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Abstract. Operator precedence languages were introduced half a century ago by Robert Floyd to support deter-
ministic and efficient parsing of context-free languages. Recently, we renewed our interest in this class of languages
thanks to a few distinguishing properties that make them attractive for exploiting various modern technologies. Pre-
cisely, their local parsability enables parallel and incremental parsing, whereas their closure properties make them
amenable for automatic verification techniques, including model checking.
In this paper we provide a fairly complete theory of this class of languages: we introduce a class of automata with the
same recognizing power as the generative power of their grammars; we provide a characterization of their sentences
in terms of monadic second order logic as it has been done in previous literature for more restricted language classes
such as regular, parenthesis, and input-driven ones; we investigate preserved and lost properties when extending the
language sentences from finite length to infinite length (ω-languages). As a result, we obtain a class of languages
that enjoys many nice properties of regular languages (closure and decidability properties, logic characterization)
but is considerably larger than other families –typically parenthesis and input-driven ones– with the same properties,
covering “almost” all deterministic languages.1
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Introduction. Operator precedence grammars and languages (OPGs and OPLs) cer-
tainly deserve an important place in the history of formal languages and compilers. They
were invented by Robert Floyd [23] with the major motivation of enabling efficient, determin-
istic parsing of programming languages. In fact Floyd’s intuition was inspired by arithmetic
expressions whose structure is determined either by explicit parentheses or by the conven-
tional, “hidden” precedence of multiplicative operators over additive ones. By generalizing
this observation Floyd defined three basic relations between terminal symbols, namely yields
and takes precedence and equal in precedence (respectively denoted by symbols ⋖, ⋗, =̇),
in such a way that the right hand side (r.h.s.) of an operator precedence grammar rule is en-
closed within a pair ⋖, ⋗, and =̇ holds between consecutive terminal symbols thereof (in OPGs
nonterminal symbols are “transparent”, i.e., irrelevant, w.r.t. the precedence relations [23]).

Subsequently, under the main motivation of grammar inference, it was shown that, once
an operator precedence matrix (OPM) is given such that at most one relation holds between
any two terminal characters, the family of OPLs sharing the given OPM is a Boolean algebra
[19]. This result somewhat generalizes closure properties enjoyed by regular languages and
by context-free languages whose structure, i.e., the syntax tree, is immediately visible in
the terminal sentences, such as parenthesis languages [31] and tree-automata languages [11].
Such interesting algebraic properties enabled original inference algorithms, such as those
proposed in [20]. After these initial results the theoretical investigation of OPLs was almost
abandoned, most likely because of the advent of more general grammars, mainly the LR
ones [26], which support parsing algorithms for the whole class of deterministic context-free
languages. Nevertheless OPG-based parsing remains of some interest thanks to its simplicity
and efficiency and is still used, at least partially, in many practical cases [24].

In the last decades, instead, an independent branch of research generated a flourishing of
new results in terms of logic characterization of language families, ignited by the pioneering
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1Preliminary versions of some results presented in this paper appeared in [28, 29, 34].
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results by Büchi and others [12, 32] on the monadic second order (MSO) logic characteriza-
tion of regular languages over finite or infinite words (ω-languages) and motivated mainly by
the breakthrough application of model-checking, which is rooted in closure properties and de-
cidability of the emptiness problem, besides correspondence between automata-theoretic and
logic language characterization. The present state of the art exhibits plenty of language fam-
ilies and related characterization in terms of various forms of logic formalisms (first-order,
propositional, temporal logic and more specialized ones [17, 1]); most of them are motivated
by the wish to extend model-checking techniques, i.e., decidability of system properties, be-
yond the natural scope of finite state machines.

Within such a rich literature, Visibly Pushdown Languages (VPLs) [4], previously known
as Input-Driven Languages (IDLs) [5] certainly deserve a major role. In a nutshell IDLs
alias VPLs are based on, and extend original parenthesis languages [31], e.g. by allowing for
unmatched closed and open parentheses at the beginning and end of a sentence, respectively.
Throughout the years this research field produced a fairly complete study of this family of
languages whose main features can be summarized as follows:

● Being essentially a generalization of parenthesis languages their structure is imme-
diately transparent at the “surface sentence”, unlike more general context-free lan-
guages; arithmetic expressions, e.g., which are found in practically every program-
ming language, do not reflect in the sequence of the leaves of the syntax tree the
internal structure of the tree, which can be built only by knowing that multiplication
operators take precedence over the additive ones.

● They have a complete characterization in terms of pushdown-automata and context-
free grammar families recognizing and generating, them, respectively.

● They are closed w.r.t. to all fundamental language operations (Boolean, concatena-
tion, Kleene *,. . . ), like regular languages and unlike more general CF families.

● Within the landscape of algorithms that are necessary to develop model-checking
techniques –whose complexities span from NP to PSPACE, EXPTIME,. . . com-
pleteness– they exhibit “comparable” complexities: for instance, the core algorithm
for determinizing nondeterministic visibly pushdown automata (VPAs) has 2O(s2)

complexity w.r.t. the cardinality s of the original state space and the inclusion prob-
lem for VPLs of both finite and infinite strings is EXPTIME-complete.

● They are characterized in terms of a MSO logic that applies both to finite and infinite
length words.

Similar results have been obtained also for other classes of languages on the basis of the
strong motivation provided by “model-checking like” applications [10].

Recently, our interest in OPLs has been renewed thanks to two, seemingly unrelated,
properties thereof. The former one is their local parsability, i.e. the fact that the typical shift-
reduce parsing algorithm associated with them, determines the replacing of a r.h.s. by the
corresponding left hand side (l.h.s) exclusively on the basis of the embracing ⋖ and ⋗ relations,
i.e., independently on parts of the string that may be arbitrarily far from the considered r.h.s.
This property is not enjoyed by more powerful grammars such as LR ones and nowadays it
may far compensate the minor loss of generative power because it makes easier and more
efficient exploiting parallelism and incrementality in the parsing of large strings formalizing
complex systems and their behavior. The exploitation of this property, however, is the target
of a different and –so far– independent research whose first results are documented in [7] and
[6].

In this paper, instead, we focus on another, equally stimulating property of OPLs. We re-
alized, in fact, that the OPL family strictly includes the independently studied family of VPLs
and other related ones such as balanced languages [8]. On the basis of this somewhat sur-
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prising remark we further investigated other closure properties of OPLs besides the Boolean
ones that were originally proved in [19]: the result is that OPLs are, to the best of our knowl-
edge, the largest class of languages that enjoys all major closure properties that are typical of
regular languages [18]2 Herewith the goal of this paper: to apply to OPLs the same success-
ful verification techniques formerly developed for regular languages, VPLs, and other –input
driven– language families, we develop a complete automata-theoretic and logic characteriza-
tion of OPLs. In fact resuming the study of this old family of languages showed unexpected
similarities with, and generalizations of, the peculiar properties of seemingly unrelated and
differently motivated classes of languages.

In our opinion OPLs offer a surprising combination of the merits of IDLs and of those of
more general deterministic context-free languages. On the one hand, in fact, they are input
driven since their analysis can be based exclusively on the input characters and their pairwise
relations; but, unlike more traditional IDLs, they are well suited to formalize general pro-
gramming languages and other languages of practical interest; such a distinguishing feature
allows us to extend to them closure and decidability properties not enjoyed by more gen-
eral context-free languages. On the other hand, their minor lack of power w.r.t. deterministic
languages does not prevent them from including most programming languages of practical
interest: previous efforts in fact produced compilers based on OPGs for various programming
languages such as ALGOL 68 and Prolog [23, 21]; more recently we exploited the mentioned
property of local parsability to produce parallel parsers for JSON and Lua [6].

Given the fairly numerous collection of strongly connected properties we structure the
present paper into two main parts. The first one completes the path begun with [19] and
resumed with [18] by providing a fairly complete theory of traditional OPLs defined on strings
of finite length; precisely, we present:

● A new family of pushdown automata fully equivalent to OPGs; rather surprisingly,
in fact, a precise automata-theoretic characterization of OPLs was missing in the
original literature3.

● A complete characterization of OPLs in terms of monadic second-order (MSO) logic
so as to align this family with a now classic approach of the literature –rooted in the
work by Büchi. This allows, at least potentially, for the definition of model-checking
algorithms to prove properties of languages defined either by means of generating
grammars or by means of recognizing automata. Given the prohibitive complexity
of decision algorithms based on MSO logic, however, it is common practice in the
literature to resort to model-checking algorithms based on less powerful but simpler
logics. We will provide a few hints on pursuing such an approach in the conclusion.

In the second part of this paper we define ωOPLs, i.e. the OPLs of infinite words. Infinite
words languages are becoming more and more relevant in the literature due to the need of
modeling systems whose behavior proceeds indefinitely, such as operating systems, control
systems, etc. After introducing and comparing various forms of acceptance of infinite words
by our OPAs by paralleling classical literature of ω-regular languages, we re-investigate their
main properties by pointing out which of them are preserved from the finite length case and
which ones are lost. This includes also a further characterization of ωOPLs in terms of MSO
logic.

In the conclusions we briefly hint at further research directions, noticeably investigating

2Other language families falling in between input-driven and context-free languages, such as the height-
deterministic family [33] or the synchronized pushdown languages [14], enjoy some but not all of the basic closure
properties; furthermore such families are in general nondeterministic.

3The OP automata studied in this paper are significantly simplified w.r.t. their original formulation proposed
in [28].
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the relations of OPLs with less powerful but less complex logics than MSO ones, as it has
been or is being done for other (input-driven) language families.

Part I: Finite Words Operator Precedence Languages

This part is devoted to finite length OPLs. After stating basic definitions and terminol-
ogy (Section I.1) and resuming previous results already available in the open literature (Sec-
tion I.1.1), we introduce the new class of pushdown automata explicitly tailored at OPLs:
in Section I.2 we give the basic definitions and provide examples to show their usefulness in
modeling various cases of practical interest; then we show the equivalence between determin-
istic and nondeterministic versions of these automata, at the price, however, of an increase
in state space size given by an exponential function with quadratic exponent; we also study
the complexity of decision problems for OPLs. Section I.3 shows, in a constructive way,
the equivalence between OPGs and the new class of automata; finally, Section I.4 presents a
monadic second order logic characterization of OPLs.

I.1. Preliminaries. A context-free (CF) grammar is a 4-tuple G = (N,Σ,P,S ), where N
is the nonterminal alphabet, Σ is the terminal one, P the rule (or production) set, and S ⊆ N
the set of axioms4. The empty string is denoted ε. An empty rule has ε as the right hand side
(r.h.s.). A renaming rule has one nonterminal as r.h.s. A grammar is reduced if every rule can
be used to generate some string in Σ∗. It is invertible if no two rules have identical r.h.s.

The direct derivation relation is denoted by ⇒ and its reflexive transitive closure, the
derivation relation, is denoted by

∗⇒.
The following naming convention will be adopted, unless otherwise specified: lowercase

Latin letters a,b, . . . denote terminal characters; uppercase Latin letters A,B, . . . denote non-
terminal characters; letters u, v, . . . denote terminal strings; and Greek letters α, β, . . . denote
strings over Σ ∪ N. The strings may be empty, unless stated otherwise.

In this initial part we will use arithmetic expressions, which are a small fraction of prac-
tically all programming languages, as a running example to introduce and explain the basic
definitions, properties and constructions referring to OPLs.

Example 1. Arithmetic expressions considered in this paper include two operators, an ad-
ditive one and a multiplicative one that takes precedence over the other one, in the sense that,
during the interpretation of the expression, multiplications must be executed before sums; as
usual parentheses are used to specify a different precedence hierarchy between the two op-
erations. They are denoted by the special symbols L and M to avoid overloading with the use
of the same symbol in all other formulae of this paper. Figure I.1.1 presents a grammar and
the derivation tree of expression n + n × Ln + nM generated thereby; all nonterminals are also
axioms.

Notice that the structure of the syntax tree (uniquely) corresponding to the input ex-
pression reflects the precedence order which drives computing the value attributed to the
expression. This structure, however, is not immediately visible in the expression: in fact Fig-
ure I.1.2 proposes a different grammar which generates the same expressions as the grammar
of Figure I.1.1 but would associate to the same sentence the syntax tree displayed in the right
part of the figure. Yet another (ambiguous) grammar could generate both. If instead we
used a parenthesis grammar to generate arithmetic expressions, it would produce the string
Ln+Ln×Ln+nMMM instead of the previous one and the structure of the corresponding tree would

4This less usual but equivalent definition of axioms as a set has been adopted for parenthesis languages [31] and
other input-driven languages; we chose it for this paper to simplify some notations and constructions.
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E → E + T ∣ T
T → T × F ∣ F
F → n ∣ LEM
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Figure I.1.1: A grammar generating arithmetic expressions with parentheses.

A→ B × A ∣ B
B→ B +C ∣ C
C → n ∣ LAM
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Figure I.1.2: A grammar generating the same arithmetic expression as that of Figure I.1.1 and
the corresponding tree where, instead, + takes precedence over ×.

be immediately visible in the expression. For this reason we say that such general grammars
“hide” the structure associated with a sentence –even when they are unambiguous– whereas
parenthesis grammars and other input-driven ones make the structure explicit in the sentences
they generate.

A rule is in operator form if its r.h.s. has no adjacent nonterminals; an operator grammar
(OG) contains just such rules. Notice that both grammars of Figure I.1.1 and of Figure I.1.2
are OGs. Any CF grammar G = (N,Σ,P,S ) admits an equivalent OG G′ = (N′,Σ,P′,S ),
where the size of N′ is O(∣Σ∣ ⋅ (∣Σ∣+ k ⋅ ∣P∣)) and that of P′ is O(∣Σ∣ ⋅ (∣N∣+ k ⋅ ∣Σ∣ ⋅ ∣P∣)), k being
the maximum length of P’s r.h.s.s [25, 38].

The coming definitions for operator precedence grammars (OPGs) [23] are from [19]
and [18], where they are also called Floyd Grammars or FGs.

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ ∣ A
∗⇒ Baα} RG(A) = {a ∈ Σ ∣ A

∗⇒ αaB}

where B ∈ N ∪ {ε}. The grammar name G will be omitted unless necessary to prevent
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+ × L M n
+ ⋗ ⋖ ⋖ ⋗ ⋖
× ⋗ ⋗ ⋖ ⋗ ⋖
L ⋖ ⋖ ⋖ ≐ ⋖
M ⋗ ⋗ ⋗
n ⋗ ⋗ ⋗

Figure I.1.3: The OPM of the grammar in Figure I.1.1.

confusion. For the grammar of Figure I.1.1 the left and right terminal sets of nonterminals E,
T and F are, respectively:

L(E) = {+,×,n, L} R(E) = {+,×,n, M}
L(T) = {×,n, L} R(T) = {×,n, M}
L(F) = {n, L} R(F) = {n, M}

For an OG G, let α, β range over (N ∪ Σ)∗ and a,b ∈ Σ. Three binary operator precedence
(OP) relations are defined:

equal in precedence: a ≐ b ⇐⇒ ∃A→ αaBbβ,B ∈ N ∪ {ε}
takes precedence: a ⋗ b ⇐⇒ ∃A→ αDbβ,D ∈ N and a ∈RG(D)

yields precedence: a ⋖ b ⇐⇒ ∃A→ αaDβ,D ∈ N and b ∈ LG(D)

Notice that, unlike the usual arithmetic relations denoted by similar symbols, the above prece-
dence relations do not enjoy anyone of transitive, symmetric, reflexive properties. For an OG
G, the operator precedence matrix (OPM) M = OPM(G) is a ∣Σ∣ × ∣Σ∣ array that, for each
ordered pair (a,b), stores the set Mab of OP relations holding between a and b.

Figure I.1.3 displays the OPM associated with the grammar of Figure I.1.1 where, for an
ordered pair (a,b), a is one of the symbols shown in the first column of the matrix and b one
of those occurring in its first line.

Given two OPMs M1 and M2, we define set inclusion and union:

M1 ⊆ M2 if ∀a,b ∶ (M1)ab ⊆ (M2)ab, M = M1 ∪ M2 if ∀a,b ∶ Mab = (M1)ab ∪ (M2)ab

Definition I.1.1 (Operator precedence grammar and language). An OG G is an operator
precedence or Floyd grammar (OPG) if, and only if, M = OPM(G) is a conflict-free matrix,
i.e., ∀a,b, ∣Mab∣ ≤ 1. An operator precedence language (OPL) is a language generated by an
OPG.

From the above definition it is immediate to verify that both grammars of Figure I.1.1
and of Figure I.1.2 are OPGs (with different OPMs).

Two matrices are compatible if their union is conflict-free. A matrix is total (or complete)
if it contains no empty case. The following definition of Fischer Normal Form is adapted from
the original one [22] to take into account that in our basic definition of CF grammar S is a set
rather than a singleton.

Definition I.1.2 (Fischer Normal Form). An OPG is in Fischer normal form (FNF) iff it is
invertible, has no empty rule except possibly A→ ε, where A is an axiom not used elsewhere,
and no renaming rules.

Let G = (N,Σ,P,S ) be an OPG; then an equivalent OPG G̃ = (Ñ,Σ, P̃, S̃ ) in FNF, can be
built such that Ñ is ℘(N) and ∣P̃∣ is O(∣P∣ ⋅ 2∣N∣⋅⌈ k

2 ⌉)), where k is the maximum length of P’s
r.h.s.s [25].



OPERATOR PRECEDENCE LANGUAGES 7

A FNF (manually) derived from the grammar of Figure I.1.1 is given below. Notice that
in this case the size of the nonterminal alphabet and of the productions is much smaller than
the worst case upper bound provided by the general construction.

E → E + T ∣ E + F ∣ T + T ∣ F + F ∣ F + T ∣ T + F

T → T × F ∣ F × F

F → n ∣ LEM ∣ LT M ∣ LFM

It is well-known that OPLs are a proper subfamily of deterministic context-free languages: for
instance, it is impossible to generate the language {anban}, without producing a precedence
conflict a ⋖ a and a ⋗ a. Despite this theoretical limitation OPLs have been successfully used
to formalize many programming languages and to support their compilers; in this paper we
will also provide several other examples of potential application of this model in different
fields.

OPMs play a fundamental role in deterministic parsing of OPLs. Thus in the view of
defining automata to parse OPLs (Operator Precedence Automata or OPAs) we pair them
with the alphabet. To this goal, we use a special symbol # not in Σ to mark the beginning and
the end of any string. This is consistent with the typical operator parsing technique which
requires the lookback and lookahead of one character to determine the precedence relation
[24]. The precedence relations in the OPM are implicitly extended to include #: the initial #
can only yield precedence, and other symbols can only take precedence over the ending #.

Definition I.1.3 (Operator precedence alphabet). An operator precedence (OP) alphabet
is a pair (Σ,M) where Σ is an alphabet and M is a conflict-free operator precedence matrix,
i.e. a ∣Σ ∪ {#}∣2 array that associates at most one of the operator precedence relations: ≐, ⋖
or ⋗ with each ordered pair (a,b).

If Mab = {○}, with ○ ∈ {⋖,≐,⋗} ,we write a ○ b. For u, v ∈ Σ∗ we write u ○ v if u = xa and
v = by with a ○ b. The relations involving the # delimiter are constrained as stated above.

The notion of chain introduced by the following definitions provides a formal description
of the intuitive concept of “invisible or hidden structure” discussed in Example 1.

Definition I.1.4 (Chains). Let (Σ,M) be a precedence alphabet.
● A simple chain is a word a0a1a2 . . . anan+1, written as a0[a1a2 . . .an]an+1 , such that:

a0,an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i ∶ 1 ≤ i ≤ n, Ma0an+1 ≠ ∅, and a0 ⋖ a1 ≐
a2 . . .an−1 ≐ an ⋗ an+1.

● A composed chain is a word a0x0a1x1a2 . . .anxnan+1, with xi ∈ Σ∗, where
a0[a1a2 . . .an]an+1 is a simple chain, and either xi = ε or ai[xi]ai+1 is a chain (sim-
ple or composed), for every i ∶ 0 ≤ i ≤ n. Such a composed chain will be written as
a0[x0a1x1a2 . . .anxn]an+1 .

● The body of a chain a[x]b, simple or composed, is the word x.
Example 2. The “hidden” structure induced by the operator precedence alphabet of

Example 1 for the expression #n+n×Ln+nM# is represented in Figure I.1.4, where #[x0 + x1]#,
+[y0 × y1]#, ×[Lw0M]#, L[z0 + z1]M are composed chains and #[n]+, +[n]×, L[n]+, +[n]M are
simple chains.

Definition I.1.5 (Depth of a chain). Given a chain a[x]b the depth d(x) of its body x
is defined recursively: d(x) = 1 if the chain is simple, whereas d(x0a1x1 . . .anxn) = 1 +
maxi d(xi). The depth of a chain is the depth of its body.
For instance, the composed chain #[x0 + x1]# in Example 2 has depth 5. Thus, if for an OPG
G it is OPM(G) = M, the depth of a chain body x is the height of the syntax tree, if any,
whose frontier is x.
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#
x0

n

+ x1

y0

n

× y1

L w0

z0

n

+ z1

n

M

#

Figure I.1.4: Structure of the chains in the expression #n + n × Ln + nM# of Example 2 .

Definition I.1.6 (Compatible word). A word w over (Σ,M) is compatible with M iff the
two following conditions hold:

● for each pair of letters c,d, consecutive in w, Mcd ≠ ∅
● for each factor (substring) x of #w# such that x = a0x0a1x1a2 . . . anxnan+1, if a0 ⋖

a1 ≐ a2 . . .an−1 ≐ an ⋗ an+1 and, for every 0 ≤ i ≤ n, either xi = ε or ai[xi]ai+1 is a
chain (simple or composed), then Ma0an+1 ≠ ∅.

For instance, the word n+n×Ln+nM is compatible with the operator precedence alphabet
of Example 1, whereas n + n × Ln + nMLn + nM is not.

The chains fully determine the structure of the words; in particular, given an OP alphabet,
each word in Σ∗ compatible with M is assigned a tree-structure by the OPM M. If M is
complete, then each word is compatible with M and the OPM M assigns a structure to any
word in Σ∗. For this reason we say that OPLs somewhat generalize the notion of IDL, since
their parsing is driven by the OPM which is defined on the terminal alphabet, but they also
allow to generate sentences whose structure is “invisible” before parsing.

The equal in precedence relations of an OP alphabet are connected with an important
parameter of the grammar, namely the length of the right hand sides of the rules. Clearly,
a rule A → A1a1 . . .AtatAt+1, where each Ai is a possibly missing nonterminal, is associated
with relations a1=̇a2=̇ . . . =̇at. If the =̇ relation is cyclic, i.e., there exist a1,a2, . . . ,an ∈ Σ

(n ≥ 1) such that a1=̇a2=̇ . . . =̇an=̇a1, there is a priori no finite bound on the length of the r.h.s.
of a production. Otherwise the length is bounded by 2 ⋅ c + 1, where c ≥ 1 is the length of the
longest =̇-chain.

Previous literature [18, 28] assumed that all precedence matrices of OPLs are ≐-cycle
free. In the case of OPGs this prevents the risk of r.h.s. of unbounded length [19], but could
be replaced by the weaker restriction of production’s r.h.s. of bounded length, or could be re-
moved at all by allowing such unbounded forms of grammars –e.g. with regular expressions
as r.h.s. In our experience, such assumption helps to simplify notations and some technical-
ities of proofs; moreover we found that its impact in practical examples is minimal. In this
paper we accept a minimal loss of generation5 power and assume the simplifying assumption
of ≐-acyclicity. We will see, however, that this hypothesis has an impact only on constructions
involving grammars but is irrelevant for the OP automata defined in this paper.

I.1.1. Previous results. Herein we present some basic properties of OPLs that have
already been stated in previous literature. Preliminarily, notice that, since the union of two

5An example language that cannot be generated with an ≐-acyclic OPM is the following: L = {an(bc)n
∣ n ≥

0} ∪ {bn(ca)n
∣ n ≥ 0} ∪ {cn(ab)n ∣ n ≥ 0}
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Σc Σr Σi

Σc ⋖ =̇ ⋖
Σr ⋗ ⋗ ⋗
Σi ⋗ ⋗ ⋗

Legend
Σc denotes “calls”
i.e. a generalized version of open parentheses;
Σr denotes “returns”
i.e. a generalized version of closed parentheses;
Σi denotes internal characters
i.e., characters that are not pushed onto the stack and
are managed exclusively by finite state control.

Figure I.1.5: A partitioned matrix, where Σc, Σr,Σi are set of terminal characters. A prece-
dence relation in position Σα, Σβ means that relation holds between all symbols of Σα and all
those of Σβ.

acyclic OPMs might be cyclic, when we consider, in the sequel, the union M = M1 ∪ M2 of
two OPMs M1 and M2 we always assume that M too is acyclic.

Statement I.1.1. [19] OPLs are closed with respect to Boolean operations. Precisely,
given two OPLs L1, L2 with compatible OPMs M1 and M2, L1∩L2 and L1∪L2 are OPLs whose
OPM is contained in M1 ∪ M2; furthermore, let Lmax

1 be the OPL of all strings compatible
with M1, then Lmax

1 ∖ L1 is an OPL whose OPM is contained in M1. In particular, if M1 is
a complete OPM, Lmax

1 is Σ∗ (where each sentence has a structure determined by M1); then
Σ∗ ∖ L1 is an OPL whose OPM is contained in M1.

Statement I.1.2. [18] OPLs are closed with respect to concatenation and Kleene ∗ op-
eration. Precisely, given two OPLs L1, L2 with compatible OPMs M1 and M2, L1.L2 and L∗1
are OPLs whose OPM is compatible with M1 ∪ M2 (resp. M1). Notice that in this case the
construction of the new grammars may introduce new precedence relations not existing in the
original matrices. Furthermore, OPLs are closed under alphabetical homomorphisms that
preserve conflict-freedom.

Statement I.1.3. [18] OPLs strictly include the family of VPLs. Precisely, VPLs are
the subfamily of OPLs whose OPM is a partitioned matrix, i.e. a matrix whose structure is
depicted in Figure I.1.5.

I.2. Operator Precedence Automata. Next, we introduce a family of pushdown au-
tomata that recognize exactly OPLs. OPLs being naturally oriented towards bottom-up pars-
ing, their accepting automata exhibit a typical shift-reduce attitude; they are considerably
simpler, however, than other classical automata of this type such as LR ones.

Definition I.2.1 (Operator precedence automaton). A nondeterministic operator prece-
dence automaton (OPA) is given by a tuple: A = ⟨Σ,M,Q, I,F, δ⟩ where:

● (Σ,M) is an operator precedence alphabet,
● Q is a set of states (disjoint from Σ),
● I ⊆ Q is a set of initial states,
● F ⊆ Q is a set of final states,
● δ ∶ Q × (Σ ∪ Q) → ℘(Q) is the transition function, which is the union of three

functions:

δshift ∶ Q × Σ→ ℘(Q) δpush ∶ Q × Σ→ ℘(Q) δpop ∶ Q × Q→ ℘(Q)

We represent a nondeterministic OPA by a graph with Q as the set of vertices and Σ ∪ Q
as the set of edge labelings. The edges of the graph are denoted by different shapes of arrows
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to distinguish the three types of transitions: there is an edge from state q to state p labeled
by a ∈ Σ denoted by a dashed (respectively, normal) arrow if and only if p ∈ δshift(q,a)
(respectively, p ∈ δpush(q,a)) and there is an edge from state q to state p labeled by r ∈ Q and
denoted by a double arrow if and only if p ∈ δpop(q, r).

To define the semantics of the automaton, we introduce some notations.
We use letters p,q, pi,qi, . . . to denote states in Q. Let Γ be Σ × Q and let Γ′ be Γ ∪ {�};

we denote symbols in Γ′ as [a, q] or �. We set symbol([a, q]) = a, symbol(�) = #, and
state([a, q]) = q. Given a string Π = �π1π2 . . . πn, with πi ∈ Γ , n ≥ 0, we set symbol(Π) =
symbol(πn), including the particular case symbol(�) = #.

A configuration of an OPA is a triple C = ⟨Π, q, w⟩, where Π ∈ �Γ∗, q ∈ Q and w ∈ Σ∗#.
The first component represents the contents of the stack, the second component represents the
current state of the automaton, while the third component is the part of input still to be read.

A computation or run of the automaton is a finite sequence of moves or transitions C1 ⊢
C2; there are three kinds of moves, depending on the precedence relation between the symbol
on top of the stack and the next symbol to read:
push move: if symbol(Π) ⋖ a then ⟨Π, p, ax⟩ ⊢ ⟨Π[a, p], q, x⟩, with q ∈ δpush(p,a);
shift move: if a ≐ b then ⟨Π[a, p], q, bx⟩ ⊢ ⟨Π[b, p], r, x⟩, with r ∈ δshift(q,b);
pop move: if a ⋗ b then ⟨Π[a, p], q, bx⟩ ⊢ ⟨Π, r, bx⟩, with r ∈ δpop(q, p).

Notice that shift and pop moves are never performed when the stack contains only �.
Push and shift moves update the current state of the automaton according to the transition

function δpush and δshift, respectively: push moves put a new element on the top of the stack
consisting of the input symbol together with the current state of the automaton, whereas shift
moves update the top element of the stack by changing its input symbol only. The pop move
removes the symbol on the top of the stack, and the state of the automaton is updated by
δpop on the basis of the pair of states consisting of the current state of the automaton and the
state of the removed stack symbol; notice that in this move the input symbol is used only to
establish the ⋗ relation and it remains available for the following move.

We say that a configuration ⟨�, qI , x#⟩ is initial if qI ∈ I and a configuration ⟨�, qF , #⟩
is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) = {x ∣ ⟨�, qI , x#⟩ ∗⊢ ⟨�, qF , #⟩,qI ∈ I,qF ∈ F} .

Example 3. The OPA depicted in Figure I.2.1 accepts the language of arithmetic ex-
pressions generated by the OPG of Example 1. The same figure also shows an accepting
computation on input n + n × Ln + nM.

Therefore, an OPA selects an appropriate subset within the “universe” of strings in Σ∗

compatible with M. This property somewhat resembles the fundamental Chomsky-Shützen-
berger Theorem, in that a universe of nested structures –a Dyck language– is restricted by
means of an “intersection” with a finite state mechanism. For instance, the automaton of Fig-
ure I.2.1 recognizes well-nested parenthesized arithmetic expressions and could be modified
in such a way that parentheses are used only when needed to give the expression the desired
meaning, i.e., a pair of parentheses containing a + is necessary only if it is adjacent to a ×;
parentheses enclosing only × should be avoided.

The following definitions will be used throughout the paper to characterize OPA behav-
ior: we use arrowsÐ→ ,Ð→ andÔ⇒ to denote push, shift and pop transitions, respectively.

Definition I.2.2. Let A be an OPA. A support for a simple chain a0[a1a2 . . .an]an+1 is any
path in A of the form

q0
a1Ð→ q1 Ð→ . . . Ð→ qn−1

anÐ→ qn
q0Ô⇒ qn+1 (I.2.1)
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q0 q1

q2 q3

n

L

q0,q1
+,×

nL

q0,q1,q2,q3
+,×

M

stack state current input
� q0 n + n × Ln + nM#
�[n, q0] q1 +n × Ln + nM#
� q1 +n × Ln + nM#
�[+, q1] q0 n × Ln + nM#
�[+, q1][n, q0] q1 ×Ln + nM#
�[+, q1] q1 ×Ln + nM#
�[+, q1][×, q1] q0 Ln + nM#
�[+, q1][×, q1][L, q0] q2 n + nM#
�[+, q1][×, q1][L, q0][n, q2] q3 +nM#
�[+, q1][×, q1][L, q0] q3 +nM#
�[+, q1][×, q1][L, q0][+, q3] q2 nM#
�[+, q1][×, q1][L, q0][+, q3][n, q2] q3 M#
�[+, q1][×, q1][L, q0][+, q3] q3 M#
�[+, q1][×, q1][L, q0] q3 M#
�[+, q1][×, q1][M, q0] q3 #
�[+, q1][×, q1] q3 #
�[+, q1] q3 #
� q3 #

Figure I.2.1: Automaton and example of computation for the language of Example 3. Re-
call that shift, push and pop transitions are denoted by dashed, normal and double arrows,
respectively.

Notice that the label of the last (and only) pop is exactly q0, i.e. the first state of the path; this
pop is executed because of relations a0 ⋖ a1 and an ⋗ an+1.
A support for the composed chain a0[x0a1x1a2 . . .anxn]an+1 is any path in A of the form

q0
x0↝ q′0

a1Ð→ q1
x1↝ q′1

a2Ð→ . . .
anÐ→ qn

xn↝ q′n
q′0Ô⇒ qn+1 (I.2.2)

where for every i ∶ 0 ≤ i ≤ n:
● if xi ≠ ε, then qi

xi↝ q′i is a support for the (simple or composed) chain ai[xi]ai+1

● if xi = ε, then q′i = qi.
Notice that the label of the last pop is exactly q′0.
The support of a chain with body x will be denoted by q0

x↝ qn+1.
Example 4. Figure I.2.2 illustrates the supports of the chains that, for the OPA described
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q0

q1

q1 q0

q1

q1 q0

q2

q3

q3 q2

q3

q3

q3 q3

q3

q3

q3
t0

x0

n
q0

+ x1
y0

n
q0

×
L

y1

w0
z0

n
q2

+ z1

n q2

q3

M q0

q1

q1

# #

Figure I.2.2: Structure of chains and supports for the expression of Example 4.

in Example 3, compose the structure of the expression n + n × Ln + nM.
The chains fully determine the structure of the computation of any automaton on a word

compatible with M. Indeed, let Π ∈ �Γ∗ with symbol(Π) = a ⋖ x ⋗ b: an OPA A performs
the computation ⟨Π, q, xb⟩ ⊢ ⟨Π, p, b⟩ without changing the portion Π of the stack, if and
only if a[x]b is a chain over (Σ,M) with a support q

x↝ p inA. The depth of x corresponds to
the maximum number of push/pop pairs nested in the computation, i.e. the maximum height
reached by the stack in one of the traversed configurations, minus the height of the stack in
the starting configuration.

Notice that the context a,b of a chain is used by the automaton to build its support only
because a ⋖ x and x ⋗ b; thus, the chain’s body contains all information needed by the
automaton to build the subtree whose frontier is that string, once it is understood that its first
move is a push and its last one is pop. This is a distinguishing feature of OPLs, not shared
by other deterministic languages: we call it the locality principle of OPLs, which is exploited
elsewhere e.g. to build parallel and/or incremental OP parsers [7].

With reference to Example 3 and Figure I.2.2, the parsing of substring n + n within the
context L, M is given by the computation

⟨Π, q2, n + n M#⟩ ∗⊢ ⟨Π, q3, M#⟩ with Π = �[+, q1][×, q1][L, q0]

which corresponds to support q2
n↝ q3

+Ð→ q2
n↝ q3

q3Ô⇒ q3 of the composed chain L[n + n]M,
where q2

n↝ q3 is the support q2
nÐ→ q3

q2Ô⇒ q3 of the simple chains L[n]+ and +[n]M.

I.2.1. Examples. In this section we illustrate an example of application of OPLs, which
cannot be modeled by traditional classes of languages with an “explicit” structure such as
parenthesis languages and VPLs. We shall present in Part 2 examples in other interesting
contexts (such as operating systems) which can be naturally modeled by OPAs recognizingω-
languages, and are not recognizable by VPAs as well. Other examples of application of OPLs
to model systems in various application fields outside the traditional one of programming
languages are given in [35].

Indeed, the most distinguishable feature of the structure of VPLs is that in their OPMs
the ≐ relation occurs always and only between open and closed parentheses (Σc and Σr el-
ements in [3] notation, respectively). Unlike traditional parenthesis languages, however, in
VPLs parentheses can remain unmatched, but only at the beginning (Σr elements) and end (Σc

elements) of the input string, respectively. This initial extension, however, is not sufficiently
general to cover several interesting cases where an “event” of special type, e.g. a rollback or
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an exception, should force flushing the stack of many pending elements, say write operations
or procedure calls.

Example 5. OPAs can be used to model the run-time behavior of database systems, e.g.,
for modeling sequences of users’ transactions with possible rollbacks. Other systems that ex-
hibit an analogous behavior are revision control (or versioning) systems (such as subversion
or git). As an example, consider a system for version management of files where a user can
perform the following operations on documents: save them, access and modify them, undo
one (or more) previous changes, restoring the previously saved version.

The following alphabet represents the user’s actions: sv (for save), wr (for write, i.e.
the document is opened and modified), ud (for a single undo operation), rb (for a rollback
operation, where all the changes occurred since the previously saved version are discarded).

An OPA that models the traces of possible actions of the user on a given document is a
single-state automaton ⟨Σ,M,{q},{q},{q}, δ⟩, where Σ = {sv, rb,wr,ud}, M is:

M =

sv rb wr ud #
sv ⋖ =̇ ⋖ ⋗
rb ⋗ ⋗ ⋗ ⋗ ⋗
wr ⋖ ⋗ ⋖ =̇ ⋗
ud ⋗ ⋗ ⋗ ⋗ ⋗
# ⋖ ⋖ ≐

and δpush(q,a) = q,∀a ∈ {sv,wr}, δshift(q,a) = q,∀a ∈ {rb,ud} and δpop(q,q) = q.
A more specialized model of this system might impose that the user regularly backs her

work up, so that no more than N changes that are not undone (denoted wr as before) can
occur between any two consecutive checkpoints sv (without any rollback rb between them).
Figure I.2.3 shows the corresponding OPA with N = 2, with the same OPM M.

q0 0 1 2

q1

q4

q0,0,1

sv wr

q0,0,1,2

rb

wr

sv wr

sv

0
wr

wr

sv

1

wr ud

q4

0 1 2

0
1

2

q0

Figure I.2.3: OPA of Example 5, with N = 2.

States 0,1 and 2 denote respectively the presence of zero, one and two unmatched changes
between two symbols sv.

An example of computation on the string sv wr ud rb sv wr wr ud sv wr rb wr sv is shown
in Figure I.2.4.
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stack state current input
� q0 sv wr ud rb sv wr wr ud sv wr rb wr sv #
�[sv, q0] 0 wr ud rb sv wr wr ud sv wr rb wr sv #
�[sv, q0][wr, 0] q4 ud rb sv wr wr ud sv wr rb wr sv #
�[sv, q0][ud, 0] q4 rb sv wr wr ud sv wr rb wr sv #
�[sv, q0] 0 rb sv wr wr ud sv wr rb wr sv #
�[rb, q0] q1 sv wr wr ud sv wr rb wr sv #
� q0 sv wr wr ud sv wr rb wr sv #
�[sv, q0] 0 wr wr ud sv wr rb wr sv #
�[sv, q0][wr, 0] 1 wr ud sv wr rb wr sv #
�[sv, q0][wr, 0][wr, 1] q4 ud sv wr rb wr sv #
�[sv, q0][wr, 0][ud, 1] q4 sv wr rb wr sv #
�[sv, q0][wr, 0] 1 sv wr rb wr sv #
�[sv, q0][wr, 0][sv, 1] 0 wr rb wr sv #
�[sv, q0][wr, 0][sv, 1][wr, 0] 1 rb wr sv #
�[sv, q0][wr, 0][sv, 1] 0 rb wr sv #
�[sv, q0][wr, 0][rb, 1] q1 wr sv #
�[sv, q0][wr, 0] 1 wr sv #
�[sv, q0][wr, 0][wr, 1] 2 sv #
�[sv, q0][wr, 0][wr, 1][sv, 2] 0 #
�[sv, q0][wr, 0][wr, 1] q0 #
�[sv, q0][wr, 0] q0 #
�[sv, q0] q0 #
� q0 #

Figure I.2.4: Example of computation for the specialized system of Example 5

I.2.2. Determinism vs Nondeterminism. An important property of OPAs is the equiv-
alence between the deterministic and the nondeterministic version thereof. This result also
implies the closure of OPLs under complementation, yielding an alternative proof to the tra-
ditional one presented in [19].

The deterministic version of OPAs is defined along the usual lines:
Definition I.2.3 (Deterministic OPA). An OPA is deterministic if I is a singleton, and the

ranges of δpush, δshift and δpop are Q rather than ℘(Q).
It is well-known that the equivalence between nondeterministic and deterministic ma-

chines usually does not extend from finite state to pushdown ones. VPAs are however a
noticeable exception. The construction described in [4] is extended here to cover OPAs too.
Our construction ensures that two different pop moves of two different runs of the nondeter-
ministic automaton never “mix up” their initial and final states in the deterministic one by
keeping track of the path of the automaton since the push move that marks the origin of the
chain to be reduced by the next pop move. Precisely, the states of the deterministic automaton
Ã are sets of pairs of states, instead of sets of single states, of the nondeterministic automa-
ton A: Ã simulates A along the first component of the pair, whereas the second component
stores the state that gave origin to a push transition and it is propagated through shift moves.
The deterministic pop operations will simulate only the nondeterministic ones defined on the
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states corresponding to the first component of the current state and the state reached before
the last push move, which corresponds to the state on the top of the stack in an actual run of
the nondeterministic automaton.

The following theorem formalizes the above informal reasoning.
Theorem I.2.4. Given a nondeterministic OPAA with s states, an equivalent determinis-

tic OPA Ã can effectively be built with 2O(s2) states.
Proof. Let A be ⟨Σ,M,Q, I,F, δ⟩; Ã = ⟨Σ,M, Q̃, Ĩ, F̃, δ̃⟩ is defined as follows:
● Q̃ = ℘(Q × (Q ∪ {⊺})), where Q ∩ {⊺} = ∅ and ⊺ is a symbol that stands for the

baseline of the computations; we will use K,Ki, K̄,K′, . . . to denote states in Q̃,
● Ĩ = I × {⊺} is the initial state of Ã,
● F̃ = {K ∣ K ∩ (F × {⊺}) ≠ ∅},
● δ̃ ∶ Q̃ × (Σ ∪ Q̃)→ Q̃ is the transition function defined as follows.

The push transition δ̃push ∶ Q̃ × Σ→ Q̃ is defined by

δ̃push(K,a) = ⋃
(q,p)∈K

{(h,q) ∣ h ∈ δpush(q,a)}

The shift transition δ̃shift ∶ Q̃ × Σ→ Q̃ is defined by

δ̃shift(K,a) = ⋃
(q,p)∈K

{(h, p) ∣ h ∈ δshift(q,a)}

The pop transition δ̃pop ∶ Q̃ × Q̃→ Q̃ is defined as follows:

δ̃pop(K1,K2) = ⋃
(r,q)∈K1,(q,p)∈K2

{(h, p) ∣ h ∈ δpop(r,q)} .

Notice that, if ∣Q∣ = s is the number of states of the nondeterministic OPA A, the deter-
ministic OPA Ã that is obtained in this way has a set of states whose size is exponential in s2,
i.e. ∣Q̃∣ = 2∣Q∣⋅∣Q∪{�}∣ which is 2O(s2).

The proof of equivalence between the two automata is by induction and is based on
lemmata I.2.5 and I.2.6.

Lemma I.2.5. Let y be the body of a chain with support q
y↝ q′ in A. Then, for every

p ∈ Q and K ∈ Q̃, if K ∋ (q, p), there exists a support K
y↝ K′ in Ã with K′ ∋ (q′, p).

Proof. We argue by induction on the depth h of y. If h = 1 then y = a1a2 . . .an and the
support can be rewritten as in (I.2.1) with q0 = q and qn+1 = q′. Set K0 = K and

K1 = δ̃push(K0,a1)
Ki = δ̃shift(Ki−1,ai), for every i = 2, . . . ,n
K′ = δ̃pop(Kn,K)

Then

K
a1Ð→ K1

a2Ð→ . . .
an−1Ð→ Kn−1

anÐ→ Kn
KÔ⇒ K′ (I.2.3)

is a support for C in Ã. Moreover, since K ∋ (q, p), by the definition of δ̃ we have:

K1 ∋ (q1,q) since δpush(q,a1) ∋ q1,
Ki ∋ (qi,q) since δshift(qi−1,ai) ∋ qi,
K′ ∋ (q′, p) since δpop(qn,q) ∋ q′.

Now assume that the statement holds for supports with depth lower than h and let y =
x0a1x1a2 . . .anxn have depth h. The support can be rewritten as in (I.2.2) with q0 = q and
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qn+1 = q′, where q′i = qi whenever xi is the empty word, and every non-empty xi has depth
lower than h.

Then, by the inductive hypothesis and the definition of δ̃, we can build a support

K
x0↝ K′

0
a1Ð→ K1

x1↝ K′
1

a2Ð→ . . .
anÐ→ Kn

xn↝ K′
n

K′
0Ô⇒ K′ (I.2.4)

where, (q, p) being in K, we have:

K′
0 ∋ (q′0, p) by inductive hypothesis on the support q = q0

x0↝ q′0,
K1 ∋ (q1,q′0) since δpush(q′0,a1) ∋ q1,

K′
1 ∋ (q′1,q

′
0) by inductive hypothesis on the support q1

x1↝ q′1,
Ki ∋ (qi,q′0) since δshift(q′i−1,ai) ∋ qi, for every i = 2, . . . ,n,
K′

i ∋ (q′i ,q
′
0) by inductive hypothesis on the support qi

xi↝ q′i ,
K′ ∋ (q′, p) since δpop(qn,q′0) ∋ q′,

and this concludes the proof.
Lemma I.2.6. Let y be the body of a chain with support K

y↝ K′ in Ã. Then, for every
p,q′ ∈ Q, if K′ ∋ (q′, p) there exists a support q

y↝ q′ in A with (q, p) ∈ K.
Proof. First we present some remarks we will use in the proof.

i) By the definition of δpush, if K̄
aÐ→ K in Ã, (q̄,q) ∈ K, (q, p) ∈ K̄, then q

aÐ→ q̄ in A.
ii) By the definition of δshift, if K̄

aÐ→ K in Ã, (r,q) ∈ K, then there exists a state q̄ ∈ Q such

that q̄
aÐ→ r in A and (q̄,q) ∈ K̄.

iii) By the definition of δpop, if K̄
KÔ⇒ K′ in Ã and (q′, p) ∈ K′, then there exists a pair

(r,q) ∈ K̄ such that (q, p) ∈ K and r
qÔ⇒ q′ in A.

We argue by induction on the depth h of y. If h = 1, then y = a1a2 . . .an and the support can be
rewritten as in (I.2.3). Let K′ ∋ (q′, p); then, by Remark (iii) there exists a pair (qn,q) ∈ Kn

such that (q, p) ∈ K and qn
qÔ⇒ q′ in Ã. Moreover, (qn,q) ∈ Kn and Kn−1

anÐ→ Kn imply

by Remark (ii) the existence of a state qn−1 ∈ Q such that (qn−1,q) ∈ Kn−1 and qn−1
anÐ→ qn.

Similarly one can verify that for every i = n − 2, . . .1 there exists qi ∈ Q such that (qi,q) ∈ Ki

and qi
ai+1Ð→ qi+1. Finally, K

a1Ð→ K1, (q1,q) ∈ K1 and (q, p) ∈ K imply by Remark (i) that

q
a1Ð→ q1 in A. Thus, we built backward a path as in (I.2.1) with q0 = q, qn+1 = q′, (q, p) ∈ K,

and this concludes the proof of induction basis.
Now assume that the statement holds for chains with depth lower than h. Let y =

x0a1x1a2 . . .anxn have depth h and consider a support as in (I.2.4) where K′
i = Ki whenever

xi is the empty word, and every non-empty xi has depth lower than h. Let (q′, p) ∈ K′. Since

K′
n

K′
0Ô⇒ K′, by Remark (iii) there exists a pair (q′n,q

′
0) ∈ K′

n with (q′0, p) ∈ K′
0 and q′n

q′0Ô⇒ q′

in Ã. If xn ≠ ε, by the inductive hypothesis, since (q′n,q
′
0) ∈ K′

n there exists a support qn
xn↝ q′n

with (qn,q′0) ∈ Kn.
Similarly one can see that, for all i = n− 1, . . .2,1, there exist q′i and qi (q′i = qi whenever

xi is empty) such that

qi
xi↝ q′i

ai+1Ð→ qi+1

with (q′i ,q
′
0) ∈ K′

i by Remark (ii) (since K′
i

ai+1Ð→ Ki+1 in Ã and (qi+1,q′0) ∈ Ki+1), and (qi,q′0) ∈

Ki by the inductive hypothesis (since Ki
xi↝ K′

i in Ã and (q′i ,q
′
0) ∈ K′

i ).
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In particular q1
x1↝ q′1 with (q1,q′0) ∈ K1. Then, since also K′

0
a1Ð→ K1 and (q′0, p) ∈ K′

0, by
Remark (i) we get q′0

a1Ð→ q1. Finally, since (q′0, p) ∈ K′
0 and K

x0↝ K′
0, if x0 ≠ ε the inductive

hypothesis implies the existence of a state q ∈ Q such that q
x0↝ q′0 in Ã with (q, p) ∈ K. Hence

we built a support as in (I.2.2) with q0 = q, qn+1 = q′ and (q, p) ∈ K, and this concludes the
proof.

To complete the proof of Theorem I.2.4, we prove that there exists an accepting compu-
tation for y in A if and only if there exists an accepting computation for y in Ã.

Let y be in L(A). Then it admits a support q
y↝ q′ with q ∈ I and q′ ∈ F. Then for

K = I × {⊺} ∋ (q0,⊺), Lemma I.2.5 implies the existence of a support K
y↝ K′ in Ã with

K′ ∋ (q′,⊺). q′ ∈ F implies K′ ∈ F̃, hence y is accepted by Ã.
Conversely, let y be in L(Ã). Then y admits a support K̃

y↝ K′ in Ã, with K′ ∈ F̃. This
means that there exists q′ ∈ F such that (q′,⊺) ∈ K′. Hence, by Lemma I.2.6, there exists a
support q

y↝ q′ in A with (q′,⊺) ∈ K̃, and this implies q ∈ I. Thus the support q
y↝ q′ defines

an accepting computation for y in A.

I.2.3. Complexity of OPL decision problems.
To conclude this section we point out that the basic decision problems for OPLs have the

same order of complexity as those for VPLs; precisely:
● the emptiness problem is in PTIME, OPLs and VPLs being a subclass of context-

free languages;
● the containment problem for deterministic OPAs is in PTIME too since it is reduced

to the intersection, complement and emptiness problems which are all in PTIME in
the deterministic case;

● the containment problem in the nondeterministic case is instead EXPTIME com-
plete: the same arguments used in [4] for VPLs apply identically for OPLs.

I.3. Operator Precedence Automata and Grammars.
Our next result is the equivalence between OPGs and OPAs.

I.3.1. From OPGs to OPAs.
Theorem I.3.1. Let G = ⟨N,Σ,P,S ⟩ be an OPG; then an OPA A such that L(A) = L(G)

can effectively be built. Furthermore, let m be the sum of the lengths of the r.h.s.s of G; then
A has O(m2) states.

Proof. First, we describe a procedure to build a nondeterministic OPA A = ⟨Σ,M,Q, I,
F, δ⟩ from a given OPG G with the same precedence matrix M as G. Then we prove the
equivalence between A and G.

The construction sharply differs from the traditional one involving CF grammars and
general pushdown automata, which is instead quite straightforward. This is due to the re-
markable peculiarities of OPAs –among them the locality principle– which make them, in
turn, significantly different from the more powerful general pushdown automata and from the
less powerful VPAs. To keep the construction as simple as possible, we avoid introducing any
optimization. Also, without loss of generality, we assume that the grammar G has no empty
nor renaming rules.
A is built in such a way that a successful computation thereof corresponds to building

bottom-up a derivation tree in G: the automaton performs a push transition when it reads the
first terminal of a new r.h.s. It performs a shift transition when it reads a terminal symbol
inside a r.h.s, i.e. a leaf with some left sibling leaf. It performs a pop transition when it
completes the recognition of a r.h.s., then guesses (nondeterministically) the nonterminal at
the l.h.s. Each state contains two pieces of information: the first component represents the
prefix of the r.h.s under construction, whereas the second component is used to recover the
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r.h.s previously under construction (see Figure I.3.1) whenever all r.h.s.s nested below have
been completed.

. . .

β
B

. . .

A

α

. . .

β
A

α

Figure I.3.1: When parsing α, the prefix previously under construction is β.

Precisely, the construction of A is defined as follows. Let

P = {α ∈ (N ∪ Σ)∗Σ ∣ ∃A→ αβ ∈ P}

be the set of prefixes, ending with a terminal symbol, of r.h.s. of G.; define Q = {ε} ∪ P ∪ N,
Q = Q×({ε}∪P), I = {⟨ε, ε⟩}, and F = S×{ε}∪{⟨ε, ε⟩ ∣ ε ∈ L(G)}. Note that ∣Q∣ = 1+∣P∣+∣N∣
is O(m); therefore ∣Q∣ is O(m2).

The transition functions are defined as follows, for a ∈ Σ and α,α1, α2 ∈ Q, β, β1, β2 ∈
{ε} ∪ P:

● δshift(⟨α, β⟩,a) ∋ { ⟨αa, β⟩ if α /∈ N
⟨βαa, β⟩ if α ∈ N

● δpush(⟨α, β⟩,a) ∋ { ⟨a, α⟩ if α /∈ N
⟨αa, β⟩ if α ∈ N

● δpop(⟨α1, β1⟩, ⟨α2, β2⟩) ∋ ⟨A, γ⟩ for every A such that [ A→ α1 ∈ P, if α1 ∉ N
A→ β1α1 ∈ P, if α1 ∈ N

and γ = { α2, if α2 ∉ N
β2, if α2 ∈ N.

Notice that the result of δshift and δpush is a singleton, whereas δpop may produce several states,
in case of repeated r.h.s.s.

The states reached by push and shift transitions have the first component in P. If state
⟨α, β⟩ is reached after a push transition, then α is the prefix of the r.h.s. that is currently
under construction and β is the prefix previously under construction; in this case α is either a
terminal symbol or a nonterminal followed by a terminal one. If the state is reached after a
shift transition, then α is the concatenation of the first component of the previous state with
the read character, and β is not changed from the previous state. The states reached by a pop
transition have the first component in N: if ⟨A, γ⟩ is such a state, then A is the corresponding
l.h.s, and γ is the prefix previously under construction.

The equivalence between G and A derives from the following Lemmata I.3.2 and I.3.3,
when β = γ = ε, Π = � and A is an axiom.

Example 6. Let G be the grammar introduced in Example 1. To apply the construction
of Theorem I.3.1 first we need to transform G in such a way that there are no renaming rules.



OPERATOR PRECEDENCE LANGUAGES 19

The new grammar has the following productions

E → E + T ∣ T × F ∣ n ∣ LEM
T → T × F ∣ n ∣ LEM
F → n ∣ LEM

where E, T , and F are axioms.
Figure I.3.2 shows an accepting computation of the equivalent automatom, together with

the corresponding derivation tree. Notice that the computation shown in Figure I.3.2 is equal
to that of Figure I.2.1 up to a renaming of the states; in fact the shape of syntax trees and
consequently the sequence of push, shift and pop moves in OPLs depends only on the OPM,
not on the visited states.

stack state current input
� ⟨ε, ε⟩ n + n × Ln + nM#
�[n, ⟨ε, ε⟩] ⟨n, ε⟩ +n × Ln + nM#
� ⟨E, ε⟩ +n × Ln + nM#
�[+, ⟨E, ε⟩] ⟨E+, ε⟩ n × Ln + nM#
�[+, ⟨E, ε⟩][n, ⟨E+, ε⟩] ⟨n, ε⟩ ×Ln + nM#
�[+, ⟨E, ε⟩] ⟨T,E+⟩ ×Ln + nM#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩] ⟨T×,E+⟩ Ln + nM#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩] ⟨L,E+⟩ n + nM#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩][n, ⟨L,E+⟩] ⟨n,E+⟩ +nM#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩] ⟨E, L⟩ +nM#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩][+, ⟨E, L⟩] ⟨E+, L⟩ nM#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩][+, ⟨E, L⟩][n, ⟨E+, L⟩] ⟨n, L⟩ M#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩][+, ⟨E, L⟩] ⟨T,E+⟩ M#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][L, ⟨T×,E+⟩] ⟨E, L⟩ M#
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩][M, ⟨T×,E+⟩] ⟨LEM, L⟩ #
�[+, ⟨E, ε⟩][×, ⟨T,E+⟩] ⟨F,T×⟩ #
�[+, ⟨E, ε⟩] ⟨T,E+⟩ #
� ⟨E, ε⟩ #

E

E

n

+ T

T

n

× F

L E

E

n

+ T

n

M

Figure I.3.2: Accepting computation of the automaton built in Theorem I.3.1.

Lemma I.3.2. Let x be the body of a chain and β, γ ∈ P ∪ {ε}. Then, for all h ≥ 1,
⟨β, γ⟩ x↝ q implies the existence of A ∈ N such that A

∗⇒ x in G and q = ⟨A, β⟩.
Proof. We reason by induction on the depth h of x.
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If h = 1, then x = a1a2 . . .an is the body of a simple chain, and the support is as in (I.2.1)
with q0 = ⟨β, γ⟩ and qn+1 = q. Then by the definition of push and shift transition functions we
have qi = ⟨a1 . . .ai, β⟩ for every i = 1,2, . . .n, and by the definition of pop transition function
(recall that β /∈ N by hypothesis) it is q = ⟨A, β⟩ for some A such that A→ a1 . . .an = x is in P.
Hence A

∗⇒ x and the statement is proved.
If h > 1, then as usual let x = x0a1x1 . . .anxn and let its support be decomposed as

in (I.2.2) with q0 = ⟨β, γ⟩ and qn+1 = q. Also set qi = ⟨βi, γi⟩ for i = 0,1, . . . ,n (in particular
β0 = β and γ0 = γ). Each non-empty xi being the body of a chain with depth lower than h, the
inductive hypothesis implies that there exists Xi ∈ N such that Xi

∗⇒ xi in G, and qi = ⟨Xi, βi⟩.
Thus, the support can be rewritten as

⟨β, γ⟩ x0↝ q′0
a1Ð→ ⟨β1, γ1⟩

x1↝ q′1
a2Ð→ . . .

anÐ→ ⟨βn, γn⟩
xn↝ q′n

q′0Ô⇒ q

where

q′i = { ⟨βi, γi⟩ if xi = ε
⟨Xi, βi⟩ otherwise

for every i. Now, by the definition of push and shift transition functions, one can see that,
for i /= 0, βi = X0a1 . . .Xi−1ai holds regardless of whether xi is empty or not (setting Xi = ε
if xi = ε). Thus, to compute the state q reached with the final pop transition δpop(q′n,q

′
0),

we have to consider four cases depending on whether x0 and xn are empty or not, which are
exactly the four combinations considered in the definition of δpop. In any case, q has the form
⟨A, β⟩, where A is a nonterminal of G such that A→ X0a1X1 . . .Xn1 anXn.

Lemma I.3.3. Let x be the body of a chain and A ∈ N. Then, A
∗⇒ x in G implies

⟨β, γ⟩ x↝ ⟨A, β⟩ for every β, γ ∈ P ∪ {ε}.
Proof. We reason by induction on the depth h of the chain. If h = 1, then x is the body of

a simple chain, hence A
∗⇒ x means that A → x is a production. Thus, by the definition of δ

(recall that β /∈ N by hypothesis), we obtain a support as in (I.2.1) with q0 = ⟨β, γ⟩, qn+1 = q,
and qi = ⟨a1 . . .ai, β⟩ for every i = 1,2, . . .n.

If h > 1, then x is the body of a composed chain with x = x0a1x1 . . .anxn. Hence A
∗⇒ x in

G implies that there exist X0,X1, . . . ,Xn ∈ {ε} ∪ N (more precisely: Xi = ε if xi = ε) such that
A→ X0a1X1 . . .anXn and Xi

∗⇒ xi. The first step of the computation is different depending on
whether x0 is empty or not. In any case, we have

⟨β, γ⟩ x0↝ q′0
a1Ð→ ⟨X0a1, β⟩, where q′0 = { ⟨β, γ⟩ if x0 = ε

⟨X0, β⟩ otherwise

The computation goes on differently depending on whether x1, x2, . . . , xn−1 are empty or not.
However, by the inductive hypothesis and the definition of δshift, after reading ai the automaton
reaches state ⟨X0a1 . . .Xi−1ai, β⟩ for every i = 1, . . . ,n, i.e., we have the path

⟨β, γ⟩ x0↝ q′0
a1Ð→ ⟨X0a1, β⟩

x1↝ q′1
a2Ð→ ⟨X0a1X1a2, β⟩

x2↝ q′2
a3Ð→ . . .

anÐ→ ⟨X0a1 . . .Xn−1an, β⟩.

If xn /= ε, the computation proceeds with the last inductive step

⟨X0a1 . . .Xn−1an , βn⟩
xn↝ ⟨Xn , X0a1 . . .Xn−1an⟩.

Finally, the computation ends with a pop transition. There are four cases depending on
whether x0 and xn are empty or not, which are exactly the four combinations considered
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in the definition of δpop. In any case, we build a support ending with state ⟨A, β⟩, and this
concludes the proof.

Corollary I.3.4. If the source grammar is in FNF, then the corresponding automaton is
deterministic.

The thesis follows immediately by observing that the construction defined in Theo-
rem I.3.1 is such that the values defined by δpush and δshift are always singleton, whereas
δpop produces as many states as many l.h.s.s have the same r.h.s. Thus, since the initial state is
a singleton and grammars in FNF have no repeated r.h.s.s, the automaton resulting from the
construction is already deterministic. This corollary has an interesting effect in terms of size
of the produced automata as pointed out below.

Remark 1. Given a grammar G with ∣N∣ nonterminals the construction of Theorem I.3.1
produces an automaton with O(m2) states, where m is defined as in Theorem I.3.1; thus,
if we build a deterministic OPA from a generic OPG G by first building a nondeterministic
automaton and then transforming it in deterministic version, we obtain an automaton with
2O(m4) states; instead, if we first transform the original G in FNF we obtain an equivalent
grammar G̃ with O(2∣N∣) nonterminals and m̃ = O(2m∣N∣2); then, by applying the construc-
tion of Theorem I.3.1 we directly obtain a deterministic automaton with O(m̃2) = O(22m∣N∣2)
states.

Nevertheless, the size of the complete automaton is clearly hardly manageable by human
execution; thus we implemented a prototype (non-optimized) tool to perform the construc-
tion6.

I.3.2. From OPAs to OPGs.
The construction of an OPG equivalent to a given OPA is far simpler than the converse one,
thanks to the explicit structure associated to words by the precedence matrix.

Theorem I.3.5. LetA be an OPA; then an OPG G such that L(G) = L(A) can effectively
be built.

Proof. Given an OPA A = ⟨Σ,M,Q, I,F, δ⟩, we show how to build an equivalent OPG
G having operator precedence matrix M. The equivalence between A and G should then be
rather obvious.

G’s nonterminals are the 4-tuples (a,q, p,b) ∈ Σ × Q × Q × Σ, written as ⟨a p,qb⟩. G’s
rules are built as follows:

● for every support of type (I.2.1) of a simple chain, the rule

⟨a0 q0,qn+1
an+1⟩Ð→ a1a2 . . .an ;

is in P; furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then ⟨#q0,qn+1
#⟩

is in S ;

● for every support of type (I.2.2) of a composed chain, add the rule

⟨a0 q0,qn+1
an+1⟩Ð→ Λ0a1Λ1a2 . . .anΛn ;

where, for every i = 0,1, . . . ,n, Λi = ⟨ai qi,q′i
ai+1⟩ if xi ≠ ε and Λi = ε otherwise;

furthermore, if a0 = an+1 = #, q0 is initial, and qn+1 is final, then add ⟨#q0,qn+1
#⟩

to S , and, if ε is accepted by A, add A → ε, A being a new axiom not otherwise
occurring in any other rule.

6The tool is called Flup, available at https://github.com/bzoto/flup.
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Notice that the above construction is effective thanks to the hypothesis of =̇-acyclicity
of the OPM (remind that, as discussed in Section I.1, this hypothesis could be replaced by
weaker ones). This implies that the length of the r.h.s. is bounded (see Section I.1); on the
other hand, the cardinality of the nonterminal alphabet is finite (precisely it is O(∣Σ∣2 ⋅ ∣Q∣2).
Hence there is only a finite number of possible productions for G and only a limited number
of chains to be considered.

I.4. Monadic Second-order Logic Characterization. In his seminal paper [12] Büchi
provided a logic characterization of regular languages: he defined a MSO syntax on the
integers representing the position of characters within a string and, by means of clever argu-
ments, gave algorithms to build a Finite State Machine (FSM) recognizing exactly the strings
satisfying a given formula and, conversely, to build a formula satisfied by all and only the
strings accepted by a given FSM. Subsequently, a rich literature considerably extended his
work to more powerful language families –typically, context-free [13]– and different logic
formalisms, e.g., first-order or tree logics [1, 10, 16]. To the best of our knowledge, MSO
logic characterizations of CF languages refer to “visible structure languages” i.e. to languages
whose strings make their syntactic structure immediately visible in their external appearance,
such as “tree-languages” [39]7 and Visibly Pushdown Languages [3] which explicitly refer to
this peculiar property in their name. In this section we provide a complete MSO logic charac-
terization of OPLs, which, instead, include also invisible-structure languages, whose syntax
trees associated with external strings must be built by means of suitable parsing algorithms,
in which the OPM plays a major role.

Similarly to other approaches, in particular to the VPLs one, which in fact are a subclass
of OPLs, we begin by defining a suitable binary predicate on the string positions. However the
original definition of [4] which states the ↝ relation between the positions of two matching
parentheses (calls and returns in VPLs terminology) cannot be naturally extended to the more
general case of OPL strings. In fact the↝ relation between two matching parentheses, which
are extremes of the frontier of a sub-tree, is typically one-to-one (with the exclusion of the
particular case of unmatched parentheses which however occur only at the begin and end of a
string) whereas in general the relation between leftmost and rightmost leaves of an OPL sub-
tree can be many-to-one or one-to-many or both. A further consequence of the more general
structure of OPL trees is that, unlike FSMs, tree automata, and Visibly Pushdown Automata
(VPAs), OPAs are not real-time automata as they may have to perform a series of pop moves
without advancing their running head; this in turn produces the effect that, whereas in regular
and VPLs each position is associated with a unique state visited by the machine during its
behavior, for OPLs the same position may refer to several states –i.e. to several subsets of
positions according to Büchi’s approach.

Consequently, the approach we describe here departs from previous ones along two main
directions:

● The binary relations between positions referring to a pop operation are attached to
the look-back and look-ahead positions which in OP parsing embrace the r.h.s. to
be reduced; thus, the formal definition of the relation will be based on the notion of
chain.

● The sets of positions associated with the different automaton states are subdivided
into three, not necessarily disjoint, subsets: one describing the state reached after a
push or shift operation, and two to delimit the positions corresponding to each pop
operation; in such a way we obtain a unique identification thereof.

7It is not coincidence if tree automata [39] have been defined by extending the original finite state ones.
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I.4.1. A Monadic Second-Order Logic over Operator Precedence Alphabets. Let
(Σ,M) be an OP alphabet. Let us define a countable infinite set of first-order variables x, y, . . .
and a countable infinite set of monadic second-order (set) variables X,Y, . . . . In the following
we adopt the convention to denote first and second-order variables in boldface italic font.

Definition I.4.1 (Monadic Second-order Logic over (Σ,M)). Let V1 be a set of first-order
variables, and V2 be a set of second-order (or set) variables. The MSOΣ,M (monadic second-
order logic over (Σ,M)) is defined by the following syntax (symbols Σ,M will be omitted
unless necessary to prevent confusion):

ϕ ∶= c(x) ∣ x ∈ X ∣ x ≤ y ∣ x↷ y ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ∃x.ϕ ∣ ∃X.ϕ

where c ∈ Σ ∪ {#}, x, y ∈ V1, and X ∈ V2.8

A MSO formula is interpreted over a (Σ,M) string w, with respect to assignments ν1 ∶
V1 → {0,1, . . . ∣w∣ + 1} and ν2 ∶ V2 → ℘({0,1, . . . ∣w∣ + 1}), in the following way.

● #w#,M, ν1, ν2 ⊧ c(x) iff #w# = w1cw2 and ∣w1∣ = ν1(x).
● #w#,M, ν1, ν2 ⊧ x ∈ X iff ν1(x) ∈ ν2(X).
● #w#,M, ν1, ν2 ⊧ x ≤ y iff ν1(x) ≤ ν1(y).
● #w#,M, ν1, ν2 ⊧ x↷ y iff #w# = w1aw2bw3, ∣w1∣ = ν1(x), ∣w1aw2∣ = ν1(y), and aw2b

is a chain a[w2]b.
● #w#,M, ν1, ν2 ⊧ ¬ϕ iff #w#,M, ν1, ν2 /⊧ ϕ.
● #w#,M, ν1, ν2 ⊧ ϕ1 ∨ ϕ2 iff #w#,M, ν1, ν2 ⊧ ϕ1 or #w#,M, ν1, ν2 ⊧ ϕ2.
● #w#,M, ν1, ν2 ⊧ ∃x.ϕ iff #w#,M, ν′1, ν2 ⊧ ϕ, for some ν′1 with ν′1(y) = ν1(y) for all

y ∈ V1 ∖ {x}.
● #w#,M, ν1, ν2 ⊧ ∃X.ϕ iff #w#,M, ν1, ν

′
2 ⊧ ϕ, for some ν′2 with ν′2(Y) = ν2(Y) for all

Y ∈ V2 ∖ {X}.
To improve readability, we will drop M, ν1, ν2 and the delimiters # from the notation

whenever there is no risk of ambiguity; furthermore we use some standard abbreviations in
formulae, such as x + 1, x − 1, x = y, x ≠ y, x < y.

A sentence is a formula without free variables. The language of all strings w ∈ Σ∗ such
that w ⊧ ϕ is denoted by L(ϕ):

L(ϕ) = {w ∈ Σ∗ ∣ w ⊧ ϕ}.

Figure I.4.1 illustrates the meaning of the ↷ relation with reference to the string of Fig-
ure I.1.1: we have 0 ↷ 2, 2 ↷ 4, 5 ↷ 7, 7 ↷ 9, 5 ↷ 9, 4 ↷ 10, 2 ↷ 10, and 0 ↷ 10. Such
pairs correspond to contexts where a reduce operation is executed during the parsing of the
string (they are listed according to their execution order).

In general x ↷ y implies y > x + 1, and a position x may be in such a relation with more
than one position and vice versa. Moreover, if w is compatible with M, then 0↷ ∣w∣ + 1.

Example 7. Consider the language of Example 1. The following sentence states that all
parentheses are well-matched:

∀x∀y
⎛
⎜
⎝

x↷ y⇒
⎛
⎜
⎝
L(x + 1)⇒

M(y − 1)∧
¬∃z(z < y ∧ x↷ z)∧
¬∃v(x < v ∧ v↷ y)

⎞
⎟
⎠

⎞
⎟
⎠
.

Note that this property is guaranteed a priori by the structure of the OPM.

8This is the usual MSO over strings, augmented with the↷ predicate.
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# n + n × L n + n M #

0 1 2 3 4 5 6 7 8 9 10

Figure I.4.1: The string of Figure I.1.1, with positions and relation ↷.

The following sentence instead defines the language where parentheses are used only
when they are needed (i.e. to give precedence of + over ×).

∀x∀y
⎛
⎜⎜⎜
⎝

x↷ y∧
L(x + 1)∧M(y − 1) ⇒ (×(x) ∨ ×(y)) ∧ ∃z

⎛
⎜⎜⎜
⎝

x + 1 < z < y − 1 ∧ +(z) ∧

¬∃u∃v
⎛
⎜
⎝

x + 1 < u < z ∧ L(u)∧
z < v < y − 1 ∧ M(v)∧

u − 1↷ v + 1

⎞
⎟
⎠

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

The following theorem states the main result of this section.
Theorem I.4.2. A language L over (Σ,M) is an OPL if and only if there exists a MSO

sentence ϕ such that L = L(ϕ).
The proof is constructive and structured in the following two subsections.

I.4.2. From MSO to OPAs.
Statement I.4.1. Let (Σ,M) be an operator precedence alphabet and ϕ be a MSO sen-

tence. Then L(ϕ) can be recognized by an OPA over (Σ,M).
Proof. The proof follows the one by Thomas [40] and is composed of two steps: first the

formula is rewritten so that no predicate symbols nor first order variables are used; then an
equivalent OPA is built inductively.

Let Σ be {a1,a2, . . . ,an}. For each predicate symbol ai we introduce a fresh set variable
Xi, therefore formula ai(x) will be translated into x ∈ Xi. Following the standard construction
of [40], we also translate every first order variable into a fresh second order variable with
the additional constraint that the set it represents contains exactly one position. The only
difference is that formulae like x ↷ y will be translated into formulae Xi ↷ X j, where Xi,
X j are singleton sets. In this case, the semantics of ↷ is naturally extended to second order
variables that are singletons.

Let ϕ′ be the formula obtained from ϕ by such a translation, and consider any subformula
ψ of ϕ′: let X1,X2, . . . ,Xn,Xn+1, . . .Xn+m(ψ) be the (second order) free variables appearing in
ψ. Recall that X1, . . . ,Xn represent symbols in Σ, hence they are never quantified.

As usual we interpret formulae over strings; in this case we use the alphabet

Λ(ψ) = {α ∈ {0,1}n+m(ψ) ∣ ∃!i s.t. 1 ≤ i ≤ n, αi = 1}

A string w ∈ Λ(ψ)∗, with ∣w∣ = `, is used to interpret ψ in the following way: the projection
over the j-th component of Λ(ψ) gives a valuation {1,2, . . . , `} → {0,1} of X j, for every
1 ≤ j ≤ n +m(ψ).

For any α ∈ Λ(ψ), the projection of α over the first n components encodes a symbol in
Σ, denoted as symb(α). The matrix M over Σ can be naturally extended to the OPM M(ψ)
over Λ(ψ) by defining M(ψ)α,β = Msymb(α),symb(β) for any α, β ∈ Λ(ψ).

We now build an OPA A equivalent to ϕ′. The construction is inductive on the structure
of the formula: first we define the OPA for all atomic formulae. We give here only the
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Figure I.4.2: OPA for atomic formula ψ = Xi ↷ X j

construction for ↷, since for the other ones the construction is standard and is the same as
in [40].

Figure I.4.2 represents the OPA for atomic formula ψ = Xi ↷ X j (notice that i, j > n,
and that both Xi and X j are singleton sets). For the sake of brevity, we use notation [Xi]
to represent the set of all tuples Λ(ψ) having the i-th component equal to 1; notation [X̄]
represents the set of all tuples in Λ(ψ) having both i-th and j-th components equal to 0.

The semantics of ↷ requires for Xi ↷ X j that there must be a chain a[w2]b in the input
word, where a is the symbol at the only position in Xi, and b is the symbol at the only position
in X j. By definition of chain, this means that a must be read, hence in the position represented
by Xi the automaton performs either a push or a shift move (see Figure I.4.2, from state q0 to
q1), as pop moves do not consume input. After that, the automaton must read w2. In order to
process the chain a[w2]b, reading w2 must start with a push move (from state q1 to state q2),
and it must end with one or more pop moves, before reading b (i.e. the only position in X j –
going from state q3 to qF).

This means that the automaton, after a generic sequence of moves corresponding to visit-
ing an irrelevant (for Xi ↷ X j) portion of the syntax tree, when reading the symbol at position
Xi performs either a push or a shift move, depending on whether Xi is the position of a left-
most leaf of the tree or not. Then it visits the subsequent subtree ending with a pop labeled
q1; at this point, if it reads the symbol at position X j, it accepts anything else that follows the
examined fragment.

Then, a natural inductive path leads to the construction of the automaton associated with
a generic MSO logic formula: the disjunction of two subformulae can be obtained by building
the union automaton of the two corresponding automata; similarly for negation. The existen-
tial quantification of Xi is obtained by projection erasing the i-th component; since OPLs are
closed under alphabetical homomorphisms preserving the OPM (see Statement I.1.2), and
since the OPM is determined only by the first n components of the alphabet’s elements which
are never erased by quantification, such a projection produces a well defined automaton for
any ψ. Finally, the alphabet of the automaton equivalent to ϕ′ is Λ(ϕ′) = {0,1}n, which is in
bijection with Σ.

I.4.3. From OPAs to MSO.
When considering a chain a[w]b we assume w = w0a1w1 . . .a`w`, with a[a1a2 . . .a`]b

being a simple chain (any wg may be empty). We denote by sg the position of symbol ag, for
g = 1,2, . . . , ` and set a0 = a, s0 = 0, a`+1 = b, and s`+1 = ∣w∣ + 1. Furthermore, we define the
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following shortcut notations:

x ○ y ∶= ⋁
Ma,b=○

a(x) ∧ b(y), for ○ ∈ {⋖,≐,⋗}

Tree(x, z, v, y) ∶= x↷ y ∧
⎛
⎜
⎝

(x + 1 = z ∨ x↷ z) ∧ ¬∃t(z < t < y ∧ x↷ t)
∧

(v + 1 = y ∨ v↷ y) ∧ ¬∃t(x < t < v ∧ t↷ y)

⎞
⎟
⎠

If x↷ y then there exist (unique) z and v such that Tree(x, z, v, y) is satisfied. In particular,
if w is the body of a simple chain, then 0 ↷ ` + 1 and Tree(0,1, `, ` + 1) are satisfied; if it
is the body of a composed chain, then 0 ↷ ∣w∣ + 1 and Tree(0, s1, s`, s`+1) are satisfied. If
w0 = ε then s1 = 1, and if w` = ε then s` = ∣w∣. In the example of Figure I.4.1 relations
Tree(2,3,3,4), Tree(2,4,4,10), Tree(4,5,9,10), Tree(5,7,7,9) are satisfied, among others.

Statement I.4.2. Let (Σ,M) be an operator precedence alphabet and A be an OPA over
(Σ,M). Then there exists an MSO sentence ϕ such that L(A) = L(ϕ).

Proof. Let A = ⟨Σ,M,Q,q0,F, δ⟩ be deterministic (this simplifying assumption does not
cause loss of generality, since nondeterministic OPAs are equivalent to deterministic ones by
Theorem I.2.4). W.l.o.g. we also assume that the transition function of A is total. We build a
MSO sentence ϕ such that L(A) = L(ϕ). The main idea for encoding the behavior of the OPA
is based on assigning the states visited during its run to positions along the same lines stated
by Büchi [40] and extended for VPLs [4]. Unlike finite state automata and VPAs, however,
OPAs do not work on-line. Hence, it is not possible to assign a single state to every position.
Let Q = {q0,q1, . . . ,qN} be the states of A with q0 initial; as usual, we will use second order
variables to encode them. We shall need three different sets of second order variables, namely
A0,A1, . . . ,AN , B0,B1, . . . ,BN and C0,C1, . . . ,CN . Set Ai contains those positions of word w
where state qi may be assumed after a shift or push transition, i.e. after a transition that
“consumes” an input symbol. Sets Bi and Ci encode a pop transition concluding the reading
of the body w0a1w1 . . .alwl of a chain whose support ends in a state qi: set Bi contains the
position of symbol a that precedes the corresponding push, whereas Ci contains the position
of al, which is the symbol on top of the stack when the automaton performs the pop move.
Figure I.4.3 presents such sets for the example automaton of Figure I.2.1, with the same input
as in Figure I.4.1. Notice that each position, except the last one, belongs to exactly one Ai,
whereas it may belong to several Bi and at most one Ci.

Then, sentence ϕ is defined as follows

ϕ ∶= ∃e
∃A0,A1, . . . ,AN

∃B0,B1, . . . ,BN

∃C0,C1, . . . ,CN

⎛
⎝

Start0 ∧ ϕδ ∧ ⋁
q f ∈F

End f
⎞
⎠
, (I.4.1)

where the first and last subformulae encode the initial and final states of the run, respectively;
formula ϕδ is defined as ϕδpush ∧ ϕδshift ∧ ϕδpop and encodes the three transition functions of
the automaton, which are expressed as the conjunction of forward and backward formulae.
Variable e is used to refer to the end of a string.

To complete the definition of ϕ, we incrementally introduce more notations.

Succk(x, y) ∶= x + 1 = y ∧ x ∈ Ak

Nextk(x, y) ∶= x↷ y ∧ x ∈ Bk ∧ ∃z, v (Tree(x, z, v, y) ∧ v ∈ Ck)
Qi(x, y) ∶= Succi(x, y) ∨Nexti(x, y)

The shortcut Qi(x, y) is used to represent that A is in state qi when at position x and the next
position to read, possibly after scanning a chain, is y. Since the automaton is not real time,
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Figure I.4.3: The string of Figure I.1.1 with Bi, Ai, and Ci evidenced for the automaton of
Figure I.2.1. Pop moves of the automaton are represented by linked pairs Bi, Ci; labels refer
to supports of Figure I.2.2.

we must distinguish between push and shift moves (case Succi(x, y)), and pop moves (case
Nexti(x, y)). For instance, with reference to Figures I.4.1 and I.4.3, Succ2(5,6), Next3(5,9),
and Next3(5,7) hold.

The shortcuts representing the initial and final states of the parsing of a string of length e
are defined as follows.

Starti ∶= 0 ∈ Ai ∧ ¬⋁
j≠i
(0 ∈ A j)

End f ∶= ¬∃y(e + 1 < y) ∧ Next f (0, e + 1) ∧ ¬⋁
j≠ f

(Next j(0, e + 1)).

ϕδpush is the conjunction of the following two formulae. The former one states the sufficient
condition for a position to be in a set Ai, when performing a push move.

ϕpush f w ∶= ∀x, y
N

⋀
i=0

N

⋀
k=0

(x ⋖ y ∧ c(y) ∧ Qi(x, y) ∧ δpush(qi, c) = qk ⇒ y ∈ Ak)

The latter formula states the symmetric necessary condition

ϕpush bw ∶= ∀x, y
N

⋀
k=0

⎛
⎜
⎝

x ⋖ y ∧ c(y) ∧ y ∈ Ak

∧
(x + 1 = y ∨ x↷ y)

⇒
N

⋁
i=0

(Qi(x, y) ∧ δpush(qi, c) = qk)
⎞
⎟
⎠

ϕδshift is defined analogously, with respect to shift moves instead of push moves.

ϕshi f t f w ∶= ∀x, y
N

⋀
i=0

N

⋀
k=0

( x ≐ y ∧ c(y) ∧ Qi(x, y) ∧ δshift(qi, c) = qk ⇒ y ∈ Ak)

ϕshi f t bw ∶= ∀x, y
N

⋀
k=0

⎛
⎜
⎝

x ≐ y ∧ c(y) ∧ y ∈ Ak

∧
(x + 1 = y ∨ x↷ y)

⇒
N

⋁
i=0

(Qi(x, y) ∧ δshift(qi, c) = qk)
⎞
⎟
⎠
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Finally, to define ϕδpop we introduce the shortcut Treei, j(x, z, v, y), which represents the fact
that A is ready to perform a pop transition from state qi having on top of the stack state q j;
such pop transition corresponds to the reduction of the portion of string between positions x
and y (excluded).

Treei, j(x, z, v, y) ∶= Tree(x, z, v, y) ∧ Qi(v, y) ∧ Q j(x, z).

Formula ϕδpop is thus defined as the conjunction of three formulae. As before, the forward
formula gives the sufficient conditions for two positions to be in the sets Bk and Ck, when
performing a pop move, and the backward formulae state symmetric necessary conditions.

ϕpop f w ∶= ∀x, z, v, y
N

⋀
i=0

N

⋀
j=0

N

⋀
k=0

(Treei, j(x, z, v, y) ∧ δpop(qi,q j) = qk ⇒ x ∈ Bk ∧ v ∈ Ck)

ϕpop bwB ∶= ∀x
N

⋀
k=0

⎛
⎝

x ∈ Bk ⇒ ∃y, z, v
N

⋁
i=0

N

⋁
j=0

Treei, j(x, z, v, y) ∧ δpop(qi,q j) = qk
⎞
⎠

ϕpop bwC ∶= ∀v
N

⋀
k=0

⎛
⎝

v ∈ Ck ⇒ ∃x, y, z
N

⋁
i=0

N

⋁
j=0

Treei, j(x, z, v, y) ∧ δpop(qi,q j) = qk
⎞
⎠

Now notice that ϕ ≡ ⋁
q f ∈F

ψ0, f , where

ψi,k ∶= ∃e
∃A0,A1, . . . ,AN

∃B0,B1, . . . ,BN

∃C0,C1, . . . ,CN

(Starti ∧ ϕδ ∧ Endk)

Hence, the proof that L(A) = L(ϕ) is direct consequence of the following Lemmata I.4.3
and I.4.4, stating that w ⊧ ψi,k if and only if qi

w↝ qk in A, for every word w compatible with
(Σ,M).

Lemma I.4.3. Let w be the body of a chain #[w]#. If qi
w↝ qk in A, then w ⊧ ψi,k.

Proof. We prove the lemma by induction on the depth of chains. Note that, even if A is
deterministic, some chains could have different supports. However, we will show that every
support produces exactly one assignment that satisfies ψi,k.

Let w be the body of a simple chain with support

qi = qt0
a1Ð→ qt1

a2Ð→ . . .
a`Ð→ qt`

qt0Ô⇒ qk (I.4.2)

We prove that w ⊧ ψi,k for e,A0,A1, . . . ,AN ,B0, . . . ,BN ,C0, . . . ,CN defined as follows. First-
order variable e equals ∣w∣, Bh is empty except for Bk = {0}; Ch is empty except for Ck = {`};
for every 0 ≤ x ≤ `, let Ah contain x iff tx = h (i.e., x ∈ Atx ), and this also implies Qtx(x,x+ 1).
Then Starti and Endk are satisfied trivially since Tree(0,1, `, ` + 1) holds. We now prove that
also ϕδpush , ϕδshi f t , and ϕδpop are satisfied; we omit to consider all cases where the antecedents
are false.

● ϕpush is satisfied for x = 0 and y = 1 since we have a1(1), # ⋖ a1, Qi(0,1), 1 ∈ At1 ,
and δpush(qi,a1) = qt1 .

● ϕshi f t is satisfied ∀1 ≤ x < ` and y = x + 1 since we have ay(y), ax ≐ ay, Qtx(x, y),
y ∈ Aty , and δshift(qtx ,ay) = qty .

● ϕpop is satisfied for x = 0 and y = ∣w∣ + 1 = ` + 1 since we have Treet` ,i(0,1, `, ` + 1),
0 ∈ Bk, ` ∈ Ck, and δpop(qt` ,qi) = qk.



OPERATOR PRECEDENCE LANGUAGES 29

Let now w be the body of a composed chain with support

qi = qt0
w0↝ q f0

a1Ð→ qt1
w1↝ q f1

a2Ð→ . . .
agÐ→ qtg

wg↝ q fg . . .
a`Ð→ qt`

w`↝ q f`

q f0Ô⇒ qk (I.4.3)

We prove that w ⊧ ψi,k for a suitable assignment. By the inductive hypothesis, for every
g = 0,1, . . . , ` such that wg ≠ ε we have wg ⊧ ψtg, fg . Let A0

g, . . . ,AN
g,B0

g, . . . ,BN
g,C0

g, . . .,
CN

g be (the naturally shifted versions of) an assignment that satisfies ψtg, fg . In particular this
implies sg ∈ Atg , Next fg(sg, sg+1), and sg ∈ Atg ∪B fg , for each g such that wg ≠ ε. Then define
Ah,Bh,Ch as follows. Let Ah include all Ah

g, Bh include all Bh
g, Ch include all Ch

g. Also
let Bk contain s0, Ck contain s`, and Atg contain sg whenever wg is empty; in particular this
implies Q fg(sg, sg+1) for every 0 ≤ g < `. Finally, e is defined as the length of w.

Then we show that ψi,k is satisfied by checking every subformula. Starti and Endk are
satisfied trivially since Tree(0, s1, s`, ∣w∣ + 1) holds. By the inductive hypothesis, all other
axioms are satisfied within every wg. Thus, we only have to prove that they are satisfied in
positions sg, for 0 ≤ g ≤ `. We omit to consider all cases where the antecedents are false.

● ϕpush is satisfied for x = 0 and y = s1 since we have a1(s1), # ⋖ a1 Q f0(0, s1),
s1 ∈ At1 , and δpush(q f0 ,a1) = qt1 .

● ϕshi f t is satisfied for all x = sg and y = sg+1 with 1 ≤ g < ` since we have ag(sg),
asg ≐ asg+1 , Q fg(sg, sg+1), sg ∈ Atg , and δshift(q fg ,ag) = qtg .

● ϕpop is satisfied for x = 0 and y = ∣w∣ + 1 since we have Tree f` , f0(0, s1, s`, ∣w∣ + 1),
0 ∈ Bk, ` ∈ Ck, and δpop(qt` ,qi) = qk.

Hence w ⊧ ψi,k for every w with a suitable support, and this concludes the proof.
Lemma I.4.4. Let w be the body of a chain #[w]#. If w ⊧ ψi,k then qi

w↝ qk in A.
Proof. Let e = ∣w∣, A0, . . . ,AN ,B0, . . . ,BN ,C0, . . . ,CN be an assignment that satisfies ψi,k.

In particular this implies 0 ∈ Ai ∧ Nextk(0, ∣w∣ + 1), and such i, k are unique by definition of
Starti and Endk. Then the following properties hold.

(i) For each 0 ≤ x ≤ ∣w∣, there exists a unique index i such that Succi(x,x + 1) holds true.
This can be proved by induction on x by applying the formulae for δpush and δshift.

(ii) For each x, y such that x ↷ y, let z, v such that Tree(x, z, v, y) holds, then there exists
a unique pair of indices i, j such that Treei, j(x, z, v, y) holds, and there exists a unique
index k such that Nextk(x, y). This can be proved by induction on the depth of the chain
between positions x and y, by applying the formulae for δpop and property (i).
Moreover, if Treei, j(x, z, v, y) holds, then Nextk(x, y) holds if and only if δpop(qi,q j) =
qk.

Hence, by properties (i) and (ii), for each x, y such that x+1 = y or x↷ y, there exists a unique
i such that Qi(x, y) holds true.

Now, for every g let tg be the index such that g ∈ Atg . tg is unique by property (i) and in
particular t0 = i.

We proceed by induction on the depth h of w. Let h = 1 and w = a1a2 . . .a` be the body of
a simple chain. In this case tg is the unique index such that Succtg(g,g+1). Then, by ϕpush bw

with y = 1, we have δ(qt0 ,a1) = qt1 ; and by ϕshi f t bw with 1 ≤ g < `, we have δshift(qtg ,ag+1) =
qtg+1 . Moreover, since Treet` ,t0(0,1, `, ` + 1) ∧ Nextk(0, ` + 1), we get δ(qt` ,qt0) = qk by
property (ii). Hence we have built a support of the type (I.4.2).

Let now be h > 1 and w = w0a1w1 . . .a`w`. For 0 ≤ g ≤ `, since sg ↷ sg+1∨sg+1 = sg+1, by
properties (i) and (ii) above there exists a unique index fg such that Q fg(sg, sg+1) holds. Notice
that wg = ε implies fg = tg, otherwise we have wg ⊧ ψtg, fg and, by the inductive hypothesis,

there exists a support qtg
sg↝ q fg in A. Thus, for every 0 ≤ g < `, by applying ϕpush bw with y =

sg+1 we get δ(q fg ,ag+1) = qtg+1 . Moreover, since Tree f` , f0(0, s1, s`, ∣w∣+ 1)∧Nextk(0, ∣w∣+ 1),
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by property (ii) above we get δ(qt` ,qi) = qk. Hence we have built a support of type (I.4.3) and
this concludes the proof.
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Part II: Operator Precedence ω-Languages

Languages of infinite-length strings, called ω-languages, have been introduced to model
nonterminating processes; thus they are becoming more and more relevant nowadays when
most applications are “ever-running”, often in a distributed environment. Again, the foun-
dations of the theory of ω-languages are due to the pioneering work by Büchi [12] and oth-
ers [32, 30, 37, 9]. Büchi, in particular, investigated their main algebraic properties in the
context of finite state machines, pointing out commonalities and differences w.r.t. the finite
length counterpart [12, 40]. His work has then been extended to larger classes of languages;
among them, again noticeably, the class of VPLs; and again, in this part we face the same job
for the class of OPLs. OPLs, in fact, are not only useful to model programs, which are typi-
cally of finite length, but are also well-suited to formalize possibly never-ending sequences of
events: for instance, the previous Example 5 can be naturally extended to model the behavior
of a database that is never put off.

This part is organized as follows. In Section II.1 we first extend to ω-languages a few
basic definitions given in Part 1 for finite-length languages and generalize to OPAs the classi-
cal accepting criteria for ω-languages, then we show by means of an example the usefulness
of ωOPAs to model and analyze various system types; Section II.2 shows the relations be-
tween the various classes of ωOPLs classified according to the acceptance criteria defined
in the previous section; Section II.3 shows which closure properties are preserved and which
ones are lost when moving from finite length languages to the various classes of ω-languages;
finally, Section II.4 extends to ω-languages the characterization in terms of MSO logic.

II.1. Basic definitions of ω-languages. Preliminarily we introduce some further prop-
erties related to chains that are necessary when chains occur within infinite words.

Definition II.1.1.
Let (Σ,M) be a precedence alphabet and w a word on Σ compatible with M:
● A chain in w is maximal if it does not belong to a larger composed chain. In a finite

word w preceded and ended by #, only the outmost chain #[w]# is maximal.
● An open chain is a sequence of symbols b0 ⋖ a1 ≐ a2 ≐ . . . ≐ an, for n ≥ 1.
● A letter a ∈ Σ in a word #w with w ∈ Σ∗ compatible with M, is pending if it does not

belong to the body of a chain. In a word w preceded and ended by #, there are no
pending letters.

Furthermore, we generalize in a natural way to the infinite case the notion of string
compatible with an OPM: given a precedence alphabet (Σ,M), we say that an ω-word w is
compatible with the OPM M if every prefix of w is compatible with M. We denote by LM ⊆ Σω

the ω-language comprising all infinite words x ∈ Σω compatible with M.
Next, we adopt for OPAs operating on infinite strings the same acceptance criteria that

have been adopted in the literature for regular and other classes of languages.

Definition II.1.2 (Büchi operator precedence ω-automaton). A nondeterministic Büchi
operator precedence ω-automaton (ωOPBA) is given by a tuple A = ⟨Σ,M,Q, I,F, δ⟩, where
Σ,Q, I,F, δ are defined as for OPAs; the operator precedence matrix M is restricted to be a
∣Σ ∪ {#}∣ × ∣Σ∣ array, since ω-words are not terminated by the delimiter #.

Configurations and (infinite) runs are defined as for operator precedence automata on
finite-length words. Then, let “∃ωi” be a shorthand for “there exist infinitely many i” and let
ρ be a run of the automaton on a given word x ∈ Σω. Define In f (ρ) = {q ∈ Q ∣ ∃ωi ⟨βi, qi, xi⟩ ∈
ρ , qi = q} as the set of states that occur infinitely often in configurations in ρ. A run ρ of an
ωOPBA on an infinite word x ∈ Σω is successful iff there exists a state q f ∈ F such that
q f ∈ In f (ρ). A accepts x ∈ Σω iff there is a successful run of A on x. The ω-language
recognized by A is L(A) = {x ∈ Σω ∣ A accepts x}.
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The classical notion of acceptance for Muller automata can be likewise defined for OPAs.

Definition II.1.3 (Muller operator precedence ω-automaton). A nondeterministic Muller
operator precedence automaton (ωOPMA) is a tuple ⟨Σ,M,Q, I,T , δ⟩ where Σ,M,Q, I, δ are
defined as for ωOPBAs and T is a collection of subsets of Q, T ⊆ ℘(Q), called the table of
the automaton.
A run ρ of an ωOPMA on an infinite word x ∈ Σω is successful iff In f (ρ) ∈ T , i.e. the set of
states occurring infinitely often in the configurations of ρ is a set in the table T .

Definition II.1.4. A nondeterministic Büchi operator precedence automaton accepting
with empty stack (ωOPBEA) is a variant of ωOPBA where a run ρ is successful iff there
exists a state q f ∈ F such that configurations with stack � and state q f occur infinitely often
in ρ.

Thus, a run of an ωOPBEA is successful iff the automaton traverses final states with an
empty stack infinitely often. We will use the following simple normal form for ωOPBEA.

Definition II.1.5. An ωOPBEA is in normal form if the set of states is partitioned into
states that are always visited with empty stack and states that are never visited with empty
stack.

For all above classes of automata, say, ω-XXX, their deterministic counterpart ω-DXXX
is defined as usual.

Example 8 (Managing interrupts). Consider a software system that is designed to work
forever and must serve requests issued by different users but subject to interrupts. Precisely,
assume that the system manages two types of “normal operations” a and b, and two types of
interrupts, with different levels of priority.

We model its behavior by introducing an alphabet with two pairs of calls and returns,
calla, callb, reta, retb, for operations a and b and symbols int1, serve1 denoting the lower
level interrupt and its serving, respectively, and int2, serve2 denoting the higher level ones.
Not only both interrupts discard possible pending calls not already matched by corresponding
returns, but also the serving of a higher priority interrupt erases possible pending requests
for lower priority ones, but not those that occurred before the higher priority interrupt just
served: thus, a sequence such as int1int2 int1 int1 serve2 should produce popping the second
and third int1 without matching them, to match immediately int2 with serve2, but would leave
the first occurrence of int1 still pending; the next serve1, if any, would match it, whereas
possible further serve1 would remain unmatched. Furthermore neither calls to, nor returns
from, operations a and b can occur while any interrupt is pending.

Figure II.1.1 shows an OPM that assigns to sequences on the above alphabet a structure
compatible with the described priorities. Then, a suitable ω-automaton can specify further
constraints on such sequences; for instance the ωOPBA of Figure II.1.2 restricts the set of
ω-sequences compatible with the matrix by imposing that all int2 are eventually served by
a corresponding serve2; furthermore lower priority interrupts are not just discarded when a
higher priority one is pending but they are simply disabled, i.e. they are not accepted as a
correct system behavior.

For instance, the ω-word calla int1 int2 int1 . . . is not accepted by the ωOPBAbecause int1
is not accepted from state q2 reached after reading int2; similarly, calla int1 int2 serve2 calla
is rejected since, after serving int2 the automaton would be back in state q1 with int1 pending
(the prefix calla int1 int2 serve2 is compatible with the OPM and int1 is pending therein) but
no calla is admitted in q1 since there is no precedence relation between int1 and calla. On
the contrary the ω-word calla int1(int2 serve2 serve1 calla calla reta)ω is accepted: in fact
the automaton reaches q1 after reading calla (and popping it) followed by int1; then, after
receiving and serving the higher priority interrupt, it would serve the pending instance of int1
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returning to q0; from this point on it would enter an infinite loop during which it would process

the input string (calla calla reta int2 serve2 serve1)ω traversing the states q0
callaÐ→ q0

callaÐ→
q0

retaÐ→ q0
q0Ô⇒ q0

int2Ð→ q2
serve2Ð → q2

q2Ô⇒ q0
q0Ô⇒ q0

serve1Ð→ q1
q0Ô⇒ q0 leaving the first calla and

serve1 unmatched. Notice that all finite prefixes calla int1(int2 serve2 serve1 calla calla reta)n

int2 serve2 serve1 calla calla, with n > 0, end with the open chain calla ⋖ calla. Finally,
observe that the automaton would accept some strings beginning with serve1 which might
appear somewhat counterintuitive but is consistent with the general philosophy of admitting
unmatched elements; it would be easy, however, to forbid such a string beginning.

We call Linterrupt the language recognized by this ωOPBA.

calla reta callb retb int1 int2 serve1 serve2

calla ⋖ =̇ ⋖ ⋗ ⋗ ⋗ ⋗
reta ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
callb ⋖ ⋖ =̇ ⋗ ⋗ ⋗ ⋗
retb ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
int1 ⋖ ⋖ ≐ ⋗
int2 ⋖ ⋖ ⋖ ≐

serve1 ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
serve2 ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗ ⋗

# ⋖ ⋖ ⋖ ⋖ ⋖

Figure II.1.1

q0

q1 q2

calla, callb
reta, retb

q0

int1, serve1 int2

int1

serve1

q1

int2
q0

int2

serve1

serve2

q2

q0

q1

Figure II.1.2: ωOPBA recognizing the language of Example 8.

A more sophisticated policy that could easily be formalized by means of a suitable ω-
automaton is a “weak fairness requirement” imposing that, after a first calla not matched by
reta but interrupted by a int1 or int2, a second calla cannot be interrupted by a new lower
priority interrupt int1 (but can still be interrupted at any time by higher priority ones).

This example too retains some typical features of VPLs, namely the possibility of having
unmatched calls or returns but, again, it strongly generalizes them in that unmatched elements
can occur in various places of the whole string, e.g., due to the occurrence of interrupts or
other exceptional events.
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Further examples illustrating the modeling capabilities of OPLs both on finite and infinite
strings are reported in [35].

II.2. Relationships among classes of ωOPLs. Here we study the relationships among
languages recognized by the different classes of operator precedence ω-automata and visibly
pushdown ω-automata (with Büchi acceptance criterion), denoted as ωBVPA. Such relations
are summarized by the diagram in Figure II.2.1, where solid lines denote strict inclusion and
dashed lines link classes that are not comparable.

L(ωOPBA) ≡ L(ωOPMA)

L(ωOPBEA)

L(ωDOPBEA)

L(ωDOPMA)

L(ωDOPBA)

L(ωBVPA)

L(ωDBVPA)

⊉

Figure II.2.1: Containment relations for ωOPLs. Solid lines denote strict inclusion of the
lower class in the upper one; dashed lines link classes which are not comparable. It is still
open whether L(ωOPBEA) ⊆ L(ωDOPMA) or not.

In the following, we first present the proofs of the weak containment relations holding
among the various classes: most of them follow trivially from the definitions, except for
the equality between L(ωOPBA) and L(ωOPMA). Then we will prove strict inclusions and
incomparability relations by means of a suitable set of examples that separate the various
classes.

II.2.1. Weak inclusion results.

Theorem II.2.1. The following inclusion relations hold:

L(ωBVPA) ⊆ L(ωOPBA), L(ωDBVPA) ⊆ L(ωDOPBA).

Proof. Let A = ⟨QA, IA,ΓA, δA,FA⟩ be an ωBVPA9 over a partitioned alphabet Σ =
(Σc,Σr,Σi). An ωOPBA B that recognizes the same language asA is defined in a straightfor-
ward way as follows: B = ⟨Σ,M,QB, IB, δB,FB⟩ where

● QB = QA × ΓA,
● IB = IA × {⊺},
● FB = FA × ΓA,

9Among the many equivalent definitions for VPAs we adopt here the original one in [3].
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● M is the precedence matrix induced by the partition on Σ:

Σc Σr Σi

Σc ⋖ ≐ ⋖
Σr ⋗ ⋗ ⋗
Σi ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖

● the transition function δ ∶ QB × (Σ ∪ QB) → ℘(QB) is defined as follows, where
q1,q2 ∈ QA.
The push transition δBpush ∶ QB × Σ→ ℘(QB) is defined by:

– for a ∈ Σc, δBpush(⟨q1, γ1⟩,a) = {⟨q2, γ2⟩ ∣ (q1,a,q2, γ2) ∈ δA}
– for a ∈ Σi, δBpush(⟨q1, γ⟩,a) = {⟨q2, γ⟩ ∣ (q1,a,q2) ∈ δA}
– for a ∈ Σr, δBpush(⟨q1,⊺⟩,a) = {⟨q2,⊺⟩ ∣ (q1,a,⊺,q2) ∈ δA}.

The shift transition δBshift ∶ QB × Σ→ ℘(QB) is defined by
– for a ∈ Σr, δBshift(⟨q1, γ⟩,a) = {⟨q2, γ⟩ ∣ (q1,a, γ,q2) ∈ δA}, i.e., the ωOPBA

simulates the pop move of the ωBVPA by setting, as state q2, a state reached
by the ωBVPA while reading the return symbol a.

The pop transition δpop ∶ QB × QB → ℘(QB) is defined as follows:
– δBpop(⟨q1, γ1⟩, ⟨q2, γ2⟩) = {⟨q1, γ2⟩}, i.e., restores the state reached by the
ωBVPA after its pop move.

If the original ωBVPA is deterministic, so is the ωOPBA obtained with the above con-
struction, and this yields the second relation.

Proposition II.2.2. The following inclusion relations hold:

L(ωOPBEA) ⊆ L(ωOPBA),

L(ωDOPBEA) ⊆ L(ωDOPBA) ⊆ L(ωDOPMA) ⊆ L(ωOPMA).

Proof. The first inclusion follows trivially from the definition of ωOPBA and ωOPBEA
in normal form: given an ωOPBEA whose set of states is partitioned into states that are
always visited with empty stack and states that are never visited with empty stack, we can
define an equivalent ωOPBA that has as final states the final states of the ωOPBEA that are
always visited with empty stack.

The inclusion follows similarly for the deterministic counterparts of these classes of
ωOPAs, since this ωOPBA is deterministic if the ωOPBEA is deterministic.

About the relations involving Muller automata, L(ωDOPBA) ⊆ L(ωDOPMA) derives
form the fact that any ωDOPBA B = ⟨Σ,M,Q,q0,F, δ⟩ is equivalent to an ωDOPMA A =
⟨Σ,M,Q,q0, T , δ⟩ whose acceptance component T consists of all subsets of Q including
some final state of B, namely T = {P ⊆ Q ∣ P ∩ F ≠ ∅}; the last relation is obvious.

In the case of classical finite-state automata on infinite words, nondeterministic Büchi au-
tomata and nondeterministic Muller automata are equivalent and define the class of ω-regular
languages. Traditionally, Muller automata have been introduced to provide an adequate ac-
ceptance mode for deterministic automata on ω-words. In fact, deterministic Büchi automata
cannot recognize all ω-regular languages, whereas deterministic Muller automata are equiv-
alent to nondeterministic Büchi ones [40].

For VPAs on infinite words, instead, the paper [4] showed that the classical determiniza-
tion algorithm of Büchi automata into deterministic Muller automata is no longer valid, and
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deterministic Muller ωVPAs are strictly less powerful than nondeterministic Büchi ωVPAs.
A similar relationship holds for ωOPAs too.

Theorem II.2.3. L(ωOPBA) = L(ωOPMA).
Proof. Each ωOPBA is equivalent to an ωOPMA having the same underlying OPA and

acceptance component T consisting of all subsets of states including some final state of B (as
for their deterministic counterpart, see proof of Proposition II.2.2).

Conversely, any ω-language recognized by an ωOPMA A = ⟨Σ,M,Q, I,T , δ⟩ can be
recognized by an ωOPBA B with the same precedence matrix and with O(s2s) states, where
s is the number of states of A. We can assume that T is a singleton. Indeed, L(A) can be
expressed as

L(A) = ⋃
T∈T

L(AT), where AT = ⟨Σ,M,Q, I,{T}, δ⟩.

Since L(ωOPBA) is closed under union (a property that will be proved later, with Theo-
rem II.3.6), if each language L(AT) is accepted by an ωOPBA, then L(A) too is accepted by
an ωOPBA.

Thus, let T be the singleton {T}. Let us build an ωOPBA B = ⟨Σ,M, Q̃, I,F, δ̃⟩ that
accepts the same language as A as follows. Q̃ includes elements of two types: states of A,
and states (q,R) where q ∈ Q and R ⊆ Q is a set (that we informally call “box”), which will
be used to test whether the run of A is successful.

Intuitively, the automaton B simulates A, reading the input string x, along a sequence of
states q, and then guesses nondeterministically the point after which a successful run ρ of A
on x stops visiting the states that occur only finitely often in the run, and ρ begins to visit all
and only the states in the set T . After this point B switches to the states of the form (q,R) and
collects in R the states visited by A during the run, “emptying the box” as soon as it contains
exactly the set T . Every time it empties the box, B resumes collecting the states that A will
visit from that point onwards. If the final states of B are defined as those ones when it collects
exactly the set T , then B will visit infinitely often these final states iff A visits all and only
the states in T infinitely often.

More formally, B is defined by:
● Q̃ = Q ∪ (Q × ℘(Q)),
● F = {(q,T) ∣ q ∈ T},
● δ̃ ∶ Q̃ × (Σ ∪ Q̃)→ ℘(Q̃), where the push function is defined by:

– δ̃push(q,a) = δpush(q,a) ∪ {⟨p,{p}⟩ ∣ p ∈ δpush(q,a)} ∀q ∈ Q,a ∈ Σ

– δ̃push(⟨q,R⟩,a) = { {⟨p,R ∪ {p}⟩ ∣ p ∈ δpush(q,a)} if R ≠ T
{⟨p,{p}⟩ ∣ p ∈ δpush(q,a)} if R = T

∀q ∈ Q,R ⊆ Q,a ∈ Σ.
The shift function is defined analogously.
The pop function δ̃pop ∶ Q̃ × Q̃→ ℘(Q̃) is defined by:

– δ̃pop(q1,q2) = δpop(q1,q2) ∪ {⟨p,{p}⟩ ∣ p ∈ δpop(q1,q2)},
∀q1,q2 ∈ Q

– δ̃pop(⟨q1,R⟩,q2) = { {⟨p,R ∪ {p}⟩ ∣ p ∈ δpop(q1,q2)} if R ≠ T
{⟨p,{p}⟩ ∣ p ∈ δpop(q1,q2)} if R = T

– δ̃pop(⟨q1,R1⟩, ⟨q2,R2⟩) = { {⟨p,R1 ∪ {p}⟩ ∣ p ∈ δpop(q1,q2)} if R1 ≠ T
{⟨p,{p}⟩ ∣ p ∈ δpop(q1,q2)} if R1 = T

∀q1,q2 ∈ Q,R,R1,R2 ⊆ Q.
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First, we show that L(A) ⊆ L(B). Let x ∈ L(A), and let ρ be a successful run on x.
There exists a finite prefix v ∈ Σ∗ of x = vu1u2 . . . such that the infinite path followed by
A after reading v (i.e., on the infinite word u1u2 . . . ) visits all and only states in T infinitely
often. Thus, the run ρ can be written as:

ρ = ⟨α0 = �, q0, x = vu1u2 . . .⟩
∗⊢ ⟨α∣v∣, q∣v∣, u1u2 . . .⟩

+⊢ . . . +⊢ ⟨αi, qi, ui . . .⟩
+⊢ . . .

where {qi ∣ i > ∣v∣} = T and q0 ∈ I. Then, there is a successful run ρ̃ of B on the same word,
which follows singleton states of A while it reads v

ρ̃ = ⟨β0 = α0 = �, q0, x = vu1u2 . . .⟩
∗⊢ ⟨β∣v∣ = α∣v∣, q∣v∣, u1u2 . . .⟩

and then switches to states augmented with a box: ⟨β∣v∣ = α∣v∣, q∣v∣, u1u2 . . .⟩ ⊢ ⟨β∣v∣+1 =
α∣v∣+1, ⟨p,{p}⟩ , ũ1u2 . . .⟩, where ⟨α∣v∣, q∣v∣, u1u2 . . .⟩ ⊢ ⟨α∣v∣+1, p, ũ1u2 . . .⟩ and u1 = aũ1.

Since after this pointA visits each state in T and only these states infinitely often, B will
reach infinitely often final states (q,T) ∈ F, emptying infinitely often its box as soon as it
gets full, and resuming the collection of states therein with the subsequent state in the run.

Conversely, L(B) ⊆ L(A).
Let x ∈ Σω be an infinite word in L(B). Define the projection π ∶ Q ∪ (Q × ℘(Q)) → Q as
π(q) = q and π(⟨q,R⟩) = q,∀q ∈ Q,R ⊆ Q. Given a run ρ̃ of the automaton B, let π(ρ̃) be the
natural extension of π on a run.

By construction, if ρ̃ is a run of B on an ω-word, then π(ρ̃) = ρ is a run forA on the same
word.
Now, let ρ̃ be a successful run for B on x; ρ = π(ρ̃) is a run for A on x. Since only the states
augmented with a box are final states, then after a sequence (possibly empty) of singleton
states initially traversed by B, the automaton will definitively visit only states of the form
(q,R) (in fact, no singleton state is reachable again from these states).

By induction on the number of final states reached by B along its run, it can be proved
that, for each pair of final states consecutively reached by B, say (qFi ,Ri) and (qFi+1 ,Ri+1),
the portion of the run visited between them, say ρ̃i, is such that the set of states reached along
π(ρ̃i) equals exactly T . Finally, since final states in ρ̃ are visited infinitely often, the run π(ρ̃)
is successful for A.

II.2.2. Strict inclusion and incomparability results. To prove the strict inclusion and
incomparability relations summarized in Figure II.2.1, we introduce some simple examples
of ω-languages, whose membership properties are summarized in Table II.2.1.

1. For Σ = {a,b}, La∞ = {x ∈ Σω ∶ x contains an infinite number of occurrences of
letter a} is recognized by the ωDOPBEA depicted in Figure II.2.2.

a b
a ⋗ ⋗
b ⋗ ⋗
# ⋖ ⋖

q0 q1

a

b

q0,q1

b

a

q0,q1

Figure II.2.2: ωDOPBEA, with its OPM, for La∞.
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La−finite /∈ ∈ /∈ ∈ /∈ ∈
La∞ ∈ ∈
LωDyck-pr(c,r) ∈ ∈ ∈
Lrepbsd ∉ /∈ /∈ ∈ ∈
La2abseq /∈ /∈ ∈ ∈ ∈
Lωabseq ∈
Linterrupt ∈ ∈ ∈ ∈ ∈ /∈ /∈

Table II.2.1: Membership properties of some ω-languages, proved in Section II.2.2 or con-
sequences of inclusion relations proved in previous sections. The table displays only the
relations needed to prove the results in this and the following section.

2. La−finite = {x ∈ Σω ∶ x contains a finite number of occurrences of a}, i.e., the com-
plement of La∞, is clearly recognized by an ωDOPMA and by an ωOPBEA, but
cannot be recognized by any ωDOPBA. The proof of this latter fact resembles the
classical proof (see [40]) that deterministic Büchi automata are strictly weaker than
nondeterministic Büchi ones.

3. For Σ = {c, r}, let LωDyck-pr(c,r) be the language of ω-words composed by an infinite
sequence of finite-length words belonging to the Dyck language with pair c, r with
possibly pending returns, i.e. letters r not matched by any previous corresponding
letter c. LωDyck-pr(c,r) is recognized by the ωDOPMA and the ωDOPBEA whose
state graph is depicted in Figure II.2.3 and with acceptance component defined, re-
spectively, by the table T = {{q0},{q0,q1}} and the set of final states F = {q0}.

c r
c ⋖ ≐
r ⋗ ⋗
# ⋖ ⋖

q0 q1

r

q0

c

q0

c

r

q1

Figure II.2.3: ωDOPMA and ωDOPBEA recognizing LωDyck-pr(c,r).

4. For Σ = {c, r}, let Lrepbsd be the language (studied in [4]) consisting of ω-words x
on Σ such that x has only finitely many pending calls, i.e. occurrences of letter c
not matched by any subsequent corresponding letter r (repbsd stands for repeatedly
bounded stack depth). Lrepbsd is accepted by an ωOPBA, but cannot be accepted by
any ωOPBEA.
Intuitively, an ωOPBEA accepts a word iff it reaches infinitely often a final config-
uration with empty stack reading the input string; however, the automaton is never
able to remove all the input symbols piled on the stack since it cannot pop the pend-
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ing calls interspersed among the correctly nested letters c, otherwise it would either
introduce conflicts in the OPM or it would not be able to verify that they are in finite
number.
More formally, assume by contradiction that there is anωOPBEAA = ⟨Σ,M,Q, I,F,
δ⟩ recognizing Lrepbsd. M must satisfy the following constraints: since

● rω ∈ Lrepbsd, then M#r = {⋖} and Mrr = {⋗},
● crω ∈ Lrepbsd, then M#c = {⋖}, and either Mcr = {⋗} or Mcr = {≐},
● r(cr)ω ∈ Lrepbsd, thus if c ≐ r, Mrc = {⋗},
● c(cr)ω ∈ Lrepbsd, thus if c ≐ r, Mcc ≠ {⋖}

Hence, M must comply with one of the matrices M1 or M2 shown in Figure II.2.4.

M1 c r
c ⋗ ≐
r ⋗ ⋗
# ⋖ ⋖

M2 c r
c ○ ⋗
r ○ ⋗
# ⋖ ⋖

Figure II.2.4: Matrices for Lrepbsd, where ○ ∈ {⋖,⋗,≐}.

Let w = crc2r2c3r3 . . . cnrn . . . ∈ Lrepbsd and let ρ be an accepting run of A on w
starting from a state q0 ∈ I. The proof that Lrepbsd ∉ L(ωOPBEA) is based on the
two straightforward remarks:

● If, along a run, an ωOPA (or also an OPA) reaches a state with an empty stack,
the subsequent suffix of the run does not depend on the transitions performed
until that state.

● Since Q is finite, there exist p,q ∈ Q, and an infinite set of indexes E ⊆ N ∖
{0,1,2} such that, for each i ∈ E, ρ has a prefix: q0

vi↝ p
wi↝ q, where vi =

c1r1 . . . ci−2ri−2ci−1ri−2 and wi = rcir and, given the precedence relations in M1
and M2, both p and q are reached with an empty stack, just before performing
a push move while reading the letter r in w that follows, respectively, vi and wi.
For each i ∈ E, let ρi be the finite factor of ρ given by p

wi↝ q.
Let J ⊆ E be the set of indexes in E such that, ∀i ∈ J, ρi visits a final state with
empty stack. We can build a run ρ′, which differs from ρ in that

● for every i ∈ E ∖ J, the factor ρi is replaced by a ρ j for some j ∈ E, with j > i,
● for every i ∈ J, the factor ρi is replaced by a ρ j with i < j ∈ J if ∣J∣ = ∞, or

i < j ∈ E if ∣J∣ <∞.
ρ′ is an accepting run in A, along which the automaton reads a word with infinitely
many pending calls, which does not belong to Lrepbsd, and this is a contradiction.
Furthermore, Lrepbsd is not recognizable by any ωDOPMA. The proof of this fact
resembles the analogous proof in [4]; indeed, that proof is essentially based on topo-
logical properties of the state-graph of the automata and it is general enough to adapt
to both ωVPAs and ωOPAs.

5. For Σ = {a,b}, let Labseq = {akbk ∣ k ≥ 1} and La2abseq = {x ∈ Σω ∣ x = a2Lωabseq}.
Language La2abseq is recognized by an ωDOPBA, but it is not recognized by any
ωOPBEA (nor a fortiori by any ωDOPBEA).
Indeed, words in Labseq can be recognized only with the OPM M depicted in Fig-
ure II.2.5: any other OPM will prevent verifying that the number of as equals that of
bs in subwords belonging to Labseq. Since a ⋖ a, an ωOPBEA piles up on the stack
the first sequence a2 of a word and cannot remove it afterwards; hence it cannot
empty the stack infinitely often to accept a string in La2abseq. There is, however, an
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ωDOPBA (and thus an ωDOPMA) that recognizes such a language: it is shown in
Figure II.2.5. Notice also that Lωabseq can be recognized by an ωOPBEA, with OPM
M and with state graph depicted in Figure II.2.5 but with state q2 instead of q0 as
initial state.

a b
a ⋖ =̇
b ⋗ ⋗
# ⋖

q0 q1 q2 q3

q4

a a a

a

b

b

q3

q0

Figure II.2.5: An ωDOPBA recognizing language La2abseq.

II.3. Closure properties. Table II.3.1 displays the closure properties of the various
families of ω-languages. In order to prove them, we first introduce some preliminary con-
structions in Section II.3.1. Then in Section II.3.2 we present the proofs for L(ωOPBA); in
particular closure under complement and concatenation are the cases that require novel inves-
tigation techniques w.r.t. previous literature. In Section II.3.3 we prove the closure properties
for other classes of ωOPA.
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Intersection Yes Yes Yes Yes Yes Yes
Union Yes Yes Yes Yes Yes Yes

Complement No No No Yes Yes Yes
L1 ⋅ L2 No No No No Yes Yes

Table II.3.1: Closure properties of families of ω-languages. (L1 ⋅L2 denotes the concatenation
of a language of finite-length words L1 with an ω-language L2).

II.3.1. Preliminary properties and constructions. The following constructions will
be exploited to prove several closure properties. Indeed, they would be useful even to prove
the same properties in the case of finite length languages; however, since such properties have
already been proved in previous literature [18, 19] by referring to OPGs rather than OPAs,
we present them in this part, which is where they are exploited in this paper.

We begin by introducing the deterministic product of transition functions, defined by
extending the usual construction for finite state automata. Such a definition is meaningful
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when applied to automata that share the same precedence matrix, because they perform the
same type of move (push/shift/pop) while reading the input word.

Definition II.3.1. Let Q1 and Q2 be two disjoint sets of states of two deterministic
automata sharing the same OP alphabet and let δ1 and δ2 be their transition functions.
Their product state Q is defined as Q = Q1 × Q2 and their product transition function
δ ∶ Q × (Σ ∪ Q)→ Q is defined as follows, where q1,q2, p1, p2 ∈ Q,a ∈ Σ:

δpush((q1,q2),a) = (δ1push(q1,a), δ2push(q2,a))
δshift((q1,q2),a) = (δ1shift(q1,a), δ2shift(q2,a))

δpop((q1,q2), (p1, p2)) = (δ1pop(q1, p1), δ2pop(q2, p2))

Clearly ∣Q∣ = ∣Q1∣ ⋅ ∣Q2∣.
Although this paper is not concerned with translations, we are going to need the fol-

lowing definition of OP Büchi ω-transducers during some technical steps; other types of
ω-transducers could be defined similarly but are not necessary in this paper.

Definition II.3.2 (Operator precedence (Büchi) ω-transducer). An operator precedence
ω-transducer is defined in the usual way as a tuple T = ⟨Σ,M,Q, I,F,O, δ, η⟩ where Σ, M,
Q, I, F are defined as in Definition I.2.1, O is a finite set of output symbols, the transition
function δ and the output function η are defined by ⟨δ, η⟩ ∶ Q× (Σ∪Q)→ ℘F(Q×O∗), where
℘F(Q ×O∗) denotes the set of finite subsets of Q ×O∗, and ⟨δ, η⟩ can be seen as the union of
three functions, ⟨δshift, ηshift⟩ ∶ Q × Σ → ℘F(Q ×O∗), ⟨δpush, ηpush⟩ ∶ Q × Σ → ℘F(Q ×O∗) and
⟨δpop, ηpop⟩ ∶ Q × Q→ ℘F(Q ×O∗).

A configuration of the ω-transducer is denoted ⟨β, q, w⟩ ↓ z, where C = ⟨β, q, w⟩ is
the configuration of the underlying ωOPBA and the string after ↓ represents the output of the
automaton in the configuration. The transition relation ⊢ is naturally extended fromωOPBAs,
by concatenating the output symbols produced at each move with those generated in the
previous moves. Runs and acceptance by the transducer are defined as in the corresponding
ωOPBA.

The transduction τ(x), x ∈ Σω, generated by T is the set of ω-strings produced during its
nondeterministic successful runs over x.

The next statement is propaedeutic to many constructive proofs of closure properties,
where the operands are in general OPAs with compatible but not identical matrices, and the
result’s matrix must often be the union of the two original ones. If A is an OPA with prece-
dence matrix M and M′ ⊇ M, then clearlyA works also over M′ but the language recognized
by A over M′ is not necessarily the same, since the presence of precedence relations in M′

that are not included in M may allow for successful runs on some words that are, instead,
not successful in the original OPA. The next statement proves, however, that the precedence
matrix of an OPA can always be extended (up to completion), provided that conflict-freedom
is preserved, without affecting the recognized language.

Statement II.3.1 (Extended matrix normal form). Let A = ⟨Σ,M,Q, I,F, δ⟩ be an OPA
(over finite-length or omega words) with ∣Q∣ = s. For any conflict-free OPM M′ ⊇ M, there
exists an OPA with OPM M′ that recognizes the same language asA and has O(∣Σ∣2s) states.

Proof. First consider finite-length words. The new OPA A′ = ⟨Σ,M′,Q′, I′,F′, δ′⟩ is
derived from A in the following way:

● Q′ = Σ̂ × Q × Σ̂, where Σ̂ = (Σ ∪ {#}), i.e. the first component of a state is the
lookback symbol, the second component is a state of A and the third component is
the lookahead symbol,

● I′ = {#} × I × {a ∈ Σ̂ ∣ M#a ≠ ∅},
● F′ = {#} × F × {#},
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● δ′ ∶ Q′ × (Σ ∪ Q′)→ ℘(Q′) is the transition function defined as follows.
Let a ∈ Σ̂,b ∈ Σ,q ∈ Q. The push transition δ′push ∶ Q′ × Σ→ ℘(Q′) is defined by:

δ′push(⟨a,q,b⟩,b) = {⟨b, p, c⟩ ∣ p ∈ δpush(q,b) ∧ Mab = {⋖} ∧ Mbc ≠ ∅},

The shift transition δ′shift ∶ Q′ × Σ→ ℘(Q′) is defined analogously:

δ′shift(⟨a,q,b⟩,b) = {⟨b, p, c⟩ ∣ p ∈ δshift(q,b) ∧ Mab = {≐} ∧ Mbc ≠ ∅},

The pop transition δ′pop ∶ Q′ × Q′ → ℘(Q′) is defined by:

δ′pop(⟨a1,q1,a2⟩, ⟨b1,q2,b2⟩) = {⟨b1,q3,a2⟩ ∣
q3 ∈ δpop(q1,q2)∧

Ma1a2 = {⋗} ∧ Mb1a2 ≠ ∅
} ,

where a1,b2 ∈ Σ,a2,b1 ∈ Σ̂,q1,q2 ∈ Q.
Clearly, the OPA A′ has OPM M′ and accepts the same language as A.
This construction can be naturally extended to ωOPAs: in particular, for ωOPBA the set

of final states ofA′ is F′ = Σ̂×F×Σ, i.e. a run ofA′ is accepting iff it visits infinitely often final
states of A, independently of the lookback and the lookahead symbols considered for these
states. For ωOPBEA this acceptance component may be further refined as F′ = {#} × F × Σ.
For ωOPMA, T ′ = {t ∣ t = A1 × S × A2,S ∈ T ,A1 ⊆ Σ̂,A2 ⊆ Σ} where T ⊆ ℘(Q) is the table
of A. Furthermore, the transformation preserves determinism.

II.3.1.1. OPA’s version without # as lookahead. In this section we illustrate a new
version of OPAs that do not rely on the end-marker # for the recognition of a finite length
word.

The new model is defined by slightly modifying the semantics of the transition relation
and of the acceptance condition of original OPAs, in such a way that a string is accepted by an
automaton if it reaches a final state right at the end of the parsing of the whole word, and does
not perform any pop move determined by the ending delimiter # to empty the stack; thus the
automaton stops just after having pushed on the stack (or updated the top of the stack symbol
with) the last symbol of the string.

In this alternative characterization of OPAs, the semantics of the transition relation differs
from the classical definition in that, once a configuration with the end-marker as lookahead
is reached, the computation cannot evolve in any subsequent configuration, i.e., a pop move
C1 ⊢

C#
C2 with C1 = ⟨Π[a, p], q, x#⟩ is performed only if x ≠ ε (where symbol ⊢

C#
denotes

a move according to this variation of the semantics of the transition relation). The language
accepted by the automaton according to this new semantics (denoted as L

C#
) is the set of words:

L
C#
(A) = {x ∣ ⟨�, qI , x#⟩ ∗⊢

C#
⟨�γ, qF , #⟩,qI ∈ I,qF ∈ F, γ ∈ Γ∗}

This new version of the automaton, called no-#-look-aheadOPA (A#OPA) is closer to the tra-
ditional acceptance criterion of general pushdown automata; we emphasize, however, that,
unlike normal acceptance by final state of a pushdown automaton, which can perform a num-
ber of ε-moves after reaching the end of a string and accepts it if just one of the visited states
is final, this type of automaton cannot perform any (pop, i.e., ε-) move when it reaches the
end of the input string. The following lemmata (Lemma II.3.3 and Lemma II.3.4) prove the
equivalence between the original version of OPAs and the new one.10

10Only Lemma II.3.3 will be used in Part 2 of this paper but we include both for completeness and possible
further exploitation.
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Lemma II.3.3. LetA1 be a nondeterministic OPA defined on an OP alphabet (Σ,M) with
s states. Then there exists a nondeterministic A#OPA A2 on (Σ,M) and O(s2) states such that
L(A1) = L

C#
(A2).

We first explain informally the rationale of the simulation of A1 by A2, with the aid of
an example; then we formally define its construction and prove their equivalence.

Consider a word of finite length w compatible with M: the string #w can be factored in a
unique way as a sequence of bodies of chains and pending letters as

# w = # w1a1w2a2 . . .wnan

where ai−1[wi]ai are maximal chains and each wi can be possibly missing, with a0 = # and
∀i ∶ 1 ≤ i ≤ n − 1 ai ⋖ ai+1 or ai ≐ ai+1. Let i j ∈ {1,2, . . . ,n}, 1 ≤ j ≤ k, k ≥ 1 be indexes such
that

# ⋖ ai1 = a1 ≐ . . . ≐ ai2−1 ⋖ ai2 ≐ . . . ≐ ai3−1 ⋖ ai3 ≐ . . . ≐ aik−1 ⋖ aik ≐ aik+1 . . . ≐ an (II.3.1)

When reading w, the symbols of the string are progressively put on the stack, either by a push
move or by a shift move, and, whenever a chain wi is recognized, the symbol on the top of
the stack is popped. Hence, after reading w the stack contains only the symbols # ai2−1 ai3−1
. . . an that are the ending symbols of the open chains in the sequence (II.3.1).

When w is read by a standard OPA, the automaton performs a series of pop moves at the
end of the string due to the presence of the end delimiter #. These moves progressively empty
the stack. The run is accepting if it leads to a final state after all pop moves.

A nondeterministic automaton that, unlike standard OPAs, does not resort to the end
delimiter # for the recognition of a string must guess nondeterministically the ending point
of each open chain and guess how, in an accepting run, the states in these points would be
updated if the final pop moves were progressively performed. The automaton must behave
as if, at the same time, it simulates two snapshots of the accepting run of a standard OPA: a
move during the reading of the input, and a step during the final pop transitions which will
later on empty the stack, leading to a final state. To this aim, the states of a standard OPA are
augmented with an additional component.

A A#OPAA2 equivalent to a given OPAA1 thus may be defined so that, after reading each
prefix of a word, it reaches a final state whenever, if the word were completed in that point
with #, A1 could reach an accepting state with a sequence of pop moves. In this way, A2
can guess in advance which words may eventually lead to an accepting state of A1, without
having to wait until reading the delimiter # and to perform final pop moves. In other words,
it simulates the possible look-ahead of the # delimiter. Before going into the details of the
construction, the following example illustrates the above intuitive description.

Example 9. We refer to the computation of the OPA in Example 3. Consider the input
word of this computation without the end-marker #. The sequence of pending letters in the
input word corresponds to three open chains, according to (II.3.1), with starting symbols
+, ×, L, respectively.

Figure II.3.1 shows the configuration just before looking ahead at the symbol #. The
states depicted within a box are those placeholders that an equivalent A#OPA should fill up
to guess in advance the last pop moves q3 = q3

q0Ô⇒ q3
q1Ô⇒ q3

q1Ô⇒ q3 ∈ F1 of the
accepting run.
The corresponding configuration of the A#OPA is depicted in Figure II.3.2.
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⟨ � [+, q1] [×, q1] [M, q0] , q3 , #⟩

q3 ∈ F1 q3 q3 q3

Figure II.3.1: Configuration of the OPA of Example 3 just before looking ahead at #.

⟨ � [+, ⟨q1, q3 ⟩] [×, ⟨q1, q3 ⟩] [M, ⟨q0, q3 ⟩] , ⟨q3, q3 ⟩ , #⟩

Figure II.3.2: Configuration of the A#OPA described in Example 9.

We now proceed with the construction of A2 and the proof of its equivalence with A1.
Proof. of Lemma II.3.3
Let A1 be ⟨Σ,M,Q1, I1,F1, δ1⟩ and define A2 = ⟨Σ,M,Q2, I2,F2, δ2⟩ as follows.
● Q2 = {B,Z,U} × Q1 × Q1.

Hence, a state ⟨x,q, p⟩ of A2 is a tuple whose first component denotes a nondeter-
ministic guess for the next input symbol to be read, i.e., whether it is a pending letter
which is the initial symbol of an open chain (Z), or a pending letter within an open
chain other than the first one (U), or a symbol within a maximal chain (B). The
second component of a state represents the current state q in A1. To illustrate the
meaning of the last component, consider an accepting run of A1 and let q be its cur-
rent state just before a push move to be performed when reading the first symbol of
an open chain; also, let r be the state reached by such push move and s be the state
of the automaton when the stack element pushed by this move (possibly updated by
subsequent shifts) is going to be popped leading to a state p. Then, in the same po-
sition of the corresponding run of A2, the current state would be ⟨Z,q, p⟩ ∈ Q2 and
state ⟨x, r, s⟩ ∈ Q2 will be reached by A2 (x being nondeterministically anyone of B,
Z, U); in other words, the last component p represents a guess about the state that
will be reached in A1 when the stack element pushed by this move will be popped.
Hence we can consider only states ⟨Z,q, p⟩ ∈ Q2 such that s

qÔ⇒ p in A1 for some
s ∈ Q1. In all the other positions the last component is simply propagated.
For instance, Figure II.3.3 shows an accepting run on the word n + n × Ln + nM of
a A#OPA that is equivalent to the OPA of Example 3. Note that before reading the
L, which is the beginning of an open chain, the automaton is in the state ⟨Z,q0,q3⟩
and then moves to ⟨B,q2,q3⟩ guessing the state that is reached by the pop move
that occurs in the corresponding run of the OPA after reading the M. Before reading
the second n, which is the body of a maximal chain, instead, the automaton is in
state ⟨B,q0,q3⟩ and, after popping n from the stack, moves to ⟨Z,q1,q3⟩ since the
following × is the beginning of an open chain.

● I2 = {⟨x,q,qF⟩ ∣ x ∈ {Z,B},q ∈ I1,qF ∈ F1}
● F2 = {⟨Z,q,q⟩ ∣ q ∈ Q1}
● The transition function is defined as the union of three functions.

The push transition function δ2push ∶ Q2 × Σ → ℘(Q2) is defined as follows, where
p,q, r, s ∈ Q1, a ∈ Σ.
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stack state current input
� ⟨B, q0, q3⟩ n + n × Ln + nM#
�[n, ⟨B, q0, q3⟩] ⟨B, q1, q3⟩ + n × Ln + nM#
� ⟨Z, q1, q3⟩ + n × Ln + nM#
�[+, ⟨Z, q1, q3⟩] ⟨B, q0, q3⟩ n × Ln + nM#
�[+, ⟨Z, q1, q3⟩][n, ⟨B, q0, q3⟩] ⟨B, q1, q3⟩ × Ln + nM#
�[+, ⟨Z, q1, q3⟩] ⟨Z, q1, q3⟩ × Ln + nM#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩] ⟨Z, q0, q3⟩ Ln + nM#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩] ⟨B, q2, q3⟩ n + nM#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩][n, ⟨B, q2, q3⟩] ⟨B, q3, q3⟩ + nM#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩] ⟨B, q3, q3⟩ + nM#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩][+, ⟨B, q3, q3⟩] ⟨B, q2, q3⟩ nM#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩][+, ⟨B, q3, q3⟩][n, ⟨B, q2, q3⟩] ⟨B, q3, q3⟩ M#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩][+, ⟨B, q3, q3⟩] ⟨B, q3, q3⟩ M#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][L, ⟨Z, q0, q3⟩] ⟨U, q3, q3⟩ M#
�[+, ⟨Z, q1, q3⟩][×, ⟨Z, q1, q3⟩][M, ⟨Z, q0, q3⟩] ⟨Z, q3, q3⟩ #

Figure II.3.3: Example of an accepting computation for the word n + n × Ln + nM of a A#OPA
that is equivalent to the OPA of Example 3.

– Pending letter at the beginning of an open chain.

δ2push (⟨Z,q, p⟩,a) = {⟨x, r, s⟩ ∣ x ∈ {B,Z,U}, r ∈ δ1push(q,a), s qÔ⇒ p in A1}

– Symbol of a maximal chain.

δ2push (⟨B,q, p⟩,a) = {⟨B, r, p⟩ ∣ r ∈ δ1push(q,a)}

The shift transition function δ2shift ∶ Q2 × Σ→ ℘(Q2) is defined as follows:
– Pending letter within an open chain.

δ2shift (⟨U,q, p⟩,a) = {⟨x, r, p⟩ ∣ x ∈ {B,Z,U}, r ∈ δ1shift(q,a)}

– Symbol of a maximal chain.

δ2shift (⟨B,q, p⟩,a) = {⟨B, r, p⟩ ∣ r ∈ δ1shift(q,a)}

Notice that the second component of the states computed by δ2push and δ2shift is
independent of the first component of the starting state.
The pop transition function δ2pop ∶ Q2 × Q2 → ℘(Q2) can be executed only within a
maximal chain since there is no pop determined by the ending delimiter:

δ2pop (⟨B,q, s⟩, ⟨B, p, s⟩) = {⟨x, r, s⟩ ∣ x ∈ {B,Z,U},q pÔ⇒ r in A1}

All other moves lead to an error state.
Let us prove first L(A1) ⊆ L

C#
(A2). Consider a word w ∈ L(A1). Then there exists a

support q
w↝ q′ in A1 with q ∈ I1 and q′ ∈ F1. If w = w1a1w2a2 . . .wnan where ai are pending

letters and wi are maximal chains, let k be the number of open chains determined by the
sequence of pending letters in w according to the structure (II.3.1), and let ai1 = a1,ai2 , . . . ,aik
be their initial symbols. Also, for every i = 2, . . . ,n, let t(i) be the greatest index t such that
it < i, i.e., ai is within the t(i)-th open chain beginning with ait(i) . In particular, for i = n, if
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an−1 ⋖ an then ik = n, otherwise t(n) = k. As a notational convention, denote by z→ a move
that can be either a push or a shift.

Then the above support for w can be decomposed as

q = q̃0
w1↝ q1

a1Ð→ q̃1
w2↝ q2

a2z→ . . .
wn↝ qn

anz→ q̃n = pk (II.3.2)

q̃n = pk
qikÔ⇒ pk−1

qik−1Ô⇒ pk−2 Ô⇒ . . .Ô⇒ p2
qi2Ô⇒ p1

qi1=q1
Ô⇒ p0 = q′

where qi = q̃i−1 if wi = ε for i = 1,2, . . . ,n. Notice that, for every t, qit is the state reached in
this path before the push move that pushes symbol ait on the stack; moreover, when the last
symbol in the open chain beginning with ait is to be popped, the current state is pt and then
the symbol on the top of the stack (whose state component is qit ) is removed and A1 moves
to state pt−1.

Starting with state ⟨Z,q1, p0⟩ if w1 = ε or with ⟨B, q̃0, p0⟩
w1↝ ⟨Z,q1, p0⟩ if w1 ≠ ε, an

accepting computation of A2 can be built on the basis of the following facts:
● Since A1 performs q1

a1Ð→ q̃1 and p1
q1Ô⇒ p0, then δ2push(⟨Z,q1, p0⟩,a1) ∋ ⟨x, q̃1, p1⟩

in A2 for x ∈ {B,Z,U}. This is a push move that can be applied at the beginning
of the first open chain, a1, where p1 is the guess about the state that will be reached
before the stack symbol pushed on the stack by this move will be popped.

● In general, for every t, since A1 executes qit
aitÐ→ q̃it and pt

qitÔ⇒ pt−1, then
δ2(⟨Z,qit , pt−1⟩,ait) ∋ ⟨x, q̃it , pt⟩ for x ∈ {B,Z,U}. This is a push move that can be
applied at the beginning of the t-th open chain, i.e. when reading ait , where pt is the
guess about the state that will be reached before the stack symbol with the last letter
of the chain will be popped. In particular, if ik = n, we can reach state ⟨Z, q̃n, pk⟩
which is final in A2 since qn = pk.

● For every maximal chain wi of w (with i ≥ 2) consider its support q̃i−1
wi↝ qi in

the sequence (II.3.2). Then inA2 we have a sequence of moves starting from a state
⟨B, q̃i−1, pt(i)⟩ and reading wi, that ends in ⟨x,qi, pt(i)⟩, where x ∈ {U,Z}. Notice that
the last component of the states does not change because we are within a maximal
chain. During the reading of wi, the last component is equal to pt(i), as guessed by
the push move at the beginning of the current open chain.

● For every i /∈ {i1, i2, . . . , ik}, since δ1shift(qi,ai) ∋ q̃i, then δ2shift(⟨U,qi, pt(i)⟩,ai) con-
tains ⟨x, q̃i, pt(i)⟩, for x ∈ {B,Z,U}. In particular, if n ≠ ik, then t(n) = k and for i = n
we can reach state ⟨Z, q̃n, pk⟩ which is final in A2, since q̃n = pk.

Thus, by composing in the right order the previous moves, one can obtain an accepting com-
putation for w in A2.

Conversely, to prove that L
C#
(A2) ⊆ L(A1), consider a word w ∈ L

C#
(A2). This means

that there exists a successful run ofA2 on w. Let w be factorized as above; then the accepting
run for w can be decomposed as

π0
w1↝ ρ1

a1Ð→ π1
w2↝ ρ2 . . . ρi

aiz→ πi
wi+1↝ . . .

wn↝ ρn
anz→ πn

where πi, ρi ∈ Q2, ρi = πi−1 if wi = ε, π0 ∈ I2 and πn ∈ F2. By projecting this path on the second
component of states πi and ρi (let them respectively be pi and ri ∈ Q1), we obtain a path in
A1 labelled by w. This path is not accepting because there are symbols left on the stack that
need to be popped, but we can complete this path arguing by induction on the structure of
maximal chains according to the definition of δ2. Precisely, one can verify that Q1 contains
suitable states pi (for 0 ≤ i ≤ n), ri (for 1 ≤ i ≤ n), st (for 1 ≤ t ≤ k), with ri = pi−1 whenever
wi = ε, such that the following facts hold.
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● π0 ∈ I2, hence π0 = ⟨x0, p0, s0⟩, with p0 ∈ I1 and s0 ∈ F1; x0 is B if w1 ≠ ε, otherwise
x0 = Z.

● π0
w1↝ ρ1 in A2 implies that the last component of state π0 is propagated through

chain w1 without change; hence ρ1 = ⟨Z, r1, s0⟩ with p0
w1↝ r1 in A1.

● ρ1
a1Ð→ π1 is a push move of A2 at the beginning of an open chain, and this implies

that the last component of π1 is a guess on the state from which A1 would perform
the corresponding pop, so that π1 = ⟨x1, p1, s1⟩ with r1

a1Ð→ p1 and s1
r1Ô⇒ s0 in

A1; the first component is x1 = B if w2 ≠ ε otherwise x1 equals Z or U according to
whether a2 starts an open chains or not, respectively,

● The pop moves within πi
wi+1↝ ρi+1 for 1 ≤ i < i2, and the shift moves within an open

chain ρi
aiÐ→ πi for 1 < i < i2 propagate with no change the last component. Hence

ρi = ⟨U, ri, s1⟩ and πi = ⟨xi, pi, s1⟩ with pi−1
wi↝ ri

aiÐ→ pi in A1. The first component
is xi = B if wi ≠ ε, otherwise xi = Z for i = i2 − 1, and xi = U in the other cases.

● ρi2

ai2Ð→ πi2 is a push move of A2 at the beginning of an open chain, and this implies
that the last component of πi2 is a guess on the state from which A1 would perform

the corresponding pop, so that πi2 = ⟨xi2 , pi2 , s2⟩ with ri2

ai2Ð→ pi2 and s2
ri2Ô⇒ s1 in

A1. The first component is xi2 = B if wi2 ≠ ε otherwise x1 equals Z or U according
to whether ai2 + 1 begins an open chains or not, respectively.

● Similarly for the following moves in the run.
In general, we get

ρi = ⟨yi, ri, st(i)⟩ for every i = 1,2, . . . ,n,
πi = ⟨xi, pi, st(i)⟩ for every i /∈ {i1, i2, . . . , ik},
πit = ⟨xit , pit , st⟩ for every t = 1,2, . . . , k,

with ri
aiz→ pi, st

ritÔ⇒ st−1, pi−1
wi↝ ri in A1

and yi ∈ {Z,U}, xi ∈ {B,Z,U} for every i and t.

For i = n we have n = ik or t(n) = k, hence πn = ⟨xn, pn, sk⟩, and pn = sk and xn = Z since
πn ∈ F2. Thus, in A1 there is an accepting run

I1 ∋ p0
w1↝ r1

a1Ð→ p1
w2↝ r2 . . . ri

aiz→ pi
wi+1↝ . . .

wn↝ rn
anz→ pn = sk

pn = sk
rikÔ⇒ sk−1

rik−1Ô⇒ sk−2 Ô⇒ . . .Ô⇒ s2
ri2Ô⇒ s1

ri1=r1
Ô⇒ s0 ∈ F1.

The next lemma completes the proof of equivalence between OPAs and A#OPAs.
Lemma II.3.4. Let A2 be a nondeterministic A#OPA defined on an OP alphabet (Σ,M)

with s states. Then there exists a nondeterministic OPA A1 on (Σ,M) and O(∣Σ∣s) states,
such that L(A1) = L

C#
(A2).

Proof. Let A2 be ⟨Σ,M,Q, I,F, δ⟩ and consider, first, an equivalent form of A2, where
all states are enriched with a lookahead symbol and no final state is reached by a pop edge:
Ã2 = ⟨Σ,M,Q2, I2,F2, δ2⟩, where

● Q2 = Q × Σ̂, where Σ̂ = (Σ ∪ {#}), i.e. the first component of a state is a state of A2
and the second component of the state is the lookahead symbol,

● I2 = I × {a ∈ Σ̂ ∣ M#a ≠ ∅} is the set of initial states of Ã2,
● F2 = F × {#}
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● the transition function δ2 ∶ Q2×(Σ∪Q2)→ ℘(Q2) is defined in the following natural
way, where a,b ∈ Σ, p,q, r ∈ Q:

– δ2push(⟨p,a⟩,a) = {⟨q,b⟩ ∣ q ∈ δpush(p,a) ∧ Mab ≠ ∅},

– δ2shift(⟨p,a⟩,a) = {⟨q,b⟩ ∣ q ∈ δshift(p,a) ∧ Mab ≠ ∅},

– δ2pop(⟨p,a⟩, ⟨q,b⟩) = {⟨r,a⟩ ∣ r ∈ δpop(p,q)} ∖ F2.

It is easy too see that L
C#
(A2) = L

C#
(Ã2). Furthermore, the final states of Ã2 cannot be reached

by pop edges: in fact, these pop transitions cannot be performed by a A#OPA according to the
semantics of the transition relation ⊢

C#
, since it stops a computation right before reading the

delimiter #, when the parsing of the word ends.
Thus, we build, without loss of generality, an OPA A1 equivalent to the A#OPA Ã2. A1 =

⟨Σ,M,Q1, I1,F1, δ1⟩ has only one final state, reachable through a pop edge by all final states
of Ã2. Its role is to let A1 empty the stack after reading a word that is accepted by Ã2.

● Q1 = Q2 ∪ {qaccept}
● I1 = I2 ∪ {qaccept} if I2 ∩ F2 ≠ ∅; I1 = I2 otherwise
● F1 = {qaccept}
● The transition function δ1 equals δ2 on all states in Q2; in addition A1 has departing

pop edges from the final states in F2 to qaccept and qaccept has no outgoing push/shift
edge but only self-loops pop edges.
The push transition function δ1push ∶ Q1 × Σ → ℘(Q1) is defined as δ1push(q, c) =
δ2push(q, c),∀q ∈ Q2, c ∈ Σ. The shift function is defined analogously.
The pop transition δ1pop ∶ Q1 × Q1 → ℘(Q1) is defined by:

δ1pop(q, p) = δ2pop(q, p),∀q, p ∈ Q2

δ1pop(q, p) = qaccept,∀q ∈ (F2 ∪ {qaccept}), p ∈ Q2,

We now show that L(A1) = L
C#
(Ã2).

L(A1) ⊆ L
C#
(Ã2): in fact, if the OPA A1 recognizes a word, then it is either the empty

word and thus qaccept ∈ I1 and also Ã2 has a successful run on it, or A1 recognizes a word
w ≠ ε and there exists a run σ of A1 which ends in the final state qaccept with empty stack.
Notice that qaccept is reached by a pop move from a state in F2, say q f ∈ F2:

σ ∶ q0 ∈ I2
w↝ q f Ô⇒ qaccept(

p∈Q1Ô⇒ qaccept)∗

and q f itself is reached exactly when the reading of w is finished, since, as said before, a state
in F2 cannot be reached by pop moves. This condition is necessary to avoid the presence of
sequences of pop moves from non-accepting states toward final states. Then the path from
q0 to q f , which traverses the same states and edges as σ, represents a run of Ã2 which ends
in a final state q f right after the reading of the whole word, thus accepting w. Conversely,
the relation L(A1) ⊇ L

C#
(Ã2) derives easily from the fact that, if Ã2 accepts a word along a

successful run, then A1 recognizes the word along the same run, possibly emptying the stack
in the final state qaccept.

Remark 2. With some further effort –and a further exponential leap in the automaton’s
size– a deterministic version of this A#OPA could also be built. We did not include it here,
however, since the A#OPA construction will be applied only in this part to prove the closure
w.r.t. concatenation with finite length languages of ωOPLs: we will see that such a closure
holds only for nondeterministic automata.
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II.3.2. Closure properties and emptiness problem for class L(ωOPBA). L(ωOPBA)
enjoys all closure and decidability properties suitable for model checking. Precisely, the
emptiness problem is decidable for OPAs in polynomial time because they can be interpreted
as pushdown automata on infinite-length words: e.g., [13] shows an algorithm that decides
the alternation-free modal µ-calculus for context-free processes, with linear complexity in the
size of the system’s representation.

The following theorems state that L(ωOPBA) is a Boolean algebra closed under con-
catenation.

Theorem II.3.5 (L(ωOPBA) is closed under intersection). Let L1 and L2 be ω-languages
recognized by two ωOPBA defined over the same alphabet Σ, with compatible precedence
matrices M1 and M2 and with s1 and s2 states respectively. Then L = L1 ∩ L2 is recognizable
by an ωOPBA with OPM M = M1 ∩ M2 and O(s1s2) states.

Proof. Let A1 = ⟨Σ,M1,Q1, I1,F1, δ1⟩ and A2 = ⟨Σ,M2,Q2, I2,F2, δ2⟩ be two ωOPBA
with L(A1) = L1 and L(A2) = L2 and with compatible precedence matrices M1 and M2.
Suppose, without loss of generality, that Q1 and Q2 are disjoint and do not contain {0,1,2}.

First, observe that, the two OPMs being compatible, at each move either the two au-
tomata perform the same type of move (push/shift/pop), or at least one of them stops without
accepting since its transition function is not defined.

An ωOPBA that recognizes L1∩L2 is defined in a similar way as for classical finite-state
Büchi automata; precisely, A = ⟨Σ,M = M1 ∩ M2,Q, I,F, δ⟩ where:

● Q = Q1 × Q2 × {0,1,2},
● I = I1 × I2 × {0},
● F = Q1 × Q2 × {2}
● the transition function δ ∶ Q × (Σ ∪ Q) → ℘(Q) is defined as follows, where

p1,q1, p2,q2 ∈ Q,a ∈ Σ:
– δpush(⟨p1, p2, x⟩,a) = {⟨r1, r2, y⟩ ∣ r1 ∈ δ1push(p1,a) ∧ r2 ∈ δ2push(p2,a)}
– δshift(⟨p1, p2, x⟩,a) = {⟨r1, r2, y⟩ ∣ r1 ∈ δ1shift(p1,a) ∧ r2 ∈ δ2shift(p2,a)}
– δpop(⟨p1, p2, x⟩, ⟨q1,q2, z⟩) = {⟨r1, r2, y⟩ ∣ r1 ∈ δ1pop(p1,q1)∧r2 ∈ δ2pop(p2,q2)}

and the third component of the states is computed as follows:
– if x = 0 and r1 ∈ F1 then y = 1
– if x = 1 and r2 ∈ F2 then y = 2
– if x = 2 then y = 0
– y = x otherwise.

Reading an input string, the automaton A simulates A1 and A2 respectively on the first
two components of the states, whereas the third component keeps track of the succession of
visits of the two automata to their final states: in particular its value is 0 at the beginning, then
switches from 0 to 1, from 1 to 2 and then back to 0, whenever the first automaton reaches
a final state and the other one visits a final state afterwards. This cycle is repeated infinitely
often whenever both the automata reach their final states infinitely many times along their
run.

Conversely, if an ω-word x does not belong to L1 ∩L2, then at least one of the runs ofA1
and A2 must either stop because the transition function of the automaton is undefined for the
given input or it does not visit infinitely often final states. Hence, A cannot have a successful
run on x and the word is rejected by A too.

Theorem II.3.6 (L(ωOPBA) is closed under union). Let L1 and L2 beω-languages recog-
nized by two ωOPBA defined over the same alphabet Σ, with compatible precedence matrices
M1 and M2 and with s1 and s2 states respectively. Then L = L1 ∪ L2 is recognizable by an
ωOPBA with OPM M = M1 ∪ M2 and O(∣Σ∣2(s1 + s2)) states.
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Proof. Let A1 and A2 be ωOPBAs accepting L1 and L2 over OPMs M1 and M2, re-
spectively. Without loss of generality we may assume M = M1 = M2 (otherwise one can
apply Statement II.3.1 increasing the number of states by a factor ∣Σ∣2). For i = 1,2, let
Ai = ⟨Σ,M,Qi, Ii,Fi, δi⟩. Then the ω-language L = L1 ∪ L2 is recognized by the ωOPBA A =
⟨Σ,M,Q = Q1∪Q2, I = I1∪I2,F = F1∪F2, δ⟩ whose transition function δ ∶ Q×(Σ∪Q)→ ℘(Q)
is the nondeterministic union of δ1 and δ2, defined by setting ∀p,q ∈ Q,a ∈ Σ:

δpush(q,a) = { δ1push(q,a) if q ∈ Q1
δ2push(q,a) if q ∈ Q2

, δshift(q,a) = { δ1shift(q,a) if q ∈ Q1
δ2shift(q,a) if q ∈ Q2

,

δpop(p,q) = { δ1pop(p,q) if p,q ∈ Q1
δ2pop(p,q) if p,q ∈ Q2

.

The above definition is well-posed since it applies to automata that share the same precedence
matrix, because they perform the same type of move (push/shift/pop) while reading the input
word.

Since the sets of states of the two automata are disjoint and Q is their union, then for
every x ∈ Σω there exists a successful run in A iff there exists a successful run of A1 on x or
a successful run of A2 on x.

Clearly, the number of states of A is ∣Q∣ = ∣Q1∣ + ∣Q2∣ and this concludes the proof,
recalling the possible factor ∣Σ∣2 implied by Statement II.3.1.

Theorem II.3.7 (Closure of L(ωOPBA) under complementation). Let M be a conflict-
free precedence matrix on an alphabet Σ. Let L be an ω-language on Σ that is recognized
by a nondeterministic ωOPBA with precedence matrix M and s states. Then the complement
of L w.r.t. LM (the language of all the words x ∈ Σω compatible with M) is recognized by an
ωOPBA with the same precedence matrix M and 2O(s2+∣Σ∣s log∣Σ∣s) states.

Proof. The proof follows to some extent the structure of the corresponding proof for
L(ωBVPA) [4], but it exhibits some relevant technical aspects which distinctly characterize
it; in particular, we need to introduce an ad-hoc factorization of ω-words due to the more
complex management of the stack performed by OPAs.

Let A = ⟨Σ,M,Q, I,F, δ⟩ be a nondeterministic ωOPBA with ∣Q∣ = s. Without loss of
generalityA can be considered complete with respect to the transition function δ, i.e. there is
a run of A on every ω-word on Σ compatible with M.

An ω-word w ∈ Σω compatible with M can be factored as a sequence of chains and
pending letters w = w1w2w3 . . . where either wi = ai ∈ Σ is a pending letter or wi = ai1ai2 . . .ain

is the body of the chain li[wi] f irsti+1 , where li denotes the last pending letter preceding wi in
the word and f irsti+1 denotes the first letter of word wi+1. Let also, by convention, a0 = # be
the first pending letter.

Such factorization is not unique, since a string wi can be nested into a larger chain having
the same preceding pending letter. The factorization is unique, however, if we additionally
require that the body wi has no prefix (including itself) uib such that li[ui]b is a chain; in fact,
in this case, as soon as a chain body with its context is identified after a pending letter, it
becomes part of the factorization and what follows is either the beginning of a new body or a
new pending letter.

For instance, for the word w = ⋖ a ⋖ c ⋗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b⋖ a ⋗
±

d ⋗
°

b . . ., with precedence relations

in the OPM a ⋗ b and b ⋖ d, two possible factorizations are w = w1bw3b . . . and w =
w1bw3w4b . . ., where b is a pending letter and #[w1]b = #[w1]b = #[ac]b, b[w3]b = b[w3d]b,
b[w3]d = b[a]d and b[w4]b = b[d]b are chains. The second factorization is the unique one
where each word wi has no prefix uib such that li[ui]b is a chain.
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Let x ∈ Σ∗ be the body of some chain a[x]b and let T(x) be the set of all triples (q, p, f ) ∈
Q×Q×{0,1} such that there exists a support q

x↝ p inA, and f = 1 iff the support contains a
state in F. Also let T be the set of all such T(x), i.e., T contains sets of triples identifying all
supports for some chain, and set PR to be the finite alphabet Σ∪T . A pseudorun for the word
w in A’s uniquely factorized as w1w2w3 . . . as stated above, is the ω-word w′ = y1y2y3 . . . ∈
PRω where yi = ai if wi is a pending letter, otherwise yi = T(wi).

For the unique factorization in the example above, then, w′ = T(ac) b T(a) T(d) b . . ..
The automaton recognizing the complement of L = L(A) w.r.t. LM can be built as an

“online composition” of a transducer ωOPBA B that computes the pseudorun corresponding
to an input word w, and a Büchi finite-state automaton BR that recognizes all the pseudoruns
of ω-words not accepted by A: while reading w, B outputs the pseudorun w′ of w online,
and the states of BR are updated accordingly. The automaton accepts if both B and BR reach
infinitely often final states.

In order to define BR we first define a nondeterministic Büchi finite-state automaton
AR = ⟨PR,QAR , IAR ,FAR , δAR⟩ over the alphabet PR whose language includes all pseudoruns
w′ of any words w ∈ L(A).

The states of AR correspond to the states of A, but are extended with a lookback symbol
that, in a correct pseudorun, represents the last pending letter of the input word read so far.
AR has all transitions corresponding to A’s push and shift transitions but is devoid of pop
edges (in fact it is a finite state automaton). In addition, for every S ∈ T it is endowed with
arcs labeled S which link, for each triple (q, p, f ) in S and a ∈ Σ̂ = Σ ∪ {#}, either the pair
of states ⟨a,q⟩, ⟨a, p⟩ if f = 0, or ⟨a,q⟩, ⟨a, p′⟩ if f = 1, where ⟨a, p′⟩ is a new final state
which takes into account the states in F met along the support q↝ p and which has the same
outgoing edges as ⟨a, p⟩.

Formally, QAR = Σ̂×(Q∪Q′), where Q′ = {q′ ∣ q ∈ Q}, IAR = {#}× I, FAR = Σ̂×(F ∪Q′).
The transition function of AR is defined as follows, where a ∈ Σ̂,q ∈ Q,q′ ∈ Q′,S ∈ T (δpush
and δshift are the transition functions of A):

● δ(⟨a,q⟩,b) = { ⟨b, δpush(q,b)⟩ if a ⋖ b
⟨b, δshift(q,b)⟩ if a ≐ b

● δ(⟨a,q⟩,S ) = {⟨a, p⟩ ∣ ⟨q, p,0⟩ ∈ S } ∪ {⟨a, p′⟩ ∣ ⟨q, p,1⟩ ∈ S }
● δ(⟨a,q′⟩,X) = δ(⟨a,q⟩,X), ∀X ∈ PR.

Notice that, given a set S ∈ T , the existence of an edge S between the pairs of states q, p
in the triples in S can be decided in an effective way.

The automaton AR built so far is able to parse all pseudoruns and recognizes all pseu-
doruns of ω-words recognized by A. However, since its moves are no longer completely
determined by the OPM M, it can also accept input words along the edges of the graph of A
that are not pseudoruns since they do not correspond to a correct factorization on PR. This
is irrelevant, however, since the aim of the proof is to devise an automaton recognizing the
complement of L(A), and all the words in LM∖L(A) are parsed along pseudoruns, which are
not accepted by AR. If one gives as input words only pseudoruns (and not generic words on
PR), then they will be accepted by AR if the corresponding words on Σ belong to L(A), and
they will be rejected if the corresponding words do not belong to L(A) (see Figure II.3.4).
Then we can construct a deterministic Büchi automaton BR that accepts the complement of
L(AR), on the alphabet PR [36]. If BR receives only input words on PR that are pseudoruns,
then it will accept only words in LM ∖ L(A).

Now we define a nondeterministic transducer ωOPBA B which on reading w generates
online the pseudorun w′. The transducer B nondeterministically guesses whether the next
input symbol is a pending letter, the beginning of a chain appearing in the factorization of w,
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PRω 

L(AR)

PA

PSM

Figure II.3.4: Containment relations for languages, where PS M = {w′ ∈ PRω ∣
w′ is the pseudorun in A for w ∈ LM} and PA = {w′ ∈ PRω ∣ w′ is the pseudorun in A for w ∈
L(A)}.

or a symbol within such a chain, and uses stack symbols Z, B, or elements in T , respectively,
to distinguish these three cases.

Whenever the automaton reads a pending letter it outputs the same letter, whereas when it
completes the recognition of a chain of the factorization, performing a pop move that removes
from the stack an element with state B, it outputs the set of all the pairs of states which
define a support for the chain. Thus, the output w′ produced by B is unique, despite the
nondeterminism of the translator.

Formally, the transducer ωOPBA B = ⟨Σ,M,QB, IB,FB,PR, δB, ηB⟩ is defined as follows:
● QB = {Z,B} ∪ T , i.e., a state in QB represents the guess whether the next symbol to

be read is a pending letter (Z), the beginning of a chain (B), or a letter within such a
chain wi (T ∈ T ). In the third case, T contains all information necessary to correctly
simulate the moves of A during the parsing of the chain wi of w, and compute the
corresponding symbol yi of w′. In particular, T is a set comprising all triples (r,q, ν)
where r represents the state reached before the last push move, q represents the
current state reached by A, and ν is a bit that reminds whether, while reading the
chain, a state in F has been encountered (as in the construction of a deterministic
OPA on words of finite length, it is necessary to keep track of the state from which
the parsing of a chain started, to avoid erroneous merges of runs on pop moves).

● IB = FB = {B,Z}.
● The transition function and the output function are defined as the union of three pairs

of functions. Let a ∈ Σ,T,S ∈ T .
The push pair ⟨δBpush, ηBpush⟩ ∶ QB ×Σ→ ℘F(QB ×PR∗) is defined as follows, where
the symbols after ↓ denote the output.

– Push of a pending letter.

⟨δBpush, ηBpush⟩ (Z,a) = {B ↓ a, Z ↓ a}

– Push at the beginning of a chain of the factorization.

⟨δBpush, ηBpush⟩ (B,a) = {T ↓ ε}

where T = {⟨q, p, ν⟩ ∣ q ∈ Q, p ∈ δpush(q,a), ν = 1 iff p ∈ F}
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– Push within a chain of the factorization.

⟨δBpush, ηBpush⟩ (T,a) = {S ↓ ε} where

S = {⟨q, p, ν⟩ ∣ ∃⟨r,q, ξ⟩ ∈ T s.t. ν = [ ξ if p ∉ F
1 if p ∈ F , p ∈ δpush(q,a)}

The shift pair ⟨δBshift, ηBshift⟩ ∶ QB × Σ→ ℘F(QB × PR∗) is defined as follows:
– Pending letter.

⟨δBshift, ηBshift⟩ (Z,a) = {B ↓ a, Z ↓ a}

– Shift move within a chain of the factorization.

⟨δBshift, ηBshift⟩ (T,a) = {S ↓ ε} where

S = {⟨r, p, ν⟩ ∣ ∃⟨r,q, ξ⟩ ∈ T s.t. ν = [ ξ if p ∉ F
1 if p ∈ F , p ∈ δshift(q,a)}

The pop pair ⟨δBpop, ηBpop⟩ ∶ QB × QB → ℘F(QB × PR∗) is defined as follows.
– Pop at the end of a chain of the factorization.

⟨δBpop, ηBpop⟩(T,B⟩) = {B ↓ R, Z ↓ R} where

R = {⟨r, p, ν⟩ ∣ ∃⟨r,q, ξ⟩ ∈ T s.t. p ∈ δpop(q, r), ν = [ ξ if p /∈ F
1 if p ∈ F }

– Pop within a chain of the factorization11.

⟨δBpop, ηBpop⟩(T,S ⟩) = {R ↓ ε} where

R = {⟨t, p, ν⟩ ∣ ∃⟨r,q, ξ⟩ ∈ T,∃⟨t, r, ζ⟩ ∈ S s.t. p ∈ δpop(q, r),

ν = [ ξ if p /∈ F
1 if p ∈ F }

An error state is reached in any other case.
We conclude the construction by computing the size of the resulting automaton, which

is an “online composition” of B and BR. The Büchi finite-state automaton AR has O(∣Σ∣s)
states and hence the automaton BR has 2O(∣Σ∣s log∣Σ∣s) states [40, 36]; whereas the transducer B
has ∣QB∣ = 2O(s2) states. Thus the ωOPBA has 2O(s2+∣Σ∣s log∣Σ∣s) states.

To prove that B produces all A’s pseudoruns –whether accepting or not– observe, first,
that its guess about reading a pending letter or the beginning of a chain belonging to the
unique factorization defined above, or reading a symbol within such a chain, is essentially the
same as the one described in the proof of Lemma II.3.3, where the recognition of a maximal
chain is replaced by the recognition of a chain with no prefixes that are chains; thus, wrong
guesses are resolved at the time of a pop move (e.g., a pop move is not defined on a first state

11Remember that we consider only chains having no prefixes that are chains.
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of type Z). Furthermore, pending letters, when correctly guessed as such, are output as soon
as they are read (the incorrectly guessed ones belong to runs that will be aborted); elements
of T are output only when a chain of the factorization is recognized, i.e., the transition is
defined on a pair of states whose second component is B, which separates these moves from
the pop ones occurring within a chain of the factorization; the set T output during the move
records all pairs of states that can be the beginning and the end of a support of the recognized
chain. Finally the input string is accepted iff infinitely many times either pending letters
are read or chains of the factorization are recognized, or both facts occur, i.e., the string is
compatible with the OPM, and the produced output is the pseudorun associated with the input
by definition, independently on whether the original A’s run was accepting, i.e., infinitely
many times sets of triples with ν = 1 have been output, or not.

Let us finally consider the case of concatenation between a finite length OPL and a lan-
guage in L(ωOPBA). For classical families of automata (on finite or infinite length words) the
closure with respect to concatenation is traditionally proved by building an automaton which
simulates the moves of the first automaton while reading the first word of the concatenation
and –whether deterministically or not– once it reaches some final state, it switches to the ini-
tial states of the second one. This natural approach has already been proved ineffective for
OPLs in the case of finite-length words since the structure of two concatenated strings is not
necessarily the concatenation of the two structures, so that the actions of the second automa-
ton cannot be independent from those of the previous one ([18] provides a constructive proof
of the closure of finite-length OPLs w.r.t. concatenation in terms of generating grammars);
in fact the lack of the # delimiter between the two strings prevents the typical look-ahead
mechanisms which drives the operator-based parsing; thus, the stack cannot be emptied by
the normal sequence of pop moves before beginning the parse of the new string. In the case
of ω-languages the difficulty is further exacerbated by the fact the automaton might never be
able to empty the stack, as e.g., in the case of a language L1 ⊆ {a,b}∗ with a ⋖ a, b ⋖ a,
concatenated with L2 = {aω}. Notice also that, after reading the first finite word in the con-
catenation, it would not be possible to determine whether this word might be accepted by
–possibly nondeterministically– guessing the position of a potential delimiter #, since this
check would require to know the states already reached and piled on the stack, which are not
visible without emptying the stack itself.

To overcome the above difficulties we follow this approach:
● We give up deterministic parsing. In fact the different computational power between

deterministic and nondeterministic automata is a distinguishing property when mov-
ing from finite to infinite length languages. Thus, we nondeterministically guess the
point of separation between the first finite word and the second infinite one.

● To afford the second major problem, i.e., the lack of enough knowledge to decide
whether the guessed first word would be accepted by the corresponding automaton,
we use A#OPAs introduced in Section II.3.1.

The following theorem exploits the above approach. Its proof differs significantly from
the non-trivial proof of closure under concatenation of OPLs of finite-length words [18],
which, instead, can be recognized deterministically.

Theorem II.3.8 (L(ωOPBA) is closed under concatenation). Let L1 ⊆ Σ∗ be a language of
finite words recognized by an OPA with OPM M1 and s1 states. Let L2 ⊆ Σω be anω-language
recognized by a nondeterministic ωOPBA with OPM M2 compatible with M1 and s2 states.
Then the concatenation L1 ⋅ L2 is also recognized by an ωOPBA with OPM M ⊇ M1 ∪M2 and
O(s2

1 + s2
2) states.

Proof. Let A1 be a nondeterministic OPA on (Σ,M1) that recognizes L1 and let A2 =
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⟨Σ,M2,Q2, I2,F2, δ2⟩ be a nondeterministic ωOPBA with OPM M2 compatible with M1 that
accepts L2. Suppose, without loss of generality, that the sets of states of A1 and A2 are
disjoint.

To define an automaton ωOPBA A that accepts L1 ⋅ L2, we first build a A#OPA A′1 =
⟨Σ,M1,Q1, I1,F1, δ1⟩ such that L

C#
(A′1) = L(A1).

The automaton A can recognize the first finite words in the concatenation L1 ⋅ L2 by
simulatingA′1: reading the input string, ifA′1 reaches a final state at the end of a finite-length
prefix, then it belongs to L1 and A immediately starts the recognition of the second infinite
string without the need to perform any pop move to empty the stack. From this point onwards,
then, A checks that the remaining infinite portion of the input belongs to L2, behaving as the
ωOPBA A2.

The strings belonging to the concatenation of two OPLs, however, may contain new
chains that span over the two concatenated words. Consider, for instance, the concatenation
of L1 = {ambn ∣ m ≥ n ≥ 1} with L2 = {c+bω}; notice that any OPA recognizing L1 must
be defined on an OPM such that a ⋖ a, a ≐ b, b ⋗ b to be able to compare the occurrences
of a with those of b; assume also the further precedence relations a ⋖ c, c ⋖ c, c ⋗ b (such
relations could be mandated, e.g., by other components of either language not included here
for simplicity). An automaton recognizing L1 ⋅ L2 can deterministically find the borderline
between words x ∈ L1, and y ∈ L2; after finishing reading x it will have on its stack m − n
remaining as; however, since a ⋖ c it cannot empty the stack and must push all cs on top of
the as. Only when receiving the first b, it will pop all cs until the top of the stack will store
an a. Since a ≐ b, and b ⋗ b the next action must consist in shifting the b by replacing the
topmost a and then popping it, thus consuming part of the stack left by the analysis of x; in
other words, it must produce the support of a chain a[ab]b, whose left part belongs to L1 and
whose right part belongs to L2.

Therefore, A cannot merely read the second infinite word performing the same transi-
tions as A2, but it can still simulate this ωOPBA by keeping in the states some summary
information about its runs. In this way, while reading the second word in the concatenation,
wheneverA has to reduce a chain that extends to the previous word in L1 and, therefore, must
perform a pop move of a symbol in the portion of the stack piled up during the parsing of the
first word, it can restore the state that A2 would instead have reached, resuming therefrom as
in a run of A2.

Precisely, A is defined as the tuple ⟨Σ,M,Q, I,F, δ⟩ where:
● M ⊇ M1 ∪ M2 and may be supposed to be a complete matrix, for instance assigning

arbitrary precedence relations to the empty entries, so that the strings in the concate-
nation of languages L1 and L2 are compatible with M.

● Q = Q1 ∪ Q2 ∪ Q2 × (Q2 ∪ {−}), i.e. the set of states of A includes the states of A′1
and A2, along with the states of A2 extended with a second component. The first
component is the state of Q2 that A2 would reach in its corresponding computation
on the second word of the concatenation, and the second one represents the state
of the symbol that is on the top of the stack when the current input letter is read in
this run of A2. Storing this component is necessary to guarantee that, whenever the
automaton A has to perform a pop move that removes symbols that have been piled
on the stack during the recognition of the first word in the concatenation, it is still
possible to compute the state that A2 would have reached instead.
This second component is denoted ′−′ if all the preceding symbols in the stack have
been piled up during the parsing of the first word of the concatenation (thus the stack
of A2 is empty).

● I = I1 ∪ {⟨q0,−⟩ ∣ q0 ∈ I2} if ε ∈ L1; I = I1 otherwise
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● F = F2 ∪ F2 × (Q2 ∪ {−})
● The transition function δ ∶ Q× (Σ∪Q)→ ℘(Q) is δ = δ1 ∪ δ2 ∪ δjoin and is defined

as the union of three functions: the transition functions of A′1 and A2 by which it
simulates the first automaton on the first word of the concatenation and the second
automaton on the second one, and a function δjoin that handles the nondeterminis-
tic transition from the simulation of the first automaton to the second one and the
parsing of the suffix (within the second word of the concatenation) of the chains that
span over the two words.
Function δjoin is defined as follows: let c ∈ Σ, p ∈ Q1,q,q1,q2,q3 ∈ Q2, r ∈ (Q2∪{−}).
The push transition function δjoin

push ∶ Q × Σ→ ℘(Q) is defined by:

– δ
join
push(p, c) = {⟨q0,−⟩ ∣ q0 ∈ I2, if ∃p f ∈ F1 s.t. δ1push(p, c) ∋ p f },

i.e., A nondeterministically enters the initial states of A2 after the recognition
of a word in L1

– δ
join
push(⟨q, r⟩, c) = δ2push(q, c),

i.e., A simulates a push move of A2, reaching a state in Q2, whenever it starts
to recognize a chain in the second word of the concatenation (which thus does
not extend to the first word).

The shift transition function δjoin
shift ∶ Q × Σ→ ℘(Q) is defined by:

– δ
join
shift(p, c) = {⟨q0,−⟩ ∣ q0 ∈ I2, if ∃p f ∈ F1 s.t. δ1shift(p, c) ∋ p f },

i.e., A nondeterministically enters the initial states of A2 after the recognition
of a word in L1

– δ
join
shift(⟨q1,−⟩, c) = {⟨q2,q1⟩ ∣ q2 ∈ δ2push(q1, c)},

i.e., A simulates the push move induced by the precedence relation # ⋖ c that,
in the corresponding run of A2, starts the recognition of a chain that is a prefix
of the second word of the concatenation

– δ
join
shift(⟨q1,q2⟩, c) = {⟨q3,q2⟩ ∣ q3 ∈ δ2shift(q1, c)},

i.e., A performs a shift move within a chain that spans over the two words of
the concatenation.

The pop transition function δjoin
pop ∶ Q × Q→ ℘(Q) is defined by:

– δ
join
pop(⟨q,−⟩, p) = ⟨q,−⟩,

i.e, A concludes to recognize a chain, at the end of the first word of the con-
catenation, induced by the precedence relations with the letters of the second
string, and consumes the corresponding stack symbols piled while reading the
first word

– δ
join
pop(⟨q1,q2⟩, p) = {⟨q3,−⟩ ∣ q3 ∈ δ2pop(q1,q2)},

i.e., whenever the precedence relations induce a merge of the chains of the
words of the concatenation, A restores the state q3 of A2 from which a run of
A2 will continue

– δ
join
pop(q1, ⟨q2, r⟩) = {⟨q3, r⟩ ∣ q3 ∈ δ2pop(q1,q2)},

i.e., A completes the recognition of a chain that belongs to a composed chain
spanning over the two words of the concatenation.

One can verify that, after having simulated A′1 and nondeterministically guessed the end
of a word in L1, A proceeds with the simulation of A2 and accepts the remaining ω-string iff
it belongs to L2. In fact, the projection on the first component of the states visited along A’s
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run on the second word of the concatenation identifies a successful run of A2 on the same
word.

To summarize, Table II.3.2 displays the complexities of the various constructions to ob-
tain the closure w.r.t. Boolean operations and concatenation; it also compares them with the
corresponding complexities for VPLs showing that the only main difference occurs in the
case of concatenation.

L(ωOPBA) L(ωBVPA)
L1 ∩ L2 O(s1s2) O(s1s2)
L1 ∪ L2 O(∣Σ∣2(s1 + s2)) s1 + s2

¬L1 2O(s2
1+∣Σ∣s1 log∣Σ∣s1) 2O(s2

1)

L3 ⋅ L1 O(s2
1 + s2

3) s1 + s3

Table II.3.2: Size of state sets of languages recognizing L1 ∩ L2, L1 ∪ L2, ¬L1 and L3 ⋅ L1.
The results on ωOPBAs have been proved, respectively, in Theorem II.3.5, Theorem II.3.6,
Theorem II.3.7 and Theorem II.3.8. The complexity results on ωBVPAs derive from the
constructions and proofs of their closure properties shown in [4].

II.3.3. Closure properties of the other classes of ωOPLs. The class of languages rec-
ognized by ωDOPMAs is a Boolean algebra. The other classes are closed only under union
and intersection.

Theorem II.3.9 (L(ωDOPMA) is a Boolean algebra). Let L1 and L2 be ω-languages
that are recognized by two ωDOPMAs defined over the same alphabet Σ, with compatible
precedence matrices M1 and M2 and s1 and s2 states respectively. Then L1 ∩ L2 (resp. the
complement of L1 w.r.t. LM , or L1∪L2) is recognized by anωDOPMA with OPM M = M1∩M2
and s1s2 (resp. s1, or ∣Σ∣4s1s2) states.

Proof. Let A1 = ⟨Σ,M1,Q1,q01,T1, δ1⟩ and A2 = ⟨Σ,M2,Q2,q02,T2, δ2⟩ be ωDOPMAs
recognizing languages L1 and L2. Assume without loss of generality that their transition
function is total (otherwise, it can be naturally completed once the set of states is extended
with an “error” state).

An ωDOPMA A with OPM M = M1 ∩ M2 recognizing L = L1 ∩ L2 may be defined
adopting the usual product construction for ω-regular automata, requiring that a successful
path in A corresponds to paths that visit infinitely often sets in the table T1 and T2. More
precisely let A = ⟨Σ,M,Q,q0,T , δ⟩ where

● Q = Q1 × Q2,
● q0 = (q01,q02),
● Define πi (i = 1, 2) as the projection from Q1 × Q2 on Qi, that can also be naturally

extended to define projections on paths of the automata, and let
T = {P ⊆ Q1 × Q2 ∣ π1(P) ∈ T1 ∧ π2(P) ∈ T2},

● The transition function δ is the product of δ1 and δ2 (see Definition II.3.1).
Let ρ be a successful path ofA, starting in the initial state q0 = (q01,q02): since it is accepting,
the set In f (ρ) = P ∈ T . By definition of T , the paths ρ1 and ρ2 that are the projection of ρ
on the set of states of A1 and A2, respectively, have In f (ρ1) = π1(P) ∈ T1 and In f (ρ2) =
π2(P) ∈ T2: hence ρ1 and ρ2 are successful paths for the two automata, and x belongs to
L(A1) ∩ L(A2).

Let now x ∈ L(A1) ∩ L(A2); thus, x labels two successful paths ρ1 and ρ2 of the two
automata, i.e., In f (ρ1) ∈ T1 and In f (ρ2) ∈ T2. The path ρ ofA which visits the pairs of states
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of the two automata, performing the same type of move they perform for each input symbol,
is defined so as π1(In f (ρ)) = In f (ρ1) ∈ T1 and π2(In f (ρ)) = In f (ρ2) ∈ T2. Therefore, by
definition of T , ρ is a successful path for A.

To recognize the complement of L1, given that A is deterministic and its transition func-
tion is total, it is clearly sufficient to build the ωDOPMA A′ = ⟨Σ,M1,Q1,q01,℘(Q1)∖ T1, δ⟩
whose table is the complement of T1 w.rt. ℘(Q1).

To obtain the closure w.r.t. union, we can assume that M1 = M2 w.l.o.g. (otherwise one
can apply Statement II.3.1, increasing the number of states of each automaton of a factor ∣Σ∣2)
and apply De Morgan’s law. The number of states of the resulting automaton is ∣Q1∣ ⋅ ∣Q2∣
and this concludes the proof, recalling the factor ∣Σ∣2 ⋅ ∣Σ∣2 implied by the possible aplication
of Statement II.3.1. Notice that, if one considers automata with compatible but not equal
matrices, De Morgan’s law could not be applied: in fact, the equality

L1 ∪ L2 = LM1∩M2 ∖ [(LM1 ∖ L1) ∩ (LM2 ∖ L2)]

does not hold, unless M1 = M2.

Proposition II.3.10. Let L1 and L2 be ω-languages recognized by two ωOPBEA (resp.
ωDOPBA, ωDOPBEA) defined over the same alphabet Σ, with compatible precedence ma-
trices M1 and M2 and with s1 and s2 states respectively. Then L = L1 ∩ L2 is recognized by
an ωOPBEA (resp. ωDOPBA, ωDOPBEA) with OPM M = M1 ∩ M2 and O(s1s2) states.

Proof. For ωOPBEA, we can assume without loss of generality that the the automaton
is in normal form with partitioned sets of states, (see Definition II.1.5), and apply the same
construction as for ωOPBA (see Theorem II.3.5). The use of automata with partitioned sets
of states guarantees that a run of A on an ω-word reaches infinitely often a final state with
empty stack iff bothA1 andA2 have a run for the word which traverses infinitely often a final
state with empty stack.

For ωDOPBA and ωDOPBEA, the proof derives from the fact that, if A1 and A2 are
deterministic, then the resulting intersection automaton is deterministic too.

Proposition II.3.11. Let L1 and L2 be ω-languages recognized by two ωOPBEA (resp.
ωDOPBA, ωDOPBEA) defined over the same alphabet Σ, with compatible precedence ma-
trices M1 and M2 and s1 and s2 states respectively. Then L = L1 ∪ L2 is recognized by an
ωOPBEA (resp. ωDOPBA, ωDOPBEA) with OPM M = M1 ∪ M2 and O(∣Σ∣2s1s2)) (resp.
O(∣Σ∣4s1s2)) states.

Proof. The proof for ωOPBEA is analogous to the proof of closure under union for
ωOPBA(see Theorem II.3.5).

For the determistic models, the construction must be refined. Let A1 and A2 be ωDOPBA
accepting L1 and L2 over OPMs M1 and M2, respectively. As usual, we assume that that both
transition functions are complete and M1 = M2 (otherwise one can apply Statement II.3.1,
increasing the number of states of a factor ∣Σ∣2). Let Ai = ⟨Σ,M,Qi,q0i,Fi, δi⟩, for i = 1,2. An
ωDOPBA (resp. ωDOPBEA) A3 which recognizes L1 ∪ L2 is then defined by adopting the
usual product construction for regular automata: A3 = ⟨Σ,M,Q3,q03,F3, δ3⟩ where:

● Q3 = Q1 × Q2,
● q03 = (q01,q02),
● F3 = F1 × Q2 ∪ Q1 × F2
● and the transition function is the product of δ1 and δ2.

The number of states of A3 is given by the product ∣Q1∣ ⋅ ∣Q2∣ and this concludes the proof,
recalling the factor ∣Σ∣2 ⋅ ∣Σ∣2 implied by Statement II.3.1.

Theorem II.3.12 (ωDOPBA, ωOPBEA, ωDOPBEA are not closed under complement).
Let L be an ω-language accepted by an ωDOPBA (resp. ωOPBEA, or ωDOPBEA) with
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OPM M on alphabet Σ. There does not necessarily exist an ωOPBEA (resp. ωOPBEA, or
ωDOPBEA) recognizing the complement of L w.r.t. LM .

Proof. Language La∞ can be recognized by an ωDOPBA with an OPM M (shown, for
instance, in Figure II.2.2), but there’s no ωDOPBA that can recognize the complement of
this language w.r.t. LM , i.e. the language La−finite, as mentioned in Section II.2.2. The same
argument on La∞ holds also for ωDOPBEAs.

Finally, as regards ωOPBEAs, Lωabseq is recognized by the ωOPBEA with OPM M and
state graph presented in Section II.2.2. However, no ωOPBEA can recognize the complement
of this language w.r.t. LM . Such an ωOPBEA, in fact, should have OPM M so that no word in
Lωabseq can be accepted. The precedence relation Maa = {⋖} (which is necessary to verify that
in a sequence of type (akbh)ω there is at least one substring with k ≠ h ), however, prevents
an ωOPBEA from accepting the word aω, which belongs to the complement of Lωabseq w.r.t.
LM , since it implies that, while reading the word, the ωOPBEA can never reach a state with
empty stack.

Theorem II.3.13 (ωDOPBA, ωOPBEA, ωDOPBEA, and ωDOPMA are not closed un-
der concatenation). Let L2 be an ω-language accepted by an ωOPBEA (resp. ωDOPBA,
ωDOPBEA, or ωDOPMA) with OPM M on alphabet Σ and let L1 ⊆ Σ∗ be a language (of
finite words) recognized by an OPA with a compatible precedence matrix. The ω-language
defined by the concatenation L1 ⋅ L2 is not necessarily recognizable by an ωOPBEA (resp.
ωDOPBA, ωDOPBEA, or ωDOPMA).

Proof. For ωDOPBAs, let Σ = {a,b} and consider the language La−finite, which can
be seen as the concatenation La−finite = L1 ⋅ L2 of a language of finite words L1 = {a,b}∗,
which can be clearly recognized by an OPA, and an ω-language L2 = {bω}, which can be
recognized by an ωDOPBA, with compatible precedence matrices. Since language La−finite
cannot be recognized by an ωDOPBA, then the class of languages L(ωDOPBA) is not closed
w.r.t. concatenation.

Given Σ = {c, r}, the language Lrepbsd cannot be recognized by an ωOPBEA (respectively
ωDOPBEA, or ωDOPMA), as shown in Section II.2.2. Consider the OPA that accepts the
language L1 = Σ∗ of words of finite length whose OPM is the same as the precedence ma-
trix depicted in Figure II.2.3. These words have necessarily a finite number of pending calls,
since they have finite length. Moreover, let A2 be an ωOPBEA (respectively ωDOPBEA,
or ωDOPMA) that recognizes the ω-language LωDyck-pr(c,r) and which is depicted in Fig-
ure II.2.3. The concatenation ω-language L1 ⋅ LωDyck-pr(c,r) is exactly the set of ω-words with
a finite number of pending calls, i.e. Lrepbsd. Hence, the class of languages L(ωOPBEA)
(respectively L(ωDOPBEA), or L(ωDOPMA)) is not closed w.r.t. concatenation.

II.4. Monadic Second-order Logic characterization of ωOPLs. We finally provide a
characterization of ωOPLs in terms of a MSO logic which is interpreted over infinite words.
As usual, we focus our attention on L(ωOPBA), the most general class of ωOPLs.

We adopt the same conventions and notations as in Section I.4, and extend the formula
evaluation over ω-strings in the natural way. To distinguish the infinite case from the finite
one, we will use symbol ⊧ω instead of ⊧. Given an OP alphabet (Σ,M) and a MSO formula ϕ,
we denote the language of all strings w ∈ Σω such that #w ⊧ω ϕ by Lω(ϕ) = {w ∈ Σω ∣ #w ⊧ω
ϕ}.

Example 10 (Managing interrupts). Consider again the system that manages interrupts
described in Example 8. The same rules enforced by the automaton of Figure II.1.2 are also
formalized by the following sentences.

● All int2 are eventually served by a corresponding serve2:

∀x (int2(x)⇒ ∃y(serve2(y) ∧ (y = x + 1 ∨ x↷ y))).
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● Lower priority interrupts are not accepted when a higher priority one is pending:

∀x, y (int2(x) ∧ serve2(y) ∧ x↷ y⇒ ∀k(x < k < y⇒ ¬int1(k))).

As another example consider the “weak fairness requirement” also mentioned in Ex-
ample 8 which states that after a first calla not matched by reta but interrupted by a int1 or
int2, a second calla cannot be interrupted by a new lower priority interrupt int1 (but can still
be interrupted at any time by higher priority ones): the sentence below formalizes such a
constraint.

¬∃x1,x2(x1 < x2 ∧ calla(x1) ∧ calla(x2)∧
∀x3(x1 ≤ x3 ≤ x2 ∧ calla(x3)⇒ ¬∃y3(reta(y3) ∧ (y3 = x3 + 1 ∨ x3 ↷ y3)))∧

∃z1, z2((int1(z1) ∨ int2(z1)) ∧ int1(z2) ∧
2

⋀
i=1

(zi = xi + 1 ∨ xi ↷ zi)))

Theorem II.4.1. Let (Σ,M) be an OP alphabet. L is accepted by a nondeterministic
ωOPBA A over (Σ,M) if and only if there exists an MSO sentence ϕ such that L = Lω(ϕ).

The construction of a nondeterministic ωOPBA equivalent to an MSO formula is identi-
cal to the one given for finite strings.

The converse construction also follows essentially the same path as in the case of finite-
length languages; thus, we only point out the few relevant differences w.r.t. the construction
of Section I.4. Formula ϕ is defined as

ϕ ∶=
∃A0,A1, . . . ,AN

∃B0,B1, . . . ,BN

∃C0,C1, . . . ,CN

⎛
⎝⋁qi∈I

Starti ∧ ϕδ ∧ ϕunique ∧ ⋁
q f ∈F

Accept f
⎞
⎠
, (II.4.1)

where Starti si defined as in Section I.4, and Accept f is a shortcut representing the Büchi
acceptance condition (a final state is reached infinitely often):

Accept f ∶= ∀x∃y(x < y ∧ y ∈ Q f ).

Formula ϕδ encodes the nondeterministic transition functions of the automaton and is ob-
tained from formula ϕδpush ∧ ϕδshift ∧ ϕδpop defined in Section I.4, by replacing expressions as
qk = δ(. . . ) by expressions as qk ∈ δ(. . . ). Finally, formula ϕunique is defined as the conjunc-
tion of the following formulae:

ϕuniqueA ∶= ∀x
N

⋀
i=0

⎛
⎝

x ∈ Ai ⇒ ¬
N

⋁
j=0

( j ≠ i ∧ x ∈ A j)
⎞
⎠

ϕunique next ∶= ∀x, y
N

⋀
k=0

⎛
⎝

Nextk(x, y)⇒ ¬⋁
j≠k

Next j(x, y)
⎞
⎠

Such formula was not necessary in the finite case because it was implied by the determinism
of the automaton.

The proof that formula ϕ is satisfied by all and only the words accepted by A is again
based on Lemmata I.4.3 and I.4.4, but we need some more properties to cope with infinite
words.

Anyω-word w ∈ Σω compatible with M can be factored, as in the proof of Theorem II.3.7,
as a sequence w = w1w2w3 . . . where either wi ∈ Σ is a pending letter, or wi is the body of the
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chain ai[wi]bi , where ai is the last pending letter before wi and bi is the first symbol of wi+1.
A similar factorization holds for a finite word #w without end delimiter. We denote by P the
set of positions in a (finite or infinite) string w that correspond to pending letters and by E the
set of positions of the right delimiter of the chains of the factorization. These two sets are not
necessarily disjoint, and EP is their union.

z ∈ P ∶= ∀x, y (x < z < y ∧ x↷ y⇒ #(y))
z ∈ E ∶= ∃x (x ∈ P ∧ x↷ z)

z ∈ EP ∶= z ∈ P ∨ z ∈ E

Any prefix of an infinite string w which ends in an EP position of w is called EP-prefix of w.
Let us define

ψi,k(A0, . . . ,AN ,B0, . . .BN ,C0, . . . ,CN) ∶= Starti ∧ ϕ′δ ∧ Finalk

where

Finalk ∶= ∃y∃e ( y ∈ Qk ∧ y ≤ e ∧ e ∈ EP ∧ ∀z(y ≤ z ∧ z ∈ EP⇒ z = e))

and ϕ′δ is as ϕδ except for the formula ϕδpop , where the constraint ¬#(y) is conjuncted to the
antecedent of ϕδpop f w , and ϕδpop bwB and ϕδpop bwC are replaced by the unique formula

ϕpop bw ∶= ∀x, z, v, y
N

⋀
k=0

⎛
⎜
⎝

x ∈ Bk ∧ v ∈ Ck

∧
¬#(y) ∧ Tree(x, z, v, y)

⇒
N

⋁
i=0

N

⋁
j=0

⎛
⎜
⎝

Treei, j(x, z, v, y)
∧

δpop(qi,q j) ∋ qk

⎞
⎟
⎠

⎞
⎟
⎠

We will interpret formula ψi,k over finite strings. More precisely, let w′ be an EP-prefix of
a string w ∈ Σω. It is w ⊧ω ϕ if and only if there exist an initial state qi, a final state q f , and an
assignment A0, . . . ,CN such that w′ ⊧ ψi, f (A0, . . . ,CN) for an infinite number of EP-prefixes
w′ of w. In this case, a position x in a prefix w′ may start a chain that goes beyond the end of
w′, hence in such cases x is in Bk in the assigment satisfying w ⊧ω ϕ but w′ /⊧ω ϕpop bwB. This
is the reason why we replace the backward formulae of ϕδpop in ϕ′δ.

For any assignment for A0, . . . ,CN , it is w′ ⊧ ψi,k(A0, . . . ,CN) if and only if there exists a
run ofA for w′ beginning from state qi that visits state qk somewhere after the last EP position
before ∣w′∣. The run can be built reasoning as in Lemmata I.4.3 and I.4.4 within the chains of
the factorization, and using formulae ϕδpush and ϕδshift for the positions of pending letters. The
properties corresponding to states qi and qk are provided by formulae Starti and Finalk. If w′

and w′′ are EP-prefixes of w and both satisfy ψi,k with the same assignment to A0, . . . ,CN ,
then the corresponding runs built with such a construction are one the prefix of the other.

Hence w ⊧ω ϕ if and only if there exist infinitely many (finite) runs of A on EP-prefixes
of w, each of them beginning from qi and visiting the same final state q f somewhere after its
last EP position; such runs are all prefixes of the same infinite run ρ.

Furthermore, since there is a move in ρ that reaches q f while reading the suffix of each
of those EP-prefixes after its last EP position, then ρ traverses infinitely often q f , and hence
ρ is accepting for A.

Symmetrically, one can prove that if there exists an accepting run ρ for an ω-string w in
A, then w ⊧ω ϕ.

II.5. Concluding remarks. In this paper we have supplied a number of results about
OPLs which, together with previous recent and less recent ones, qualify OPLs as the largest
class of deterministic context-free languages that enjoy all of the following basic properties
which have a strong impact on various types of practical applications, spanning from parsing
to model checking:
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● Local parsability: this property, not pursued in this paper, allows for realizing simple
and efficient parallel and/or incremental algorithms [7, 6];

● Closure under all main language operations –Boolean ones, concatenation, Kleene *
and others [18];

● Automata-theoretic and Monadic Second Order logic characterization;
● Extension of all above properties to the case of ω-languages, i.e., languages consist-

ing of infinite-length strings, with the noticeable and typical exception of the lack of
equivalence between deterministic and nondeterministic automata –under the Büchi
acceptance condition.

As for the complexity of the constructions used to prove our results we have shown that
they are in general of the same order as those of corresponding constructions for less powerful
language families –typically, VPLs; the few cases of different complexity have been pointed
out in Table II.3.2.

This fairly complete foundational characterization of OPLs can now ignite –and partially
already did– further research along several directions. On the one side we are developing
practical tools exploiting the above properties both in parsing and in automatic verification;
on the other side we envisage many interesting special cases of OPLs motivated by different
possible applications.

For instance, we are investigating the use of logic formalisms simpler than MSO logic
to characterize suitable subclasses of general OPLs, in the same vein as it has been done for
regular languages [15], VPLs [2] and for various cases of tree-languages [1, 10]; a first result
on this respect is that free languages, a subclass of OPLs originally motivated by grammar
inference [19, 20] can be defined in terms of a first-order logic rather than a second order
one [27].

We are also investigating new, less usual application fields for OPLs, or suitable sub-
classes thereof, beyond the traditional field of programming languages, e.g., in the direction
suggested by Examples 5, 8 and others not reported here which are in the same vein as the
application indicated for VPLs but considerably extend its scope.
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