13,587 research outputs found

    Kinematic Design, Analysis and Simulation of a Hybrid Robot with Terrain and Aerial Locomotion Capability

    Get PDF
    Having only one type of locomotion mechanism limits the stability and locomotion capability of a mobile robot on irregular terrain surfaces. One of the possible solution to this is combining more than one locomotion mechanisms in the robot. In this paper, robotic platform composed of a quadruped module for terrain locomotion and quadrotor module for aerial locomotion is introduced. This design is inspired by the way which birds are using their wings and legs for stability in slopped and uneven surfaces. The main idea is to combine the two systems in such a way that the strengths of both subsystems are used, and the weakness of the either systems are covered. The ability of the robot to reach the target position quickly and to avoid large terrestrial obstacles by flying expands its application in various areas of search and rescue. The same platform can be used for detailed 3D mapping and aerial mapping which are very helpful in rescue operations. In particular, this paper presents kinematic design, analysis and simulation of such a robotic system. Simulation and verification of results are done using MATLAB

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf
    corecore