5,379 research outputs found

    Logic Characterization of Invisibly Structured Languages: The Case of Floyd Languages

    Get PDF
    Operator precedence grammars define a classical Boolean and deterministic context-free language family (called Floyd languages or FLs). FLs have been shown to strictly include the well-known Visibly Pushdown Languages, and enjoy the same nice closure properties. In this paper we provide a complete characterization of FLs in terms of a suitable Monadic Second-Order Logic. Traditional approaches to logic characterization of formal languages refer explicitly to the structures over which they are interpreted - e.g, trees or graphs - or to strings that are isomorphic to the structure, as in parenthesis languages. In the case of FLs, instead, the syntactic structure of input strings is “invisible” and must be reconstructed through parsing. This requires that logic formulae encode some typical context-free parsing actions, such as shift-reduce ones

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Operator Precedence Languages: Their Automata-Theoretic and Logic Characterization

    Get PDF
    Operator precedence languages were introduced half a century ago by Robert Floyd to support deterministic and efficient parsing of context-free languages. Recently, we renewed our interest in this class of languages thanks to a few distinguishing properties that make them attractive for exploiting various modern technologies. Precisely, their local parsability enables parallel and incremental parsing, whereas their closure properties make them amenable to automatic verification techniques, including model checking. In this paper we provide a fairly complete theory of this class of languages: we introduce a class of automata with the same recognizing power as the generative power of their grammars; we provide a characterization of their sentences in terms of monadic second-order logic as has been done in previous literature for more restricted language classes such as regular, parenthesis, and input-driven ones; we investigate preserved and lost properties when extending the language sentences from finite length to infinite length (omegaomega-languages). As a result, we obtain a class of languages that enjoys many of the nice properties of regular languages (closure and decidability properties, logic characterization) but is considerably larger than other families---typically parenthesis and input-driven ones---with the same properties, covering “almost” all deterministic languages

    Distributed Graph Automata and Verification of Distributed Algorithms

    Full text link
    Combining ideas from distributed algorithms and alternating automata, we introduce a new class of finite graph automata that recognize precisely the languages of finite graphs definable in monadic second-order logic. By restricting transitions to be nondeterministic or deterministic, we also obtain two strictly weaker variants of our automata for which the emptiness problem is decidable. As an application, we suggest how suitable graph automata might be useful in formal verification of distributed algorithms, using Floyd-Hoare logic.Comment: 26 pages, 6 figures, includes a condensed version of the author's Master's thesis arXiv:1404.6503. (This version of the article (v2) is identical to the previous one (v1), except for minor changes in phrasing.

    The Philosophical Significance of Wittgenstein’s Experiments on Rhythm, Cambridge 1912–13

    Get PDF
    Wittgenstein’s experiments on rhythm, conducted in Charles Myers’s laboratory in Cambridge during the years 1912–13, are his earliest recorded engagement in thinking about music, not just appreciating it, and philosophizing by means of musical thinking. In this essay, I set these experiments within their appropriate intellectual, scientific, and philosophical context in order to show that, its minor scientific importance notwithstanding, this onetime excursion into empirical research provided an early onset for Wittgenstein’s career-long exploration of the philosophically pervasive implications of aspects. Dramatically moving beyond the conceptual limitations, which were inscribed by Charles Myers’s scientific program, Wittgenstein got a glimpse of a philosophical angle, which was bound to become very important to him not only in aesthetics, but also for his overarching philosophical development. He became interested in what we actually do when we re-phrase, compare, come up with good similes in order to illuminate something definite within the space of possibility, so a new aspect may come to life

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    Higher-Order Operator Precedence Languages

    Get PDF
    Floyd's Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenation and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.Comment: In Proceedings AFL 2017, arXiv:1708.0622
    • …
    corecore