10 research outputs found

    Gabbay Separation for the Duration Calculus

    Get PDF

    Prompt interval temporal logic

    Get PDF
    Interval temporal logics are expressive formalisms for temporal representation and reasoning, which use time intervals as primitive temporal entities. They have been extensively studied for the past two decades and successfully applied in AI and computer science. Unfortunately, they lack the ability of expressing promptness conditions, as it happens with the commonly-used temporal logics, e.g., LTL: whenever we deal with a liveness request, such as \u201csomething good eventually happens\u201d, there is no way to impose a bound on the delay with which it is fulfilled. In the last years, such an issue has been addressed in automata theory, game theory, and temporal logic. In this paper, we approach it in the interval temporal logic setting. First, we introduce PROMPT-PNL, a prompt extension of the well-studied interval temporal logic PNL, and we prove the undecidability of its satisfiability problem; then, we show how to recover decidability (NEXPTIME-completeness) by imposing a natural syntactic restriction on it

    An Argumentation-Based Approach to Normative Practical Reasoning

    Get PDF

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Confidence in Claims

    Get PDF
    This book is about claims that experts make in various academic disciplines, and about how features of disciplines should affect our confidence in the correctness of those claims. Our field of study is work in the full range of disciplines, covering mathematics, the natural sciences, the social sciences and the humanities. Disciplines differ from one another in several ways. Quantification and mathematical argument are the norm in some disciplines, but are rare in others. Some disciplines use experiments, while others rely on sources. And so on. But disciplines also have things in common. These include both the aspiration to get things right, and fundamental principles like respect for evidence and a requirement to argue rationally. We seek to lay out the differences and the commonalities in detail, and to assess the effects on our confidence. We also explore reasons why disciplines have their features

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore