245 research outputs found

    Routing for Security in Networks with Adversarial Nodes

    Full text link
    We consider the problem of secure unicast transmission between two nodes in a directed graph, where an adversary eavesdrops/jams a subset of nodes. This adversarial setting is in contrast to traditional ones where the adversary controls a subset of links. In particular, we study, in the main, the class of routing-only schemes (as opposed to those allowing coding inside the network). Routing-only schemes usually have low implementation complexity, yet a characterization of the rates achievable by such schemes was open prior to this work. We first propose an LP based solution for secure communication against eavesdropping, and show that it is information-theoretically rate-optimal among all routing-only schemes. The idea behind our design is to balance information flow in the network so that no subset of nodes observe "too much" information. Interestingly, we show that the rates achieved by our routing-only scheme are always at least as good as, and sometimes better, than those achieved by "na\"ive" network coding schemes (i.e. the rate-optimal scheme designed for the traditional scenario where the adversary controls links in a network rather than nodes.) We also demonstrate non-trivial network coding schemes that achieve rates at least as high as (and again sometimes better than) those achieved by our routing schemes, but leave open the question of characterizing the optimal rate-region of the problem under all possible coding schemes. We then extend these routing-only schemes to the adversarial node-jamming scenarios and show similar results. During the journey of our investigation, we also develop a new technique that has the potential to derive non-trivial bounds for general secure-communication schemes

    A reliable totally-ordered group multicast protocol for mobile Internet

    Get PDF
    Version of RecordPublishe

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new speciïŹcation for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    Fisheye Consistency: Keeping Data in Synch in a Georeplicated World

    Get PDF
    Over the last thirty years, numerous consistency conditions for replicated data have been proposed and implemented. Popular examples of such conditions include linearizability (or atomicity), sequential consistency, causal consistency, and eventual consistency. These consistency conditions are usually defined independently from the computing entities (nodes) that manipulate the replicated data; i.e., they do not take into account how computing entities might be linked to one another, or geographically distributed. To address this lack, as a first contribution, this paper introduces the notion of proximity graph between computing nodes. If two nodes are connected in this graph, their operations must satisfy a strong consistency condition, while the operations invoked by other nodes are allowed to satisfy a weaker condition. The second contribution is the use of such a graph to provide a generic approach to the hybridization of data consistency conditions into the same system. We illustrate this approach on sequential consistency and causal consistency, and present a model in which all data operations are causally consistent, while operations by neighboring processes in the proximity graph are sequentially consistent. The third contribution of the paper is the design and the proof of a distributed algorithm based on this proximity graph, which combines sequential consistency and causal consistency (the resulting condition is called fisheye consistency). In doing so the paper not only extends the domain of consistency conditions, but provides a generic provably correct solution of direct relevance to modern georeplicated systems

    A scalable causal broadcast that tolerates dynamics of mobile networks

    Get PDF
    International audienceCausal broadcast is at the core of collaborative applications, distributed databases, conferencing, or social networks. Existing causal broadcast algorithms are either not scalable or cannot be implemented on mobile networks because they do not take into account the features of these networks: limited capacities of nodes (computation, storage, energy), unreliable communication channels, and the dynamics of connections due to node mobility, node failure, and join/leave of nodes. This work presents a causal broadcast algorithm for mobile networks. The algorithm is scalable: control information piggybacked on messages and maintained on nodes is of small size. Experiments conducted on OMNeT++, a realistic network simulator, confirms the effectiveness of our causal broadcast protocol, rendering causal broadcast affordable in mobile networks

    Hastily Formed Networks (HFN) As an Enabler for the Emergency Response Community

    Get PDF
    The effects of natural or manmade disasters in communications infrastructures are so severe that immediately after the disaster the emergency responders are unable to use them. In addition, some areas do not have any useful infrastructure at all. To bridge this gap in communications, a need exists for a reliable technology not dependent on the existing infrastructure. This thesis focuses on first identifying the problem of communications gaps during natural or manmade disasters and reviewing the impact and potential benefit of implementing a solution based on the Hastily Formed Networks (HFN) model. The research explores the different technological solutions to solve this problem by evaluating documentation for commercial off-the-shelf technologies (COTS). Additionally, the thesis reviews the results of field experimentation conducted to evaluate the performance of these technologies in the field. The ultimate goal is to introduce the HFN concept as an enabler for the Emergency Response Community (ERC). Throughout this research, the focus revolves around testing COTS technologies. The research provides emergency responders with the background knowledge to make decisions on how to best bridge the gap of lack of communications under austere environments, and therefore enable them to provide better response.http://archive.org/details/hastilyformednet109456762Lieutenant Commander, United States Nav

    Vehicular Mobility Prediction by Bayesian Networks

    Get PDF
    In mobile and ubiquitous computing the location of devicesis often important both for the behavior of the applicationsand for communication and other middleware functionality.Mobility prediction enables proactively dealingwith changes in location dependent functionality. In thisproject Bayesian networks’ ability to reason on the basis ofincomplete or inaccurate information is powering mobilityprediction based on a map of the street grid and the currentlocation and direction of the vehicle. We found that itis feasible to divide information of a map into smaller partsand generate a Bayesian network for each of these in orderto make mobility prediction based on localized information.This makes the information stored in the Bayesian networksmore manageable in size, which is important for resourceconstrained devices. Common sense knowledge of how vehiclemoves is feeded into the networks and enables themto make a good prediction even when no information of thevehicles mobility history is used. Experiments on real worlddata show that in an area statically divided into hexagonalcells of 200m in diameter, we get 80.54% accuracy whenusing localized Bayesian networks to predict which cell avehicle enters next

    PRMP : a scaleable polling-based reliable multicast protocol

    Get PDF
    PhD ThesisTraditional reliable unicast protocols (e.g., TCP), known as sender-initiated schemes, do not scale well for one-to-many reliable multicast due mainly to implosion losses caused by excessive rate of feedback packets arriving from receivers. So, recent multicast protocols have been devised following the receiver- initiated approach: scalability (in terms of control traffic, protocol state and end-systems processing requirements) is achieved by making the sender independent from receivers; the sender does not know the membership of the destination group. However, this comes with a cost: the lack of knowledge about and control of receivers at the sender has negative implications with respect to throughput, network cost (bandwidth required), and degree of reliability offered to applications. This thesis follows an alternative approach: instead of adopting the receiver-initiated scheme, it greatly enhances the scalability of the sender-initiated scheme, by means of polling-based feedback and hierarchy. The resulting protocol is named PRMP: polling-based Reliable Multicast protocol. Its unique implosion avoidance mechanism polls receivers at carefully planned timing instants achieving a low and uniformly distributed rate of feedback packets. The sender retains controls of receivers: the main PRMP mechanisms are based on a one-to-many sliding window mechanism, which efficiently and elegantly extends the abstraction from reliable unicasting to reliable multicasting. The error control mechanism of PRMP incorporates the use of NACKs and selective, cumulative acknowledgment of packets; additionally, it can wait and judiciously decide between multicast and selective unicast retransmissions. The flow control mechanism prevents unnecessary losses caused by the overrunning of receivers, despite variations in round-trip times and application speeds. The scalability provided by the polling mechanism is further extended by an hierarchic organization to exploit distributed processing and local recovery: receivers are organized according to a tree-structure. However, unlike other tree-based protocols, PRMP is "fully-hierarchic": each parent node forwards data via multicast to its children, and retains/explores the control of and knowledge about its children while autonomously applying error, flow, congestion and session controls in the communication with them. Two congestion control mechanisms, one window-based and another rate-based, have been incorporated to PRMP. As shown through simulation experiments, the resulting protocol q,chieves high though put with cost- effective reliable multicasting. They also show the scalability and effectiveness of PRMP mechanisms. PRMP can achieve reliable multicast with the same kind of reliability guarantees provided by TCP but without incurring prohibitive costs in terms of network cost or recovery latency found in other protocols.Brazilian Research Agency CAPE
    • 

    corecore