that all models are trained well and the sum-of-square

errors of individual models are the same for simplification. We can obtain

EPIE = 1
¯̄L
EPIS . (5.7)

Hence, the error of the ensemble model can be reduced by a factor of
¯̄L when the assumption that errors are uncorrelated is satisfied. In general,

each decomposed model predicts a different cycle power, which implies that

individual cycle errors will not be highly correlated. Moreover, we utilize non-

linear learning approaches to prevent correlations between models, as will be

discussed in the following section. As such, we can expect that the ensemble

model always provides better accuracy than the single invocation one.

In the same manner, we can prove that the ensemble model has bet-

ter accuracy than a single cycle-level power model PIC. A single cycle-level

70

model estimates cycle-by-cycle power behavior using a single model instead

of multiple decomposed ones. The sum-of-squared errors of the single cycle-

level model can be formulated as equation (5.5). However, since each error is

generated from the same model, i.e. is highly correlated, it cannot satisfy the

assumption in (5.6). As a result, we can also expect that the ensemble model

shows better prediction accuracy than a single cycle-level model.

5.2.3 Model Selection and Training

Each power model is trained from given power and activity traces. The

activity traces collected from activity model simulation contain the cycles,

decomposed model IDs, and corresponding switching vectors. Power traces

contain actual power measurements from an equivalent gate-level simulation

for the same set of training inputs. Activity and power traces are partitioned

into model IDs, and then each power model is trained with the correspond-

ing partitioned traces. Synthesized power models are thereby able to com-

pute data-dependent power consumption estimates from the captured activity

traces.

In general, a least squares linear regression over a set of training vectors

has been widely employed to find the coefficient of power models. If there is

a linear correlation between the power consumption trend and control data,

equation (5.3) can be converted into a linear form. However, the control data

for invocation models may have non-linear correlations with power consump-

tion. To handle such problems, models could be further decomposed along

71

control inputs. By decomposing based on control signals, the power consump-

tion behavior of each model could potentially become a linear function of the

activity. The control data space, however, is exponential in the number of

control signals, which results in significant learning overhead. Furthermore,

as mentioned previously, power behavior of complex arithmetic units is gen-

erally correlated to Hamming distances of inputs and outputs, but not fully

linear [25]. Moreover, linear regressions provide not enough diversity, which

increases the error in the final ensemble model [56].

By contrast, depending on hardware functionality, input data statistics

and complexity of models, a non-linear machine learning model can represent

the power consumption behavior better than a typical linear least squares

model while also providing more diversity, but this comes at the expense of

estimation overhead. We thus evaluate various linear as well as non-linear

regression models as part of our experiments.

5.3 Experimental Results

We implemented our annotation, power model synthesis and power

prediction flow using the LLVM compiler framework [47], the scikit-learn [48]

machine learning library and a natively implemented C++ online prediction

library, respectively. We applied our flow to generate models for the bench-

marks utilized in the previous chapters. Table 5.1 summarizes benchmarks and

synthesis results including the number of traced external I/O ports, execution

cycles per invocation, and the size of training and test sets.

72

Table 5.1: Benchmark summary for black-box IPs

Pipe
Cycles per Traced

Gates
Train Test Total

Invocation Ext. I/O Invoc. Invoc. Test Cycles

GEMM
No 734 2/1 703 1,300 5,000 3,670,000

Yes 436 2/1 964 1,300 5,000 2,180,000

DCT
No 179 4/4 7,007 3,000 10,800 1,933,200

Yes 94 4/4 6,309 3,000 10,800 1,015,200

HDR
No 995 11/1 4,883 988 1,200 1,194,000

Yes 825 11/1 7,887 988 1,200 990,000

QUANT
No 194 3/1 1,032 3,600 12,288 7,150,452

Yes 68 3/1 1,035 3,600 12,288 2,506,752

Figure 5.1 and 5.2 compare model accuracy and speed of proposed

invocation-level ensemble models (IE) as compared to averaged single cycle-

level (IC) and single invocation-level (IS) power models across various bench-

marks. We measured data-dependent invocation-by-invocation MAE of values

predicted by each model compared to gate-level simulations. We compare

all power models utilizing either a least squares linear (IC-L, IS-L, IE-L) or

decision tree (IC-DT, IS-DT, IE-DT) regression against an ensemble model us-

ing a linear Bayes ridged (IE-BL) or a gradient boosting (IE-GB) regression.

Decision tree based feature selection is applied in all cases.

The ensemble model using a least squares regression (IE-L) shows up to

6.2% and 1.4% lower errors compared to the single cycle- and invocation-level

models (IC-L and IS-L), respectively. The non-pipelined DCT hardware shows

large power variations in each cycle, but almost constant power consumption

for each invocation. Since errors of the cycle-level model (IC-L) is generated

from the same, single cycle model, they are highly correlated. As a result, the

73

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

GEMM DCT HDR QUANT GEMM DCT HDR QUANT

Non-Pipelined Pipelined

M
AE

	[%
]

IC-L IC-DT IS-L IS-DT IE-L IE-BL IE-DT IE-GB

Figure 5.1: Invocation-by-invocation power accuracy.

error is not significantly reduced by averaging over invocations. The single

invocation-level model (IS-L) shows better accuracy on average, but higher

errors in complex cases utilizing long transaction activity vectors (GEMM,

HDR). By contrast, the ensemble estimation (IE-L) utilizing decomposed cy-

cle models does not suffer from such correlation and complexity problems.

Utilizing decision tree regression provides on average 1.4x and 1.1x better ac-

curacy for the single cycle- and invocation-level models (IC-DT and IS-DT), re-

spectively, but ensemble model utilizing decision tree regression (IE-DT) show

better accuracy in all benchmarks. Among ensemble models, linear regressions

(IE-L and IE-BL) again show the worst accuracy. Non-linear models (IE-DT,

IE-GB) show up to 3.3% additional accuracy improvement. The accuracy

improvements in QUANT benchmarks are bigger than in other benchmarks

due to the non-linear correlation between control inputs and power consump-

tion. Overall, IE-DT and IE-GB estimate invocation-level power dissipation

74

0.0K

5.0M

10.0M

15.0M

20.0M

25.0M

30.0M

35.0M

40.0M

GEMM DCT HDR QUANT GEMM DCT HDR QUANT

Non-Pipelined Pipelined

Cy
cle

s/
Se
c

IC-L IC-DT IS-L IS-DT IE-L IE-BL IE-DT IE-GB

Figure 5.2: Estimation speed of models.

to within 3.3% MAE compared to gate-level power results.

When comparing speed (Figure 5.2), due to their simplicity, the single

invocation model (IS-L and IS-DT) are on average significantly faster than oth-

ers. Both the ensemble and cycle-level power models (IE-L and IC-L) estimate

at a cycle-by-cycle level, but the ensemble models (IE-L) are on average 5x

faster due to light-weight activity computation and parallelized cycle-level pre-

diction. Among ensemble models, decision tree (IE-DT) models are the fastest.

The dimension of activity features for the invocation-level model is much higher

than resource- and block-level activity features. With such high-dimensional

feature vectors, decision tree regressions can be faster than linear regression

ones. Overall, when comparing different regression methods and models, re-

sults show that IE-DT provides the best trade-off between accuracy and speed.

The IE-DT model achieves on average 10.19Mcycles/sec at 96.5% accuracy.

75

Table 5.2: Accuracy of invocation-level modeling

Pipe
MAE Avg. Error

IC-DT IS-DT IE-DT IC-DT IS-DT IE-DT

GEMM
No 3.4% 4.6% 3.3% 0.4% 0.6% 0.5%

Yes 2.4% 4.0% 2.3% 0.2% 0.1% 0.1%

DCT
No 4.0% 0.1% 0.1% 2.5% 0.0% 0.0%

Yes 3.3% 2.8% 1.5% 1.3% 0.2% 0.2%

HDR
No 3.8% 3.6% 1.9% 0.2% 1.2% 0.7%

Yes 4.2% 4.0% 2.4% 1.6% 2.1% 1.9%

QUANT
No 3.7% 5.1% 1.0% 2.3% 4.2% 0.2%

Yes 5.6% 5.0% 1.1% 5.4% 5.1% 0.8%

Avg. - 3.8% 3.6% 1.7% 1.7% 1.7% 0.6%

Table 5.2 and Table 5.3 further summarize and detail accuracy and

speed of models across benchmarks. We measure data-dependent invocation-

by-invocation MAE and total average error across a full simulation. Overall,

the IE-DT models improve accuracy over the IS-DT and IC-DT models by

a factor of 2.5x on average across all error metrics. IE-DT models estimate

invocation-level power consumption to within 3% MAE and 15% maximum

error compared to gate-level power results. In all cases, average errors across

the whole simulation are below 2%.

Table 5.3 summarizes the estimation speeds of invocation-level models

as also compared to a source-level, RTL, and a gate-level simulation. Overall,

compared to an IS-DT and a pure source-level simulation, the IE-DT models

are on average 2x and 6.3x slower, respectively. However, they are about

6x, 510x and 15,000x faster than an IC-DT, RTL, and gate-level estimation,

respectively.

76

Table 5.3: Simulation speed of models [cycles/sec]
Pipe IC-DT IS-DT IE-DT C Code RTL Gate

GEMM
No 1.57M 31.01M 7.92M 220M 51K 0.61K

Yes 0.70M 26.16M 7.27M 130M 35K 0.36K

DCT
No 1.86M 21.97M 15.59M 32M 16K 0.41K

Yes 1.17M 22.07M 12.69M 17M 5.9K 0.19K

HDR
No 1.54M 10.78M 9.17M 32M 13K 0.28K

Yes 1.38M 17.30M 10.73M 27M 11K 0.20K

QUANT
No 3.97M 16.25M 13.00M 48M 19K 1.80K

Yes 1.96M 5.70M 5.11M 17M 9.3K 1.52K

Avg. - 1.77M 18.90M 10.19M 65M 20K 0.67K

Figure 5.3 shows the invocation-by-invocation power traces of estimated

versus measured power waveforms for the pipelined DCT and HDR benchmark

designs using the ensemble model. As traces show, our synthesized models can

accurately track data-dependent effects across different invocations of the same

design.

In each case, we were able to synthesize power models within 24 min-

utes including trace generation for one-time gate-level simulation (which takes

between 6 and 20 minutes). The learning times of the invocation-level models

are proportional to the execution cycles per invocation. As mentioned previ-

ously, the invocation-level model supports parallel learning, which results in

comparable learning speed to cycle-level models (around 30 to 200 seconds).

Figure 5.4 shows the learning overhead versus accuracy for the pipelined

DCT benchmark. We compare the single cycle- and invocation-level models

(IC and IS) with the proposed ensemble model (IE) utilizing either the decision

77

Invocations
0 100 200 300 400 500

m
W

0

0.5

1

1.5

2

2.5

Measured Estimated

(a) DCT simulation.

Invocations
0 100 200 300 400 500 600

m
W

0

0.5

1

1.5

Measured Estimated

(b) HDR simulation.

Figure 5.3: Invocation-by-invocation power traces of invocation-level model.

tree (-DT) or a least squares linear regression (-L).

In all cases, as in previous chapters, models utilizing decision tree re-

gression always show better results than simple linear ones. Ensemble learning

utilizing decision tree regression (IE-DT) provides the best accuracy for the

same size of the training set, reaching more than 98% accuracy for a training

set composed of 500 vectors. Ensemble and single-invocation models with lin-

ear regression (IE-L and IS-L) show similar accuracies, which indicates that

78

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 1000 2000 3000

M
AE

[%
]

Size	of	training	set [invocations]

IC-L IS-L IE-L
IC-DT IS-DT IE-DT

Figure 5.4: Learning overhead vs. invocation-level model accuracy for
pipelined DCT.

individual linear regression models in the ensemble model are highly correlated

and do not provide enough diversity. The single cycle model with least squares

linear regression as similarly used in prior work and literature (IC-L) shows the

worst accuracy with overfitting trends. As discussed in previous chapters, this

again indicates that power behavior at the cycle level is inherently non-linear,

especially when only being able to consider I/O activity.

79

5.4 Summary

In this chapter, we presented a novel approach for extending behav-

ioral, transaction-level models of black-box hardware IPs with accurate power

estimates. Our power model synthesis flow leverages state-of-the-art machine

learning techniques to synthesize an invocation-level power model. The power

model directly utilizes transaction-level external I/O activity and control infor-

mation for fast estimation. The proposed model decomposition and ensemble

estimation enable accurate data-dependent power prediction. Our flow has

been evaluated on several industry strength benchmark designs and generated

models. Results show that our proposed power model is able to achieve 6x

faster prediction compared to cycle-level power models, and orders of magni-

tude speedup compared to gate-level power simulation, all while estimating

power with less than 3% invocation-by-invocation and less than 2% average

error.

80

Chapter 6

Overall Model Summary and Comparison

In this dissertation, we proposed three different high-level power model-

ing techniques for custom hardware IPs. In this chapter, we summarize model

benefits across different levels by comparing accuracy, speed, and learning ef-

ficiency across different models and benchmarks.

6.1 Overall Speed and Accuracy Comparison

Table 6.1 and 6.2 summarizes accuracy and speed of models across

benchmarks. We compare the accuracy of cycle-level decomposed models

(CD), basic block-level decomposed models (BD), and invocation-level ensem-

ble models (IE) utilizing decision tree regression in all cases. In addition to

average errors across the whole simulation, we measure the data-dependent

cycle-by-cycle, basic block-by-basic block, and invocation-by-invocation MAE

predicted by each relevant model compared to gate-level simulations. We com-

pute the basic block-by-basic block, and invocation-by-invocation errors of the

cycle- and basic block-level models, respectively, by averaging power models

over blocks and invocations. The cycle-level model (CD) shows better block-

level accuracy than the basic block-level model (BD), similar invocation-level

81

Table 6.1: Summary of modeling accuracy

Pipe

MAE Average

Cycle Basic Block Invocation Error

CD CD BD CD BD IE CD BD IE

GEMM
No 10.1% 7.9% 7.8% 3.1% 3.0% 3.3% 0.4% 0.5% 0.5%

Yes 7.9% 6.5% 6.5% 2.2% 2.2% 2.3% 0.1% 0.1% 0.1%

DCT
No 0.6% 1.3% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Yes 3.9% 2.5% 3.6% 1.1% 1.4% 1.6% 0.5% 0.2% 0.2%

HDR
No 7.6% 3.2% 6.1% 2.0% 1.9% 1.8% 0.9% 0.7% 0.7%

Yes 6.6% 3.1% 5.4% 2.4% 1.9% 2.4% 1.0% 1.4% 1.9%

QUANT
No 10.0% 10.0% 9.0% 3.6% 3.0% 1.0% 0.1% 0.9% 0.2%

Yes 6.0% 6.0% 6.8% 1.7% 3.0% 1.1% 0.4% 0.7% 0.8%

Avg. - 6.6% 5.1% 5.7% 2.0% 2.1% 1.7% 0.4% 0.6% 0.6%

accuracy to the ensemble model (IE), and the best average error across the

whole simulation since it utilizes the largest amount of tracing. The BD model

utilizes the smallest number of decomposed models, which results in the worst

average prediction accuracy among all models. The ensemble approach (IE)

utilizes the largest number of models, which enables a better invocation-level

accuracy than others. Across all benchmarks, average errors of cycle-, block-

and invocation-level models across the whole simulation are below 1%, 2%,

and 2%, respectively.

We also compare simulation speed of generated models to pure source-

level, RTL, or gate-level simulation (Table 6.2). The block-level model (BD)

is on average 3x faster than the cycle-level one (CD). This is due to its re-

duced activity features and smaller number of power model function calls.

Both IE and CD utilize cycle-level estimation models, but the invocation-level

82

Table 6.2: Summary of simulation speed

Pipe
Speed [cycles/sec]

C Code CD BD IE RTL Gate

GEMM
No 220M 1.20M 2.34M 7.92M 51K 0.61K

Yes 130M 0.84M 1.77M 7.27M 35K 0.36K

DCT
No 32M 1.40M 6.67M 15.59M 16K 0.41K

Yes 17M 1.25M 4.83M 12.69M 5.9K 0.19K

HDR
No 32M 1.66M 7.19M 9.17M 13K 0.28K

Yes 27M 1.65M 7.15M 10.73M 11K 0.20K

QUANT
No 48M 2.08M 3.02M 13.00M 19K 1.80K

Yes 17M 1.48M 1.66M 5.11M 9.3K 1.52K

Avg. - 65M 1.45M 4.33M 10.19M 20K 0.67K

model is on average 7x faster. The light-weight activity computation and

parallelized internal component power estimation of the I/O-based ensemble

approach improves simulation throughput significantly. Overall, compared to

a pure source-level simulation, the cycle-, block- and invocation-level models

are on average 45x, 15x and 6x slower. However, they are about 73x, 220x

and 510x faster than RTL power simulation, and 2,200x, 6,500x, and 15,200x

faster than gate-level estimation.

Figure 6.1 and 6.2 show cycle-by-cycle and invocation-by-invocation

profiles of estimated versus measured power waveforms for the pipelined DCT

and HDR designs, respectively. As the profiles show, our proposed models

can accurately track power behavior within each invocation, as well as data-

dependent effects across different invocations of the same design.

83

Cycles
0 10 20 30 40 50 60 70 80 90

m
W

0

1

2

3

4 Measured CD BD

(a) DCT simulation.

Cycles
0 100 200 300 400 500 600 700 800

m
W

0

1

2

3
Measured CD BD

(b) HDR simulation.

Figure 6.1: Cycle-by-cycle power traces for a single invocation.

6.2 Learning Overhead

As discussed before, the major learning overhead is collecting gate-

level simulation results to construct the training vectors, where, depending

on the trace length and design complexity, we were able to generate gate-

level power traces for training within 6 to 20 minutes. The learning times

of cycle-, block-, and invocation-level models are proportional to the number

of decomposed models, i.e. states, basic blocks, and execution cycles per

invocation, respectively. As mentioned previously, the invocation-level model

84

Invocations
0 100 200 300 400 500

m
W

0

0.5

1

1.5

2

2.5

Measured CD BD IE

(a) DCT simulation.

Invocations
0 100 200 300 400 500 600

m
W

0

0.5

1

1.5

Measured CD BD IE

(b) HDR simulation.

Figure 6.2: Invocation-by-invocation power traces.

supports parallel learning, which results in comparable learning speed to cycle-

level models. The synthesis time of block-level models is the shortest with 30 to

90 seconds. Synthesis of cycle- and invocation-level models is on average three

time slower than block-level models, taking 30 to 200 seconds. Overall, we

were able to synthesize power models in each case within 24 minutes including

trace generation.

Figure 6.3 further details the learning overhead and accuracy at differ-

ent modeling levels for the pipelined DCT benchmark. We measure accuracy

85

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

0 1000 2000 3000

M
AE

[%
]

Size	of	training	set [invocations]

CD-L BD-L IE-L
CD-DT BD-DT IE-DT

Figure 6.3: Learning overhead vs. model accuracy for pipelined DCT.

as invocation-by-invocation MAE of CD, BD and IE models utilizing either

decision tree (-DT) or least squares linear regression (-L). In all cases, as

discussed before, models utilizing decision tree regression always show better

results than simple linear ones. Models with linear regression suffer from over-

fitting trends, which indicates that IP power behavior is inherently non-linear.

We can observe that the CD-DT model provides the best accuracy for the

same size of the training set, reaching more than 99% accuracy for a training

set with 300 vectors. The IE-DT model shows the worst learning efficiency,

reaching 96% accuracy with the same amount of training. For the same train-

ing size, models based on more detailed and fine-grain estimation generally

show better accuracy than more coarse-grain ones. Combined with opposing

86

trends in estimation speed, this establishes a trade-off between modeling level,

accuracy, training efficiency and speed.

6.3 Summary

In this chapter, we compared accuracy, speed, and learning overhead

of white-, gray-, and black-box power models. We can observe that there is a

trade-off between observability of the model, accuracy, learning efficiency and

estimation speed. Models using more detailed architecture information show

the better accuracy for the same amount of training, but detailed activity

tracing degrades simulation speed. Overall, our white-, gray-, and black-box

power modeling approaches can predict cycle-, basic block-, and invocation-

level power consumption to within 10%, 9%, and 3% of a commercial gate-

level power estimation tool, respectively, all while running at several order of

magnitude faster speeds of 1-10Mcycles/sec.

87

Chapter 7

Summary and Future Work

This chapter briefly reviews the dissertation and summarizes the con-

tributions. Then, we discuss future research opportunities.

7.1 Summary

In this dissertation, we presented a comprehensive and fully automated

framework that provides fast yet accurate learning-based power estimation of

hardware IPs at three levels of abstraction.

We first introduced a power modeling for white-box hardware IPs. The

proposed flow integrates with existing HLS tools to provide detailed FSMD-

level architecture information of synthesized hardware implementations. An

annotation process then refines the functional simulation model into an ac-

tivity model, which captures data-dependent, cycle-accurate resource-level

signal switching activity by annotating FSMD-level resource mapping infor-

mation. Furthermore, we proposed a novel learning-based cycle-level power

model synthesis approach, where we introduced a structural decomposition

using scheduling and binding information to improve accuracy. Results show

that using our white-box approach enables cycle-accurate and data-dependent

88

power estimation at speeds close to a functional simulation.

Detailed resource-level tracing provides cycle-accurate switching activ-

ity of each datapath component, but introduces simulation overhead. Instead

of detailed cycle-level estimation, we further proposed a basic block-level model

that only utilizes inputs and outputs of basic blocks for activity and power es-

timation. The proposed approach uses the mapping of each input and output

variable and each array access in the basic blocks to annotate and trace activity

of registers and memory ports in the hardware. Extended functional models

are combined with a learning-based block-level power model to estimate ba-

sic block-by-basic block power consumption. Our gray-box model utilizes less

total switching activity while also requiring fewer invocations of the power

model, which results in faster estimation speed than our white-box approach

with only a small loss of accuracy.

To apply either white-box or gray-box approaches, full or partial hardware-

internal architecture information is required. However, black-box IPs usually

provide only functional simulation models without detailed architecture de-

scriptions together with pre-synthesized gate-level implementations. To pro-

vide power estimation for such black-box IPs, we finally proposed a novel

power model that only utilizes external input and output history to track

data-dependent pipeline behavior and drive a data-dependent, invocation-by-

invocation power model extracted from gate-level cycle-by-cycle power traces.

To synthesize the invocation-level power model, we proposed a specialized

ensemble learning approach in which power models are decomposed into in-

89

dividual cycle-by-cycle models for efficient training and accurate prediction.

Results shows that our black-box power model enables fast and data-dependent

invocation-level power estimation without internal architecture information at

only 6x slower speed compared to a pure high-level functional simulation.

By comparing all proposed models, we can observe trade-offs between

observability, accuracy and estimation speed. Finer-grain architecture infor-

mation can provide more accurate power models with the same amount of

training, but also introduces activity tracing and prediction evaluation over-

head.

In summary, this dissertation provides evidence that system-level func-

tional models of custom hardware IPs can drive accurate fine-grain, data-

dependent power models. This was achieved by annotating functional hard-

ware descriptions with the ability to capture detailed hardware activity and by

leveraging state-of-the-art machine learning technique with specialized model

decompositions. We also showed that the proposed approach can be fully au-

tomated by integrating with existing, commercial high-level synthesis (HLS)

tools for custom hardware synthesized by HLS.

7.2 Future Work

In our work so far, we have been able to develop an automated power

modeling framework for the custom hardware IPs. In the following, we outline

possible future research directions to extend proposed learning-based power

modeling to embedded processors or accurate RTL power estimation.

90

7.2.1 Power Modeling for Embedded Processors

The increasing demand for wearable and portable Internet of Thing

(IoT) devices with longer battery life has brought the need for low-power

embedded processors and processor-based subsystems. In order to develop

such energy efficient systems, fast and accurate system-level power estimation

approaches are needed to drive associated optimization. However, a lack of

fine-grain and accurate power models of processors renders power optimization

of software, i.e. complete firmware or applications stacks running on such

processors challenging and inaccurate.

To address this challenge, power modeling of embedded processors

based on the custom hardware power modeling approaches developed in this

work could be pursued. As an alternative to low-level power models driven

by detail micro-architecture simulation, data-dependent and basic block-level

power models could be combined and integrated with high-level abstract pro-

cessor simulation frameworks, such as source-level or binary translated instruc-

tion set simulations. Based on the proposed white-box and black-box power

estimation techniques, power models could be developed and trained by utiliz-

ing (dynamic) back-annotation of given processor micro-architecture activity

information and/or extracted features from source and/or assembly code.

7.2.2 RTL Power Modeling with Structural Decomposition

Accurate RTL power estimation is important for many eariler design

decisions. Existing learning-based approaches utilize feature selection methods

91

to collect signals or state variables highly correlated with power consumptions

while managing the complexity of the power models. Such feature selection

can reduce the model dimensions, but this may result in a loss of accuracy. By

contrast, in this thesis, we introduced a structural decomposition approach

for reducing power model dimensions that exploits scheduling and binding

information to identify and remove unnecessary signals. We prove that a power

model decomposition based on such structural micro-architecture information

is able to reduce the complexity of the model with little to no information

loss. As such, with structural decomposition, we anticipate to see improved

accuracy and reduced learning overhead when applying similar concepts to

RTL power estimation.

92

Bibliography

[1] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Rein-

man, “Composable accelerator-rich microprocessor enhanced for adaptiv-

ity and longevity,” in Low Power Electronics and Design (ISLPED), Sep.

2013.

[2] F. Conti, C. Pilkington, A. Marongiu, and L. Benini, “He-P2012: Archi-

tectural heterogeneity exploration on a scalable many-core platform,” in

International Conference on Application-Specific Systems, Architectures

and Processors (ASAP), Jun. 2014.

[3] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “System-

level optimization of accelerator local memory for heterogeneous systems-

on-chip,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 36, no. 3, Mar. 2017.

[4] I. Lee, H. Kim, P. Yang, S. Yoo, E.-Y. Chung, K.-M. Choi, J.-T. Kong,

and S.-K. Eo, “PowerViP: SoC power estimation framework at transaction

level,” in Asia and South Pacific Conference on Design Automation (ASP-

DAC), Jan. 2006.

[5] C. Trabelsi, R. B. Atitallah, S. Meftali, J. luc Dekeyser, A. Jemai, C. Tra-

belsi, R. B. Atitallah, S. Meftali, J. luc Dekeyser, A. Je, H. I. Inria,

93

and A. Jemai, “A model-driven approach for hybrid power estimation

in embedded systems design,” EURASIP Journal on Embedded Systems

(EURASIP JES), vol. 1, Mar. 2011.

[6] S. Schürmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen, and

L. Wang, “Creation of ESL power models for communication architectures

using automatic calibration,” in Design Automation Conference (DAC),

May 2013.

[7] E. Copty, G. Kamhi, and S. Novakovsky, “Transaction level statistical

analysis for efficient micro-architectural power and performance studies,”

in Design Automation Conference (DAC), Jun. 2011.

[8] D. Lorenz, K. Grüettner, andW. Nebel, “Data-and state-dependent power

characterisation and simulation of black-box RTL IP components at sys-

tem level,” in Euromicro Conference on Digital System Design (DSD),

Aug. 2014.

[9] S. Schürmans, G. Onnebrink, R. Leupers, G. Ascheid, and X. Chen, “ESL

power estimation using virtual platforms with black box processor mod-

els,” in International Conference on Embedded Computer Systems: Ar-

chitectures, Modeling, and Simulation (SAMOS), Jul. 2015.

[10] K. Grüttner, P. A. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stat-

telmann, B. Sander, O. Bringmann, W. Nebel, and W. Rosenstiel, “An

94

ESL timing amp; power estimation and simulation framework for het-

erogeneous SoCs,” in International Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS), Jul. 2014.

[11] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-RTL,

power-performance accelerator simulator enabling large design space ex-

ploration of customized architectures,” in International Symposium on

Computer Architecuture (ISCA), 2014.

[12] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power estimation

and low-power design space exploration for FPGAs,” in Asia and South

Pacific Design Automation Conference (ASP-DAC), Jan. 2007.

[13] N. R. Potlapally, A. Raghunathan, G. Lakshminarayana, M. S. Hsiao, and

S. T. Chakradhar, “Accurate power macro-modeling techniques for com-

plex RTL circuits,” in International Conference on VLSI Design (ICVD),

2001.

[14] L. Zhong, S. Ravi, A. Raghunathan, and N. K. Jha, “Power estimation

for cycle-accurate functional descriptions of hardware,” in International

Conference on Computer Aided Design (ICCAD), Nov. 2004.

[15] R. Tjarnstrom, “Power dissipation estimate by switch level simulation

(cmos circuits),” in International Symposium on Circuits and Systems

(ISCAS), May 1989.

95

[16] T. H. Krodel, “Power play-fast dynamic power estimation based on logic

simulation,” in IEEE International Conference on Computer Design: VLSI

in Computers and Processors (ICCD), Oct. 1991.

[17] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski, “The design and

implementation of PowerMill,” in International Symposium on Low Power

Design (ISPLED), 1995.

[18] P. A. Beerel, C.-T. Hsieh, and S. Wadekar, “Estimation of energy con-

sumption in speed-independent control circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 15,

no. 6, Jun. 1996.

[19] G. Y. Yacoub and W. H. Ku, “An accurate simulation technique for short-

circuit power dissipation based on current component isolation,” in Inter-

national Symposium on Circuits and Systems (ISCAS), May 1989.

[20] S. M. Kang, “Accurate simulation of power dissipation in VLSI circuits,”

IEEE Journal of Solid-State Circuits (JSSC), vol. 21, no. 5, pp. 889–891,

Oct. 1986.

[21] N. L. W., “SPICE2 : a computer program to simulate semiconductor

circuits,” Ph.D. dissertation, University of California, Berkeley, May 1975.

[22] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee, J. Bachrach,

and K. Asanović, “Strober: Fast and accurate sample-based energy sim-

96

ulation for arbitrary RTL,” SIGARCH Comput. Archit. News, vol. 44,

no. 3, pp. 128–139, Jun. 2016.

[23] S. Ravi, A. Raghunathan, and S. Chakradhar, “Efficient RTL power es-

timation for large designs,” in International Conference on VLSI Design

(ICVD), Jan. 2003.

[24] E. Macii, M. Pedram, and F. Somenzi, “High-level power modeling, esti-

mation, and optimization,” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems (TCAD), vol. 17, no. 11, Nov.

1998.

[25] A. Bogliolo, L. Benini, and G. De Micheli, “Regression-based RTL power

modeling,” ACM Transation on Design Automation Electronic System

(TODAES), vol. 5, no. 3, Jul. 2000.

[26] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth, and S. Kaxiras,

“Introducing DVFS-management in a full-system simulator,” in Interna-

tional Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOT), Aug. 2013.

[27] S. Gupta and F. N. Najm, “Power macromodeling for high level power

estimation,” in Design Automation Conference (DAC), 1997.

[28] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, and G. D. Micheli, “Lookup

table power macro-models for behavioral library components,” in Alessan-

97

dro Volta Memorial Workshop on Low-Power Design (VOLTA), Mar.

1999.

[29] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in International

Symposium on Computer Architecture (ISCA), 2000.

[30] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi, “The McPAT framework for multicore and manycore ar-

chitectures: Simultaneously modeling power, area, and timing,” ACM

Transaction on Architecture Code Optimization (TACO), vol. 10, no. 1,

Apr. 2013.

[31] G. Bernacchia and M. C. Papaefthymiou, “Analytical macromodeling for

high-level power estimation,” in International Conference on Computer-

Aided Design (ICCAD), Nov. 1999.

[32] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based

on clustering,” in Design Automation Conference (DAC), Jun. 1996.

[33] C. W. Hsu, J. L. Liao, S. C. Fang, C. C. Weng, S. Y. Huang, W. T. Hsieh,

and J. C. Yeh, “PowerDepot: Integrating IP-based power modeling with

ESL power analysis for multi-core SoC designs,” in Design Automation

Conference (DAC), Jun. 2011.

[34] D. Sunwoo, G. Y. Wu, N. A. Patil, and D. Chiou, “PrEsto: An FPGA-

accelerated power estimation methodology for complex systems,” in In-

98

ternational Conference on Field Programmable Logic and Applications

(FPL), Aug. 2010.

[35] G. Wu, “Performance, power, and confidence modeling of digital designs,”

Ph.D. dissertation, University of Texas at Austin, Aug. 2015.

[36] J. Yang, L. Ma, K. Zhao, Y. Cai, and T.-F. Ngai, “Early stage real-time

soc power estimation using RTL instrumentation,” in Asia and South

Pacific Design Automation Conference (ASP-DAC), Jan. 2015.

[37] Y. H. Park, S. Pasricha, F. J. Kurdahi, and N. Dutt, “System level power

estimation methodology with H.264 decoder prediction IP case study,” in

International Conference on Computer Design (ICCD), Oct. 2007.

[38] ——, “A multi-granularity power modeling methodology for embedded

processors,” IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), vol. 19, no. 4, Apr. 2011.

[39] L. Kosmann, D. Lorenz, A. Reimer, and W. Nebel, “Enabling energy-

aware design decisions for behavioural descriptions containing black-box

IP-components,” in International Workshop on Power and Timing Mod-

eling, Optimization and Simulation (PATMOS), Sep. 2013.

[40] Z. Zhao, A. Gerstlauer, and L. K. John, “Source-level performance, en-

ergy, reliability, power and thermal (PERPT) simulation,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), vol. 36, no. 2, pp. 299–312, Feb. 2017.

99

[41] D. Calvo, P. González, L. Diaz, H. Posadas, P. Sánchez, E. Villar, A. Ac-

quaviva, and E. Macii, “A multi-processing systems-on-chip native sim-

ulation framework for power and thermal-aware design,” Journal of Low

Power Electronics (JOLPE), vol. 7, no. 1, pp. 2–16, 2011.

[42] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, and D. Sciuto, “A

multi-level strategy for software power estimation,” in International Sym-

posium on System Synthesis (ISSS), Sep. 2000.

[43] C. Brandolese, S. Corbetta, and W. Fornaciari, “Software energy esti-

mation based on statistical characterization of intermediate compilation

code,” in IEEE/ACM International Symposium on Low-power Electronics

and Design (ISLPED), 2011.

[44] D. Lee, L. K. John, and A. Gerstlauer, “Dynamic power and performance

back-annotation for fast and accurate functional hardware simulation,”

in Design, Automation & Test in Europe (DATE), 2015.

[45] C. A. Ratanamahatana and D. Gunopulos, “Scaling up the naive bayesian

classifier: Using decision trees for feature selection,” Applied Artificial

Intelligence (AAI), vol. 17, 2003.

[46] Xilinx, “Vivado high-level synthesis,” https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html.

[47] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis & transformation,” in International Symposium on Code

100

Generation and Optimization (CGO), Mar. 2004.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-

learn: Machine learning in Python,” Journal of Machine Learning Re-

search (JMLR), vol. 12, 2011.

[49] T. Mertens, J. Kautz, and F. V. Reeth, “Exposure fusion,” in Pacific

Conference on Computer Graphics and Applications (PG), Oct. 2007.

[50] Synopsys, “Design Compiler,” https://www.synopsys.com/implementation-

and-signoff/rtl-synthesis-test/design-compiler-graphical.html.

[51] Nangate, “NanGate FreePDK45 Open Cell Library,” http://www.nangate.com.

[52] Synopsys, “PrimeTime,” https://www.synopsys.com/implementation-and-

signoff/signoff/primetime.html.

[53] D. Lee and A. Gerstlauer, “Learning-based, fine-grain power modeling of

system-level hardware IPs,” under review.

[54] M. Pedram, “Advanced power estimation techniques,” in Low power de-

sign in deep submicron electronics, W. Nebel and J. Mermet, Eds. Kluwer

Academic Publishers, 1997.

[55] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2007.

101

[56] M. Gashler, C. Giraud-Carrier, and T. Martinez, “Decision tree ensem-

ble: Small heterogeneous is better than large homogeneous,” in Seventh

International Conference on Machine Learning and Applications (ICML),

Dec. 2008.

102

Vita

Dongwook Lee is a Ph.D. candidate at the University of Texas at

Austin. He received the B.S. degree in electrical engineering from Seoul Na-

tional University, Seoul, Korea in 2005, and the M.S. degree in electrical en-

gineering and computer science from Seoul National University, Seoul. Korea,

in 2007. His current research interests include system-level power modeling,

system-level design automation, and system synthesis.

Permanent address: dongwook.lee@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

103

