8,552 research outputs found

    Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants

    Get PDF
    Late-onset bloodstream infection (LO-BSI) is a common complication of prematurity, and lack of timely diagnosis and treatment can have life-threatening consequences. We sought to identify clinical characteristics and microbial signatures in the gastrointestinal microbiota preceding diagnosis of LO-BSI in premature infants.Daily faecal samples and clinical data were collected over two years from 369 premature neonates (<32 weeks gestation). We analysed samples from 22 neonates who developed LO-BSI and 44 matched control infants. Next-generation sequencing of 16S rRNA gene regions amplified by PCR from total faecal DNA was used to characterise the microbiota of faecal samples preceding diagnosis from infants with LO-BSI and controls. Culture of selected samples was undertaken, and bacterial isolates identified using MALDI-TOF. Antibiograms from bloodstream and faecal isolates were compared to explore strain similarity.From the week prior to diagnosis, infants with LO-BSI had higher proportions of faecal aerobes/facultative anaerobes compared to controls. Risk factors for LO-BSI were identified by multivariate analysis. Enterobacteriaceal sepsis was associated with antecedent multiple lines, low birth weight and a faecal microbiota with prominent Enterobacteriaceae. Staphylococcal sepsis was associated with Staphylococcus OTU faecal over-abundance, and the number of days prior to diagnosis of mechanical ventilation and of the presence of centrally-placed lines. In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of the faecal microbiota in the sample collected closest to diagnosis.The gastrointestinal tract is an important reservoir for LO-BSI organisms, pathogens translocating across the epithelial barrier. LO-BSI is associated with an aberrant microbiota, with abundant staphylococci and Enterobacteriaceae and a failure to mature towards predominance of obligate anaerobes

    Automation of the longwall mining system

    Get PDF
    Cost effective, safe, and technologically sound applications of automation technology to underground coal mining were identified. The longwall analysis commenced with a general search for government and industry experience of mining automation technology. A brief industry survey was conducted to identify longwall operational, safety, and design problems. The prime automation candidates resulting from the industry experience and survey were: (1) the shearer operation, (2) shield and conveyor pan line advance, (3) a management information system to allow improved mine logistics support, and (4) component fault isolation and diagnostics to reduce untimely maintenance delays. A system network analysis indicated that a 40% improvement in productivity was feasible if system delays associated with all of the above four areas were removed. A technology assessment and conceptual system design of each of the four automation candidate areas showed that state of the art digital computer, servomechanism, and actuator technologies could be applied to automate the longwall system

    Proceedings of the 2004 Coal Operators\u27 Conference

    Get PDF
    Proceedings of the 2004 Coal Operators\u27 Conference. All papers in these proceedings are peer reviewed in accordance with The AUSIMM publication standard

    Interrogating the technical, economic and cultural challenges of delivering the PassivHaus standard in the UK.

    Get PDF
    A peer-reviewed eBook, which is based on a collaborative research project coordinated by Dr. Henrik Schoenefeldt at the Centre for Architecture and Sustainable Environment at the University of Kent between May 2013 and June 2014. This project investigated how architectural practice and the building industry are adapting in order to successfully deliver Passivhaus standard buildings in the UK. Through detailed case studies the project explored the learning process underlying the delivery of fourteen buildings, certified between 2009 and 2013. Largely founded on the study of the original project correspondence and semi-structured interviews with clients, architects, town planners, contractors and manufacturers, these case studies have illuminated the more immediate technical as well as the broader cultural challenges. The peer-reviewers of this book stressed that the findings included in the book are valuable to students, practitioners and academic researchers in the field of low-energy design. It was launched during the PassivHaus Project Conference, held at the Bulb Innovation Centre on the 27th June 2014

    Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: Understanding the gap between designed and real performance: lessons from Stamford Brook.

    Get PDF
    This report is aimed at those with interests in the procurement, design and construction of new dwellings both now and in the coming years as the Government’s increasingly stringent targets for low and zero carbon housing approach. It conveys the results of a research project, carried out between 2001 and 2008, that was designed to evaluate the extent to which low carbon housing standards can be achieved in the context of a large commercial housing development. The research was led by Leeds Metropolitan University in collaboration with University College London and was based on the Stamford Brook development in Altrincham, Cheshire. The project partners were the National Trust, Redrow and Taylor Wimpey and some 60 percent of the planned 700 dwelling development has been completed up to June 2008. As the UK house building industry and its suppliers grapple with the challenges of achieving zero carbon housing by 2016, the lessons arising from this project are timely and of considerable value. Stamford Brook has demonstrated that designing masonry dwellings to achieve an enhanced energy standard is feasible and that a number of innovative approaches, particularly in the area of airtightness, can be successful. The dwellings, as built, exceed the Building Regulations requirements in force at the time but tests on the completed dwellings and longer term monitoring of performance has shown that, overall, energy consumption and carbon emissions, under standard occupancy, are around 20 to 25 percent higher than design predictions. In the case of heat loss, the discrepancy can be much higher. The report contains much evidence of considerable potential but points out that realising the design potential requires a fundamental reappraisal of processes within the industry from design and construction to the relationship with its supply chain and the development of the workforce. The researchers conclude that, even when builders try hard, current mainstream technical and organisational practices together with industry cultures present barriers to consistent delivery of low and zero carbon performance. They suggest that the underlying reasons for this are deeply embedded at all levels of the house building industry. They point out also that without fundamental change in processes and cultures, technological innovations, whether they be based on traditional construction or modern methods are unlikely to reach their full potential. The report sets out a series of wide ranging implications for new housing in the UK, which are given in Chapter 14 and concludes by firmly declaring that cooperation between government, developers, supply chains, educators and researchers will be crucial to improvement. The recommendations in this report are already being put into practice by the researchers at Leeds Metropolitan University and University College London in their teaching and in further research projects. The implications of the work have been discussed across the industry at a series of workshops undertaken in 2008 as part of the LowCarb4Real project (see http://www.leedsmet.ac.uk/as/cebe/projects/lowcarb4real/index.htm). In addition, the learning is having an impact on the work of the developers (Redrow and Taylor Wimpey) who, with remarkable foresight and enthusiasm, hosted the project. This report seeks to make the findings more widely available and is offered for consideration by everyone who has a part to play in making low and zero carbon housing a reality

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    Master of Science

    Get PDF
    thesisOut-of-hospital cardiac arrest (OOHCA) is prevalent in the United States. Each year several hundred thousand people die due to cardiac arrest. The automated external defibrillator (AED) has greatly enhanced survival rates for OOHCA. However, one of the most important factors in successful resuscitation is emergency medical services (EMS) response time. Unmanned aerial vehicles, or drones as they are more commonly called, have routinely been used for remote sensing but there are new opportunities to use drones for medical emergencies due to their high speeds and ease of navigation. While a drone with an on-board AED could potentially reduce response times to OOHCAs, it remains unclear how effective it is compared to ground EMS. It also remains uncertain how a network of AED-enabled drones should be implemented so that it can best serve cardiac arrest patients. This study examines historical out-of-hospital cardiac arrests and develops a new location model, referred to as the backup coverage location problem with complementary coverage (BCLP-CC), to aid in the deployment of a network of AED-enabled medical drones. By explicitly considering overlapping and partial coverage, the BCLP-CC optimally places drones and the corresponding launch sites while significantly improving backup coverage. Results show that 90.4 percent of historical out-of-hospital cardiac arrests in Salt Lake County can be responded to within one minute by using seventy-one drones and sixty-eight launch sites. In addition, 58.9 percent of incidents are covered two or more times, a significant improvement over existing models. The BCLP-CC was then extended to the backup coverage location problem with complementary coverage and capital improvement (BCLP-CCCI) to minimize implementation costs. Analyses results of the BCLP-CCCI show that by upgrading forty-four existing EMS facilities, by building twenty-six new launch sites, and by using seventy-six drones, 90 percent of the historical incidents could be reached by at least one AED-enabled drone within one minute, 65 percent of the demand could be reached by a secondary drone within one minute, and implementation costs could be reduced by 17 percent as compared to the results of the BCLP-CC. Although there are many concerns and limitations associated with medical drones, this study shows that an optimized network of drones has the potential to significantly reduce live-saving equipment travel times
    corecore