
https://doi.org/10.1007/s00165-019-00501-3
BCS © 2019
Formal Aspects of Computing (2019) 31: 751–807

Formal Aspects
of Computing

Fifty years of Hoare’s logic
Krzysztof R. Apt1,2 and Ernst-Rüdiger Olderog3
1CWI, Amsterdam, The Netherlands
2MIMUW, University of Warsaw, Warsaw, Poland
3University of Oldenburg, Oldenburg, Germany

Contents

1 Introduction 752
2 Precursors 753

2.1 Turing 753
2.2 Floyd 754

3 Hoare’s Contributions 755
3.1 Reasoning about while programs 755
3.2 Reasoning about recursive procedures 757
3.3 Reasoning about termination 759

4 Soundness and Completeness Matters 761
4.1 Preliminaries 761
4.2 Soundness 761
4.3 Completeness 762

5 Fine-tuning the Approach 764
5.1 Adaptation rules 764
5.2 Subscripted and local variables 766
5.3 Parameter mechanisms and procedure calls 769

6 Reasoning about Arbitrary Procedures 770
6.1 Completeness results for recursive procedures 770
6.2 Clarke’s incompleteness result 772
6.3 Clarke’s language L4 773
6.4 The characterization problem 774

7 Nondeterministic and Probabilistic Programs 775
7.1 Reasoning about nondeterminism 775
7.2 Reasoning about fairness 777
7.3 Probabilistic programs 778

8 Parallel and Distributed Programs 779
8.1 Reasoning about parallel programs 779
8.2 Reasoning about distributed programs 783

9 Object-oriented Programs 786
9.1 Language characteristics 786
9.2 Reasoning about object-oriented programs 788
9.3 Advanced topics in the verification of object-oriented programs 789

Correspondence to: Krzysztof R. Apt, CWI, E-mail: apt@cwi.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-019-00501-3&domain=pdf

752 K.R. Apt and E-R. Olderog

10 Alternative Approaches 790
10.1 Weakest precondition semantics and systematic program development 790
10.2 Specifying in Hoare’s logic 792
10.3 Programming from specifications 793
10.4 Algorithmic logic and dynamic logic 794
10.5 Temporal logic and model checking 795
10.6 Separation logic 796
10.7 Relational Hoare logic 798

11 Final Remarks: a Summary and an Assessment 799
A Turing’s example 801

Abstract. We present a history of Hoare’s logic.

1. Introduction

Hoare’s logic is a formalism allowing us to reason about program correctness. It was introduced fifty years ago in
the seminal article [Hoa69] of TonyHoare that focused on a small class of while programs, andwas soon extended
by him in [Hoa71a] to programs allowing local variables and recursive procedures. This approach became the
most influential method of verifying programs, mainly because its syntax-oriented stylemade it possible to extend
it to almost any type of programs. Also, thanks to parallel developments in program semantics, this approach
leans itself naturally to a rigorous analysis based on the methods of mathematical logic. Since then, several books
appeared that discuss Hoare’s logic, or at least have a chapter on it: [dB80, LS87, TZ88, Fra92,Win93, AFPdS11,
Ben12], to name a few.

More than thirty years ago two surveys of Hoare’s logic appeared, [Apt81], concerned with deterministic
programs, and [Apt84], concerned with nondeterministic programs. At the beginning of the nineties an extensive
survey [Cou90] was published that also included an account of verification of parallel programs and a discussion
of other approaches to program verification.

A systematic exposition of Hoare’s logics for deterministic, nondeterministic and parallel programs appeared
in our book [AO91]. The last edition of it, [AdBO09], written jointly with F.S. de Boer, extended the presentation
to recursive procedures and object-oriented programs. In this paper we occasionally rely on thematerial presented
in this book, notably to structure the presentation.

Given that the literature on the subject is really vast, we would like to clarify the scope of this survey. Our
objective is to trace the main developments in Hoare’s logic that originated with the original article [Hoa69] and
resulted in proof systems dealing with several classes of programs. To realize this natural research programme
various difficulties, notably concerning the logical status of the proposed proof systems, had to be resolved. We
clarify here these and other complications and explain how they were addressed.

In particular, we discuss the problem of completeness, the issues concerning local variables, parameter mecha-
nisms, and auxiliary rules.We also discuss various alternatives toHoare’s logic thatwere proposed in the literature.
Given the scope of this exposition we discuss only briefly (in the final section) the use of automated reasoning in
the context of Hoare’s logic. This important sequel to the research reported here deserves a separate survey.

According to Google Scholar, the original article [Hoa69] has been cited more than 7000 times. This forced
us to make some selection in the presented material. Some omissions, such as the treatment of the nowadays less
often used goto statement or coroutines, were dictated by our effort to trace and explain the developments that
withstood the test of time.

Further, we do not introduce any program semantics. Consequently, we do not prove any soundness or
completeness results. Instead, we focus on a systematic account of the established results combined with an
explanation of the reasons why some concepts were introduced, and on a discussion of some, occasionally subtle,
ways Hoare’s logic differs from customary logics.

Fifty years of Hoare’s logic 753

Fig. 1. Turing’s flowchart, reconstructed by F.L. Morris and C.B. Jones [MJ84]

We begin the exposition by discussing in the next section the contributions to program verification by Alan
Turing and Robert Floyd that preceded those of Hoare. Then, in Sect. 3, we discuss Hoare’s initial contributions
that focused on the while programs and programs with recursive procedures, though we extend the exposition by
an account of program termination. Next, we discuss in Sect. 4 the soundness and completeness of the discussed
proof systems. An essential difference between Hoare’s logic and first-order logic has to do with the features
specific to programming languages, such as subscripted variables, local variables, and parameter mechanisms.We
discuss these matters in Sect. 5. This provides a natural starting point for an account of verification of programs
with arbitrary procedures, notably procedures that allow procedures as parameters. This forms the subject of
Sect. 6.

In Sect. 7 we discuss verification of nondeterministic programs, the corresponding issue of fairness, and
verification of probabilistic programs. Then, in Sect. 8 we focus on the verification of parallel and distributed
programs. Next, in Sect. 9, we provide an account of verification of object-oriented programs. In the final two
Sects. 10 and 11, we shed light on alternative approaches to program verification, discuss briefly the use of
automated verification in relation to Hoare’s logic, and attempt to explain and assess the impact of Hoare’s logic.

2. Precursors

2.1. Turing

The concern about correctness of computer programs is as old as computers themselves. Tracing the history
of program verification is not the focus of this survey, so we only discuss here two key contributions preceding
those of Tony Hoare. Readers interested in the early history of this subject are referred to the paper [Jon03] by
C.B. Jones.

In 1949, Alan Turing gave a presentation entitled “Checking a Large Routine” at a conference in Cambridge
U.K. at the occasion of the launching of the computer EDSAC (Electronic Delay Storage Automatic Calculator),
published as [Tur49]. F.L.Morris andC.B. Jones recovered [MJ84] the original typescript of Turing’s presentation
and made it available for a wider audience, thereby correcting several typing errors.

Turing started by asking

“How can one check a routine in the sense of making sure that it is right?”

and proposed that

“... the programmer should make a number of definite assertions which can be checked individually, and from which the correctness of the
whole programme easily follows.”

Turing demonstrated his ideas for a flowchart program with nested loops computing the factorial n! of a
given natural number n, where multiplication is achieved by repeated addition; see Fig. 1. Note that the effect of
a command in the flowchart is represented by an equation like u ′ � u + v , where the primed variable u ′ denotes
the value of the variable u after the execution of the command.

754 K.R. Apt and E-R. Olderog

Fig. 2. Turing’s assertions, reconstructed by F.L. Morris and C.B. Jones [MJ84]. Turing writes n for the factorial of n

Today, this notation is still in use in logical representations of computation steps like in the specification
language Z (see, e.g., [Spi92]) and bounded model checking.

Turing referred already to assertions. In the example he presented them in the form of a table referring to the
numbers of the locations storing the variables s, r ,n, u, v , see Fig. 2. From today’s viewpoint these assertions
are admittedly very specific and difficult to read.

Turing was not only concerned with delivering correct values, but also with termination. He wrote

“Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further
definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine
stops.”

This refers already to the concept of a termination function. Turing stated a global termination function for the
example program, i.e., an integer expression yielding a non-negative value that decreases with every step of the
program.

Summarizing, Turing introduced the notions of assertions and termination functions, but did not state loop
invariants and local termination functions for the two loops of the program. Still, as we show in the Appendix,
his approach can be represented within the framework of Hoare’s logic.

2.2. Floyd

Robert Floyd was the first to propose a fully formal method for proving the correctness of flowchart programs
known as inductive assertionsmethod in [Flo67]. (Floyd actuallymentions that his work is “based on ideas of Perlis
and Gorn, and may have made their earliest appearance in an unpublished paper by Gorn.”) Here the assertions
are logical formulas in terms of the variables appearing in the flowcharts. The begin of the flowchart is annotated
with an assertion stating the assumptions under which the flowchart is supposed towork. The end of the flowchart
is annotated with an assertion specifying the desired result. To verify that these input-output annotations are
correct, each loop of the flowchart needs to be annotated at some selected point with an assertion that should
hold whenever the control reaches this point. The assertion should thus be an invariant at this selected point.
Floyd states rules how to verify this by completing the flowchart so that there is at least one assertion between
any two subsequent statements. The rules explain how to modify a given assertion when passing a test statement
and when passing an assignment statement. When two assertions are adjacent to the same arc then the logical
implication has to hold in the direction of the arc.

In Fig. 3 we showTuring’s example as a flowchart with annotations according to Floyd’s method. At the begin
B of the flowchart the annotation n ≥ 1 states the assumption of the computation, at the end E the annotation
v � n! specifies the desired result that should hold whenever the computation reaches E . To verify that this
annotation is correct, in every loop a point needs to be selected and annotated with an invariant. In this example,
we select the bullet points and annotate them with the assertions

P1 ≡ v � r ! ∧ u � r ! ∧ 1 ≤ r ≤ n

and

P2 ≡ v � r ! ∧ u � s · v ∧ 1 ≤ s ≤ r + 1 ≤ n.

Fifty years of Hoare’s logic 755

�B
n ≥ 1

r := 1
u := 1

�E v = n!

v := u

�
�

�
�r < n

F

T
s := 1 u := u+ v s := s+ 1

r := r + 1

�
�

�
�s > r

T

F

� � ��P1
�

�

� �

� �P2

�

�

�

Fig. 3. Turing’s example as a flowchart with annotations according to Floyd’s method, where P1 and P2 are the following invariants:
P1 ≡ v � r ! ∧ u � r ! ∧ 1 ≤ r ≤ n and P2 ≡ v � r ! ∧ u � s · v ∧ 1 ≤ s ≤ r + 1 ≤ n . See also [dB75]

While the inductive assertions method is a natural approach to program verification, it is limited to programs
that can be represented as flowcharts. This obvious deficiency was overcome by Hoare by proposing an approach
that is applicable to programs written in the customary textual form.

3. Hoare’s Contributions

3.1. Reasoning about while programs

To reason about programs Hoare introduced in [Hoa69] a new notation

P {S } Q,

with the interpretation
“If the assertion P is true before initiation of a program S , then the assertion Q will be true on its completion.”

Nowadays one rather writes

{P} S {Q}
so that additional assertions can be freely inserted in the program text, by putting the {·} brackets around them.
Such a possibility will turn out to be especially important when reasoning about parallel programs. In what
follows we shall use the latter notation. In this context P is referred to as a precondition andQ as a postcondition.

Subsequently Hoare introduced an axiom to reason about the assignment statement and the proof rules to
reason about the program composition and the while statement. He also introduced two consequence rules, now
combined into one, that allow one to strengthen the precondition and to weaken the postcondition. He then used
these axioms and rules to establish correctness of the following simple program, let us call it DIV, that finds “the
quotient q and a remainder r obtained on dividing x by y”:

r :� x ; q :� 0; while y ≤ r do r :� r − y ; q :� 1 + q od.

All variables are assumed to range over the nonnegative integers.
In what follows we review these steps.We view assertions as formulas in some first-order language and assume

from the reader some rudimentary knowledge of basic concepts of logic. The assignment axiom has the form:

ASSIGNMENT

{P [x :� t]} x :� t {P},
where x is a variable, t is an expression, and P [x :� t] is the result of substituting t for all free occurrences of x
in P .

756 K.R. Apt and E-R. Olderog

Line Formal proof Justification
number

1 true → x = x+ y · cigol0
2 {x = x+ y · 0} r := x {x = r + y · 0} ASSIGNMENT
3 {x = r + y · 0} q := 0 {x = r + y · q} ASSIGNMENT
4 {true} r := x {x = r + y · 0} CONSEQUENCE (1,2)
5 {true} r := x; q := 0 {x = r + y · q} COMPOSITION (4,3)
6 x = r + y · q ∧ y ≤ r → x = (r − y) + y · (1 + q cigol)
7 {x = (r − y) + y · (1 + q)} r := r − y {x = r + y · (1 + q)} ASSIGNMENT
8 {x = r + y · (1 + q)} q := 1 + q {x = r + y · q} ASSIGNMENT
9 {x = (r − y) + y · (1 + q)} r := r − y; q := 1 + q {x = r + y · q} COMPOSITION (7,8)
10 {x = r + y · q ∧ y ≤ r} r := r − y; q := 1 + q {x = r + y · q} CONSEQUENCE (6,9)
11 {x = r + y · q} while y ≤ r do r := r − y; q := 1 + q od {¬y ≤ r ∧ x = r + y · q} WHILE (10)
12 {true} r := x; q := 0; while y ≤ r do r := r − y; q := 1 + q od

{¬y ≤ r ∧ x = r + y · q} COMPOSITION (5,11)

The arguments in the right column of the rules refer to the line numbers to which they were applied and ‘logic’ indicates that
the relevant formulas are true (Hoare referred to specific axioms of Peano arithmetic).

Fig. 4. Correctness proof of the DIV program

The already mentioned consequence rule has the following form:

CONSEQUENCE

P → P1, {P1} S {Q1},Q1 → Q
{P} S {Q}

Here it is assumed that thementioned implications can be established in some further unspecified proof system
exclusively concerned with the assertions. (Hoare just referred to → as ‘logical implication’.)

The final two rules were:

COMPOSITION

{P} S1 {R}, {R} S2 {Q}
{P} S1; S2 {Q}

and

WHILE

{P ∧ B} S {P}
{P} while B do S od {P ∧ ¬B}
Nowadays one refers to the assertion P that satisfies the premise of this rule as a loop invariant.
Hoare’s correctness proof of the DIV program is presented in Fig. 4. (Hoare wrote the postcondition of the

conclusion of theWHILE rule as ¬B ∧ P and this is how it is recorded in Fig. 4.) It yields the desired conclusion
that q is the quotient and r the remainder resulting from dividing x by y . The crucial step in this proof is line
10 that clarifies the role played by the assertion x � r + y · q . This line establishes that x � r + y · q is a loop
invariant of the considered while statement and its discovery is essential for the proof to succeed.

As pointed out in [JR10] the assignment axiom was originally proposed in [Kin69], the PhD thesis of J. King.
From [Flo67] one can distill a more complex assignment axiom

ASSIGNMENT I

{P} x :� t {∃y : (P [x :� y] ∧ x � t [x :� y])}.
that reasons “forward” starting from the precondition P .

The striking simplicity of theASSIGNMENTaxiomreveals a close relationbetween the assignment statement
and the substitution operation. This is achieved, in contrast to Floyd’s approach, by reasoning ‘backwards’, so
starting from the postcondition P . The adoption of this axiom by Hoare probably influenced a couple of years

Fifty years of Hoare’s logic 757

later Edsger W. Dijkstra to propose the weakest precondition semantics that adopted this reasoning ‘backward’
to all program statements. We shall discuss this alternative approach to program verification in Sect. 10. From
the mathematical point of view, Hoare’s proof rules and axioms form an unusual mix: the assignment axiom
adopts ‘backward’ reasoning, while the proof rules embrace ‘forward’ reasoning, in the sense that they maintain
the view that a program is a transformation of a precondition to a postcondition.

Historically, Hoare’s approach was preceded by P.Naur’s paper [Nau66] in which a simpleAlgol 60 program
that finds the greatest element in an array of numbers was verified using ‘snapshots’, which are in fact assertions.
However, Naur’s reasoning is not backed up by any proof rules. His paper closes with this remark: “Similar
concepts have been developed independently by RobertW. Floyd (unpublished paper, communicated privately).”
that clearly refers to Floyd’s paper discussed in the previous subsection.

Hoare’s paper turned out to be the beginning of a far reaching change in reasoning about programs, resulting
from moving from flowcharts to programs expressed in the customary textual form. This opened the way to
reasoning about programs that cannot be readily expressed as flowcharts, for example, recursive procedures or
programswith variable declarations.Also itmade it possible to adopt a syntax-directed reasoning about programs
by using their structure as guidance in organizing the proof.

A related, implicit, feature of the proof system proposed by Hoare is that it encourages program development
by allowing one to first specify the desired preconditions and postconditions of a program component and sub-
sequently to look for a program fragment for which the corresponding correctness statement can be established.
Hoare took a lead in this novel view of program correctness by publishing in [Hoa71b] a correctness proof of
the FIND program, the purpose of which is to find the f th largest element of an array A[1 : N] by rearranging its
elements so that upon termination

A[1],A[2], . . . ,A[f − 1] ≤ A[f] ≤ A[f + 1], . . . ,A[N].

The program is very subtle —it uses a triply nested while loop— and as a result its correctness proof is highly
nontrivial. The proof is not carried out in the proof system of [Hoa69] but from the way it is written it is clear
that it can be done so. In fact, Hoare refers in a number of places to invariants that he defines as formulas that
remain true throughout the execution of the program independently of the values of the program variables.

A similar in style contribution is [Hoa72b], in which a correctness proof was given of a program encoding
the sieve of Eratosthenes. The difference was that the program was developed together with its correctness proof
and presented using non-recursive procedures and classes, drawing on the contemporary works of E.W. Dijkstra
on structured programming and O.J. Dahl on the object-oriented programming language SIMULA 67, which
appeared as chapters in [DDH72]. These two contributions of Hoare, [Hoa71b] and [Hoa72b], showed that his
original logic could be seen not only as a tool to verify programs but also as a guide to design correct programs.
These ideas were further developed by Dijkstra, notably in his book [Dij76a].

3.2. Reasoning about recursive procedures

Let us continue with another milestone in the history of Hoare’s logic. Foley and Hoare established correctness
of the program Quicksort [FH71], originally proposed by Hoare in [Hoa61]. Foley and Hoare stated:
“The purpose of the program Quicksort is to sort the elements a [m] to a [n] of an array into ascending order, while leaving untouched those
below a [m] and above a [n].”

Themain difficultywas that Quicksortuses recursion. (Actually itwas the first non-trivial example of a successful
use of recursion in imperative programming.) This required appropriate proof rules thatwere introduced byHoare
in [Hoa71a].

In what follows, given a program S we denote by change(S) the set of variables that are subject to change in
it. In general, this set depends on the initial state of the program, but one can define syntactically a superset of
it that takes care correctly of local variables and multiple procedure declarations. In what follows we mean by
change(S) this syntactically defined superset.

Further, we use procp(x : v) : S to denote the declaration of a procedure p with the body S and two disjoint
lists of distinct formal parameters: x is the list of all global variables of S which are subject to change by S , i.e.,

758 K.R. Apt and E-R. Olderog

{x} � change(S), and v is the list of all other global variables of S (read-only variables). (Hoare actually used a
slightly different notation that is now obsolete.)

Legal procedure calls are of the form call p(a : e), where

• a is a list of distinct variables of the same length as x that are substituted for x,
• e is a list of expressions not containing any variable of a, of the same length as v, that are substituted for v.

The following proof rule dealt with a ‘generic’ procedure call call p(x : v):

RECURSION

{P} call p(x : v) {Q}
 {P} S {Q}
{P} call p(x : v) {Q}

where the procedure p is declared by proc p(x : v) : S .

(Hoare actually included the procedure declaration as an additional premise of the rule.) What is the intuition
behind this rule? Hoare states in [Hoa71a] that it permits
“the use of the desired conclusion as a hypothesis in the proof of the body itself.”

More specifically, the symbol
 in the premise denotes the provability relation. So this rule is actually a
metarule. According to [FH71] the premise of this rule
“permits {P} call p(x : v) {Q} to be assumed as a hypothesis in the proof of {P} S {Q}.”
This proof is supposed to be carried out using the remaining axioms and proof rules. The conclusion of the rule
then coincides with this hypothesis.

To transfer a result established by the recursion rule to any other procedure call with actual parameters, say
the lists a and e, the following substitution rule was introduced:

SUBSTITUTION

{P} call p(x : v) {Q}
{P [k :� k′,x :� a,v :� e]} call p(a : e) {Q [k :� k′,x :� a,v :� e]}

where the following holds for the substitutions applied to P and Q :

• k is a list of free variables of P or Q that do not occur in x or v, but which occur in a or e,
• k′ is a list of fresh variables of the same length as k that are substituted for k. So the variables in k′ do not
appear globally in the procedure body S , are not free in P or Q , and do not occur in a or e,

• a and e are such that the call call p(a : e) is legal.

So the substitution [x :� a,v :� e] of the formal parameters by the actual ones is carried out together with an
appropriate renaming [k :� k′] of the ‘potentially conflicting’ variables in P and Q .

Hoare noted that the above two rules are not sufficient to reason about recursive procedures. To have a more
powerful proof method, he introduced the following rule, where f ree(P) stands for the set of free variables in an
assertion P and similarly with f ree(P ,Q). Further, for a list z of variables, {z} denotes the set of all variables
occurring in z. Similarly, {a, e} denotes the set of all variables occurring in the lists a and e.

ADAPTATION

{P} call p(a : e) {Q}
{∃ z (P ∧ ∀a (Q → R))} call p(a : e) {R}

where z is a list of variables with {z} � f ree(P ,Q) \ (f ree(R) ∪ {a, e}).
The precondition of the conclusion of this rule looks complicated. What does it express? Hoare explained in

[Hoa71a]:
“If R is the desired result of executing a procedure call, call p(a : e), and {P} call p(a : e) {Q} is already given, what is the weakest
precondition W such that {W } call p(a : e) {R} is universally valid? It turns out that this precondition is ∃ z (P ∧ ∀a (Q → R)).”

Fifty years of Hoare’s logic 759

We shall discuss this rule further in Sect. 5.1.
To deal with the declarations of local variables Hoare introduced the following rule:

DECLARATION

{P} S [x :� y] {Q}
{P} begin var x ; S end {Q}

where y ∈ f ree(P ,Q) and y does not appear in S unless the variables x and y are the same.

Additionally, a proof rule, originally proposed in [Lau71], to reason about the conditional if-then statement
was used. We present here instead a more common rule that deals with the if-then-else statement:

CONDITIONAL

{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}
{p} if B then S1 else S2 fi {q}

The correctness proof of Quicksort by Foley and Hoare in [FH71] was carried out using the above proof
rules, originally presented in [Hoa71a]. The authors formulated two correctness criteria that should hold upon
termination of Quicksort:

• Sorted : the output array should be sorted within the given bounds m and n.
• Perm: the output array should be a permutation of the original input array within the given boundsm and n
but untouched outside these bounds.

The proof established these properties simultaneously, using appropriate assertions. In [AdBO09] a detailed
modular correctness proof of Quicksort was given. Modular means here that the property Perm was proved
first and next, based on this result, the property Sorted.

3.3. Reasoning about termination

So far we did not discuss within Hoare’s logic the subject of program termination. Nowadays, one talks of
partial correctness, which refers to the conditional statement ‘if the program terminates starting from a given
precondition, then it satisfies the desired postcondition’ and this is precisely whatHoare’s proof system allows one
to accomplish. A more demanding property is total correctness, which stipulates that all program computations
starting from a given precondition terminate and satisfy the desired postcondition. To formalize these notions
we need to refer to the program semantics. We shall discuss it in the next section.

All approaches to proving program termination within Hoare’s logic formalize Floyd’s [Flo67] observation
that
“Proofs of termination are dealt with by showing that each step of a program decreases some entity which cannot decrease indefinitely.”

The challenge is to incorporate such a reasoning into Hoare’s framework in a simple way. The first extension of
Hoare’s proof system to total correctness was proposed in [MP74], but the proposed strengthening of theWHILE
rule was somewhat elaborate. In [Har79] the appropriate rule took a simpler form:

WHILE I

P (n + 1) → B , {P (n + 1)} S {P (n)}, P (0) → ¬B
{∃n P (n)} while B do S od {P (0)}

where P (n) is an assertion with a free variable n that does not appear in S and ranges over natural numbers.

Still, a disadvantage of this rule is that it requires to find a parameterized loop invariant P (n) such that the
value of n decreases exactly by 1 with each loop iteration. Such a precise information is not needed to establish
termination and sometimes is difficult to come up with.

Additionally, it is often inconvenient to reason about partial correctness and termination at the same time.
These concerns were addressed in the following proof rule introduced in [OG76a] that adds two new premises to
the original WHILE rule:

760 K.R. Apt and E-R. Olderog

WHILE II

{P ∧ B} S {P},
{P ∧ B ∧ t � z } S {t < z },
P → t ≥ 0

{P} while B do S od {P ∧ ¬ B}
where t is an integer expression, called a termination function (sometimes called a bound function or a variant),
and z is an integer variable that does not appear in P ,B , t or S .

This proof rule corresponds to Dijkstra’s modification of his weakest precondition semantics proposed in
[Dij76b] and reproduced as [Dij82]. Returning to the DIV program from Sect. 3.1 note that it does not terminate
when y � 0. To prove its termination one needs to assume that initially x ≥ 0 ∧ y > 0 and use a stronger loop
invariant, namely P ′ ≡ r ≥ 0 ∧ y > 0 ∧ x � r + y · q . The termination function is particularly simple here: it is
just r . The relevant claims,

{P ′ ∧ y ≤ r ∧ r � z } r :� r − y ; q :� 1 + q {r < z }
and

P ′ → r ≥ 0,

are straightforward to prove.
Hoare did discuss program termination in the already discussed [Hoa71b], where he showed termination of the

FIND program. Since this property is not captured by his proof system from [Hoa69], he used informal arguments.
According to the above terminology, he established total correctness of the program FIND. Hoare noticed that the
termination proof required new invariants in addition to those needed for proving partial correctness. However,
he did not introduce the concept of a termination function with a corresponding proof rule for total correctness
of while programs.

To deal with the total correctness of the recursive procedures the following analogue of the WHILE I rule
was proposed independently in [Cla76] and [Sok77]:

RECURSION I

¬P (0), {P (n)} call p {Q}
 {P (n + 1)} S {Q}
{∃nP (n)} call p {Q}

given the procedure declaration proc p : S , and where P (n) is an assertion with a free variable n that does not
appear in S and ranges over natural numbers.

This rule shares with the WHILE I rule the same disadvantage concerning the parameterized assertion P (n).
Thismatterwas addressed in [AdBO09], where the following analogue of theWHILE II rulewas used for recursive
procedures:

RECURSION II

{P ∧ t < z } call p {Q}
 {P ∧ t � z } S {Q}
P → t ≥ 0

{P} call p {Q}
given the procedure declaration proc p : S , where t is a termination function, z is an integer variable that does
not occur in P , t,Q and S and is treated in the proofs as a constant.

The last restriction means that in the proof in the first premise no proof rules are apply quantification or
substitutions to the variable z . Examples of such rules are introduced in Sect. 5.1. We shall discuss the need for
such a restriction in Sect. 6.1.

In the presentation of the correctness of the recursive procedure Quicksort in [FH71] only few remarks
were spent on termination. In [AdBO09] termination of this program was proved using an extension of the
RECURSION II rule to procedures with the call-by-value parameter mechanism.

Fifty years of Hoare’s logic 761

4. Soundness and Completeness Matters

4.1. Preliminaries

In mathematical logic a standard way to judge the adequacy of a proof system is by means of the soundness
and completeness concepts. It is then legitimate to address these matters for the proof systems introduced in
the previous section. This requires some care since the CONSEQUENCE rule also uses implications between
assertions as premises, theWHILE II rule refers to integer variables and expressions, whereas the RECURSION
rules refer in their premises to the provability relation. For these considerations one needs to define some semantics
with respect to which the introduced axioms and proof rules can be assessed.

To proceed in a systematic way we need to recall some basic notions from mathematical logic. Assume a
first-order language L. An interpretation I for L consists of

• a non-empty domain D ,

• an assignment to each n-ary function symbol in L of an n-ary function over D ,

• an assignment to each n-ary predicate symbol L of an n-ary relation over D .

Given an interpretation I , a state σ is a function from the set of variables to the domain D . The definition of
I disregards our assumption that all variables are typed. However, it is easy to amend it by replacing the domain
D by the set of typed domains and by stipulating that each variable ranges over the domain associated with its
type.

The next step is to define, given an interpretation I and a state σ , the value σ (t) of an expression and when σ
satisfies a formula φ of L, written as σ |�I φ. We omit both definitions. We then say that a formula φ is true (or
valid) in I , written as |�I φ, if for all states σ we have σ |�I φ.

The consecutive step is to define semantics of the underlying programming concepts. This can be done in
a number of ways. The common denominator of all approaches is the above concept of a state. Assume that
all function and predicate symbols of the considered programming languages belong to the assumed first-order
language. (In fact, this assumption is already implicit in the way assertions are formed in the ASSIGNMENT
axiom and the WHILE rule.) However, some adjustments are needed to deal with more complex expressions
that are customary in programming languages. In particular, we need to extend the domain of the states to array
variables. We stipulate that to such variables a state assigns a function from the domain of the array to the range
type. Using such a function we can then assign values to expressions that use array variables. As the complexity
of the considered programming language grows, its expressions become more involved and the concept of the
state gets more complex. At this stage we limit ourselves to the notion of a state that assigns values to all simple
variables (i.e, variables of a simple type) and array variables.

The final step is to define semantics of the programs. Several approaches were proposed in the literature.
Their discussion and comparison is beyond the scope of this paper. For the sake of the subsequent discussion we
assume a semantics of the programs that allows us to define computations of each considered program, which are
identified here with the sequences of states that can be generated by it.

In Hoare’s logic the types of the variables in the considered programs, for instance in the program DIV studied
in Fig. 4, are usually omitted and one simply assumes that all variables are typed and that the considered programs
are correctly typed.

4.2. Soundness

Let us return now to assertions and programs. Suppose that all assertions are formulas in a given first-order
language L and that all considered programs use function and predicate symbols of L. Each interpretation I for
L then determines the set of states and thus allows us for each program to define the set of its computations over
I . This in turn allows us to introduce the following notions.

Let I be an interpretation. We say that the correctness formula {P} S {Q} is true in I in the sense of partial
correctness if the following holds:

every terminating computation of S over I that starts
in a state that satisfies P ends in a state that satisfies Q .

762 K.R. Apt and E-R. Olderog

Further, we say that the correctness formula {P} S {Q} is true in I in the sense of total correctness if the
following holds:

every computation of S over I that starts in a state that
satisfies P terminates and ends in a state that satisfies Q .

Denote now by H the original proof system of Hoare presented in Sect.3.1 and by HT the proof system
obtained from H by replacing the WHILE rule by the WHILE II rule. The following two results capture the
crucial properties of these proof systems.

Soundness Theorem 1 Consider a proof of the correctness formula {P} S {Q} in the proof systemH that can use
in the applications of the CONSEQUENCE rule assertions from a set A. Consider an interpretation I in which
all assertions from A are true. Then {P} S {Q} is true in I in the sense of partial correctness.

This propertyof theproof systemH is called soundness in the senseofpartial correctness. Itwasfirst established
in [HL74] w.r.t. the relational semantics in which programs were represented as binary relations on the sets of
states. Returning to the original proof of [Hoa69] presented in Fig. 4, the appropriate set A of the assertions
consists of the formulas listed in lines 1 and 6. Since they are true in the standard interpretation I of Peano
arithmetic, we conclude by the above theorem that the established correctness formula listed in line 12 of Fig. 4
is true in I in the sense of partial correctness.

The following counterpart of of the above theorem justifies the reasoning about termination. It is, however,
important to read it in conjunction with the qualifications that follow.

Soundness Theorem 2 Consider a proof of the correctness formula {P} S {Q} in the proof system HT that can
use in the applications of the CONSEQUENCE rule assertions from a set A. Consider an interpretation I in
which all assertions from A are true. Then {P} S {Q} is true in I in the sense of total correctness.

This property of the proof system HT is called soundness in the sense of total correctness. The first proof
was given in [Har79] and referred to the proof system in which instead of the WHILE II rule the WHILE I
rule was used. In this rule the assertion P (n) refers to a free variable n that ranges over natural numbers. To
guarantee the correct interpretation of such assertions one needs to ensure that in each state such a variable n is
interpreted as a variable of type ‘natural number’. In [Har79] this is achieved by considering assertion languages
that extend the language of Peano arithmetics and by limiting one’s attention to arithmetic interpretations. These
are interpretations that extend the standard model for arithmetic.

In the case of the WHILE II rule similar considerations are needed to ensure the correct interpretation of the
integer expression t and the integer variable z . The corresponding result was given in [AO91] and reproduced in
the subsequent two editions of the book. As in [AO91] all variables are assumed to be typed, t and z are correctly
interpreted and the need for the arithmetic interpretations disappears.

4.3. Completeness

The completeness of theH andHT proof systems aims at establishing some form of converse of the Soundness
Theorems. It is a subtle matter and requires a careful analysis. Let us start with the proof system H. It is
incomplete for an obvious reason. Consider for instance the correctness formula {true} x :� 0 {x � 1}. By the
ASSIGNMENT axiom we get {0 � 1} x :� 0 {x � 1}. To conclude the proof we need to establish the obvious
implication true → 0 � 1 and apply the CONSEQUENCE rule. However, we have no proof rules and axioms
that allow us to derive this implication.

Away out is to augmentH by a proof system allowing us to prove all true implications between the assertions.
Unfortunately, in general such proof systems do not exist. This is a consequence of two results in mathematical
logic. The first one states that the set of theorems in a proof system with recursive sets of axioms and finitary
rules is recursively enumerable. The second one is Tarski’s undefinability theorem of 1936, see [Tar36]. It implies
that the set of formulas of Peano arithmetic that are true in the standard model of arithmetic is not arithmetically
definable, so in particular not recursively enumerable. This means that completeness of the proof systemH cannot
be established even if we add to it a proof system concerned with the assertions.

A natural solution is to try to establish completeness relative to the set of true assertions, that is to use the
set of true assertions as an ‘oracle’ that can be freely consulted in the correctness proof. However, even then a

Fifty years of Hoare’s logic 763

problem arises because the assertion language can fail to be sufficiently expressive. Namely [Wan78] exhibited a
true correctness formula that cannot be proved because the necessary intermediate assertions cannot be expressed
in the considered assertion language. Simpler examples of such assertion languages were provided in [BT82a].

A solution to these complications was proposed by S.A. Cook in [Coo78]. To explain it we need to introduce
some additional notions. We call a set of states � definable in an interpretation I iff for some formula φ we have
� � {σ | σ |�I φ}.

Next, we assign to each program S its meaning MI [[S]] relative to I , defined by

MI [[S]](σ) � {τ | there exists a computation of S over I that starts in σ and terminates in τ }.
At this moment the set MI [[S]](σ) has at most one element, which will not be anymore the case when nondeter-
ministic or parallel programs are considered.

Then given an assertion P and a program S we define

spI (P ,S) � {τ | ∃σ (σ |�I P ∧ τ ∈ MI [[S]](σ))}.
So spI (P ,S) is the set of states that can be reached by executing S over I starting in a state satisfying P ; ‘sp’
stands for the strongest postcondition.

We then say that the language L is expressive relative to an interpretation I and a class of programs S if for
every assertion P and program S ∈ S the set of states spI (P ,S) is definable. Finally, given a first-order language
L, a proof system PS for a class of programs S is called complete in the sense of Cook if for every interpretation
I such that L is expressive relative to I and S the following holds:

every correctness formula true in I in the sense of partial
correctness can be proved in PS assuming all true formulas in I .

In other words, completeness in the sense of Cook is a restricted form of relative completeness mentioned above,
in which we limit ourselves to the class of interpretations w.r.t. which the underlying language L is expressive.
The following result is a special case of a theorem established in [Coo78].

Completeness Theorem The proof systemH for partial correctness of the while programs is complete in the sense
of Cook.

The main difficulty in the proof, that proceeds by induction on the program structure, consists in finding
the loop invariants. A simpler argument was provided in [Cla79], where a dual definition of expressiveness was
used. Instead of the strongest postcondition it relied on the so-called weakest liberal precondition, which, given
an interpretation I , assertion Q and a program S , is defined by

wlpI (S ,Q) � {σ | ∀τ (τ ∈ MI [[S]](σ) → τ |�I Q)}.
So wlpI (S ,Q) is the set of states from which all terminating computations of S over I end in a state satisfying
Q . The qualification ‘liberal’ refers to the fact that termination is not guaranteed. The assumption that the set
of states wlpI (Q,S) is definable makes it possible to find a very simple loop invariant. Namely, assuming that
{P} while B do S od {Q} is true in an interpretation I such that L is expressive relative to it in this revised sense,
it turns out that a loop invariant is simply an assertion R defining wlpI (while B do S od,Q). Additionally, both
P → R and R ∧ ¬B → Q are true in I , which allows one to establish {P} while B do S od {Q} by the WHILE
and CONSEQUENCE rules.

The above completeness result led to a number of works that tried to clarify it in a logical setting. In particular,
J.A. Bergstra and J.V. Tucker noticed in [BT82b] that expressiveness is not a necessary condition for a Hoare’s
logic to be complete. Indeed, if one takes as the assertion language the language of Peano arithmetic, then there
exist interpretations I for which it is not expressive, while all correctness formulas that are true in I in the sense
of partial correctness can be proved in the proof systemH.

We should also mention here a proposal put forward in [BG87] by A. Blass and Y. Gurevich. They suggested
to use a different assertion language than first-order logic (or its multi-sorted variants dealing with subscripted
variables or typed variables). The proposed assertion language is a fragment of the second-order logic, called
existential fixed-point logic (EFL). EFL extends a fragment of first-order logic, in which negation is applied only
to atomic formulas and the universal quantifier is absent, by a fixed-point operator. The authors showed that
EFL is sufficient for proving relative completeness of the proof systemHwithout any expressiveness assumption.

764 K.R. Apt and E-R. Olderog

The reason is that both the strongest postconditions and the weakest liberal preconditions of the while programs
(also in presence of recursive parameterless procedures) are definable in EFL.

Different insights on the relative completeness can be obtained by just limiting the assertion language to
propositions. The resulting propositional fragment of Hoare’s logic of while programs (PHL) can then be studied
in a purely algebraic way, by means of an equational reasoning. D. Kozen showed in [Koz00] that an extension of
Kleene’s algebra of regular expressions with tests (KAT) subsumes PHL. In this setting the while B do S od pro-
gram is represented by the expression (BS)∗B̄ and the correctness formula {P} S {Q} by the equation PSQ̄ � 0,
where ¯ is the complementation operator of KAT. After this translation the proof rules of the proof system H
become theorems of KAT. Further, after defining validity of implications between conjunctions of expressions
using a relational semantics, a counterpart of the completeness result can be established for PHL. This shows that
reasoning within propositional Hoare’s logic can be represented by purely equational reasoning. This work was
followed by [KT01], where it was clarified how the notion of completeness in the sense of Cook can be captured
by adding the weakest liberal precondition to the assertion language and an appropriate axiomatization of it to
the axioms of KAT.

An even more general analysis of soundness and relative completeness of the proof system H was presented
in [AMMO09] within the framework of category theory, using a simple theory of pre-ordered sets. Such a general
approach allowed the authors to derive new sound and relatively complete Hoare’s logics for the runtime analysis
and for verification of linear dynamical systems.

Consider now the proof system HT for total correctness of while programs. To establish its completeness
in the appropriate sense we encounter the same complications as in the case of H, but additionally we have
to deal with the problem of definability of the termination functions used in the WHILE II rule. In [Har79]
completeness was established for the assertion languages that extend the language of Peano arithmetic and for
arithmetic interpretations defined in the previous subsection, but the paper considered the WHILE I rule in
which the termination functions are absent. To be able to express in the assertion language the parameterized
loop invariantsP (n) the definition of an arithmetic interpretation stipulates that there is a formula in the assertion
language that, when interpreted, encodes finite sequences of the domain elements by one element.

In [AO91] and the subsequent two editions of the book relative completeness ofHT was established. To this
end, it was assumed that the underlying assertion language is expressive, which meant that for every while loop S
there exists an integer expression t such that whenever S terminates when started in a state σ , then the value σ (t)
is the number of loop iterations. In the adopted setup the assumption that all variables are typed automatically
ensures that the considered interpretations included the standard model of Peano arithmetic and that σ (t) is a
natural number.

5. Fine-tuning the Approach

Thematters discussed until now gloss over certain issues that have to dowith the adjustments of the preconditions
and postconditions, various uses of variables, and procedure parameters. In this section we discuss closely these
matters, as they reveal some differences between customary logics and Hoare’s logic and show the subtleties of
reasoning about various uses of variables in the context of programs.

5.1. Adaptation rules

InHoare’s logic we see two types of rules. First, for each programming construct there is at least one axiom or rule
dealing with its correctness. Together, they make possible a syntax-directed reasoning about program correctness.
Second, there are proof rules where the same program S is considered in the premise and the conclusion. These
rules allow us to adapt an already established correctness formula {P1} S {Q1} about S to another proof context.
Most prominent is the CONSEQUENCE rule that allows us to strengthen the precondition P1 to a precondition
P with P → P1 and to weaken the postcondition Q1 to a postcondition Q with Q1 → Q , thus arriving at the
conclusion {P} S {Q}. Another one is Hoare’s ADAPTATION rule dealing with procedure calls. Hoare stated
in [Hoa71a] that in the absence of recursion, i.e., in his proof system for while programs, his ADAPTATION rule
is a derived rule. So the power of this rule is only noticeable in the context of recursion.

Other rules can be conceived that are concerned with the same program in the premise and conclusion. For
example, the following rules were introduced in [Har79] and [AdBO09]. Here and elsewhere we denote the set of
variables of a program S by var (S).

Fifty years of Hoare’s logic 765

INVARIANCE

{R} S {Q}
{P ∧ R} S {P ∧ Q}

where f ree(P) ∩ change(S) � ∅.
∃-INTRODUCTION

{P} S {Q}
{∃x : P} S {Q}

where x ∈ var (S) ∪ f ree(Q).

SUBSTITUTION I

{P} S {Q}
{P [z :� t]} S {Q [z :� t]}

where ({z} ∩ var (S)) ∪ (var (t) ∩ change(S)) � ∅.
We shall return to these rules shortly. But first, following [Old83b], let us discuss the ADAPTATION rule in

the more general setting of programs.We say that a program S is based on a finite setX of variables if var (S) ⊆ X
holds. Now we can recast Hoare’s ADAPTATION rule as follows:

ADAPTATION I

{P} S {Q}
{∃ z(P ∧ ∀x(Q → R))} S {R}

where x and z are lists of variables, S is based on {x}, and {z} � f ree(P ,Q) \ (f ree(R) ∪ {x}).
FollowingHoare, the precondition in the conclusionof this rule intends to express theweakest preconditionW

such that {W } S {R} holds (in the sense of partial correctness), assuming that R is the desired result of executing
S and {P} S {Q} is already established. This intention can be phrased as follows: find the weakest assertion W
such that {W } S {R} holds for all programs based on {x} that satisfy {P} S {Q}. In [Old83b] this precondition
was calculated as follows:

W ≡ ∀y (∀u (P → Q [x :� y]) → R[x :� y]),

wherey is a list of fresh variables of the same length asxwith {y}∩ f ree(P ,Q,R) � ∅ and {u} � f ree(P ,Q)\{x}.
Comparing W with the precondition used in the conclusion of the ADAPTATION I rule shows that the

implication

∃ z(P ∧ ∀x(Q → R)) → W

holds but the converse is false. Thus Hoare’s precondition is sound but is stronger than necessary. This suggests
the following variant of the rule:

ADAPTATION II

{P} S {Q}
{W } S {R}

where S is based on {x} and W is the precondition calculated above.

To show the weakness of the Hoare’s ADAPTATION I rule in the context of recursive procedures, consider the
following example essentially taken from [Old83b]. Let I be the standard interpretation of integers and consider
the procedure declaration

proc p(x :) : if x > 1 then x :� x − 1; call p(x :); x :� x + 1 fi,

766 K.R. Apt and E-R. Olderog

where x is an integer variable. Then the procedure call satisfies the following correctness formula

{x � y} call p(x :) {x � y},
where y is a fresh variable x . It expresses the fact that the procedure call leaves the variable x unchanged. For the
postcondition x � y + 1 the ADAPTATION I rule (or, equivalently, the original ADAPTATION rule) permits
us to conclude only

{false} call p(x :) {x � y + 1},
whereas the weakest liberal precondition wlpI (call p(x :), x � y + 1) is expressed by the formula x � y + 1. This
precondition is correctly calculated by the ADAPTATION II rule, which yields

{x � y + 1} call p(x :) {x � y + 1}.
To compare the power of different adaptation rules in a systematic way, S. de Gouw and J. Rot [dGR16] used

the following notion due to [Kle99]. A setR of proof rules for a class S of programs is called adaptation complete
if for all assertions P ,Q,P ′,Q ′ and finite sets X of variables

• whenever for all programs S ∈ S based on X the truth of {P} S {Q} implies the truth of {P ′} S {Q ′} in the
sense of partial correctness,

• then for all program S ∈ S based on X there is a derivation of {P ′} S {Q ′} from {P} S {Q} using only rules
ofR, written as {P} S {Q}
R {P ′} S {Q ′}.

By the result of [Old83b], the setRO � {ADAPTATION II,CONSEQUENCE} is adaptation complete. Further,
RO enjoys two properties, as noted in [dGR16]:

1. Other adaptation rules, like ∃-INTRODUCTION and slightly weakened versions of the INVARIANCE and
SUBSTITUTION I rules are derivable fromRO.

2. Any derivation in RO can be replaced by a single application of each of the two rules inRO.

What about Hoare’s adaptation rule? Let RH � {ADAPTATION I,CONSEQUENCE}. From the above
example it follows that this set is not adaptation complete. Nevertheless,RH enjoys property 1, but not property 2
of RO.

The paper [Old83b] also investigated three other adaptation rules proposed in the literature. An adaptation
rule introduced in [GL80] turned out to be sound but not adaptation complete when grouped together with the
CONSEQUENCE rule. In turn an adaptation rule for the programming language Euclid given in [LGH+78]
is not even sound, while an adaptation rule introduced in [CO81] is both sound and adaptation complete when
grouped together with the CONSEQUENCE rule.

5.2. Subscripted and local variables

Subscripted variables In both [Hoa71b] and [FH71] programs with arrays were studied. To reason about assign-
ments to the subscripted variables the ASSIGNMENT axiom was used, implicitly assuming that the definition
of substitution to subscripted variables is obvious. This is indeed the case when the array subscripts are simple
expressions, for example a constant or a simple variable, which was indeed the case for both programs analyzed
there. However, in the case of more complex subscripts difficulties may arise, as the following example discussed
in [dB80] shows. In the case of an assignment to a simple variable any correctness formula {P} x :� t {x � t},
where t is a constant is true. However, the correctness formula

{a[1] � 2 ∧ a[2] � 2} a[a[2]] :� 1 {a[a[2]] � 1}
is false. Indeed, given the precondition the execution of the assignment a[a[2]] :� 1 amounts to executing
the assignment a[2] :� 1 after which the expression a[a[2]] evaluates to 2 and not 1. This suggests that the
ASSIGNMENT axiom cannot be used for arbitrary subscripted variables.

This complication was clarified and solved in a systematic way in [dB80], by extending the definition of
substitution to an arbitrary subscripted variable. The crucial step in the inductive definition of the substitution
s [u :� t] deals with the case when s ≡ a[s1] and u ≡ a[u1], for which one defines

s [u :� t] ≡ if s1[u :� t] � u1 then t else a[s1[u :� t]] fi.

Fifty years of Hoare’s logic 767

So in the if case one checks whether after performing the substitution [u :� t] on s1 the subscripts s1 and u1
are aliases —and substitutes in that case a[s1] by t— while in the else case one applies the substitution [u :� t]
inductively to the subscript s1 of a[s1].

J.W. de Bakker showed that with this extended definition of substitution the ASSIGNMENT axiom remains
sound for subscripted variables. Different axioms for assignment to subscripted variables were given in [HW73,
Gri78, Apt81]. In the first two references in the corresponding axiom an array is treated as a partial function and
an assignment to a subscripted variable is interpreted as a change in the whole function.
Local variables Consider now the case of local variables. They can be viewed as a counterpart of bound variables
in logical formulas. However, the situation is more complicated because of the dynamic character of variables in
programming languages and the presence of procedures.

We discussed already completeness in the sense of Cook of the proof systemH given in [Coo78]. Cook actually
considered an extension of the proof system H by axioms and proof rules for a small programming language
that allows variable declarations and nonrecursive procedures and proved its completeness in the above sense.
However, the semantics of the block statement made the corresponding completeness result invalid. It is useful
to discuss this matter more closely.

Local variables were already dealt with in the DECLARATION rule mentioned in Sect.3.2. In [Coo78] a
different rule was used in which the substitution was applied to the assertions and not to the programs, namely:

BLOCK

{P [x :� y]} S {Q [x :� y]}
{P} begin var x ; S end {Q}

where y ∈ f ree(P ,Q) ∪ var (S).

More precisely, a slightly adjusted version of this rule was used so that one could reason about variable
declarations in the context of non-recursive procedures. But even without this adjustment a possible problem
arises. Consider the program

begin var x ; x :� 1 end; begin var y ; z :� y end.

In many programming languages it would yield an error because the right-hand side of the second assignment
refers to a value of the uninstantiated variable y . However, according to the semantics proposed in [Coo78] such
assignments were allowed. Local variables were modelled using a stack in which the last used value was kept on
the stack and implicitly assigned to the next local variable. As a result the correctness formula

{true} begin var x ; x :� 1 end; begin var x ; y :� x end {y � 1}
was true according to the semantics though there is no way to prove it.

[Coo81] provided a corrigendum in which two possible fixes were suggested. One was to modify the semantics
so that the proposed proof system is still complete. This can be achieved by assigning to each newly declared
variable a register that has not been used before and modifying the notion of a state accordingly.

Another one was to require all newly declared variables to be initialized to some fixed value, sayω. This option
was first used in [Gor75], where a variant of the BLOCK rule was used in which the initialization was modelled
on the proof-theoretic level by the conjunct x � ω added to the precondition of the premise. To correct the proof
of the relative completeness result given in [Coo78], one should then use an initialization of the local variables,
both in the semantics and in the proof theory, so use the variant of the BLOCK rule given in [Gor75].

Yet another option is to require all newly declared variables to be explicitly initialized to some arbitrary
expression. This approachwas taken in [AdBO09], where the followingmore general version of the corresponding
rule was used that allowed a declaration of a list of new variables:

BLOCK I

{P} x :� t; S {Q}
{P} begin var x :� t; S end {Q}

where {x} ∩ free(Q) � ∅.

768 K.R. Apt and E-R. Olderog

Here x :� t, where x is a list of different variables and t a corresponding list of expressions, is a parallel
assignment, introduced in [Dij75] and further discussed in Sect. 10.

It is natural to postulate in this rule that the variables listed in x do not appear in the expressions from t.
However, this is a syntactic condition concerning the program formation that is not needed to reason about
partial correctness. Further, as we shall soon see, putting no restrictions on x and t turns out to be useful for
modelling parameter passing in a subtle situation when some formal parameters happen to coincide with the
global variables that are used in actual parameters.

The observant reader will notice that in the discussed rules substitution is used differently. In the DECLA-
RATION rule the substitution is applied to the programs, in the BLOCK rule it is applied to the assertions, while
—interestingly— in the BLOCK I rule it is not used at all. The resulting proof systems yield different results
when applied to programs that use procedures. To illustrate the problem consider the parameterless procedure
declared by proc p : z :� x , the program

S0 ≡ begin var x ; x :� 0; call p end,

and the correctness formula

{x � 1} S0 {z � 1}. (1)

To reason about the procedure call call p we add to the proof systemH the following degenerated version of
the RECURSION rule:

COPY
{P} S {Q}

{P} call p {Q}
assuming the declaration of a parameterless non-recursive procedure proc p : S .

In our case it allows us to derive {x � 1} call p {z � 1} from {x � 1} z :� x {z � 1}. This in turn allows us to
derive

{x � 1} y :� 0; call p {z � 1}.
Now, applying the DECLARATION rule we get (1).

However, using the BLOCK rule we get a different conclusion. Namely, we first establish

{y � 1} x :� 0; call p {z � 0},
from which{x � 1} S0 {z � 0}. (2)

follows.
Finally, if we use the BLOCK I rule, and therefore consider a slightly modified program

S ′ ≡ begin var x :� 0; call p end,

we get{x � 1} S ′ {z � 0}. (3)

These differences have to do with the way local variables are interpreted in the presence of procedures.
According to the static scope policy the procedures should be evaluated in the environment in which they were
declared, while according to the dynamic scope policy they should be evaluated in the environment in which they
were called. So according to the static scope, which is adopted in most imperative languages, we should conclude
(1) and not (2) or (3).

We conclude that the proof systems studied in [Coo78] and [Gor75] dealt with dynamic scope and not static
scope. The same is in principle the case for [AdBO09], but one requires there that the local variables are first
renamed so that they differ from global variables. The effect is that then static and dynamic scopes coincide. In
the above example one thus considers the statement

S1 ≡ begin var y ; y :� 0; call p end

instead of S0. Then we get {x � 1} S1 {z � 1}, as desired.

Fifty years of Hoare’s logic 769

5.3. Parameter mechanisms and procedure calls

The call-by-name parameter mechanism was originally proposed in Algol 60. It was used in [Hoa71a] and
[Coo78] and adopted in all subsequently discussed papers on procedures, unless stated otherwise. It boils down
to a simultaneous substitution of the actual parameters for the formal ones, so naturally it was modelled in the
SUBSTITUTION rule by a straightforward substitution.

However, a most commonly used parameter mechanism is call-by-value. According to its semantics the actual
parameters are evaluated first and subsequently their values assigned to the formal parameters. Some other
parameter mechanisms were occasionally used. For example, the programming language Pascal (see [JW75])
also allows the call-by-variable mechanism (also called call-by-reference), which is a mixture of call-by-name and
call-by-value. The actual parameter has to be a variable. In case it is a subscripted variable, its index is evaluated
first and the resulting subscripted variable is substituted for the formal parameter.

In [AdB77] it was proposed to model these two parameter mechanisms of Pascal bymeans of an appropriate
syntactic transformation of the procedure body, that was called ‘syntactic application’. In what follows we use
in the procedure declaration the qualification val to indicate call-by-value and var to indicate call-by-variable.
Given a procedure declaration proc p(val x ,var y) : S , so with x called by value and y called by variable,
the call p(t, v), where t is an expression and v a, possibly subscripted, variable, was modelled by the syntactic
application S [t, v] defined by

S [t, z] ≡ begin var u; u :� t ; S [x :� u, y :� z] end,
S [t, a[s]] ≡ begin var u1, u2; u1 :� t ; u2 :� s ; S [x :� u1, y :� a[u2]] end,

where z is a simple variable and u, u1, u2 do not appear in s, t, z or S .
This leads to the following generalization of the COPY rule from the previous subsection:

CALL-BY-VALUE/CALL-BY-VARIABLE

{P} S [t, v] {Q}
{P} call p(t, v) {Q}

where the non-recursive procedure p is declared by proc p(val x ,var y) : S .

In [AdBO09] this approach to call-by-value was simplified by noting that no variable renaming is needed to
model it. The resulting rule, that needs to be used in conjunction with the BLOCK I rule, became:

CALL-BY-VALUE

{P} begin var x :� t; S end {Q}
{P} call p(t) {Q}

where the non-recursive procedure p is declared by proc p(val x) : S .

To see how this rule correctly handles a subtle situation when a formal parameter coincides with a global
variable used in an actual parameter, consider a procedure declared by

proc p(val x) : x :� x + 2; y :� y + x .

Using the BLOCK I rule we can then establish the correctness formula

{y � 0 ∧ x � 1} begin var x ; x :� x + 1; x :� x + 2; y :� y + x end {y � 4},
from which

{y � 0 ∧ x � 1} p(x + 1) {y � 4}
follows by the CALL-BY-VALUE rule. This agrees with the semantics of the call-by-value parameter mechanism.
(The stronger postcondition, y � 4 ∧ x � 1 can be established using the axioms and proof rules introduced in
the next section.) So the assignment x :� x + 1 refers on the left-hand side to the formal parameter x and on the
right-hand side to the actual parameter x + 1 that contains the global variable x .

In [Apt81] it was suggested that other parametermechanisms can also bemodelled bymeans of an appropriate
syntactic application, and subsequently reasoned about within Hoare’s logic. An example is the call-by-result

770 K.R. Apt and E-R. Olderog

parameter mechanism of Algol W, a precursor of Pascal (see [WH66]). According to it the actual parameter
is either a simple or a subscripted variable. Upon termination of the call the value of the formal parameter is
assigned to the actual parameter. In the case the actual parameter is a subscripted variable, its index is evaluated
first. This parameter mechanism is used in conjunction with the call-by-value.

We shall return to this subject in the next section when discussing completeness of the counterparts of such
rules for recursive procedures.

6. Reasoning about Arbitrary Procedures

6.1. Completeness results for recursive procedures

The relative completeness result established in [Coo78] dealt with the language considered in [Hoa71a] and Sect.
3.2, except that recursion was disallowed. To ensure soundness in the sense of partial correctness Cook stipulated
that for the procedure calls call p(a : e) no variable in (a : e) different from formal parameters occurs globally
in the procedure body.

Cook’s work was extended to the language in which recursive procedures were allowed in the Master Thesis
of G.A. Gorelick, written under the supervision of Cook. The details are only available as a technical report
[Gor75]. We present the essentials for the case of a single recursive procedure proc p(x : v) : S , in line with the
presentation in Sect. 3.2.

The conceptual contribution of Gorelick is the introduction of most general formulas. He wrote:
“The completeness result for recursive programs is then obtained by exhibiting, for each recursive procedure p, a “most general formula” αp

such that
 αp , and αp
 β for all true formulas β about p.”

Given a procedure declaration proc p(x : v) : S , a most general formula for the procedure p is a correctness
formula

{c � z} call p(x : v) {G},
where c is the list of variables that appear in the formal parameters x and v or have a global occurrence in S ,
and z is a list a fresh variables (not occurring in x,v, or S), of the same length as c that serves to freeze the
initial values of the variables in c before they are changed by S . The formula G is taken to express the strongest
postcondition spI (c � z,S) introduced in Sect. 4.3. Since the variables in c and z may appear in G as free
variables, G describes the relationship between the initial values of c represented by z and the final values of c
computed by the procedure body S and represented by c itself.

The crucial properties of most general formulas are captured by the following lemmas due to [Gor75].

Lemma G1 If {P} call p(x : v) {Q} is true in I in the sense of partial correctness then it can be derived from
{c � z} call p(x : v) {G} and the set of all true formulas in I using “suitable adaptation rules”.

LemmaG2For each procedure call callp(c : v) themost general formula {c � z} call p(x : v) {G} can be derived
from the set of all true formulas in I using Lemma G1 and the RECURSION rule.

The proof of Lemma G1 is based on the following axiom and adaptation rules, proposed in [Gor75] for the case
where S is a procedure call call p(a : e):

INVARIANCE

{P} S {P}
where f ree(P) ∩ var (S) � ∅.
CONJUNCTION

{P} S {Q}, {P} S {R}
{P} S {Q ∧ R}

VARIABLE SUBSTITUTION
{P} S {Q}

{P [z :� t]} S {Q [z :� t]}

Fifty years of Hoare’s logic 771

where

• {z} ∩ var (S) � ∅,
• if for any component ti of the list t, var (ti) ∩ var (S) � ∅, then the corresponding component zi of the list z
satisfies zi ∈ f ree(Q).

Using Lemmas G1 and G2, Gorelick established the following result. (The result was actually established for
a system of recursive procedures, so the RECURSION rule was appropriately generalized.)

Completeness Theorem For programs with recursive procedures as defined in Sect. 3.2, the proof system H
extended by the RECURSION and SUBSTITUTION rules of Sect. 3.2 and the above axiom and adaptation
rules is complete in the sense of Cook.

Both [Coo78] and [Gor75] followed [Hoa71a] and used the call-by-name parameter mechanism. The restric-
tions imposed on the actual parameters of ‘legal’ procedure calls were partly lifted in [CO81]. Analogous research
was carried out in [dB80] for the case of the call-by-value and call-by-variable parameter mechanisms in the pres-
ence of recursive procedures. To this end, the CALL-BY-VALUE/CALL-BY-VARIABLE rule from the previous
section was modified to the following rule:

RECURSION III

{Pi} call p(ti , vi) {Qi}, i ∈ {1, . . . ,n}
 {Pi} S [ti , vi] {Qi }, i ∈ {1, . . . ,n}
{P1} call p(t1, v1) {Q1}

where the procedure p is declared by procp(val x ,var y) : S and p(ti , vi), i ∈ {1, . . .,n}, are the procedure calls
that appear in p(t1, v1) and S [t1, v1].

In [dB80] soundness and relative completeness for a corresponding proof system was proved. However, the
proof was established only for the special case of a single recursive procedure, given the combinatorial explosion
of the cases concerned with the relation between the actual and formal parameters. The main ideas of this proof
were discussed in [Apt81].

Proof systems for recursive procedures with the call-by-value parameter mechanism were studied in a couple
of other publications. In [vO99] a sound and relatively complete proof system was introduced for a programming
language with local and global variables and mutually recursive procedures with the call-by-value mechanism,
that allows for both static and dynamic scope. The proofs were not provided but it was mentioned that they were
certified in the Isabelle theorem prover. In this work each assertion was identified with its meaning represented
as a function from states to Boolean values. This approach simplifies the soundness and relative completeness
proofs by avoiding various complications concerned with possible variable clashes (in particular, it obviates the
use of the SUBSTITUTION rules), but makes it cumbersome to verify specific programs and deviates from the
syntactic approach pursued in the literature on Hoare’s logic.

Further, in [AdBOdG12] soundness and relative completeness of the proof system introduced in [AdBO09]
was established. The recursive procedures with the call-by-value parameter mechanism were dealt with by an
appropriate modification of the CALL-BY-VALUE rule from the previous section.

However, in all these works on the call-by-value and call-by-variable parameter mechanisms correctness of
each procedure call had to be dealt with separately. This is an obvious drawback, since the resulting correctness
proofs are then not linear in the length of the program. It would be preferable if could establish a desired property
for a ‘generic call’ just once, from which the needed properties of all specific calls would follow by some form
of a substitution rule. In [AdBO09] it was observed that this can be achieved for the calls in which no actual
parameter contains a global variable. Recently, K.R. Apt and F.S. de Boer introduced in [AdB19] a sound and
relatively complete proof system that provides a satisfactory solution to this problem, without any restriction.
They used a generalization of the following recursion rule to a system of mutually recursive procedures:

RECURSION IV

{P} p(x) {Q}
 {P} S {Q}
{P} p(x) {Q}

where the procedure p is declared by proc p(val x) : S and {x} ∩ free(Q) � ∅.

772 K.R. Apt and E-R. Olderog

It was combined with the following rule:

PROCEDURE CALL

{P} p(x) {Q}
{P [x :� t]} p(t) {Q}

where the side conditions are the same as in the previous rule.

The resulting proof system uses the BLOCK I rule from the previous section, so it is appropriate for the
dynamic scope. However, the authors pointed out that for a natural class of programs in which the global
variables that occur in procedure bodies differ from the local variables, static and dynamic scopes coincide. Such
a class of programs was first considered in [CO81].

So far we discussed partial correctness of programs with recursive procedures. In [Apt81] it was stated without
a proof that a proof system corresponding to the one used in [Gor75] is sound in the sense of total correctness. In
this system the INVARIANCE axiom was dropped (it is not sound for total correctness), the procedures had no
parameters and the RECURSION rule was replaced by the RECURSION I rule. However, it was discovered in
[AdB90a] that this claim is false. The problem has to do with the fact that the counter variable n can be subject
to quantifier elimination in the ∃-INTRODUCTION rule, and to substitution in the SUBSTITUTION rule.

For example, given the procedure declarationprocp : p; p of an obviously nonterminating procedure one can
establish the premises¬P (0) and {P (n)} call p {true}
 {P (n + 1)} S {true} of the above rule for P (n) ≡ n > 1
and conclude {true} call p {true} by the RECURSION I and CONSEQUENCES rules.

The solution proposed in [AdB90a] was to stipulate that the counter variables are treated as constants in the ∃-
INTRODUCTION and SUBSTITUTION rules. This allowed the authors to prove both soundness and relative
completeness of the resulting proof system for total correctness of recursive procedures without parameters
w.r.t. the arithmetic interpretations introduced in Sect. 4.2. The above remarks explain why we added in the
RECURSION II rule a qualification concerning the counter variable z .

6.2. Clarke’s incompleteness result

Programming languages like Algol 60 [NBB+63] and Pascal [JW75] contain procedure mechanisms that are
considerably more complex than what we discussed so far. In his seminal paper [Cla79], E.M. Clarke identified a
combination of features for which it is impossible to obtain a Hoare-like proof system that is sound and relatively
complete (in the sense of Cook). By a Hoare-like proof system we mean a set of syntax-directed proof rules for
correctness formulas about programs in the programming language under consideration such that the application
of each proof rule is decidable. Moreover, the proof system allows one to prove correctness formulas concerning
programs from a given programming language.

Clarke proved this incompleteness result for a block-structured programming language L0 which includes the
following features that are present in Algol 60 and Pascal:

1. procedure names as parameters of procedure calls,

2. recursion,

3. static scope,

4. global variables in procedure bodies,

5. nested procedure declarations.

Clarke’s incompleteness result is based on the following two lemmas for Hoare-like proof systems H and pro-
gramming languages L.

Lemma A If H is sound and relatively complete for L, then the divergence problem for L is decidable for finite
interpretations I .

Lemma B If L has a rich procedure concept including features 1–5, then its divergence problem is undecidable
for all finite interpretations I with at least two domain elements.

Fifty years of Hoare’s logic 773

An interpretation I is called finite if its domain D is finite. A program S in L diverges for I if S never terminates
when started with any input values from D for its variables. The divergence problem for a programming language
L for an interpretation I is the problem of deciding whether an arbitrary program S of L diverges.

The proof of Lemma A rests on the following general observations. A program S of L diverges for I if and
only if the correctness formula {true} S { f alse} is true in I in the sense of partial correctness. Since H is sound
and relatively complete, the latter is true if and only if {true} S { f alse} is provable in H , when all assertions in
the proofs are interpreted in I . Thus all diverging programs S in L can be recursively enumerated by enumerating
all proofs inH , thereby deciding in I the assertions used in the applications of the CONSEQUENCE rule, which
is possible because I is finite. Trivially, also all non-diverging programs S in L can be recursively enumerated:
simply start each program S for all of its finitely many inputs from I and enumerate it in case it halts for one of
these inputs. Decidability of the set of all diverging programs follows since both the set and its complement are
recursively enumerable.

For the proof of Lemma B, Clarke shows that queue machines (or Post machines), which have an undecidable
halting problem, see, e.g., [Man74], can be simulated by programs fromL0. A queuemachinemanipulates a queue
and finitely many registers. A machine program is a finite sequence of labelled instructions of three types:

• enqueue x that adds the value of register x to the rear of the queue,
• dequeue x that removes the front entry from the queue and puts into register x , and
• if x=y then go to 	 that branches to the instruction labelled with 	 if the values of the registers x and y
agree.

Clarke [Cla79] described his simulation idea of a queue machine with a program in L as follows:
“The queue is represented by successive activations of a recursive procedure sim with the queue entries being maintained as values of the
variable top which is local to sim . Thus an addition to the rear of the queue may be accomplished by having sim call itself recursively.
Deletions from the front of the queue are more complicated. sim also contains a local procedure up which is passed as a parameter during
the recursive call which takes place when an entry is added to the rear of the queue. In deleting an entry from the front of the queue, this
parameter is used to return control to previous activations of sim and inspect the values of top local to those activations. The first entry in
the queue will be indicated by marking (e.g. negating) the appropriate copy of top.”

From this description it is clear that the simulation program exploits the features 1, 2 and 5. Feature 4 is also
needed since a global variable program counter is used in the body of the procedure sim. Feature 3 (static scope)
concerns the semantics of procedures and is needed to achieve the correct back pointers for the procedure up in
the runtime stack generated by the successive activations of the procedure sim.

Note that the procedure sim has a formal parameter that is instantiated with procedures, which in turn have
no formal procedure parameters on their own. Here the concept of mode depth is helpful. The mode depth of
a procedure is defined inductively. A procedure that may not take identifiers of procedures as parameters has
mode depth 1. For any k ≥ 1, a procedure that may take identifiers of procedures of mode depth k has mode
depth k + 1. Thus for Clarke’s simulation, procedures of mode depth ≤ 2 suffice. This restriction is also obeyed
in Pascal [JW75]. Procedures of an arbitrary finite mode depth, corresponding to arbitrary higher types, as in
Algol 68 [vWMP+75], or even with self-application, i.e., with procedure calls of the form call p(. . . , p, . . .), as
possible in Algol 60 [NBB+63], are not needed.

6.3. Clarke’s language L4

Clarke also claimed that each language Li obtained from L0 by disallowing self-application and the feature
i ∈ {1, 2, 3, 4, 5} of the above list has a sound and relatively complete Hoare-like proof system [Cla79]. However,
he proved this only for the case of L3 in which dynamic scope replaces static scope. The completeness argument
rests on the fact that each program S in L3 has a finite range, where the range of S is the set of different procedure
calls that can be invoked in the computations of S . He claimed that a similar proof system could be obtained
for L4 in which global variables are disallowed. His argument was that programs of L4 can be transformed into
schematically equivalent ones in L5, where nested procedure declarations are disallowed. Such programs have a
sound and relatively complete Hoare-like proof system.

H. Langmaack and E.R. Olderog [LO80] discovered that this argument is wrong. They considered the formal
execution trees of programs and showed that programs in L4 may have trees with context-free path languages
whereas programs in L5 can generate only trees with regular path languages. Therefore they posed the challenge
of developing a sound and relatively complete Hoare-like proof system for L4.

774 K.R. Apt and E-R. Olderog

As a first step, Langmaack proved in [Lan82] that for all Algol-like programs in L4 the divergence problem
is decidable for finite interpretations. This is a necessary condition for the existence of a sound and relatively
complete Hoare-like proof system according to Lemma A. Moreover, due to a theorem by R.J. Lipton [Lip77],
this decidability result is also sufficient for the existence of a sound and relatively complete ‘Hoare logic’ for
Algol-like programs in L4. However, Lipton’s notion of a ‘Hoare logic’ is rather weak: it means that the set
of correctness formulas that are true in the sense of partial correctness is recursively enumerable relative to the
underlying interpretation. Lipton’s theorem does not yield any usable, syntax-oriented proof rules.

First concrete axiomatizations for L4 programs appeared independently in papers by Olderog [Old84] and
W. Damm and B. Josko [DJ83]. The former studied the case of Pascal-like programs, i.e. with mode depth ≤ 2.
The key idea is the use of second-order relation variables in the assertion language to stand for the behaviour
of uninterpreted, symbolic procedures in a new SEPARATION rule. In order to determine what a procedure
call call p(. . . q . . .) of a procedure p with an actual procedure parameter q does, this rule first determines
separately what q does and what p does with a symbolic procedure instead of q represented by a formula and then
composes both results using substitution. Applications of the SEPARATION rule have the effect of a systematic
transformation of an initially non-regular formal execution tree into a regular tree at the cost of introducing
higher-order tree combinators. The resulting regularity enables a suitably complete Hoare-like proof system.

The paper [DJ83] handled the more general case ofAlgol-like programs with arbitrary finite modes by using
higher-order predicate variables and unevaluated substitutions to such variables. Common to both papers is that
they deviated from the standard notion of relative completeness in that they used a higher-oder assertion language
and an appropriate notion of expressiveness.

The status of the language L4 was finally clarified in 1989 in an over 90 pages long paper by S.M. German,
E.M. Clarke and J.Y. Halpern [GCH89] in which a Hoare-like proof system for L4 was provided that is sound
and relatively complete in the (original) sense of Cook. The completeness proof heavily relies on an appropriate
arithmetic encoding of procedure declarations so that the assertion language remains first-order.

6.4. The characterization problem

Exploring the border between relative completeness and incompleteness (in the sense of Cook) of Hoare’s logics
has been the focus of considerable research in the 1980s. Clarke called it the “Characterization Problem for Hoare
Logics” in his survey article [Cla85]. The key question is what is meant by a ‘Hoare logic’. Several researchers
proved results for a weak interpretation where a Hoare logic is just the set of correctness formulas {P} S {Q} that
are true in the sense of partial correctness. Here the problem is for which classes of programs S , assertions P ,Q ,
and underlying interpretations I this set is recursively enumerable or even decidable.

We cited already Lipton’s result [Lip77]. Since its proof was only sketched, Langmaack provided in [Lan79]
a rigorous proof for the setting of Algol-like programs S . Both Lipton and Langmaack restrict themselves to
quantifier-free assertions P ,Q . Clarke, German and Halpern established [CGH83] an “effective axiomatization
of Hoare logics” extending Lipton’s result to first-order formulas P ,Q . However, these results do not yield any
usable, syntax-directed proof rules that are in the spirit of Hoare-like proof systems that appeared since the
publication of [Hoa69]. Therefore Clarke stated in [Cla85]:
“Certainly the most important research problem is to develop a version of the characterization theorem that provides some insight as to when
a syntax-directed proof system can be obtained.”

Two such characterization theorems were established in [Old81] and [Old83a]. The first paper studied a
language LAlgol of Algol-like programs with the features 1, 2, 4 and 5 of [Cla79] (see Sect. 6.2). Feature 3 (static
scope) was not fixed but left as a parameter in the form of a copy rule. Such a rule defines how during program
execution a procedure call is replaced by a copy of the procedure body. In the copy certain occurrences of local
variables and procedures in the procedure body are renamed to avoid name clashes. By varying the copy rule,
different program semantics varying from dynamic to static scope were defined. The COPY rule from Sect. 5.2
is a trivial example of such a rule in which no renaming takes place.

Parameterized by a given copy rule C, aHoare-like proof systemH(C) for the partial correctness ofAlgol-like
programs was introduced. A program S was called C-bounded if applications of the copy rule C do not lead to
programs with “procedural reference chains” of arbitrary length. A program S has a finite C-index if the relation
of “substitutional equivalence” induces only finitely many equivalence classes in the set of reachable procedure

Fifty years of Hoare’s logic 775

calls. Due to this equivalence, the condition of finite C-index is more liberal than the conditions of finite recursive
cycle and finite range used by Gorelick [Gor75] and Clarke [Cla79], respectively, in their completeness proofs.
The following result holds.

Theorem Suppose the assertion language is expressive relative to the considered interpretation I and the copy
rule C. Then the following are equivalent for Algol-like programs S and assertions P ,Q :

1. {P} S {Q} can be proved in the proof systemH(C) assuming all true formulas in I .
2. S has a finite C-index and {P} S {Q} is true in I in the sense of partial correctness.
3. S is C-bounded and {P} S {Q} is true in I in the sense of partial correctness.

As corollaries to this theorem various completeness results were obtained in [Old81]. For the naive copy rule
Cn , which models “dynamic scoping”, the proof system H(Cn) is sound and relatively complete for the full set
LAlgol because all programs in LAlgol are Cn -bounded. This corresponds to Clarke’s language L3. For the Algol
60 copy rule C60, which models “static scoping”, the proof systemH(C60) is sound and relatively complete for the
following sublanguages of LAlgol because all programs in these sublanguages are C60-bounded:
• Lpnes – all programs without procedure nesting, corresponding to Clarke’s language L5,
• Lpar – all programs with parameterless procedures only,
• Lpp – all programs without procedures as parameters, corresponding to Clarke’s language L1,
• Lrp – all programs in which formally recursive procedures are disallowed to have procedure identifiers as
formal parameters, a superset of Clarke’s language L2,

• Lg f – all programs without global formal procedure parameters.

The paper [Old83a] studied a set LPas of programs with Pascal-like procedures S , i.e., with mode-depth
≤ 2. Here a sublanguage L ⊆ LPas is called admissible if it is closed under certain program transformations
that leave the procedure structure invariant. In particular, these transformations allow for the introduction of
global variables. A tree T is regular if the set of paths in T is a regular language in the Chomsky hierarchy
or, equivalently, if T has only finitely many different patterns of subtrees. The formal call tree of a program S
describes in which order the procedures of S are called, where a branching appears when from one procedure
several immediate successors can be called. The following theorem refers to a particular Hoare-like proof system
H0 that was introduced in [Old83a].

Theorem For every admissible language L ⊆ LPas the following are equivalent:

1. There exists a sound and relatively complete Hoare logic for L in the sense of Lipton.
2. The divergence problem for L is decidable for finite interpretations.
3. All programs in L have regular formal call trees.
4. The Hoare-like proof system H0 is sound and relatively complete for L.

Since LPas contains programs with a non-regular formal call tree, the theorem implies that there is no sound
and relatively complete Hoare logic for LPas itself, a fact that follows from Clarke’s incompleteness result. Note
that this theorem does not contradict the results obtained for L4 because a sublanguage L ⊆ LPas without global
variables is not admissible.

7. Nondeterministic and Probabilistic Programs

7.1. Reasoning about nondeterminism

In the context of programming languages nondeterminism stands for the phenomenon that a program can yield
more than one answer. In the sixties and early seventies a couple of simple programming constructs were proposed
that introduced nondeterminism. In particular, in [Lau71] the nondeterministic statementS1 orS2 was considered
with the meaning: execute either S1 or S2, and the following proof rule:

776 K.R. Apt and E-R. Olderog

OR

{P} S1 {Q}, {P} S2 {Q}
{P} S1 or S2 {Q}

But the undoubtedly most successful and elegant proposal is the language of guarded commands introduced
by E.W. Dijkstra in [Dij75] and in the book form in [Dij76a]. Dijkstra’s original motivation for introducing this
language was to simplify programs by delaying some arbitrary choices to the implementation level and to restore
symmetry that is not present in the if-then-else statement. This led to a specific proposal for nondeterminism.

For the sake of what follows it is sufficient to consider two crucial statements of Dijkstra’s language:

• the alternative command

if B1 → S1�. . .�Bn → Sn fi,

• repetitive command

do B1 → S1�. . .�Bn → Sn od,

where each Bi is a Boolean expression, called a guard, and each Si is a program statement. The symbol �

represents a nondeterministic choice.
The alternative command is executed by selecting a guardBi that evaluates to true and executing the associated

statement Si . If more than one guardBi evaluates to true any of the corresponding statements Si may be executed
next. If all guards evaluate to false, the execution of the alternative command results in a failure. The repetitive
command is executed in a similar way, with two differences. First, after termination of a selected statement Si
the repetitive command is executed again. Second, if all guards evaluate to false, the execution of the repetitive
command simply terminates. So it is a natural generalization of the while statement.

As an illustration of the use of the alternative command consider the customary program for computing the
maximum of two numbers using the conditional statement:

if x ≥ y then max :� x else max :� y fi.

A solution using the alternative command is symmetric in the variables x and y and also involves nondeterminism:

if x ≥ y → max :� x � y ≥ x → max :� y fi.

As an illustration of the use of the repetitive command consider the customary while program for computing
the greatest common divisor (gcd) of two natural numbers, initially stored in the variables x and y :

while x � y do
if x > y then x :� x − y else y :� y − x fi

od.

Using the repetitive command the same algorithm can be written as

do x > y → x :� x − y � y > x → y :� y − x od.

Both programs terminate with the gcd stored in the variables x and y but the second program is more readable
and, unlike the first one, is symmetric in the variables x and y .

To reason about the guarded command language Dijkstra introduced in [Dij75] the weakest precondition
calculus that we briefly discuss in Sect. 10. This approach allows one to reason about total correctness. It is easy
to conceive Hoare-style proof rules that deal with partial correctness of the alternative and repetitive commands
(they were proposed first in [dB80]). For total correctness some care has to be exercised to deal with the absence
of failures, which is a new concept in this framework. The appropriate rule, introduced in [Apt84], takes the
following form:

Fifty years of Hoare’s logic 777

ALTERNATIVE COMMAND II

P → ∨n
i�1 Bi ,

{P ∧ Bi } Si {Q}, i ∈ {1, . . . ,n}
{P} if �n

i�1 Bi → Si fi {Q}
Toobtain aproof system for total correctness of guarded commands it suffices now todealwith the termination

of the repetitive command. The following natural generalization of the WHILE II rule was used in [AdBO09]:

REPETITIVE COMMAND II

{P ∧ Bi } Si {P}, i ∈ {1, . . . ,n},
{P ∧ Bi ∧ t � z } Si {t < z }, i ∈ {1, . . . ,n},
P → t ≥ 0

{P} do �n
i�1 Bi → Si od {P ∧ ∧n

i�1 ¬Bi }
where t is a termination function and z is an integer variable not occurring in P , t,Bi or Si for i ∈ {1, . . . ,n}.

7.2. Reasoning about fairness

Fairness is a concept that arises in presence of any form of nondeterministic choice. Suppose that we repeatedly
have some choice among a fixed set of alternatives, for instance of going left or going right. If we repeatedly select
the alternative of ‘going left’, then we systematically ignore the other alternative. In such case we can argue that
the adopted selection procedure is not fair with respect to the other alternative, ‘going right’. To exclude such
unfair selection procedures we need to focus on infinite ‘runs’ of selections of alternatives and make precise when
an alternative can be selected.

These matters can be discussed in a more precise way using the guarded commands language. Consider the
following program, where k is a fixed natural number:

x :� 1; do x > 0 → x :� x + 1 � x > k → x :� 0 od.

It does not always terminate, sincewe can repeatedly select the first guard. The resulting computation is considered
unfair since from some moment on the second guard is always enabled (i.e., evaluates to true), but never selected.
Once the second guard is selected when it is enabled, the program terminates. More formally, we say that the
above program terminates under the fairness assumption, which stipulates that each guard that is from some
moment on continuously enabled is infinitely often selected.

As another example consider the following program, where odd (x) is a test with the expected meaning:

x :� 1; do x > 0 → x :� x + 1 � odd (x) → x :� 0 od.

Also this program does not always terminate. The only infinite computation repeatedly ignores the second guard.
However, in contrast to the previous example, in this infinite computation at nomoment the secondguardbecomes
continuously enabled. So even under the fairness assumption this program does not terminate.

On the other hand in this infinite computation the second guard is infinitely often enabled. We say that this
computation is strongly unfair. If the second guard is selected when it is enabled, the program terminates. In this
case we say that the above program terminates under the strong fairness assumption, which stipulates that each
guard that is infinitely often enabled is infinitely often selected. (To stress the difference the first notion of fairness
is usually called weak fairness.)

Both forms of fair termination can be established by means of appropriate proof rules. In what follows we
explain the transformational approach proposed in [AO81] and in a journal form in [AO83]. To prove termination
of a repetitive command S under the assumption of weak (or strong) fairness (with respect to a precondition P)
one can transform it into a repetitive command T (S) the computations of which coincide with the weakly (or
strongly) fair computations ofS . To this end,we need a randomassignment x :�? that assigns nondeterministically
to the variable x an arbitrary natural number. To understandwhy this command naturally arises when considering
fairness, note that under both assumptions of fairness the program

b :� true; x :� 0; do b → x :� x + 1 � b → b :� false od

778 K.R. Apt and E-R. Olderog

mentioned in [Dij76a] is equivalent to

b :� false; x :�?.

In what follows we limit ourselves to the presentation of strong fairness and to explain the idea we focus on
a repetitive command with just two guards:

S ≡ do B1 → S1 � B2 → S2 od.

The transformed program T (S) uses two auxiliary variables z1 and z2 ranging over natural numbers and has the
following form:

T (S) ≡ z1 :�?; z2 :�?;
do

B1 ∧ z1 ≤ z2 → S1; z1 :�?; if B2 then z2 :� z2 − 1fi
�

B2 ∧ z2 ≤ z1 → S2; z2 :�?; if B1 then z1 :� z1 − 1fi
od.

Informally, each variable zi tracks the number of times the corresponding guard is enabled and the augmented
guards prevent that an infinitely often enabled guard is never selected.

To reason about the strong fair termination of S it is now equivalent to reason about the termination of the
program T (S). To this end, we only need an axiom dealing with the random assignment. Such an axiom was
proposed in [Har79]:

RANDOM ASSIGNMENT

{P} x :�? {P}
where x does not appear free in P .

But this indirect approach can be avoided by absorbing the transformation T (·) into the proof of termi-
nation of the program T (S). This way one obtains a proof rule for establishing termination under the strong
fairness assumption that deals directly with the original program S and is similar in shape to the REPETITIVE
COMMAND II rule. We omit the details, though we should mention that to reason about fairness it is in general
necessary that the termination function takes values from an arbitrary well-founded ordering and not just natural
numbers (see [AO83], [APS84], and [AP86], where soundness and relative completeness of a proof system for
total correctness of while programs augmented with random assignment was established.).

Different approaches to reason about fairness in the context of nondeterministic programswere independently
proposed in [LPS81] and [GFMdR81], that appeared in a journal form as [GFMdR85]. In [APS84] the method
presented here was extended to programs with nested nondeterminism. These approaches and proof rules were
discussed in book form in [Fra86], where also additional versions of fairness were considered.

The transformational approach to fairness was originally developed in [AO81, AO83] for the Dijkstra’s
guarded command language in which each repetitive command has a fixed finite number of alternatives. The
transformations can be seen as implementing a general fair scheduler controlling finitely many processes. These
transformations were extended in [OP10, HOP10] to deal with dynamic control, where processes can be created
dynamically. Then the overall number of processes can be infinite, but at each step of an execution of the system
the number of created processes is finite. J.Hoenicke andA. Podelski went in [HP15] one step further and extended
the transformations to deal with fairness with an infinitary control, where the number of created processes can
be infinite. Both dynamic and infinitary control were expressed by repetitive commands with infinitely many
alternatives. However, these papers did not propose any proof rules derived from the new transformations.

7.3. Probabilistic programs

Probabilistic programs are sequential programs with the ability to draw values at random from probabilistic
distributions. Theyhave attracted large attention in the research community due tomanyapplications, for example
in security to describe randomized encryptions, in machine learning to describe distribution functions, and in
randomized algorithms. They have typically just a few lines of code, but are hard to analyze, see, e.g., [KGJ+15].
Properties of interest for such programs include the expected runtime and almost sure termination.

Fifty years of Hoare’s logic 779

Most formalmodelling takes place in the setting of an extendedDijkstra’s guarded command language, called
probabilistic guarded command language, abbreviated pGCL.Here, both nondeterministic choice andprobabilistic
choice are admitted. In particular, McIver and Morgan [MM05] carried out their research on probabilistic
programs in this setting. They extended the notion of weakest precondition to weakest pre-expectations.

J. den Hartog and E.P. de Vink [dHdV02] introduced a Hoare-like proof system for partial correctness of
probabilistic programs which are defined as (determininistic) while programs extended by the probabilistic choice
S1 ⊕ρ S2 between the statements S1 and S2. This intention is that the statement S1 is chosen with the probability
ρ and the statement S2 with the probability 1−ρ. This necessitates the introduction of probabilistic predicates in
the assertion language. In these predicates, the real-valued expression P(R) yields the probability that the normal
predicate R holds. For example, for an integer variable x the correctness formula

{x � 1} x :� x + 1 ⊕ 1
3
x :� x + 2 {P(x � 2) � 1

3 ∧ P(x � 3) � 2
3 }

holds. The proof system of [dHdV02] contains several new rules that go beyond the ones concerning the while
programs. In particular, for the probabilistic choice the following rule was proposed:

PROBABILISTIC CHOICE

{P} S1 {Q}, {P} S2 {Q ′}
{P} S1 ⊕ρ S2 {Q ⊕ρ Q ′}

where the probabilistic choice operator ⊕ρ is also applied to the probabilistic predicates Q and Q ′.

Den Hartog and de Vink established soundness of their proof system. They also proved relative completeness
for the subset of loop-free probabilistic programs and a restricted set of predicates in the postcondition. The
proof is based on calculating the weakest precondition.

Some other developments concerning verification of probabilistic programs are discussed in Sect. 10.7.

8. Parallel and Distributed Programs

By a concurrent program we mean a program that has a number of components, the execution of which proceeds
in parallel. If the program components share some variables one usually refers to this framework as shared
memory parallelism. Following [AdBO09], we refer to the corresponding programs as parallel programs. If the
programcomponents donot share variables but can communicate bymessages, oneusually calls these components
processes and refers to the corresponding concurrent programs as distributed programs. A most commonly used
approach relies on asynchronous message passing. However, within the framework of program verification, for
reasons of simplicity, one rather focuses on synchronous message passing, whichmeans that the processes need to
synchronize their actions tomake the communicationpossible.Again following [AdBO09],wemeanby distributed
programs the ones with synchronous message passing, within the context of a specific language proposal due to
Hoare [Hoa78].

8.1. Reasoning about parallel programs

Verification of parallel programs calls for new insights. To discuss the matters let us first introduce the syntax. By

[S1‖. . .‖Sn]
we mean a parallel composition of n sequential programs, S1, . . .,Sn , that may share variables.

The main complication in reasoning about parallel programs is the interference caused by the use of shared

780 K.R. Apt and E-R. Olderog

variables. For example, both

{x � 0} [x :� x + 1; x :� x + 1 {x � 2}
and

{x � 0} x :� 2 {x � 2}
hold but

{x � 0} [x :� x + 1; x :� x + 1‖x :� 2] {x � 2 ∨ x � 4}
does not since one possible computation consists of executing the assignments in the following order x :�
x + 1; x :� 2; x :� x + 1, which yields the final value 3.

The first limited approach to the verification of parallel programs was proposed by Hoare in [Hoa72c], where
he dealt with parallel composition of disjoint program components. More formally, we say that the component
programs S1, . . .,Sn of [S1‖. . .‖Sn] are disjoint if no variable subject to change in one component appears in
another component. This led to the following proof rule:

DISJOINT PARALLELISM

{Pi} Si {Qi}, i ∈ {1, . . . ,n}
{∧n

i�1 Pi } [S1‖. . .‖Sn] {∧n
i�1 Qi }

where f ree(Pi ,Qi) ∩ change(Sj) � ∅ for i � j .

As noticed byHoare in [Hoa75], parallel and sequential compositions of program components coincide under
the assumption of disjointness. This brought him to suggest the following rule:

SEQUENTIALIZATION

{P} S1; . . .; Sn {Q}
{P} [S1‖. . .‖Sn] {Q}

(In [Hoa72c] and [Hoa75] actually only parallel composition of two components was studied). In 1975 this
limited approach to program correctness was extended to arbitrary parallel programs. It was based on a novel idea
of interference freedom, first introduced in the PhD thesis of S. Owicki [Owi75], and subsequently published in two
papers by her and supervisor D. Gries, [OG76a] and [OG76b]. This approach became known as theOwicki-Gries
method.

In what follows we explain the ideas behind this extension of Hoare’s logic. To deal with the problem of
interference mentioned above, Owicki and Gries suggested to compose not the correctness statements about the
component programs but their proofs, presented in an appropriate form. This form relies on the fact that the
correctness proofs of the component programs are syntax-directed, that is they follow in some sense the program
structure. As a result the proof can be recorded by retaining the used assertions in the program text. For example,
the application of the WHILE rule can be retained in the text of the while statement by writing its conclusion as

{P} while B do {P ∧ B} S {P} od {P ∧ ¬B},
while the conclusion of the CONSEQUENCE rule can be written as

{P}{P1} S {Q1}{Q},
which amounts to interpreting two consecutive assertions as an implication. The crucial point of such a proof
representation, called a proof outline, is that each statementS is preceded in it by at least one assertion. Subsequent
assertions indicate implication between them.

Here is an example of a proof outline for the correctness proof of the DIV program that we considered
in Sect. 3.1:

Fifty years of Hoare’s logic 781

{true}
{x � x + y · 0}
r :� x ;
{x � r + y · 0}
q :� 0;
{P}
while y ≤ r do

{P ∧ y ≤ r}
{x � (r − y) + y · (1 + q)}
r :� r − y ;
{x � r + y · (1 + q)}
q :� 1 + q
{P}

od
{¬y ≤ r ∧ P},

where

P ≡ x � r + y · q .
In the Appendix we give another example of a proof outline by representing in such a form Turing’s proof

discussed in Sect. 2.1. To understand the essence of the approach of Owicki and Gries let us return for a moment
to the original Hoare’s proof system. It is sound in the following stronger sense, where, given a proof outline and
a subprogram T , we denote by pre(T) the assertion that directly precedes T . For a proof see, e.g., [AdBO09].

Strong Soundness TheoremConsider a proof outline that represents the proof of a correctness formula {P} S {Q}.
Take a computation ξ of S that starts in a state that satisfies P . Each time ξ reaches a substatement T of S , the
precondition pre(T) is satisfied. Further, if ξ terminates, its final state satisfies Q .

Armed with this knowledge let us return to parallel programs. Suppose that we established the correctness
formulas {Pi } Si {Qi}, where i ∈ {1, . . . ,n} and S1, . . .,Sn are the component programs of the parallel program
[S1‖. . .‖Sn]. Let {Pi } S ∗

i {Qi} be the corresponding proof outlines. We call them interference-free if for all assign-
ments x :� s in [S1‖. . .‖Sn] and all assertions R used in a proof outline of another component the correctness
formula

{R ∧ pre(x :� s)} x :� s {R}
holds. Informally, the proof outlines are interference-free if the execution of each assignment statement in the
state that satisfies its assertion does not invalidate the assertions used in the proof outlines of other components.
Then the following proof rule allows us to reason about parallel programs:

PARALLELISM

The proof outlines {Pi } S ∗
i {Qi}, i ∈ {1, . . . ,n}, are interference-free

{∧n
i�1 Pi } [S1‖. . .‖Sn] {∧n

i�1 Qi }

Owicki and Gries noted that to reason about parallel programs they needed auxiliary variables (occasionally
called by other researchers ghost variables), so variables that neither influence the control flow nor the data flow
of the program, but only record some additional information about the program execution. Formally, a set of
simple variablesA is called a set of auxiliary variables of S if each variable fromA occurs in S only in assignments
to the variables from A. The appropriate proof rule allowing one to delete them is:

AUXILIARY VARIABLES
{P} S {Q}
{P} SA {Q}

where for some set of auxiliary variables A of S the program SA results from S by deleting all assignments to the
variables in A, and no variable from A appears free in Q .

782 K.R. Apt and E-R. Olderog

In presence of shared variables it is sometimes useful to restrict the number of interference points. This can
be done by allowing atomic sections (see [Lip75] and [Lam77]), which are statements of the form 〈S 〉, where S
does not contain any loops or further atomic sections. The idea is that such a statement is executed without any
interruption by another component of the parallel program. This suggests the following proof rule (see [Owi78]):

ATOMIC SECTION

{p} S {q}
{p} 〈S 〉 {q}
To allow for synchronization between the component programs, Owicki and Gries used a generalization of

the atomic section statement, called an await statement await B then S end, with the following meaning: if B
evaluates to true, the statement S is executed as an atomic section. The corresponding proof rule is:

AWAIT

{P ∧ B} S {Q}
{P} await B then S end {Q}
The presence of synchronization statements leads to a possibility of a deadlock, an undesired situation in

which some components of a parallel program did not terminate while the nonterminated components are all
blocked. Owicki and Gries noted that interference-free outlines allow one to reason about absence of deadlock
in a simple way. To this end, it suffices to identify the possible deadlock situations and to show for each of them
that the corresponding conjunction of the pre(T) assertions cannot be simultaneously satisfied.

This approach to verificationwas successfully applied in [OG76a] to establish correctness of non-trivial parallel
programs, in particular two versions of the classical producer/consumer problem, a parallel version of the FIND
program mentioned in Sect. 3.1, and an implementation of Dijkstra’s semaphores. In [OG76b] it was extended
to parallel programs that use a more efficient synchronization construct called conditional regions introduced in
[Hoa72a], and in [Owi78] to concurrent programs with shared data classes.
Termination Let us discuss now the issue of termination of parallel programs. Owicki and Gries proposed to
establish it by using the WHILE II rule instead of the WHILE rule and by postulating that no component
program increases the termination function of a while statement used in another component program. However,
the authors of [AdBO90] noticed that the termination of parallel programs is subtler than it sounds and came
up with an example of simple parallel program that does not terminate, even though its termination can be
established using Owicki and Gries method.

The problem has to do with the fact that the assertions used in the proof of the second premise of theWHILE
II rule, so {P ∧ B ∧ t � z } S {t < z }, are not tested for interference freedom. In [AdBO90] two ways of solving
this problem are proposed. The first is to retain in the proof outlines the correctness proofs of both the first and
second premise of this rule, so that all assertions used in these proofs are subjected to the interference freedom
test. Another is by adding additional requirements to the definition of interference freedom that ensure that
the used termination functions decrease along all syntactically possible paths through the program. The latter
approach suffices to validate the termination proofs presented in [OG76a].

Finally, termination of parallel programs under the fairness assumption was dealt with in [OA88], where the
Owicki-Gries method was combined with a transformational approach presented in Sect. 7.2.

Independently of the Owicki-Gries method of [OG76a], L. Lamport proposed in [Lam77] an essentially
equivalent approach to verification of parallel programs. The difference was that, as in [Flo67], he considered
programs presented as flowcharts, nowone for each component program.As a result the interference-freedom test
referred to the assertions attached to the flowchart nodes and translated into a requirement that these assertions
aremonotone, that is, that they aremaintainedby the actionsof theother components.Lamport used this approach
to establish correctness of a solution to the mutual exclusion problem. In the paper also program properties were
considered that had not been hitherto addressed. We shall return to this matter in the last section of the paper.
The rely-guarantee approach A drawback of the Owicki-Gries method is that due to the test of interference
freedom, verification of a parallel program S ≡ [S1‖. . .‖Sn] is possible only if all components S1, . . .,Sn of S
are explicitly given. Further, this method is not compositional, where ‘compositionality’ means that (partial)
correctness of a parallel program is derived directly from the correctness of its components.

Fifty years of Hoare’s logic 783

This prompted research on alternative formalisms for reasoning about parallel programs.Adiscussion of these
approaches can be found in [dRdBH+01, pp. 479-484]. Here we limit ourselves to an account of one, perhaps
most successful proposal, called the rely-guarantee approach. It was introduced in the PhD thesis of C.B. Jones,
[Jon81], the essence of which appeared in [Jon83]. This approach provides a compositional way reasoning about
concurrent programs by incorporating the interference-freedom test into the proof. This is achieved by using
more informative correctness formulas.

We follow here the presentation given in the book byW.P. de Roever et al. [dRdBH+01]. In the rely-guarantee
approach one assumes that a given program S is executed in some environment and therefore uses an extended
specification format

〈R,G〉 : {P} S {Q},
where a correctness formula {P} S {Q} is extended by an interface specification 〈R,G〉 of the environment con-
sisting of a rely conditionR and a guarantee conditionG . In contrast to the assertionsP andQ in the correctness
formula, R and G are predicates on transitions, i.e., they relate two states, the one before executing a transition
and the one after it. As in Turing’s flowchart in Sect. 2.1, primed versions of variables are used to refer to the state
after executing the transition. For example, x ′ < x expresses that the value of the variable x decreases. The idea
is that R states assumptions that S makes on the transitions of its environment and that G states the guarantees
that S provides to the environment.

Informally, 〈R,G〉 : {P} S {Q} expresses that the correctness formula {P} S {Q} is true in the sense of partial
correctness if

• whenever at some moment during the computation of S all past environmental transitions satisfy R
• then all transitions of S up to that moment satisfy G .

For parallel composition of programs S1 and S2 the following proof rule is presented in [dRdBH+01]:

PARALLEL COMPOSITION

(R ∨ G1) → R2,
(R ∨ G2) → R1,
(G1 ∨ G2) → G,

〈Ri ,Gi 〉 : {Pi } Si {Qi}, i � 1, 2,

〈R,G〉 : {P1 ∧ P2} [S1‖S2] {Q1 ∧ Q2}
In [dRdBH+01, p. 453] this rule is explained as follows:

• every transition of Si (which is characterized by Gi) and every transition of the common environment of S1 and S2 (characterized by
R) is seen by Sj with i � j as an environment transition which has to satisfy Rj ,

• every transition by S1 or S2 is a transition of [S1‖S2], and therefore has to satisfy G, and
• since the validity of 〈Ri ,Gi 〉 : {Pi } Si {Qi } implies Qi is invariant under Ri , the postcondition Q1 ∧ Q2 holds upon termination of

[S1‖S2]; since R implies Ri , i � 1, 2, this implies thatQ1 ∧ Q2 is invariant under R after [S1‖S2] has terminated, too.

Note that the rule is compositional for the customary correctness formulas. The crux of applying it is to find
suitable rely-guarantee conditions for which the implications in the premises hold. In [Jon83] and [dRdBH+01]
this approach was illustrated by providing alternative correctness proofs of a solution to the mutual exclusion
problem and of a parallel version of the FIND program considered in [OG76a]. In practice, this approach may be
as difficult as proving interference freedom.

8.2. Reasoning about distributed programs

Hoare introducedanelegant approach todistributedprogrammingbasedon synchronous communication [Hoa78].
In an intentional analogy to the title of Dijkstra’s seminal paper [Dij68] on parallel programs, this proposal was
called Communicating Sequential Processes. In the paper Hoare introduced a simple programming language for
distributed programming, called since then CSP, in which Dijkstra’s guarded command language was extended
by allowing communication primitives for synchronous communication. This focus on synchronous, as opposed
to asynchronous, communication had a huge impact on the theory of distributed programming and was also
realized in the programming language Occam [INM84]. The idea is that synchronous communication is simpler
to reason about as it obviates the discussion ofmessage ordering and buffers and theirmanagement. Synchronous

784 K.R. Apt and E-R. Olderog

communication can be implemented bymeans of asynchronous one, by adding additional processes that simulate
message buffers, so it can be viewed as an elegant abstraction.

In [AFdR80] a proof system was proposed to reason about a simple class of CSP programs. The crucial
idea of this approach was an introduction of a cooperation test that corresponds to the interference test of the
Owicki-Gries method.

To explain the matters we first clarify the relevant aspects of CSP. Each CSP program consists of a parallel
composition of processes, written as

[PR1 :: S1‖. . .‖PRn :: Sn]

Each PRi is a label of a process and Si is its program. These processes share no variables. They communicate
by means of synchronous communication that is achieved by means of two matching input/output commands, in
short i/o commands. An i/o command has the form PRi?x (an input command) or PRi !t (an output command),
where x is a variable, and t an expression. The i/o commands PRi?x or PRj !t match if i � j , PRi?x appears in
the program for process PRj , PRj !t appears in the program for process PRi , and the types of x and t coincide.

When the control in the programs for processes PRi and PRj is just in front of the mentioned i/o commands
and they match, they can be executed jointly, with the effect that the value of t is assigned to x . So the effect of
the joint execution of the commands PRi?x or PRj !t is that of an assignment x :� t .

In the CSP language, Dijkstra’s guarded commands are generalized by allowing i/o commands to appear in
the guards. So the guards can now also be of the form B ; α, where B is a Boolean expression and α is an i/o
command. If B evaluates to true the i/o command α of the generalized guard behaves the same way as the usual
i/o command, though it fails if it addresses a process that terminated. IfB evaluates to false the generalized guard
fails.

Further, Dijkstra’s do-od notation is replaced by using a star ’*’ and the ‘[’ and ‘]’ brackets, while the if-fi
notation is replaced by the ‘[’ and ‘]’ brackets, that are also used to enclose the parallel composition.

As an example of a CSP program consider the following transmission problem, taken from [AdBO09], that is
a simplified version of a similar problem discussed in [Hoa78]. We wish to transmit from the SENDER process to
the RECEIVER process through a FILTER process a sequence of characters in such a way that FILTER process
deletes from the sequence all blank characters. The following CSP program

[SENDER :: S1 ‖FILTER :: S2 ‖RECEIVER :: S3],

where

S1 ≡ i :� 0; ∗[i � M ; FILTER ! a[i] → i :� i + 1],

S2 ≡ in :� 0; out :� 0; x :� ‘ ’;
*[x � ‘∗’; SENDER ? x →

if x � ‘ ’ → skip
�x � ‘ ’ → b[in] :� x ;

in :� in + 1
fi

� out � in; RECEIVER ! b[out] → out :� out + 1
],

S3 ≡ j :� 0; y :� ‘ ’;
∗[y � ‘∗’; FILTER ? y → c[j] :� y ; j :� j + 1].

is a solution to this problem.
Here the sequence of characters is initially stored in the array a[0 : M − 1] of characters in the process

SENDER. The last element of the array is the special character ‘∗’, i.e., a[M − 1] � ‘∗’. The process FILTER has
an array b of characters serving as an intermediate store for processing the character sequence and the process
RECEIVER has an array c of characters to store the result of the filtering process. For coordinating its activities
the process FILTER uses two integer variables in and out pointing to elements in the array b.

The process FILTER can communicate with both other processes. It can receive characters from process
SENDER until ‘∗’ has been received and it can transmit all nonblank characters to the process RECEIVER. The
Boolean parts of the generalized guards of the FILTER process can both evaluate to true. In that case the next
action can be either a communication between SENDER and FILTER or between FILTER and RECEIVER.
Consequently this CSP program exhibits a nondeterministic behaviour.

Fifty years of Hoare’s logic 785

The process SENDER terminates once it has sent all its M characters to the FILTER process. The process
FILTER terminates when it has received the character ‘∗’ and it has transmitted to RECEIVER all nonblank
characters it has received. Finally, the process RECEIVER terminates once it has received from FILTER the
character ‘∗’. Thus the parallel composition of these three processes terminates if SENDER sends as the last of
itsM characters the ‘∗’.

The proof systemproposed in [AFdR80] extends the one for the guarded commands language by the following
axioms and proofs rules that deal with the communication. For simplicity we assume that all variables and
expressions are of the same type.

INPUT

{P} PRi?x {Q}
OUTPUT

{P} PRi !t {P}

GENERALIZED ALTERNATIVE COMMAND

{P ∧ Bi } αi {Ri }, {Ri } Si {Q}, i ∈ {1, . . . ,n}
{P} [�n

i�1 Bi ; αi → Si] {Q}

GENERALIZED REPETITIVE COMMAND

{P ∧ Bi } αi {Ri }, {Ri } Si {P}, i ∈ {1, . . . ,n}
{P} ∗[�n

i�1 Bi ; αi → Si] {P ∧ ∧n
i�1 ¬Bi }

The INPUT axiom may look strange since it allows us to conclude an arbitrary postcondition. However, the
used assertions still have to pass the cooperation test. This test refers to the proof outlines which are defined as
in the case of Owicki-Gries approach.

Suppose now that we established the proof outlines {Pi} S ∗
i {Qi }, where i ∈ {1, . . . ,n} and S1, . . .,Sn are

respective programs of the processes PR1, . . .,PRn . We say that these proof outlines cooperate if

• the assertions used in {Pi } S ∗
i {Qi} contain no variables subject to change in Sj for i � j ,

• {pre1 ∧ pre2} PRj ?x ‖PRi !t {post1 ∧ post2} holds whenever {pre1} PRj ?x {post1} and
{pre2} PRi !t {post2} are taken respectively from the proof outlines {Pi } S ∗

i {Qi} and {Pj } S ∗
j {Qj }.

Intuitively, proof outlines cooperate if they help each other to validate the post conditions of the i/o commands
present in these proofs. To establish cooperation the following axiom is needed.

COMMUNICATION

{true} PRj ?x‖PRi !t {x � t}
provided PRj ?x and PRi !t match.

This axiom simply states that, as mentioned before, the effect of the joint execution of a pair of matching i/o
commands PRj ?x and PRi !t is that of an assignment x :� t . Recall that in CSP, the processes composed by
parallel composition do not share variables, so x cannot occur in t . This justifies the simple postcondition x � t
for the assignment x :� t .

Then the following proof rule allows one to draw conclusion about the parallel composition of processes:

CSP PARALLELISM

The proof outlines {Pi } S ∗
i {Qi}, i ∈ {1, . . . ,n}, for the processes PR1, . . .,PRn cooperate

{∧n
i�1 Pi } [PR1 :: S1‖. . .‖PRn :: Sn] {∧n

i�1 Qi }

To reason about the CSP programs, as in the case of the Owicki-Gries approach, the AUXILIARY VARI-
ABLES rule is needed. The presented reasoning about deadlock freedom is analogous as in [OG76a], though the

786 K.R. Apt and E-R. Olderog

reasons for a deadlock can now be different. In particular, a process can be blocked forever if the control in its
program is just before an i/o command that addresses a process that terminated. Using the proposed proof system
some example CSP programs were proved correct in [AFdR80]. (In [Moi83] it was pointed out that one of the
correctness proofs contained an error and a corrected version was presented.) The proof systemwas subsequently
proved in [Apt83] to be sound and complete in the sense of Cook. Neither [AFdR80] nor [Apt83] considered
termination.

Independently of [AFdR80] a very similar proof system to reason about CSP programs was proposed in
[LG81], in which the satisfaction property corresponds to the cooperation test. However, the authors used a
different semantics of the generalized repetitive commands than the one stipulated in [Hoa78] and taken care
of in the proof system of [AFdR80]. On the other hand, in contrast to [AFdR80], program termination was
considered. A number of different approaches to reason about communicating processes was proposed in the
literature around that time. They are surveyed in [HdR86].

Subsequently, a simplified proof system for a fragment of CSP was proposed in [Apt86] and used to establish
correctness of a solution to the so-called distributed termination problem. In this fragment a program for each
process consists of a guarded commands program followed by a single generalized repetitive command. The i/o
commands can appear only in the guards of this repetitive command and thus not as separate statements. An
example of a CSP programwritten in this fragment is the above-mentioned solution to the transmission problem.
This fragment was studied independently in [ABC87] and [Zöb88], where it was shown that each CSP program
can be transformed into a program in this subset using some control variables.

The underlying idea of this approach is that such simpler CSP programs can be transformed into Dijkstra’s
guarded commands language without introducing any additional variables. By absorbing this transformation
into a proof rule one obtains a proof rule that uses a global invariant and deals directly with the considered
CSP program. This way this approach dispenses with the cooperation test. Termination is naturally dealt with by
following the approach used for the guarded commands language. This proof system was adopted in [AdBO09]
and its two previous editions, where its soundness was shown to be a direct consequence of the correctness of the
above-mentioned program transformation.

In [AFK88] it was explained that in the context of CSP programs fairness, a notion we discussed in Sect. 7.2,
can have various interpretations. One of them states that every pair of matching i/o commands that is infinitely
enabled is also infinitely often selected. In [GFK84] a proof rule for dealing with this form of fairness of the CSP
programs was proposed.

The approach of [AFdR80] and [LG81] was presented only for CSP programs without nested parallelism. It
was extended in [AdB90b] to CSP programs that allowed nested parallelism and also dynamic process creation,
a feature not present in CSP. Subsequent work in this direction, [dB91], shifted emphasis to reasoning about
objects, a subject that deserves a separate section.

Finally, let us mention that verification of parallel and distributed programs in the Hoare-like style was
systematically presented in book form in [dRdBH+01].

9. Object-oriented Programs

Object-oriented programming, as exemplified by languages like C++ or Java, builds upon the notion of an
object and concepts like inheritance and subtyping. The difficulty in reasoning about such programs is that
their execution creates dynamic pointer structures that go beyond the static program structure that has been the
backbone of the syntax-directed Hoare-style proof rules discussed so far.

9.1. Language characteristics

As object-oriented programming has been realized in many, often incompatible, ways, we clarify first the main
characteristics of the objects here considered. These are:

• objects possess (and encapsulate) their own instance variables,
• objects interact via method calls,
• objects can be dynamically created.

Each object consists of a set of instance variables and a set of methods.

Fifty years of Hoare’s logic 787

next =
first =

val = 7

next =

val = 0

null

val = 9

next =next =

 null

Fig. 5. A linked list. This drawing is taken from [AdBO09, p. 190]

In contrast to the formal parameters of procedures and the local variables of the block statements which only
exist temporarily, the instance variables of an object exist permanently. The local state of an object is a mapping
that assigns values to its instance variables. Each object represents its local state by a pointer to it. Encapsulation
means that the instance variables of an object cannot be directly accessed from other objects; they can be accessed
only by the method calls of the object.

Amethod call invokes a procedure which is executed by the called object. The execution of a method call thus
involves a temporary transfer of control from the local state of the caller object to that of the called object (also
referred to as callee). Upon termination of the method call the control returns to the local state of the caller. The
method calls are the only way of transferring control from one object to another.

The account of verification of object-oriented programs that follows is based on [AdBO09, Chapter 6]. We
distinguish two kinds of variables: the set Var of normal variables, the ones considered so far, and the set I V ar
of instance variables, which are owned by objects.

We consider a set of methods, each defined by means of a declaration

m(u) :: S ,

where the identifierm denotes a method, u is the list of formal parameters of type Var , and S is themethod body,
which may include recursive calls of m.

Methods are invoked by means of the parameterized method calls that are of the form

s.m(t).

where s is an expression that denotes the called object and t is the list of actual parameters of the method m.
A program consists of a main statement and a set of method definitions. In programs we use a basic (i.e., not

compound) type object that denotes an infinite set of objects. The constant null of type object represents the void
reference, a special construct which does not have a local state. The normal variable self of type object stores at
any moment the currently executing object. Inside a method body no assignments to the variable self are allowed,
that is, this variable is read-only. Values of type object can only be tested for equality. Variables of type object are
called object variables, and expressions of type object are called object expressions.

To illustrate the considered programs consider a recursivemethodused to find a zero in a linked list represented
by objects. We represent such lists using the instance object variable next that links the objects of the list, and
the constant null that allows us to identify the last element of the list. We assume that each object stores a value
kept in an instance integer variable val . Additionally, we use the normal object variable f irst to point to the first
object in the list. Figure 5 shows an example of such a list representation.

The desired method is declared as follows.

f ind :: if val � 0
then return :� self
else if next � null

then next . f ind
else return :� null
fi

fi

Then upon termination of the call self. f ind the object variable return points to the first object in the list that
stores zero, if it exists, and otherwise it returns the void reference, represented by the constant null.

788 K.R. Apt and E-R. Olderog

9.2. Reasoning about object-oriented programs

Themethods in object-oriented programs use local updates tomanipulate a global, dynamically changing pointer
structure, the heap. Therefore the assertion language must be able to express properties of the heap. To this
end, global expressions are introduced by extending the (local) expressions that may appear inside methods by
navigation expressions of the form e.u, where e is an object expression and u an instance variable. If e denotes
a certain object (for example self) and u is an instance variable (for example next), then e.u points to the
corresponding object (in the example self.next). This way, one can navigate from object to object along the
pointers in the heap. Assertions are then constructed from global Boolean expressions by allowing Boolean
combinations and quantification over normal variables in Var .

As an example consider the assertion used in [AdBO09, pp. 226-227] to reason about the above method find :

P ≡ self � a[k] ∧ a[n] � return ∧ ∀ i ∈ [k : n − 1] : (a[i] � null ∧ a[i].val � 0 ∧ a[i].next � a[i + 1]).

In addition to the instance object variables next and return and the instance integer variable val used in the
definition of find, one uses here the following normal variables: an array a of type integer → object, integer
variables i , k and n, and the object variable self.

The assertion P states that the array section a[k : n] stores a linked list of objects which starts with the object
self, ends with the object return, and all of its objects, except possibly the last one, are different from null and do
not store in val zero. Note the use of the navigation expressions a[i].val and a[i].next .

The desired behaviour of the above method find can then be specified by means of the following correctness
formula:

{true} self. f ind {Q}, (4)

where the postcondition Q is defined in terms of the assertion P :

Q ≡ (return � null ∨ return.val � 0) ∧ ∃ a : ∃ k : ∃ n ≥ k : P .

So the postcondition states that the returned object is null or stores zero and that for some array section a[k : n]
the assertion P holds.

To reason about such correctness formulas we need new axioms and proof rules.
Correctness of the customary assignment x :� t to normal variables x is captured by the ASSIGNMENT

axiom that for a given postcondition P calculates the precondition by applying the substitution [x :� t] to P . In
object-oriented programs one can additionally use assignments to instance variables and use the dereferencing
s.m(t) in the method calls. The latter calls for an extension of the assertion language with the corresponding
expressions e.u.

F.S. de Boer proposed in [dB99] the following textually identical axiom for such assignments:

ASSIGNMENT TO INSTANCE VARIABLES

{P [u :� t]} u :� t {P},
where u is a (possibly subscripted) instance variable in I V ar .

So, as in the case of the assignment to subscripted variables, the solution relies on an extension of the definition
of substitution, in this case to the instance variables.

As usual, the definition of the substitution P [u :� t] proceeds by induction on the structure of P . The
difference appears at the level of expressions s for which the definition of s [u :� t] is more elaborate. If s is
of the form e.u for an object expression e, the substitution has to take care of possible aliases of e.u. More
precisely, if after applying the substitution inductively to e, the result refers to the currently active object, i.e., if
e[u :� t] � self, then the outcome of the substitution is t . Otherwise, u is left untouched and the substitution is
applied inductively to e. This is expressed in the following definition:

e.u[u :� t] ≡ if e[u :� t] � self then t else e[u :� t].u fi.

In case of only one (possibly recursive) method definition, the RECURSION rule for procedure calls can be
adapted to method calls as follows, where we use the block statement discussed in Sect. 5.2:

Fifty years of Hoare’s logic 789

RECURSION IV

{P} s.m(t) {Q}
 {P} begin var self,u :� s, t; S end {Q}
{P} s.m(t) {Q}

where the method m is declared by m(u) :: S .

So, as for recursive procedures we may use the desired conclusion as a hypothesis in the correctness proof
of a block statement, where self and the list u of formal parameters of the method are treated as local variables
that are respectively initialised by the called object s and the list t of actual parameters and are accessed in the
method body S . A rule analogous to the RECURSION II rule is adopted to deal with total correctness.

To adjust correctness formulas that deal with generic method calls y .m(x) to specific objects s and lists of
actual parameters t, we modify the SUBSTITUTION rule as follows, where we refer to the given setD of method
definitions:

INSTANTIATION

{P} y .m(x) {Q}
{P [y,x :� s, t]} s.m(t) {Q [y,x :� s, t]}

where y,x is a list of variables in Var which do not appear in D and var (s, t) ∩ change(D) � ∅.
In [AdBO09] these axioms and proof rules were used to establish total correctness of the above example

program expressed by the correctness formula (4) and of an object-oriented program that inserts an element into
a linked list.

9.3. Advanced topics in the verification of object-oriented programs

Various other aspects of object-oriented programming were studied from the correctness point of view. One of
them is object creation. An object can be dynamically created by the assignment statement u :� new, where u is
an object variable and new is a keyword in the considered programming language. The execution of this statement
creates a new object and assigns its identity to the variable u. This new object comes with a default initialisation
of all its instance variables. This can be modelled by some bookkeeping of the set of objects that are currently
created, for example by maintaining a counter referring to an unbounded array. This allows one to reason about
this assignment using a small program transformation. A drawback of this approach is that it refers to an explicit
implementation.

An alternative is to use a substitution of [x :� new] for object variables and define its application to a limited
class of assertions (we call them pure) that take into account that object variables can only be compared for
equality or be dereferenced in the method calls s.m(t), and in which one does not quantify over such object
variables. This leads to the following axiom proposed in [dB99]:

OBJECT CREATION

{P [x :� new]} x :� new {P},
where x is a simple (so not subscripted) object variable and P is a pure assertion.

We omit the details of the definition of the substitution P [x :� new] and only remark that one cannot simply
replace x in P by the keyword new because it is not an expression of the assertion language. The details are given
in [AdBO09, Chapter 6].

C. Pierik and F.S. de Boer showed in [PdB03] how the approach of [dB99] can be extended to deal with
classes, inheritance and subtyping. The same authors introduced in [dBP03] a general methodology for obtaining
relatively complete Hoare’s logics for object-oriented programs. A key issue is the extension of Gorelick’s most
general formulas [Gor75] (see Sect. 6.1) to deal with the states of object-oriented programs.

As another contribution to this line of research on verification of object-oriented programs let us mention
[ÁdBdRS05] in which a Hoare-like proof system for partial correctness and deadlock freedom was developed for
a subset of Java. The considered subset comprised the object-oriented core of Java, as well as concurrency via
thread classes, allowing for a multithreaded flow of control. The Java concurrency model includes synchronous

790 K.R. Apt and E-R. Olderog

message passing, dynamic thread creation, shared-variable concurrency via instance variables, and coordination
via reentrant synchronization monitors. The verification method was formulated in terms of proof outlines that
were tested both for interference freedom of shared-variable concurrency, as in [OG76a], and for cooperation of
synchronous message passing, as in [AFdR80]. The authors established the soundness and relative completeness
of their proof system. From an annotated program, a number of verification conditions were generated and
discharged using the interactive theorem prover PVS [ORS92].

The verification of Java programs was also in the focus of tool-supported research projects around the year
2000. The LOOP project led by B. Jacobs considered sequential Java programs with specifications written in
the Java Modeling Language (JML) [JP04]. JML was developed by a group led by G.T. Leavens [LCC+05]. It
was inspired by the idea of Design-by-Contract introduced by B. Meyer in the context of the object-oriented
programming language Eiffel [Mey97]. A contract is a specification in the form of assertions. The contract is
agreed upon before an implementation is developed that should satisfy this contract. In its simplest form, a JML
specification of a method comprises a precondition, one postcondition for normal termination and second one
for exceptional termination, and a set of variables that may be changed. The LOOP compiler takes as input a
Java program and a JML specification and outputs files in the syntax of the PVS theorem prover that describe
the semantics of the program and proof obligations generated from the specification. These are then proven
interactively using PVS.

For a subset of sequential Java programs, called NanoJava, a Hoare’s logic was proven sound and relatively
completew.r.t. an operational semantics of the programs in the interactive theoremprover Isabelle/HOL [vON02].
In this approach, as in the paper [vO99] cited in Sect. 6.1, a semantic view of assertions was taken, whereby an
assertion is a function from states to Boolean values. No separate syntactic representation of assertion was
introduced. Thus, subtleties like the right definition of syntactic substitutions were not considered.

For the object-oriented programming language Eiffel a sound and relatively complete Hoare’s logic was
established in [NCMM09]. The emphasis was on the treatment of features in Eiffel that are not present in other
object-oriented languages. These concern the details of the exception handling, so-called once routines, and
multiple inheritance.

More recently B. Engelmann [EO16, Eng17] considered object-oriented programs in the context of dynamic
typing. This means that variables do not have an a priori declared static type but may assume any value during
the execution of the program. As an example consider the following method from [Eng17], where it is assumed
that b is a Boolean variable:

num or string(b) :: if b then x :� y :� 5 else x :� ‘‘foo’’; y :� ‘‘bar’’ fi; z :� x + y

If b is true, the method call num or string(b) yields the numeric value z � 10, but if b is false, it yields the
string value z � ‘‘foobar’’. So the type of x and y is determined dynamically during runtime, and it is either
numeric or string, with the operation + being either addition or string concatenation. Such dynamically typed
programs are present in the list processing language LISP and in widespread programming languages like Python
and JavaScript.

Engelmann developed in [Eng17] a Hoare-like proof system for a model language dyn of object-oriented
programs with dynamic typing. He proved soundness and relative completeness of his system, thereby extending
the arguments of [Coo78, Gor75] and [dBP03] to the object-oriented part.

10. Alternative Approaches

10.1. Weakest precondition semantics and systematic program development

Dijkstra suggested an alternative approach to program verification, calledweakest precondition semantics [Dij75].
The idea is that given a program S and a desired postcondition P we would like to find the weakest precondition
wp(S ,Q) such that {wp(S ,Q)} S {Q} holds in the sense of total correctness. ‘Weakest’ means here that for any
precondition P such that {P} S {Q} holds in the sense of total correctness, the implication P → wp(S ,Q) holds.

This approach differs from Hoare’s original approach by

• insisting on total correctness instead of on partial correctness,

Fifty years of Hoare’s logic 791

• assuming that initially only the postcondition is given.

Additionally, Dijkstra insisted that the program should be developed together with its correctness proof. In
[Dij75] he advanced this approach for his guarded command language that we briefly discussed in Sect. 7.1. Its
notable feature was the use of programming constructs that support nondeterminism. Another interesting feature
of the language was parallel assignment x :� t, wherex is a list of different variables and t is a list of expressions of
the same length. This construct is for example useful to swap the values of variables without additional variables:

x , y :� y, x .

The weakest precondition wp(S ,Q) is defined by induction on the structure of the program, with

• wp(x :� t,Q) ≡ Q [x :� t],
• wp(S1; S2,Q) ≡ wp(S1,wp(S2,Q)),

as typical clauses.
The main problem is how to deal with loops. In [Dij75] the weakest precondition for guarded commands was

defined as follows. Denote the alternative command if B1 → S1�. . .�Bn → Sn fi by I F , the repetitive command
do B1 → S1�. . .�Bn → Sn od by DO and abbreviate

∨n
i�1 Bi to BB. Then

wp(DO,Q) ≡ ∃k : k ≥ 0 : Hk (Q),

where

H0(Q) ≡ (Q ∧ ¬BB)

and for k > 0

Hk (Q) ≡ wp(I F,Hk−1(Q)) ∨ H0(Q).

Intuitively, Hk (Q) is the weakest precondition guaranteeing proper termination in a state satisfying Q , after at
most k guard selections.

Since k is used as a subscript of Hk , ‘∃k : k ≥ 0’ is here not a customary quantification but a shorthand for
an infinite disjunction, with additionally the formulas Hk (Q) defined by induction. In other words, so defined
weakest precondition of a repetitive command is not an assertion in a first-order language. The same is the case for
the weakest liberal preconditions mentioned in Sect. 4.3, that can be defined for while programs in an analogous
way.

On the other hand, if one confines one’s attention to the language of Peano arithmetic, then the weakest
(liberal) preconditions can be encoded as first-order formulas, see for example [Win93, Chapter 7]. However, the
resulting formulas are not natural and using them to express loop invariants (recall from Sect. 4.3 that weakest
liberal preconditions can be used in a simple way to express loop invariants) is an overkill. This underlies the
difficulty of finding simple loop invariants, the problem we already mentioned in Sect. 3.1, and clarifies why
finding them is an important problem in developing correct programs or in establishing their correctness.

These complications disappear if one identifies assertions with the sets of states that satisfy them and views
the weakest precondition as a way of assigning inductively semantics to programs. The above clauses defining wp
show then how a program can be viewed as a predicate transformer, a concept further discussed in Sect. 10.3. So
the weakest precondition approach can be viewed both as an approach to program verification and as a way of
defining program semantics.

The concept of weakest precondition was used a number of times in this survey, which shows how this notion
permeated research on Hoare’s logic and program verification. The idea of using it to develop programs together
with their correctness proofswas subsequently presented in book form in [Dij76a],where theweakest precondition
semantics was extended to blocks and procedures. A systematic development of provably correct programs was
further advanced by David Gries in his book [Gri81], notably by proposing a number of heuristics for finding
loop invariants. Other books devoted to this subject are [Bac86, DF88, Kal90, BvW08]. Various aspects of the
weakest precondition semantics were further discussed in book form in [DS90]. The problem of finding loop
invariants became central in the subsequent study of program verification and development. [FMV14] surveyed
various ways of constructing loop invariants, and provides their classification and analysis.

Another matter relevant for a systematic program development is termination. Both the WHILE II and
RECURSION II rules provide only a kind of template for an actual termination proof, without explaining how

792 K.R. Apt and E-R. Olderog

the termination functions are to be found. Some sophisticated techniques were developed to establish termina-
tion. They go beyond the framework of Hoare’s logic or the weakest precondition semantics and rely on various
methods developed in other areas, notably term rewriting systems. The authors of [CPR11] provided an acces-
sible account of the recent developments. In particular, they explain a recent alternative approach to proving
termination called disjunctive termination argument: only one of a disjunction of the termination functions needs
to decrease, but this has to be the case after any number of iterations of the loop. It is argued that disjunctive
termination arguments are easier to find than the classical termination argument dating back to Turing [Tur49]
(see Sect. 2.1), where a single termination function has to decrease its values taken from a well-founded set with
each iteration of the loop.

One difficulty of this approach for program verification is that it is not clear how to extend the weakest
precondition semantics to deal with advanced programming constructs, for instance arbitrary procedures as
considered in Sect. 6. In contrast, Hoare’s approach is more flexible. In particular, as we have seen in Sect. 5.1, the
reasoning can be supported by various adaptation rules. This cannot be done in the framework of the weakest
precondition semantics which requires computing a single assertion. On the other hand, as we saw in Sect. 7.3,
the weakest precondition semantics turned out to be helpful for the verification of probabilistic programs.

10.2. Specifying in Hoare’s logic

Until nowwe usedHoare’s logic exclusively to reason about programs. But the formalism of correctness formulas
can be also used to specify programs, though some care needs to be exercised. For example, the correctness
formula {true} S {z � x + y} does not properly specify that a still to be constructed program S computes in z
the sum of x and y because also S ≡ x :� 0; y :� 0; z :� 0 satisfies this correctness formula.

To overcome this problem, one specifies the set var (S) of variables that S may access. Then every variable
outside var (S) is known to keep its value during the computation of S . These variables can be used to freeze
values of the initial state to use them in the postcondition evaluated in the final state. For example, by postulating
var (S) � {x , y, z }, the correctness formula

{x � x0 ∧ y � y0} S {x � x0 ∧ y � y0 ∧ z � x0 + y0}
specifies that S computes in z the sum of x and y while leaving x and y unchanged. This specification technique
is also at the heart of the most general formulas introduced by Gorelick in his completeness proof for recursive
procedures [Gor75] and discussed in Sect. 6.1.

In a similar vein the adaptation rules keep track of the set var (S) of the variables accessed by a program S ,
sometimes refined into the variables that are changed and those that are only read by S .

To support the specification of programs, variants of Hoare’s logic have been proposed that introduce distin-
guished variables that may never be accessed by programs. By different authors, these variables are called logical
variables (in [vON02]), logical constants (in [Mor94], further discussed in the next subsection), specification-only
variables, or auxiliary variables (in [Kle99]). The last name, however, is in conflict with the concept of auxiliary
variable introduced by Owicki and Gries in the context of parallel programs [OG76a] and discussed in Sect. 8.1.

T. Kleymann developed in [Kle99] a variant of Hoare’s logic where such explicit logical variables appear in
the assertions and a new consequence rule is proposed that takes care of these variables. As a result, he showed
that this consequence rule is powerful enough to achieve adaptation completeness (a notion discussed in Sect.
5.1) without further adaptation rules.

Wementioned auxiliary variables first in the context of theOwicki-Griesmethod, when discussing verification
of parallel programs in Sect. 8.1. The need for auxiliary variables in correctness proofs was already observed in
[Cli73]. In [AdBO09] it was noted that the AUXILIARY VARIABLES rule is already needed to reason about
disjoint parallel programs. Indeed, the correctness formula

{x � y} [x :� x + 1‖y :� y + 1] {x � y}
cannot be proved using the DISJOINT PARALLELISM rule and the rules of the proof system H.

Themost extensive analysis of thesematters was provided in [dGR16] that clarified and extended initial results
of [Kle98] and [Kle99]. The authors of [dGR16] showed that the AUXILIARY VARIABLES rule is a derived
rule both in the proof systemH and in a proof system for parameterless recursive procedures, which means that
it can be eliminated from any proof that uses it. In the case of disjoint parallel programs the authors showed that
this rule can be replaced by the simpler ∃-INTRODUCTION rule discussed in Sect. 5.1.

Fifty years of Hoare’s logic 793

They also showed that for parallel programs with shared variables the AUXILIARYVARIABLES rule turns
out to be essential. On the other hand, no other proof rules are needed. Indeed, Owicki proved in [Owi76] that
the above presented proof system for parallel programs is complete in the sense of Cook.

10.3. Programming from specifications

R.-J. Back [Bac80] and C. Morgan [Mor94] extended Dijkstra’s approach to a methodology for “programming
from specifications” by a rule-based step-by-step development of specifications into programs. To this end, they
introduced a specification statement. In [Mor94] it takes the form x : [P ,Q], with the meaning

“If the initial state satisfies thepreconditionP then changeonly the variables listed inx so that the resultingfinal state satisfies thepostcondition
Q .”

While the variables that are changed by a specification S ≡ x : [P ,Q] are explicitly mentioned, namely
change(S) � {x}, there is no information which variables are accessed, i.e., var (S) is not defined. Recall that
various Hoare-style proof rules for programs S have application conditions concerning var (S). Also, Gorelicks’s
most general formulas require fresh variables outside of var (S) to freeze their initial values. To overcome this
weakness, Morgan considers what he calls logical constants (occasionally also called specification-only variables),
that by definition appear only in assertions and are thus never changed by any program or specification. With a
logical constant X the initial values of a variable x can be frozen. For example, x : [x � X , x > X] specifies that
x should be increased. The amount of the increment is left unspecified.

The idea is that specifications and programs are handled on the same footing, so that programming operators
like sequential composition or loops can be applied to specifications, as well. Constructs S1 and S2 in this
extended syntax can be compared by a refinement relation: S1 � S2 denotes that S1 is refined by S2. Semantically,
specifications and programs are considered as predicate transformers that transform given postconditions into the
corresponding weakest preconditions. Refinement S1 � S2 means that for all postconditions Q the implication

wp(S1,Q) → wp(S2,Q)

holds, i.e., S2 establishes the postcondition Q in at least all states where S1 establishes Q . For example, x : [x �
X , x > X] � x :� x + 42. In this approach specifications are stepwise refined to programs by the applications of
refinement rules, described in [Mor94].

Morgan [Mor94] also considers a number of advanced programming concepts like recursive procedures with
parameters, modules with local declarations of variables and procedures, and data refinement.

Subtly different from Morgan’s specification statement is the generic command of J. Schwarz [Sch77]. It is
written as [P ⇒ Q][X], where P is a precondition, Q a postcondition, and X a set of variables. Semantically, a
generic command denotes a certain state transformer. Assume an interpretation I . A state transformer T based
on a finite set X of variables is a binary relation on the set � of states that has only read or write access to the
states via the variables in the set X . For each program S its meaning is a state transformer based on var (S).

Let T (X) be the set of all state transformers based on X . State transformers are ordered by the set inclusion:
T1 ⊆ T2 means thatT1 produces less output thanT2. The least element is the empty state transformer∅ producing
no output, corresponding to a program that never terminates. Now, the semantics MI relative to I of a generic
command [P ⇒ Q][X] is given by

MI [[[P ⇒ Q][X]]] �
⋃

{S | S ∈ T (X) and {P} S {Q} is true in I in the sense of partial correctness}.

So given an interpretation I , [P ⇒ Q][X] denotes the largest state transformer S based on X that satisfies
{P} S {Q} in the sense of partial correctness. ‘Largest’ refers here to the ordering of state transformers by the set
inclusion. In [Old83b] it was shown that for {x} � X the formulaW of the ADAPTATION II rule, introduced in
Sect. 5.1, expresses the weakest liberal precondition wlpI ([P ⇒ Q][X],R) of the generic command [P ⇒ Q][X]
w.r.t. a given postcondition R. This connects generic commands via the weakest liberal preconditions to the
ADAPTATION II rule.

Schwarz used generic commands for stating an alternative version of a RECURSION rule, but did not
embark on program development. Morgan’s specification statement x : [P ,Q] is similar to the generic command
[P ⇒ Q][X], except that the list x does not record the variables that are only read, which are also covered by X .

794 K.R. Apt and E-R. Olderog

10.4. Algorithmic logic and dynamic logic

Hoare’s logic is geared towards establishing program correctness. However, from the point of view of mathe-
matical logic it has a very rigid syntax: the correctness formulas cannot be negated or combined, for example
by disjunction. As a result one cannot view Hoare’s logic as an extension or a modification of some existing
logics, even though it crucially relies on first-order logic and its extensions, for example by allowing subscripted
variables. In some alternative approaches one could view reasoning about programs as an extension of reasoning
within existing logics. We discuss now briefly two most prominent examples.

Algorithmic logic was originally proposed in [Sal70] and presented in book form in [MS87]. It extends first-
order language by expressions that can be interpreted as programs and constructs that allow one to mix formulas
and programs. Interestingly, substitutions for a sequence of variables are viewed as atomic programs. This is
equivalent to the aforementioned parallel assignment of Dijkstra, and also shows a close connection with the
ASSIGNMENT axiom. Programs are built by allowing formulas as tests and using program composition, con-
ditionals, and loops, all written in a compact notation. For example, if B then S else T is written as v[BST].
In turn, the construct ∗[BST] corresponds to while B do S od; T .

Expressions of the form Sφ, where S is a program and φ a formula, correspond to the strongest postcondition
introduced in Sect. 4.3. Further, it is shown how termination of the considered programs can be expressed as a
formula that admits countable disjunction. This is analogous to the definition of wp(DO,Q) given earlier.

The relation betweenHoare’s logic and algorithmic logic becomes clear when one realizes that the correctness
formula {P} S {Q} can be expressed as the implication SP → Q . Consequently, rules used in Hoare’s logic
can be readily reproduced as rules in algorithmic logic, in particular various forms of adaptation rules. This
straightforward modelling, however, does not yield new insights concerning program verification.

Research on algorithmic logic focused mostly on such matters as studies of consistency and the infinitary
completeness of selected theories, derivation of the normal forms of programs, and axiomatization of various
data structures, rather than on (relatively) complete axiomatizations of fragments concernedwith specific features
of programming languages, a direction Hoare’s logic took.

Dynamic logic was originally proposed in [Pra76] and presented in book form in [Har79] and more exten-
sively in [HKT00]. It is very similar to algorithmic logic introduced six years earlier, though it was developed
independently. It enriches first-order logic by constructs reminiscent of modal logic. First, programs are defined
starting from atomic actions and tests, using the sequential composition (;), nondeterministic composition (∪)
(absent in algorithmic logic), and iteration (∗) that corresponds to Kleene’s star. In the dynamic logic syntax the
while B do S od statement can be expressed as (B ; S)∗ ∪ ¬B .

Further, one admits formulas of the form [S]φ, where S is a program and φ is a formula, with the intended
interpretation “every execution of the program S from the current state leads to a state in which φ is true”. The
formulas and programs are defined by simultaneous induction, allowing the usual Boolean connectives. A dual
formula to [S]φ is 〈S 〉φ, defined by:

〈S 〉φ ≡ ¬[S]¬φ.

So its intended interpretation is “some execution of the program S from the current state leads to a state in
which φ is true”. The [S] and 〈S 〉 operators can thus be viewed as the counterparts of the and operators in
propositional modal logic, but parameterized with a program S .

Research on dynamic logicmainly focused on a study of various fragments or extensions, with the correspond-
ing sound and complete axiomatizations, and the corresponding decidability and computational complexity
results. In particular, dynamic logic was extended in [Har79] to deal with recursive procedures.

Typical axioms are:

[S ; T]φ ↔ [S][T]φ,

which corresponds to one of the mentioned clauses that define the weakest precondition, and

[S ∗]φ ↔ φ ∧ [S][S ∗]φ,

Fifty years of Hoare’s logic 795

that captures the idea that ∗ stands for the infinite iteration.
The relation between Hoare’s logic and dynamic logic is easily established by noticing that the correctness

formula {P} S {Q} can be expressed as the implication P → [S]Q . So [S]Q models what is called the weakest
liberal precondition introduced in Sect. 4.3. Consequently, as in the case of algorithmic logic, proof rules of the
proof systemH of Sect. 3.1 can be translated into proof rules of dynamic logic. Moreover, these translated rules
are derivable from the adopted axioms and proof rules of dynamic logic.

Further, thanks to the richer syntax, it is possible to express other program properties and discuss such
properties like programequivalence. For example, the following formula states that the programS is deterministic:

〈S 〉true → [S]true.

Dynamic logic was generalized in a number of ways, for example to epistemic dynamic logic (see, e.g., [BR16]),
to allow reasoning about modalities and change. Also it was extended to specify and reason about hybrid systems,
i.e., systems where a discrete control interacts with a continuous dynamics [Pla08]. Further, the KeY system
(discussed Sect. 11) is based on dynamic logic.

10.5. Temporal logic and model checking

Research on verification of parallel programs carried out in the seventies showed limitations of Hoare’s logic
in reasoning about concurrent programs. We discussed three properties of such programs: partial correctness,
termination, and absence of deadlock. However, in contrast to the sequential programs, concurrent programs
are often supposed to operate repeatedly, in a cyclic fashion. For instance, a solution to the mutual exclusion
problem deals with infinite executions of the program components operating in parallel. This calls for a study of
properties (such as an eventual access) that cannot be expressed in Hoare’s logic.

To express such concepts and to systematically reason about them A. Pnueli proposed in [Pnu77] to use
temporal logic. Using it one can express in a natural way various program properties that do not necessarily deal
with the input/output behaviour of a program. In contrast to Hoare’s logic the reasoning about programs is not
syntax-directed. Instead, one usually reasons about specific control points in a program and a relation between
them.

For example, the following formula states that a process P infinitely often enters its critical section CS:

in CS

where in CS is a formula that states that the control in the process P is within CS.
In turn, to express the strong fairness assumption for the repetitive command

S ≡ do B1 → S1�. . .�Bn → Sn od

we can use the following formula:
n∧

i�1

((at S ∧ Bi) → at Si),

where at T holds when the control in the considered program is just in front of T .
Appropriate axioms and proof rules were then developed to reason about such formulas. Temporal logic,

applied to concurrent programs, grew into an impressive research area, see in particular the books [MP91,MP95]
of Z. Manna and A. Pnueli. This line of research should be viewed as complementary to Hoare’s logic, that is
why we do not devote more space to it.

In that context a distinction, first advanced in [Lam77], is useful. A safety property states ‘nothing bad will
happen’ during a program execution, while a liveness property states that eventually ‘something good will happen’
during a program execution. According to this distinction partial correctness, absence of errors, and deadlock
freedom are safety properties. In contrast, program termination, fairness, eventual access, infinite access, etc. are
liveness properties. In temporal logic these properties can be formulated by means of invariants that become
formulas of the form φ, while liveness properties are formulas of the form φ. Hoare’s logic is a convenient
vehicle to prove safety properties. Its modification to deal with termination is also quite natural. As we saw in
Sect. 7.2 one can also investigate within this logic fairness of nondeterministic programs. In fact, even more
advanced liveness properties, such as fairness of parallel programs and eventual access properties can be studied,

796 K.R. Apt and E-R. Olderog

as well (see [OA88]). However, the treatment becomes awkward, as one has to reason then about appropriately
transformed programs. This is in contrast to temporal logic that allows one to reason about liveness properties
in a simple way, without any need for program transformations.

Temporal logic led in turn tomodel checking. Independently, E.M. Clarke and A. Emerson [EC82], as well as
J.P. Queille and J. Sifakis [QS81], discovered that the problem of checking whether a finite-state system satisfies (is
amodel of) a propositional temporal logic formula is decidable, providing efficient algorithms for it. This was the
start of enormous research activities extending the scope of model checking so that even industrial-size problems
could be tackled [CGH+93]. Interestingly, model checking is often used to debug a system because in case the
system does not satisfy the temporal logic specification, model checkers can provide a counterexample that is
helpful for understanding themismatch between a system and its specification. In the recent yearsmodel checking
has been extended to infinite-state systems, mostly by automatically constructing and refining abstractions of the
system, a method known as counterexample-guided abstraction refinement, see [CGJ+03]. The state of the art of
model checking is represented in the handbook [CHVB18].

Another approach based on temporal logic is Temporal Logic of Actions (TLA) introduced by L. Lamport
in [Lam94]. It is a method of specifying and reasoning about concurrent systems in which systems and their
properties are represented in the same temporal logic. A system is specified by a temporal formula representing
a single loop that in each iteration nondeterministically chooses one action for execution. An action describes a
basic step of the considered system and is specified by a predicate using normal and primed variables as we have
seen it already in Turing’s example in Sect. 2.1. The standard form of a TLA specification is

I ni t ∧ [Next]x ∧ Live,

where I ni t is the initial predicate, Next is the next-state relation expressed as a disjunction of actions, x is the
list of all variables occurring in these actions, and Live is a temporal formula that specifies a liveness condition
in terms of fairness assumptions. To allow for refinement of concurrent systems in the presence of different
granularities of the basic steps, stuttering steps are considered. To hide parts of the state, quantification over
variables is possible. The extension TLA+ comes with facilities to structure system specifications into modules,
see [Lam02]. Properties of a subset of TLA+ specifications can be verified with the model checker TLC discussed
in [Lam02].

10.6. Separation logic

This approach to program verification was originally developed as an extension of Hoare’s logic to reason locally
about about pointer structures, see [ORY01, Rey02, OYR04, O’H19]. To cope with pointers, separation logic
builds upon a semantic model, in which a state is a pair (s, h) consisting of a store s and a heap h. A store s is a
mapping from variables to values (so a state in the sense of Sect. 4.2), which may be data values such as integers,
or pointer values such as addresses. A heap h is a finite partial mapping from addresses (or cells) to values, which
again can be data or pointers. It is assumed that the addresses are integers, which in turn are values.

Several low-level statements for manipulating the heap were considered in [ORY01, O’H19]. Let x stand for a
variable and e for an integer expression, which can denote an address in the heap. One can explicitly distinguish
between an address and its contents: [e] denotes the contents of the heap at address e. Assignments affect only
the store. Besides the normal assignments x :� e there are lookups x :� [e], where e is interpreted as an address
in the heap and the contents of e is assigned to the variable x in the store. Mutations affect the heap. An update
[e] :� e ′ expresses that the contents of the address e in the heap becomes value of the expression e ′. Further,
x :� alloc() expresses that the address x is newly allocated to the heap, and free(x) expresses that the address x
is deallocated from the heap.

Separation logic extends the usual assertion language of Hoare’s logic to specify properties of the heap: emp
asserts that the heap is empty, e �→ e ′ asserts that the heap consists of one cell, with address e and contents e ′, and
e �→ − asserts that the heap consists of one cell, with address e but unknown content. The main new operator
in separation logic is the separation conjunction, written * and pronounced “and separately”. The assertion
P ∗ Q expresses that the heap can be split into two disjoint parts in which P and Q hold, respectively. Using
separation conjunction, one can specify larger parts of the heap. For instance, the assertion (x �→ 21) ∗ (y �→ 42)
describes two separate cells with addresses x and y and contents 21 and 42, respectively. As abbreviation one
uses e �→ e1, . . . , en to stand for e �→ e1 ∗ e + 1 �→ e2 ∗ · · · ∗ e + n − 1 �→ en and thus asserting that the heap
consists of n adjacent cells with addresses e, . . . , e +n −1 and contents e1, . . . , en , respectively. For example, the

Fifty years of Hoare’s logic 797

assertion (x �→ 21, y) ∗ (y �→ 42, x) concisely specifies a heap with a cyclic pointer structure, in which x �→ 21, y
stands for x �→ 21 ∗ x + 1 �→ y and similarly with y �→ 42, x . It consists of two separate parts of the heap at the
addresses x and y that contain 21 and 42, respectively, and a pointer to the other address.

For mutations and lookups the following axioms were stated in [Bro07, O’H19]:

ALLOCATION

{emp} x :� alloc() {x �→ −}
DE-ALLOCATION

{x �→ −} free(x) {emp}
UPDATE

{e �→ −} [e] :� e ′ {e �→ e ′}
LOOKUP

{P [x :� e ′] ∧ e �→ e ′} x :� [e] {P ∧ e �→ e ′}
where x does not occur in e or e ′.

Separation conjunction enables the formulation of proof rules for local reasoning about components of
parallel programs. Crucial is the following rule, which is essentially the INVARIANCE rule in a semantic setting
of heaps:

FRAME

{P} S {Q}
{P ∗ R} S {Q ∗ R}

where f ree(R) ∩ change(S) � ∅.
In separation logic, this rule serves to extend a local specification involving only the variables and parts of the

heap that is used by S by adding assertions about variables and other parts of the heap not modified by S . Thus
the FRAME rule is considered as the key to local reasoning about the heap [Rey02].

Separation logic was originally used for the verification of sequential programs manipulationg pointer struc-
tures. Exploiting its ability to reason explicitly about the heap, the approach was later extended in [O’H07] to
reason in a modular way about concurrent programs. The idea is that two threads that operate on disjoint parts
of the heap do not interfere, and thus can be verified in isolation. This is captured by the following rule, which is
the DISJOINT PARALELISM rule in a semantic setting with heaps:

CONCURRENCY

{P1} S1 {Q2}, {P2} S2 {Q2}
{P1 ∗ P2} [S1‖S2] {Q1 ∗ Q2}

where f ree(P1,Q1) ∩ change(S2) � f ree(P2,Q2) ∩ change(S1) � ∅.
In this rule, the separation conjunctionP1∗P2 in the precondition of the parallel composition [S1‖S2] is true if

the heap can be partitioned into sub-heaps making the local preconditions of the components S1 and S2 true. The
premises of the rule state that the components S1 and S2 establish local postconditions Q1 and Q2, respectively,
which in the conclusion are combined into the global postcondition Q1 ∗ Q2.

A major issue was developing a coherent semantical model for this concurrent separation logic. This was
solved by S. Brookes in [Bro07]. His semantics evaluates resource-sensitive partial correctness formulas of the
form �
 {P} S {Q}, where � is a resource context that specifies for each resource name occurring in the program
S a finite set of variables, a protection list, and a resource invariant, and a proof system allows one to reason
about these formulas.

798 K.R. Apt and E-R. Olderog

10.7. Relational Hoare logic

We conclude this overview of alternative approaches by discussing a line of research that began with the work
of N. Benton, [Ben04]. In it Hoare’s logic was modified to verify correctness of various optimizing program
transformations. This was achieved by proposing a proof system in which one reasons at the same time about
a pair of programs the variables of which are related by some precondition and postcondition. To this end the
customary correctness formulas were replaced by judgments concerning two while programs, S1 and S2. These
are statements of the form

S1 ∼ S2 : ⇒ �,

where and � are relations on program states. Informally, such a judgment states that if initially the relation
 between the variables of the programs S1 and S2 holds, then after their independent executions the relation �
between their variables holds. (So a notation {} S1 ∼ S2 {�} would have been more intuitive.) Typically both
programs use the same variables, so to indicate from which program the variable is taken the indices 〈1〉 and 〈2〉
are used in and �.

As an example consider the technique of invariant hoisting. The program

S1 ≡ while i < n do x :� y + 1; i :� i + x od

can be optimized to

S2 ≡ x :� y + 1; while i < n do i :� i + x od.

The resulting programs compute the same values for the variables i and n. This can be expressed as the judgment

S1 ∼ S2 : � ⇒ �,

with � ≡ i〈1〉 � i〈2〉 ∧ n〈1〉 � n〈2〉 ∧ y〈1〉 � y〈2〉. So the first occurrence of � expresses the information
that prior to the programs executions the values of their variables i ,n, y are respectively equal, while the second
occurrence states that the values of these variables are respectively equal after the executions of both programs.

In general, if we rename S1 to S ′
1 by appending to each of its variables the index 〈1〉, and similarly with S2 for

which we use the index 〈2〉, then the judgment S1 ∼ S2 : ⇒ � can be interpreted as the correctness formula
{} S ′

1; S ′
2 {�}.

The resulting logic was called Relational Hoare Logic (RHL), where the qualification ‘Relational’ referred
to the fact that instead of assertions relations were used. An example rule is the following one dealing with the
conditional statement:

S1 ∼ S2 : ⇒ �

if B then S1 else S2 fi ∼ S1 : ⇒ �

The premise of this rule states that in the context determined by the and � relations, the statement S1 can be
replaced by S2. Thus the second branch of the conditional statement can be replaced by S1, and consequently
this conditional statement can be simplified to S1.

Appropriate proof rules formulated in this framework made it possible to verify various known compiler
optimization techniques, including the above example of invariant hoisting.

In [BGB09] this approach was extended to study equivalence of probabilistic programs. The considered
programs extendwhile programsby allowing a standard feature of probabilistic programs, called random sampling,
which is an assignment of the form x :� D, where D is a probability distribution over the values of the type
of x . The semantics of such programs, as in [dHdV02], is then a mapping from the set of states to the set of
distributions over the states.

The semantics of the judgments is defined in such a way that it respects the fact that in both considered
programs the same probability distributions are used. In particular the judgment S ∼ S : true ⇒ x 〈1〉 � x 〈2〉,
where S ≡ x :� D, is true.

The resulting logic was called probabilistic Relational Hoare Logic (pRHL). pRHL is not a simple extension
of RHL because in presence of probabilities some rules of RHL become unsound. For example, the rule

S1 ∼ S2 : ⇒ �1, S1 ∼ S2 : ⇒ �2

S1 ∼ S2 : ⇒ �1 ∧ �2

Fifty years of Hoare’s logic 799

is sound in RHL (because the programs are deterministic) but not in pRHL.
This work was carried out in the context of CertiCrypt, a system built on top of the interactive theorem

prover Coq (see Sect. 11), that makes it possible to provide machine-checked correctness proofs of cryptographic
algorithms.

In [BKOB13] this framework was further generalized to allow for a probabilistic reasoning about differential
privacy, a notion of privacy that guarantees that the behaviour of an algorithm taking values from a database
hardly changes when the database is slightly modified. Differential privacy in particular provides a formal guar-
antee that information about specific participants in a database is not revealed by the algorithm. The resulting
formalism is called approximate probabilistic Relational Hoare Logic (apRHL).

In apRHL, the judgments of [BGB09] were generalized to parameterized judgments concerning two proba-
bilistic programs. The appropriate proof rules generalize those of [BGB09]. This framework was implemented in
a system called CertiPriv built on top of Coq, which was in particular used to provide machine-checked proofs
of soundness of the considered rules. This work was further pursued in [BGA+14], where differential privacy was
dealt with by means of a transformation of a probabilistic program into a non-probabilistic one that simulates
two executions of the original program. As a result, differential privacy of a single program could be established
using the original proof system H presented in Sect. 3.1.

11. Final Remarks: a Summary and an Assessment

Hoare’s logic had a huge impact on program verification, notably by allowing one to approach it in a systematic
way, using the logical apparatus of formal proofs. Combining it with the research on program semantics made
it possible to argue about the soundness and relative completeness of the underlying proof systems. The syntax-
directed form of Hoare’s logic suggested a natural research agenda, which —as we have seen— allowed one to
dealwith several programming constructs and forms of program construction, including higher-order procedures,
nondeterminism, concurrency, and object-orientation.

This survey aimed at providing a systematic exposition of these developments. Because of space considerations
we had to omit an account of variousHoare-style proof rules for such concepts as program jumps ([CH72]), go-to
statement ([dB80, Chapter 10], written by A. de Bruijn), or several forms of abrupt loop termination present in
Java ([HJ00]).

In the seventies Hoare’s logic was used to define programming languages. In [Hoa72a] and [HW73] an
axiomatic definition of the programming language Pascal was given. These papers provided proof rules for
simple constructs such as the case statement and the repeat statement. However, the presentation was incomplete.
For example, no account of reasoning about recursive procedures or pointers was given. This workwas pursued in
[LGH+78] where axioms and proof rules in Hoare’s logic for the programming language Euclid were presented.

From the current perspective one can see that such axiomatic presentations were not rigorous since no sound-
ness proofs were provided to justify the introduced axioms and rules, notably the recursion rule. To see that such
soundness proofs are not superfluous recall from Sect. 5.1 the observation of [Old83b] that the adaptation rule
for Euclid is not sound. Also, termination was not dealt with in these papers and the reasoning about it can be
another source of possible, subtle, errors (see for example the discussion at the end of Sect. 6.1). In fact, as we
saw, reasoning about soundness within the framework of Hoare’s logic started only after these two papers were
published.

But even if such soundness proofs were presented, given the size of the considered programming languages,
there would be a non-trivial chance of errors. In fact, we mentioned a number of times that arguments about
correctness of various proof rules in Hoare’s logic or about soundness or relative completeness of some specific
proof systems have led to various, occasionally, pretty subtle errors.

A logical remedy is to use automated reasoning to argue about various Hoare’s logics. This brings us to
computer aided verification, one of the important research directions that emerged in the eighties. Since 1990 it
is a subject of an annual conference with the same name (abbreviated to CAV). In relation to Hoare’s logic this
work naturally divides into two categories:

• mechanical verification by means of interactive theorem provers of properties of various Hoare logics, such
as soundness and relative completeness proofs,

• computer aided verification of selected programs.

800 K.R. Apt and E-R. Olderog

In what follows we refer to a number of systems that are the outcome of several years of research and
associated ongoing implementations. Given that mechanical verification is not the subject of this survey, we do
not discuss these systems in detail. In each system, to appropriately formalize the assertion-based reasoning about
programs and reason about the corresponding proof systems, several important design decisions have to be taken
concerning the choice of the underlying assertion language, proof representation, choice of proof tactics, form
of the interaction with the user, etc. A separate survey on this subject would be a most welcome addition to this
one.

An early contribution in the first category was [Sok87], where soundness of the original proof system ofHoare
from [Hoa69] was established in LCF (that stands for Logic for Computable Functions), an early interactive
automated theorem prover developed in the seventies, see, e.g, [GMW79].

Next, in [Kle98], [Nip02a] and [Nip02b] soundness and relative completeness of Hoare’s logics for partial
and total correctness of while programs and programs with recursive procedures was established in the Lego
and Isabelle/HOL interactive theorem provers, the latter system described initially in [NPW02]. In Sect. 6.1, we
mentioned already that in [vO99] soundness and relative completeness of a proof system for a programming
language with the mutually recursive procedures with the call-by-value mechanism was established in Isabelle. In
all these works assertions are identified with sets of states that satisfy them.

Further, in [NN99] the semantics and proof system of [OG76a] for partial correctness of parallel programs,
that we discussed in Sect. 8.1, was formalized in the Isabelle/HoL system. Subsequently the authors proved
soundness of this proof system and verified a number of correctness proof examples. An analogous formalization
was carried out in [Bal06] on the basis of dynamic logic in the KIV system, described in [BRS+00]. This approach
combined symbolic execution of the operational semantics of the programs with induction.

The works in the second category concern specific programs. They rely on various systems and tools that sup-
port mechanical verification of programs based on Hoare’s logic or some of the alternative approaches discussed
in the previous section. An early example is [Gor88], where a simple program verifier implemented in LISP is
described. It consists of a generator of verification conditions and a theorem prover. It was used in particular
to justify Hoare’s correctness proof given in Fig. 4 in Sect. 3.1. The following more recent selective contribu-
tions underscore the importance of mechanical verification. Several other recent systems and tools for program
verification are described in [PR18].

• In his paper [Hoa71b] concerned with the correctness of the FIND program, Hoare expressed the desire
for computer support in “formulating the lemmas, and perhaps even checking the proofs.” Only much later,
Filliâtre [Fil07] published amechanized proof of FIND using the interactive theorem prover Coq and following
Hoare’s proof from [Hoa71b] as closely as possible. He noticed that Hoare’s informal termination proof does
not meet the requirements of a termination function in the sense that the additional invariants used by Hoare
are not real invariants.
Coq is based on a formal language called the Calculus of Inductive Constructions that extends typed lambda
calculus, see, e.g., [Chl13]. It was used to verify formally proofs of a number of famous mathematical results,
including the Four Color theorem.

• In [CDE+16] a tool-supported correctness proofs of Quicksort and its variants were reported. The authors
used the Hoare’s logic based verification tool Dafny [Lei10].
Dafny comprises (1) an imperative, class-based language for programs annotated with the features needed for
verification (such as assertions, framing clauses expressing the objects that are allowed to be changed, ghost
variables, i.e., auxiliary variables in the sense of Sect. 8.1, and termination functions) and (2) a verifier that
translates annotated Dafny programs to an intermediate language input by the tool Boogie [BCD+05]. The
latter is a fully-automatic deductive verification system that generates verification conditions which are then
passed to an SMT (satisfiability modulo theories) solver, where the default SMT solver is Z3 [dMB08]. Boogie
uses the weakest precondition semantics discussed in Sect. 10.1.

• TimSort is a standard sorting algorithm provided by several programming framework, including the Java
standard library.While trying to verify it the authors of [dGdBB+19] discovered a bug. They formally specified
a revised version and mechanically verified its correctness, including termination, in the KeY system.
KeY is an extensive software development system that supports in particular specification and formal veri-
fication of object-oriented software, see [ABB+16]. As mentioned earlier, it is based on dynamic logic. The
KeY-Hoare tool (see [BH16]), built on top of the KeY system, allows one to reason about partial and total
correctness of while programs in an extension of Hoare’s logic with explicit state updates.

Fifty years of Hoare’s logic 801

In recent years research on Hoare’s logic visibly slowed down, probably due to the fact that through hundreds
of publications it achieved its main goal of creating a comprehensive formal framework to reason about various
classes of programs. On the other hand, its versatility results in new applications in various contexts. We provide
here three recent examples.

The first, due to [AMO13], concerns reasoning about linear systems (for example linear differential equations)
that are expressed graphically as block diagrams. The authors, building upon the framework of abstract Hoare’s
logic developed in [AMMO09] mentioned in Sect. 4.3, provided a sound Hoare-like proof system that allowed
them to reason about various examples of linear systems, including linear filters and the steam boiler problem, a
classic example of a hybrid system.

The second one concerns reasoning about time complexity of the programs. In [HN18] three Hoare’s logics
for reasoning about time bounds, including the original logic due to [Nie87], were formalized and shown to be
sound and relatively complete.

The final one is an application to quantum programs, a research direction that originated with the work
of M. Ying [Yin11]. For a recent overview of the developments on this subject, that successfully parallel the
developments of the customary Hoare’s logic, see [Yin19]. A related approach of [Unr19] follows the line of
research started with [Ben04] and [BGB09] and introduces quantum Relational Hoare Logic (qRHL) that allows
one to reason about how the outputs of two quantum programs relate given a relation between their inputs.

One should alsomention here recent work aimed at supporting teaching ofHoare’s logic. In [SS14] an account
was given of a tool called HAHA (Hoare Advanced Homework Assistant) that was specifically designed to teach
Hoare’s logic. The tool supports reasoning about while programs with integer variables and arrays.

Hoare’s logic is an example of an assertion-based method of program verification, in the sense that it relies on
the use of assertions. This is also a common feature of the approaches to program verification discussed in the
previous section. In this sense we can say that all these approaches are direct or less direct successors of Turing’s
approach from [Tur49].

However, there are other theories of program verification, notably of parallel and distributed programs, that
take a different approach. A prominent example is CCS (Calculus for Communicating Systems) of RobinMilner
that focuses on reasoning about equivalence of abstract distributed programs [Mil80, Mil89]. It is at the origin
of a number of related theories and led to the field of process algebra [BPS01]. A comparative survey of these
approaches would form a natural complement to this one.

Acknowledgements

We would like to thank all three reviewers for exceptionally detailed and helpful referee reports that led us to
improve and expand the presentation.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

A. Turing’s example

We present here in Fig. 6 a proof outline for a while program corresponding to Turing’s example given in Fig. 3
of Sect. 2.1. The program without the assertions was shown in [OW12]. The qualification inv is used to annotate
the loop invariants and bd to annotate the termination functions. So this is a proof outline establishing total
correctness of the program w.r.t. the precondition n ≥ 1 and postcondition v � n!. The assertions used for
partial correctness are similar to the ones used in the correctness proof of [dB75] of a program corresponding to
Turing’s example that uses both a while and a repeat statement.

802 K.R. Apt and E-R. Olderog

{n ≥ 1}
r := 1;
u := 1;
v := u;

{inv : P1 ≡ v = r! ∧ u = r! ∧ 1 ≤ r ≤ n}
{bd : t1 ≡ n − r}
while r < n do
{P1 ∧ r < n}
{v = r! ∧ u+ v = 2 · v ∧ 1 ≤ 2 ≤ r + 1 ≤ n}

s := 1;
u := u+ v;
s := s+ 1;

{inv : P2 ≡ v = r! ∧ u = s · v ∧ 1 ≤ s ≤ r + 1 ≤ n}
{bd : t2 ≡ r + 1 − s}
while s ≤ r do

{P2 ∧ s ≤ r}
{v = r! ∧ u+ v = (s+ 1) · v ∧ 1 ≤ s+ 1 ≤ r + 1 ≤ n}
u := u+ v;
s := s+ 1

{P2}
od
{P2 ∧ s > r}
{v = r! ∧ u = s · v ∧ 1 ≤ s = r + 1 ≤ n}
{u = (r + 1) · r! ∧ 1 ≤ r + 1 ≤ n}
{u = (r + 1)! ∧ 1 ≤ r + 1 ≤ n}
r := r + 1;
v := u

{P1}
od
{P1 ∧ r ≥ n}
{v = r! ∧ r ≤ n ∧ r ≥ n}
{v = n!}

Fig. 6. Turing’s example as a proof outline of a corresponding while program

References

[ABB+16] Ahrendt W, Beckert B, Bubel R, Hähnle R, Schmitt PH, Ulbrich M (eds) (2016) Deductive software verification—the KeY
book—from theory to practice, volume 10001 of Lecture notes in computer science. Springer

[ABC87] Apt KR, Bougé L, Clermont P (1987) Two normal form theorems for CSP programs. Inf Process Lett 26:165–171
[AdB77] Apt KR, de Bakker JW (1977) Semantics and proof theory of pascal procedures. In: Salomaa A, Steinby M (eds) Automata,

languages and programming: proceedings of the fourth colloquium, volume 52 of Lecture notes in computer science. Springer,
pp 30–44

[AdB90a] America P, de Boer FS (1990) Proving total correctness of recursive procedures. Inf Comput 84(2):129–162
[AdB90b] America P, de Boer FS (1990) A proof system for process creation. In: Broy M (ed) Programming concepts and methods:

proceedings of the IFIP working group 2.2, 2.3 working conference on programming concepts and methods. North-Holland,
pp 303–332

[AdB19] Apt KR, de Boer FS (2019) Reasoning about call-by-value: a missing result in the history of Hoare’s logic, arXiv:1909.06215
[ÁdBdRS05] Ábrahám E, de Boer FS, de Roever WP, Steffen M (2005) An assertion-based proof system for multithreaded java. Theor

Comput Sci 331(2–3):251–290
[AdBO90] Apt KR, de Boer FS, Olderog E-R (1990) Proving termination of parallel programs. In: Feijen WHJ, van Gasteren AJM,

Gries D, Misra J (eds) Beauty is our business, a birthday salute to Edsger W. Dijkstra. Springer, New York, pp 0–6
[AdBO09] Apt KR, de Boer FS, Olderog E-R (2009) Verification of sequential and concurrent programs, 3rd edn. Springer, New York
[AdBOdG12] Apt KR, de Boer FS, Olderog E-R, de Gouw S (2012) Verification of object-oriented programs: a transformational approach.

J Comput Syst Sci 78(3):823–852
[AFdR80] Apt KR, Francez N, de Roever WP (1980) A proof system for communicating sequential processes. ACM Trans Program

Lang Syst 2(3):359–385
[AFK88] Apt KR, Francez N, Katz S (1988) Appraising fairness in distributed languages. Distrib Comput 2(4):226–241
[AFPdS11] Almeida JB, Frade MJ, Pinto JS, de Sousa SM (2011) Rigorous software development—an introduction to program verifica-

tion. Undergraduate topics in computer science. Springer
[AMMO09] Arthan R, Martin U, Mathiesen EA, Oliva P (2009) A general framework for sound and complete Floyd-Hoare logics. ACM

Trans Comput Log 11(1):7:1–7:31
[AMO13] Arthan R, Martin U, Oliva P (2013) A Hoare logic for linear systems. Formal Asp Comput 25(3):345–363
[AO81] AptKR,OlderogE-R (1981) Proof rules dealingwith fairness. In: Logic of programs, volume 131 of Lecture notes in computer

science. Springer, pp 1–8

http://arxiv.org/abs/1909.06215

Fifty years of Hoare’s logic 803

[AO83] Apt KR, Olderog E-R (1983) Proof rules and transformations dealing with fairness. Sci Comput Program 3:65–100
[AO91] Apt KR, Olderog E-R (1991) Verification of sequential and concurrent programs. Springer, New York
[AP86] Apt KR, Plotkin GD (1986) Countable nondeterminism and random assignment. J ACM 33(4):724–767
[APS84] Apt KR, Pnueli A, Stavi J (1984) Fair termination revisited with delay. Theor Comput Sci 33:65–84
[Apt81] Apt KR (1981) Ten years of Hoare’s logic, a survey, part I. ACM Trans Program Lang Syst 3:431–483
[Apt83] Apt KR (1983) Formal justification of a proof system for communicating sequential processes. J ACM 30:197–216
[Apt84] Apt KR (1984) Ten years of Hoare’s logic, a survey, part II: nondeterminism. Theor Comput Sci 28:83–109
[Apt86] Apt KR (1986) Correctness proofs of distributed termination algorithms. ACM Trans Program Lang Syst 8:388–405
[Bac80] Back R-JR (1980) Correctness preserving program refinements: proof theory and applications. Technical report 131, Mathe-

matisch Centrum, Amsterdam
[Bac86] Backhouse RC (1986) Program construction and verification. Prentice-Hall International, Englewood Cliffs
[Bal06] BalserM (2006) Verifying concurrent systems with symbolic execution—temporal reasoning is symbolic execution with a little

induction. PhD thesis, University of Augsburg. Shaker Verlag
[BCD+05] Barnett M, Chang BE, DeLine R, Jacobs B, Leino KRM (2005) Boogie: a modular reusable verifier for object-oriented

programs. In: de Boer FS, Bonsangue MM, Graf S, de Roever WP (eds) Formal methods for components and objects, 4th
international symposium, FMCO 2005, revised lectures, volume 4111 of Lecture notes in computer science. Springer, pp
364–387

[Ben04] Benton N (2004) Simple relational correctness proofs for static analyses and program transformations. In: Jones ND, Leroy X
(eds) Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL 2004).
ACM, pp 14–25

[Ben12] Ben-Ari M (2012) Mathematical logic for computer science, 3rd edn. Springer
[BG87] Blass A, Gurevich Y (1987) Existential fixed-point logic. In: Börger E (ed) Computation theory and logic. Springer, pp 20–36
[BGA+14] Barthe G, Gaboardi M, Arias EJG, Hsu J, Kunz C, Strub P (2014) Proving differential privacy in Hoare logic. In: IEEE 27th

computer security foundations symposium (CSF 2014). IEEE Computer Society, pp 411–424
[BGB09] Barthe G, Grégoire B, Béguelin SZ (2009) Formal certification of code-based cryptographic proofs. In: Shao Z, Pierce BC

(eds) Proceedings of the 36th ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL 2009.
ACM, pp 90–101

[BH16] Bubel R, Hähnle R (2016) KeY-Hoare. In: Deductive software verification—the KeY book—from theory to practice, volume
10001 of Lecture notes in computer science. Springer, pp 571–589

[BKOB13] Barthe G, Köpf B, Olmedo F, Béguelin SZ (2013) Probabilistic relational reasoning for differential privacy. ACM Trans
Program Lang Syst 35(3):9:1–9:49

[BPS01] Bergstra JA, Ponse A, Smolka SA (eds) (2001) Handbook of process algebra. North-Holland/Elsevier
[BR16] Baltag A, Renne B (2016) Dynamic epistemic logic. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/

win2016/entries/dynamic-epistemic.
[Bro07] Brookes S (2007) A semantics for concurrent separation logic. Theor Comput Sci 375(1–3):227–270
[BRS+00] Balser M, Reif W, Schellhorn G, Stenzel K, Thums A (2000) Formal system development in KIV. In: Maibaum T (ed)

Proceedings fundamental approaches to software engineering, volume 1783 of Lecture notes in computer science. Springer,
pp 363–366

[BT82a] Bergstra JA, Tucker JV (1982) Some natural structures which fail to possess a sound and decidable Hoare-like logic for their
while-programs. Theor Comput Sci 17:303–315

[BT82b] Bergstra JA, Tucker JV (1982) Expressiveness and the completeness of Hoare’s logic. J Comput Syst Sci 25(3):267–284
[BvW08] Back R-J, von Wright J (2008) Refinement calculus: a systematic introduction. Springer, New York
[CDE+16] Certezeanu R, Drossopoulou S, Egelund-Müller B, Leino KRM, Sivarajan S, Wheelhouse MJ (2016) Quicksort revisited—

verifying alternative versions of quicksort. In: Ábrahám E, Bonsangue MM, Johnsen EB (eds) Theory and practice of formal
methods—essays dedicated to frank de boer on the occasion of his 60th birthday, volume 9660 of Lecture notes in computer
science. Springer, pp 407–426

[CGH83] Clarke EM, German SM, Halpern JY (1983) Effective axiomatizations of Hoare logics. J ACM 30(3):612–636
[CGH+93] Clarke EM, Grumberg O, Hiraishi H, Jha S, Long DE, McMillan KL, Ness LA (1993) Verification of the futurebus+ cache

coherence protocol. In: Agnew D, Claesen LJM, Camposano R (eds) Computer hardware description languages and their
applications (CHDL ’93), volume A-32 of IFIP transactions. North-Holland, pp 15–30

[CGJ+03] Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for symbolic model
checking. J ACM 50(5):752–794

[CH72] Clint M, Hoare CAR (1972) Program proving: jumps and functions. Acta Inform 1:214–224
[Chl13] Chlipala A (2013) Certified programming with dependent types—a pragmatic introduction to the Coq Proof Assistant. MIT

Press
[CHVB18] Clarke EM, Henzinger TA, Veith H, Bloem R (eds) (2018) Handbook of model checking. Springer
[Cla76] Clarke EM (1976) Completeness and incompleteness theorems for Hoare-like axiom systems. PhD thesis, Computer Science

Department, Cornell University USA
[Cla79] Clarke EM (1979) Programming language constructs for which it is impossible to obtain good Hoare axiom systems. J ACM

26(1):129–147
[Cla85] Clarke EM (1985) The characterization problem for Hoare logics. In: Hoare CAR, Shepherdson JC (eds) Mathematical logic

and programming languages. Prentice-Hall International, Englewood Cliffs, pp 89–106
[Cli73] Clint M (1973) Program proving: coroutines. Acta Inform 2:50–63
[CO81] Cartwright R, Oppen DC (1981) The logic of aliasing. Acta Inform 15:365–384
[Coo78] Cook SA (1978) Soundness and completeness of an axiom system for program verification. SIAM J Comput 7(1):70–90
[Coo81] Cook SA (1981) Corrigendum: soundness and completeness of an axiom system for program verification. SIAM J Comput,

10(3):612

https://plato.stanford.edu/archives/win2016/entries/dynamic-epistemic
https://plato.stanford.edu/archives/win2016/entries/dynamic-epistemic

804 K.R. Apt and E-R. Olderog

[Cou90] Cousot P (1990) Methods and logics for proving programs. In: Handbook of theoretical computer science, volume B: formal
models and sematics (B). Elsevier, pp 841–994

[CPR11] Cook B, Podelski A, Rybalchenko A (2011) Proving program termination. Commun ACM 54(5):88–98
[dB75] de Bakker JW (1975) Inleiding Bewijsmethoden. In: Colloquium programmcorrectheid, MC Syllabus 21. Mathematisch

Centrum, Amsterdam, pp 3–17
[dB80] de Bakker JW (1980) Mathematical theory of program correctness. Prentice-Hall International, Englewood Cliffs
[dB91] de Boer FS (1991) A compositional proof system for dynamic process creation. In: LICS. IEEEComputer Society, pp 399–405
[dB99] de Boer FS (1999) A WP-calculus for OO. In: FoSSaCS, volume 1578 of Lecture notes in computer science. Springer, pp

135–149
[dBP03] de Boer FS, Pierik C (2003) How to cook a complete Hoare logic for your pet OO language. In: FMCO, volume 3188 of

Lecture notes in computer science. Springer, pp 111–133
[DDH72] Dahl OJ, Dijkstra EW, Hoare CAR (eds) (1972). Structured programming. Academic Press Ltd.
[DF88] Dijkstra EW, Feijen WHJ (1988) A method of programming. Addison-Wesley
[dGdBB+19] deGouw S, de Boer FS, Bubel R, Hähnle R, Rot J, Steinhöfel D (2019) Verifying openjdk’s sort method for generic collections.

J Autom Reason 62(1):93–126
[dGR16] de Gouw S, Rot J (2016) Effectively eliminating auxiliaries. In: Ábrahám E, Bonsangue MM, Johnsen EB (eds) Theory and

practice of formal methods—essays dedicated to frank de boer on the occasion of his 60th birthday, volume 9660 of Lecture
notes in computer science. Springer, pp 226–241

[dHdV02] den Hartog J, de Vink EP (2002) Verifying probabilistic programs using a Hoare like logic. Int J Found Comput Sci 13(3):315–
340

[Dij68] Dijkstra EW (1968) Cooperating sequential processes. In: Genuys F (ed) Programming languages: NATO advanced study
institute. Academic Press, London, pp 43–112

[Dij75] Dijkstra EW (1975) Guarded commands, nondeterminacy and formal derivation of programs. Commun ACM 18:453–457
[Dij76a] Dijkstra EW (1976) A discipline of programming. Prentice-Hall, Englewood Cliffs
[Dij76b] DijkstraEW(1976)Agreat improvement. http://www.cs.utexas.edu/users/EWD/ewd05xx/EWD573.PDF, published as [Dij82]
[Dij82] Dijkstra EW (1982) A great improvement. In: Selected writings on computing: a personal perspective. Springer, , pp 217–219
[DJ83] Damm W, Josko B (1983) A sound and relatively complete Hoare-logic for a language with higher type procedures. Acta

Inform 20:59–101
[dMB08] de Moura LM, Bjørner N (2008) Z3: an efficient SMT solver. In: Ramakrishnan CR, Rehof J (eds) Tools and algorithms

for the construction and analysis of systems, TACAS 2008, volume 4963 of Lecture notes in computer science. Springer, pp
337–340

[dRdBH+01] de Roever WP, de Boer FS, Hannemann U, Hooman J, Lakhnech Y, Poel M, Zwiers J (2001) Concurrency verification:
introduction to compositional andnoncompositionalmethods, volume54ofCambridge tracts in theoretical computer science.
Cambridge University Press

[DS90] Dijkstra EW, Scholten CS (1990) Predicate calculus and program semantics. Springer, New York
[EC82] Emerson EA, Clarke EM (1982) Using branching time temporal logic to synthesize synchronization skeletons. Sci Comput

Program 2(3):241–266
[Eng17] Engelmann B (2017) Techniques for the verification of dynamically typed programs. PhD thesis, University of Oldenburg,

Germany
[EO16] Engelmann B, Olderog E-R (2016) A sound and complete Hoare logic for dynamically-typed, object-oriented programs. In:

Ábrahám E, Bonsangue MM, Johnsen EB (eds) Theory and practice of formal methods—essays dedicated to frank de boer
on the occasion of his 60th birthday, volume 9660 of Lecture notes in computer science. Springer, pp 173–193

[FH71] Foley M, Hoare CAR (1971) Proof of a recursive program: quicksort. Comput J 14(4):391–395
[Fil07] Filliâtre J-C (2007) Formal proof of a program: find. Sci Comput Program 64(3):332–340
[Flo67] Floyd R (1967) Assigning meaning to programs. In: Schwartz JT (ed) Proceedings of symposium on applied mathematics 19,

mathematical aspects of computer science. American Mathematical Society, New York, pp 19–32
[FMV14] Furia CA, Meyer B, Velder S (2014) Loop invariants: analysis, classification, and examples. ACM Comput Surv 46(3):34:1–

34:51
[Fra86] Francez N (1986) Fairness. Springer, New York
[Fra92] Francez N (1992) Program verification. Addison-Wesley, Reading
[GCH89] German SM, Clarke EM, Halpern JY (1989) Reasoning about procedures as parameters in the language L4. Inf Comput

83(3):265–359
[GFK84] Grumberg O, Francez N, Katz S (1984) Fair termination of communicating processes. In: Proceedings of the third annual

ACM symposium on principles of distributed computing, Vancouver, B.C., Canada, August 27–29, 1984. ACM, pp 254–265
[GFMdR81] Grumberg O, Francez N, Makowsky JA, de Roever WP (1981) A proof rule for fair termination of guarded commands. In:

de Bakker J, van Vliet J (eds) Proceedings of the international symposium on algorithmic languages, pp 339–416
[GFMdR85] Grumberg O, Francez N, Makowsky JA, de Roever WP (1985) A proof rule for fair termination of guarded commands. Inf

Control 66(1/2):83–102
[GL80] Gries D, Levin G (1980) Assignment and procedure call proof rules. ACM Trans Program Lang Syst 2(4):564–579
[GMW79] Gordon MJC, Milner R, Wadsworth CP (1979) Edinburgh LCF, volume 78 of Lecture notes in computer science. Springer
[Gor75] GorelickGA (1975)A complete axiomatic system for proving assertions about recursive and nonrecursive programs. Technical

report 75, Department of Computer Science, University of Toronto.
https://archive.org/details/ACompleteAxiomaticSystemForProvingAssertionsAboutRecursiveAnd.

[Gor88] GordonMJC (1988) Programming language theory and its implementation—applicative and imperative paradigms. Prentice
Hall International series in Computer Science. Prentice Hall

[Gri78] Gries D (March 1978) The multiple assignment statement. IEEE Trans Softw Eng SE-4:89–93
[Gri81] Gries D (1981) The science of programming. Springer, New York

http://www.cs.utexas.edu/users/EWD/ewd05xx/EWD573.PDF
https://archive.org/details/ACompleteAxiomaticSystemForProvingAssertionsAboutRecursiveAnd

Fifty years of Hoare’s logic 805

[Har79] Harel D (1979) First-order dynamic logic. Lecture notes in computer science 68. Springer, New York
[HdR86] Hooman J, de Roever WP (1986) The quest goes on: a survey of proofsystems for partial correctness of CSP. In: Current

trends in concurrency. Lecture notes in computer science 224. Springer, New York, pp 343–395
[HJ00] HuismanM, JacobsB (2000) Java programverification via aHoare logicwith abrupt termination. In: Fundamental approaches

to software engineering, third internationsl conference, FASE 2000, volume 1783 of Lecture notes in computer science.
Springer, pp 284–303

[HKT00] Harel D, Kozen D, Tiuryn J (2000) Dynamic logic. MIT Press, Cambridge
[HL74] Hoare CAR, Lauer PE (1974) Consistent and complementary formal theories of the semantics of programming languages.

Acta Inform 3:135–153
[HN18] Haslbeck MPL, Nipkow T (2018) Hoare logics for time bounds. Archive of formal proofs. http://isa-afp.org/entries/Hoare_

Time.html. Formal proof development.
[Hoa61] Hoare CAR (1961) Algorithm 64: quicksort. Commun ACM 4(7):321
[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12:576–580, 583
[Hoa71a] Hoare CAR (1971) Procedures and parameters: an axiomatic approach. In: Engeler E (ed) Proceedings of symposium on the

semantics of algorithmic languages. Lecture notes in mathematics 188. Springer, New York, pp 102–116
[Hoa71b] Hoare CAR (1971) Proof of a program: FIND. Commun ACM 14(1):39–45
[Hoa72a] Hoare CAR (1972) An axiomatic definition of the programming language PASCAL. In: International sympoisum on theo-

retical programming, volume 5 of Lecture notes in computer science. Springer, pp 1–16
[Hoa72b] Hoare CAR (1972) Proof of a structured program: ’the sieve of Eratosthenes’. Comput J 15(4):321–325
[Hoa72c] HoareCAR (1972) Towards a theory of parallel programming. In:HoareCAR,PerrotRH (eds)Operating systems techniques.

Academic Press, London, pp 61–71
[Hoa75] Hoare CAR (1975) Parallel programming: an axiomatic approach. Comput Lang 1(2):151–160
[Hoa78] Hoare CAR (1978) Communicating sequential processes. Commun ACM 21:666–677
[HOP10] Hoenicke J, Olderog E-R, Podelski A (2010) Fairness for dynamic control. In: Esparza J, Majumdar R (eds) Tools and

algorithms for the construction and analysis of systems, 16th international conference, (TACAS 2010), volume 6015 of Lecture
notes in computer science. Springer, pp 251–265

[HP15] Hoenicke J, Podelski A (2015) Fairness for infinitary control. In: Meyer R, Platzer A, Wehrheim H (eds) Correct system
design—symposium in Honor of Ernst-Rüdiger olderog on the occasion of his 60th birthday, volume 9360 of Lecture notes
in computer science. Springer, pp 33–43

[HW73] Hoare CAR, Wirth N (1973) An axiomatic definition of the programming language PASCAL. Acta Inform 2:335–355
[INM84] INMOS Limited (1984) Occam programming manual. Prentice-Hall International, Englewood Cliffs
[Jon81] Jones CB (1981) Developing methods for computer programs including a notion of interference. PhD thesis, University of

Oxford, UK
[Jon83] Jones CB (1983) Tentative steps toward a development method for interfering programs. ACM Trans Program Lang Syst

5(4):596–619
[Jon03] Jones CB (2003) The early search for tractable ways of reasoning about programs. IEEE Ann Hist Comput 25(2):26–49
[JP04] Jacobs B, Poll E (2004) Java program verification at nijmegen: developments and perspective. In: Futatsugi K, Mizoguchi

F, Yonezaki N (eds) Software security—theories and systems, second Mext-NSF-JSPS international symposium, ISSS 2003,
Tokyo, Japan, November 4–6, 2003, revised papers, volume 3233 of Lecture notes in computer science. Springer, pp 134–153

[JR10] Jones CB, Roscoe AW (2010) Insight, inspiration and collaboration. In: Roscoe AW, Jones CB, Wood KR (eds) Reflections
on the work of C.A.R. Hoare. Springer, pp 1–32

[JW75] Jensen K, Wirth N (1975) PASCAL user manual and report. Springer
[Kal90] Kaldewaij A (1990) Programming: the derivation of algorithms. Prentice-Hall International, Englewood Cliffs
[KGJ+15] Katoen J, Gretz F, Jansen N, Kaminski BL, Olmedo F (2015) Understanding probabilistic programs. In: Meyer R, Platzer

A, Wehrheim H (eds) Correct system design—symposium in Honor of Ernst-Rüdiger olderog on the occasion of his 60th
birthday, volume 9360 of Lecture notes in computer science. Springer, pp 15–32

[Kin69] King J (1969) Developing methods for computer programs including a notion of interference. PhD thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh USA

[Kle98] Kleymann T (1998) Hoare logic and VDM : machine-checked soundness and completeness proofs. PhD thesis, University of
Edinburgh UK

[Kle99] Kleymann T (1999) Hoare logic and auxiliary variables. Formal Asp Comput 11(5):541–566
[Koz00] Kozen D (2000) On Hoare logic and Kleene algebra with tests. ACM Trans Comput Log 1(1):60–76
[KT01] Kozen D, Tiuryn J (2001) On the completeness of propositional Hoare logic. Inf Sci 139(3-4):187–195
[Lam77] Lamport L (1977) Proving the correctness of multiprocess programs. IEEE Trans Softw Eng SE-3:2:125–143
[Lam94] Lamport L (1994) The temporal logic of actions. ACM Trans Program Lang Syst 16(3):872–923
[Lam02] Lamport L (2002) Specifying systems, the TLA+ language and tools for hardware and software engineers. Addison-Wesley
[Lan79] Langmaack H (1979) A proof of a theorem of Lipton on Hoare logic and applications. Technical report, Ber. 8003, Inst Inf

Prakt Math, University of Kiel, Germany
[Lan82] Langmaack H (1982) On the termination problem for finitely interpreted ALGOL-like programs. Acta Inform 18:79–108
[Lau71] Lauer PE (1971) Consistent formal theories of the semantics of programming languages. Technical report 25. 121, IBM

Laboratory Vienna
[LCC+05] Leavens GT, Cheon Y, Clifton C, Ruby C, Cok DR (2005) How the design of JML accommodates both runtime assertion

checking and formal verification. Sci Comput Program 55(1-3):185–208
[Lei10] Leino KRM (2010) Dafny: an automatic program verifier for functional correctness. In: Clarke EM, Voronkov A (eds) Logic

for programming, artificial intelligence, and reasoning, LPAR-16, volume 6355 of Lecture notes in computer science. Springer,
pp 348–370

[LG81] Levin G, Gries D (1981) A proof technique for communicating sequential processes. Acta Inform 15:281–302

http://isa-afp.org/entries/Hoare_Time.html
http://isa-afp.org/entries/Hoare_Time.html

806 K.R. Apt and E-R. Olderog

[LGH+78] London RL, Guttag JV, Horning JJ, Lampson BW, Mitchell JG, Popek GJ (1978) Proof rules for the programming language
Euclid. Acta Inform 10:1–26

[Lip75] Lipton RJ (1975) Reduction: a method of proving properties of parallel programs. Commun ACM 18:717–721
[Lip77] Lipton RJ (1977) A necessary and sufficient condition for the existence of Hoare logics. In: 18th annual symposium on

foundations of computer science. IEEE Computer Society, pp 1–6
[LO80] LangmaackH,Olderog E-R (1980) Present-dayHoare-like systems for programming languages with procedures: power, limits

and most likely expressions. In: de Bakker JW, van Leeuwen J (eds) Automata, languages and programming, 7th colloquium,
volume 85 of Lecture notes in computer science. Springer, pp 363–373

[LPS81] Lehmann DJ, Pnueli A, Stavi J (1981) Impartiality, justice, and fairness: the ethics of concurrent termination. In: Kariv O,
Even S (eds) Proceedings of international colloquium on automata languages and programming (ICALP ’81). Lecture notes
in computer science 115. Springer, New York, pp 264–277

[LS87] Loeckx J, Sieber K (1987) The foundation of program verification, 2nd edn. Teubner-Wiley, Stuttgart
[Man74] Manna Z (1974) Mathematical theory of computation. Mc Graw-Hill
[Mey97] Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice Hall
[Mil80] Milner R (1980) A calculus of communicating systems. Lecture notes in computer science 92, Springer, New York
[Mil89] Milner R (1989) Communication and concurrency. Prentice-Hall International, Englewood Cliffs
[MJ84] Morris FL, Jones CB (1984) An early program proof by Alan Turing. Ann Hist Comput 6:139–143
[MM05] McIver A, Morgan C (2005) Abstraction, refinement and proof for probabilistic systems. Monographs in computer science.

Springer
[Moi83] Moitra A (1983) On Apt, Francez, and de Roever’s “A proof system for communicating sequential processes”. ACM Trans

Program Lang Syst 5(3):500–501
[Mor94] Morgan C (1994) Programming from specifications, 2nd end. Prentice-Hall International, London
[MP74] Manna Z, Pnueli A (1974) Axiomatic approach to total correctness of programs. Acta Inform 3:253–263
[MP91] Manna Z, Pnueli A (1991) The temporal logic of reactive and concurrent systems—specification. Springer, New York
[MP95] Manna Z, Pnueli A (1995) Temporal verification of reactive systems—safety. Springer, New York
[MS87] Mirkowska C, Salwicki A (1987) Algorithmic logic. Kluwer Academic Publishers, Norwell
[Nau66] Naur P (1966) Proof of algorithms by general snapshots. BIT Numer Math 6(4):310–316
[NBB+63] Naur P, Backus J, Bauer F, Green J, Katz C, McCarthy J, Perlis A, Rutishauser H, Samelson K, Vauquois B, Wegstein J, van

Wijngaarden A, Woodger M (1963) Report on the algorithmic language ALGOL 60. Numer Math 4:420–453
[NCMM09] Nordio M, Calcagno C, Müller P, Meyer B (2009) A sound and complete program logic for eiffel. In: Oriol M, Meyer B (eds)

Objects, components, models and patterns, 47th international conference, TOOLS EUROPE 2009, Zurich, Switzerland, June
29–July 3, 2009. Proceedings, volume 33 of Lecture notes in business information processing. Springer, pp 195–214

[Nie87] NielsonHR (1987)AHoare-like proof system for analysing the computation time of programs. Sci Comput Program9(2):107–
136

[Nip02a] Nipkow T (2002) Hoare logics in Isabelle/HOL. In: Schwichtenberg H, Steinbrüggen R (eds) Proof and system-reliability,
volume 62 of NATO science series. Springer, pp 341–367

[Nip02b] Nipkow T (2002) Hoare logics for recursive procedures and unbounded nondeterminism. In: Proceedings of the computer
science logic, 16th international workshop, CSL 2002, volume 2471 of Lecture notes in computer science. Springer, pp 103–119

[NN99] NipkowT,NietoLP (1999)Owicki/Gries in Isabelle/HOL. In: Finance JP (ed)Fundamental approaches in software enginering
(FASE), volume 1577 of Lecture notes in computer science. Springer, pp 188–203

[NPW02] Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL—A proof assistant for higher-order logic, volume 2283 of Lecture
notes in computer science. Springer

[OA88] Olderog E-R, Apt KR (1988) Fairness in parallel programs, the transformational approach. ACM Trans Program Lang Syst
10:420–455

[OG76a] Owicki S, Gries D (1976) An axiomatic proof technique for parallel programs. Acta Inform 6:319–340
[OG76b] Owicki S, Gries D (1976) Verifying properties of parallel programs: an axiomatic approach. Commun ACM 19:279–285
[O’H07] O’Hearn PW (2007) Resources, concurrency, and local reasoning. Theor Comput Sci 375(1–3):271–307
[O’H19] O’Hearn PW (2019) Separation logic. Commun ACM 62(2):86–95
[Old81] Olderog E-R (1981) Sound and complete Hoare-like calculi based on copy rules. Acta Inform 16:161–197
[Old83a] Olderog E-R (1983) A characterization of Hoare’s logic for programs with Pascal-like procedures. In: Proceedings of the 15th

ACM symposium on theory of computing (STOC). ACM, pp 320–329
[Old83b] Olderog E-R (1983) On the notion of expressiveness and the rule of adaptation. Theor Comput Sci 30:337–347
[Old84] OlderogE-R (1984)Correctness of programswith Pascal-like procedureswithout global variables. TheorComput Sci 30:49–90
[OP10] Olderog E-R, Podelski A (2010) Explicit fair scheduling for dynamic control. In: Dams D, Hannemann U, Steffen M (eds)

Concurrency, compositionality, and correctness, essays in Honor of Willem-Paul de Roever, volume 5930 of Lecture notes in
computer science. Springer, pp 96–117

[ORS92] Owre S, Rushby JM, ShankarN (1992) PVS:A prototype verification system. In:KapurD (ed)Automated deduction (CADE-
11), 11th international conference on automated deduction, 1992, proceedings, volume 607 of Lecture notes in computer
science. Springer, pp 748–752

[ORY01] O’Hearn PW, Reynolds JC, Yang H (2001) Local reasoning about programs that alter data structures. In: Fribourg L (ed)
Computer science logic, 15th international workshop (CSL 2001), volume 2142 of Lecture notes in computer science. Springer,
pp 1–19

[OW12] Olderog E-R, Wilhelm R (2012) Turing und die Verifikation. Informatik Spektrum 35(4):271–279
[Owi75] Owicki S (1975)Axiomatic proof techniques forparallel programs.Outstandingdissertations in the computer sciences.Garland

Publishing, New York
[Owi76] Owicki S (1976) A consistent and complete deductive system for the verification of parallel programs. In: STOC. ACM, pp

73–86

Fifty years of Hoare’s logic 807

[Owi78] Owicki S (1978) Verifying concurrent programs with shared data classes. In: Neuhold EJ (ed) Proceedings of the IFIP working
conference on formal description of programming concepts. North-Holland, Amsterdam, pp 279–298

[OYR04] O’Hearn PW, Yang H, Reynolds JC (2004) Separation and information hiding. In: Jones ND, Leroy X (eds) Proceedings of
31st symposium on principles of programming languages (POPL 2004). ACM, pp 268–280

[PdB03] Pierik C, de Boer FS (2003) A syntax-directed Hoare logic for object-oriented programming concepts. In: FMOODS, volume
2884 of Lecture notes in computer science. Springer, pp 64–78

[Pla08] Platzer A (2008) Differential dynamic logic for hybrid systems. J Autom Reasoning 41(2):143–189
[Pnu77] Pnueli A (1977) The temporal logic of programs. In: Proceedings of the 18th IEEE symposium on foundations of computer

science, pp 46–57
[PR18] Piskac R, Rümmer P (eds) (2018) Verified software. Theories, tools, and experiments—10th international conference, VSTTE

2018, Oxford, UK, July 18–19, 2018, Revised selected papers, volume 11294 of Lecture notes in computer science. Springer
[Pra76] Pratt VR (1976) Semantical considerations on Floyd-Hoare logic. In: 17th annual symposium on foundations of computer

science (FoCS 1976). IEEE Computer Society, pp 109–121
[QS81] Queille JP, Sifakis J (1981) Specification and verification of concurrent systems in CESAR. In: Proceedings of the 5th inter-

national symposium on programming, Paris
[Rey02] Reynolds JC (2002) Separation logic: a logic for sharedmutable data structures. In: 17th IEEE symposiumon logic in computer

science (LICS 2002). IEEE Computer Society, pp 55–74
[Sal70] Salwicki A (1970) Formalized algorithmic languages. Bull Acad Pol Sci 18:227–232
[Sch77] Schwarz J (1977) Generic commands—a tool for partial correctness formalisms. Comput J 20:151–155
[Sok77] Sokołowski S (1977) Total correctness for procedures. In: 6th symposium on mathematical foundations of computer science,

volume 53 of Lecture notes in computer science. Springer, pp 475–483
[Sok87] S. Sokołowski (1987) Soundness ofHoare’s logic: an automatedproof usingLCF.ACMTransProgramLangSyst 9(1):100–120
[Spi92] Spivey JM (1992) The Z notation: a reference manual, 2nd edn. Prentice Hall
[SS14] SznukT,SchubertA (2014)Tool support for teachingHoare logic. In:GiannakopoulouD,SalaünG (eds) Software engineering

and formalmethods—12th international conference (SEFM2014), volume8702ofLecturenotes in computer science. Springer,
pp 332–346

[Tar36] Tarski A (1936) Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1(3):261–405
[Tur49] Turing AM (1949) On checking a large routine. Report of a conference on high speed automatic calculating machines, pp

67–69, 1949. University Mathematics Laboratory, Cambridge. (See also: F. L. Morris and Jones CB, An early program proof
by Alan Turing, Annals of the History of Computing 6 pp 139–143, 1984)

[TZ88] Tucker JV, Zucker JI (1988) Program correctness over abstract data types, with error-state semantics. North-Holland and
CWI Monographs, Amsterdam

[Unr19] Unruh D (2019) Quantum relational Hoare logic. Proc ACM Program Lang 3(POPL):33:1–33:31
[vO99] von Oheimb D (1999) Hoare logic for mutual recursion and local variables. In: Foundations of software technology and

theoretical computer science, 19th conference, Chennai, India, December 13–15, 1999, proceedings, volume 1738 of Lecture
notes in computer science. Springer, pp 168–180

[vON02] von Oheimb D, Nipkow T (2002) Hoare logic for nanojava: auxiliary variables, side effects, and virtual methods revisited.
In: Eriksson L, Lindsay PA (eds) FME 2002: formal methods—getting IT right, international symposium of formal methods
Europe, Copenhagen, Denmark, July 22–24, 2002, proceedings, volume 2391 of Lecture notes in computer science. Springer,
pp 89–105

[vWMP+75] van Wijngaarden A, Mailloux BJ, Peck JEL, Koster CHA, Sintzoff M, Lindsey CH, Meertens LGLT, Fisker RG (1975)
Revised report on the algorithmic language ALGOL 68. Acta Inform 5:1–236

[Wan78] Wand M (1978) A new incompleteness result for Hoare’s system. J ACM 25(1):168–175
[WH66] Wirth N, Hoare CAR (1966) A contribution to the development of ALGOL. Commun ACM 9(6):413–432
[Win93] Winskel G (1993) The formal semantics of programming languages—an introduction. Foundation of computing series. MIT

Press
[Yin11] Ying M (2011) Floyd–Hoare logic for quantum programs. ACM Trans Program Lang Syst 33(6):19:1–19:49
[Yin19] Ying M (2019) Toward automatic verification of quantum programs. Formal Asp Comput 31(1):3–25
[Zöb88] Zöbel D (1988) Normalform-Transformationen für CSP-Programme. Informatik: Forschung und Entwicklung 3:64–76

Received 8 April 2019
Accepted in revised form 8 November 2019 by Cliff Jones and José N. Oliveira
Published online 27 November 2019

	Fifty years of Hoare's logic
	Abstract
	1 Introduction
	2 Precursors
	2.1 Turing
	2.2 Floyd

	3 Hoare's Contributions
	3.1 Reasoning about while programs
	3.2 Reasoning about recursive procedures
	3.3 Reasoning about termination

	4 Soundness and Completeness Matters
	4.1 Preliminaries
	4.2 Soundness
	4.3 Completeness

	5 Fine-tuning the Approach
	5.1 Adaptation rules
	5.2 Subscripted and local variables
	5.3 Parameter mechanisms and procedure calls

	6 Reasoning about Arbitrary Procedures
	6.1 Completeness results for recursive procedures
	6.2 Clarke's incompleteness result
	6.3 Clarke's language L4
	6.4 The characterization problem

	7 Nondeterministic and Probabilistic Programs
	7.1 Reasoning about nondeterminism
	7.2 Reasoning about fairness
	7.3 Probabilistic programs

	8 Parallel and Distributed Programs
	8.1 Reasoning about parallel programs
	8.2 Reasoning about distributed programs

	9 Object-oriented Programs
	9.1 Language characteristics
	9.2 Reasoning about object-oriented programs
	9.3 Advanced topics in the verification of object-oriented programs

	10 Alternative Approaches
	10.1 Weakest precondition semantics and systematic program development
	10.2 Specifying in Hoare's logic
	10.3 Programming from specifications
	10.4 Algorithmic logic and dynamic logic
	10.5 Temporal logic and model checking
	10.6 Separation logic
	10.7 Relational Hoare logic

	11 Final Remarks: a Summary and an Assessment
	Acknowledgements
	A Turing's example
	References

