9 research outputs found

    Localization for mobile robots using panoramic vision, local features and particle filter

    Get PDF
    In this paper we present a vision-based approach to self-localization that uses a novel scheme to integrate feature-based matching of panoramic images with Monte Carlo localization. A specially modified version of Lowe’s SIFT algorithm is used to match features extracted from local interest points in the image, rather than using global features calculated from the whole image. Experiments conducted in a large, populated indoor environment (up to 5 persons visible) over a period of several months demonstrate the robustness of the approach, including kidnapping and occlusion of up to 90% of the robot’s field of view

    Incremental spectral clustering and its application to topological mapping

    Get PDF
    This paper presents a novel use of spectral clustering algorithms to support cases where the entries in the affinity matrix are costly to compute. The method is incremental – the spectral clustering algorithm is applied to the affinity matrix after each row/column is added – which makes it possible to inspect the clusters as new data points are added. The method is well suited to the problem of appearance-based, on-line topological mapping for mobile robots. In this problem domain, we show that we can reduce environment-dependent parameters of the clustering algorithm to just a single, intuitive parameter. Experimental results in large outdoor and indoor environments show that we can close loops correctly by computing only a fraction of the entries in the affinity matrix. The accompanying video clip shows how an example map is produced by the algorithm

    An exploration of feature detector performance in the thermal-infrared modality

    Get PDF
    Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test

    Optimal measurement budget allocation for particle filtering

    Full text link
    Particle filtering is a powerful tool for target tracking. When the budget for observations is restricted, it is necessary to reduce the measurements to a limited amount of samples carefully selected. A discrete stochastic nonlinear dynamical system is studied over a finite time horizon. The problem of selecting the optimal measurement times for particle filtering is formalized as a combinatorial optimization problem. We propose an approximated solution based on the nesting of a genetic algorithm, a Monte Carlo algorithm and a particle filter. Firstly, an example demonstrates that the genetic algorithm outperforms a random trial optimization. Then, the interest of non-regular measurements versus measurements performed at regular time intervals is illustrated and the efficiency of our proposed solution is quantified: better filtering performances are obtained in 87.5% of the cases and on average, the relative improvement is 27.7%.Comment: 5 pages, 4 figues, conference pape

    A minimalistic approach to appearance-based visual SLAM

    Get PDF
    This paper presents a vision-based approach to SLAM in indoor / outdoor environments with minimalistic sensing and computational requirements. The approach is based on a graph representation of robot poses, using a relaxation algorithm to obtain a globally consistent map. Each link corresponds to a relative measurement of the spatial relation between the two nodes it connects. The links describe the likelihood distribution of the relative pose as a Gaussian distribution. To estimate the covariance matrix for links obtained from an omni-directional vision sensor, a novel method is introduced based on the relative similarity of neighbouring images. This new method does not require determining distances to image features using multiple view geometry, for example. Combined indoor and outdoor experiments demonstrate that the approach can handle qualitatively different environments (without modification of the parameters), that it can cope with violations of the “flat floor assumption” to some degree, and that it scales well with increasing size of the environment, producing topologically correct and geometrically accurate maps at low computational cost. Further experiments demonstrate that the approach is also suitable for combining multiple overlapping maps, e.g. for solving the multi-robot SLAM problem with unknown initial poses

    Towards Robust Place Recognition for Robot Localization

    Get PDF
    Localization and context interpretation are two key competences for mobile robot systems. Visual place recognition, as opposed to purely geometrical models, holds promise of higher flexibility and association of semantics to the model. Ideally, a place recognition algorithm should be robust to dynamic changes and it should perform consistently when recognizing a room (for instance a corridor) in different geographical locations. Also, it should be able to categorize places, a crucial capability for transfer of knowledge and continuous learning. In order to test the suitability of visual recognition algorithms for these tasks, this paper presents a new database, acquired in three different labs across Europe. It contains image sequences of several rooms under dynamic changes, acquired at the same time with a perspective and omnidirectional camera, mounted on a socket. We assess this new database with an appearance based algorithm that combines local features with support vector machines through an ad-hoc kernel. Results show the effectiveness of the approach and the value of the databas

    Robust convex optimisation techniques for autonomous vehicle vision-based navigation

    Get PDF
    This thesis investigates new convex optimisation techniques for motion and pose estimation. Numerous computer vision problems can be formulated as optimisation problems. These optimisation problems are generally solved via linear techniques using the singular value decomposition or iterative methods under an L2 norm minimisation. Linear techniques have the advantage of offering a closed-form solution that is simple to implement. The quantity being minimised is, however, not geometrically or statistically meaningful. Conversely, L2 algorithms rely on iterative estimation, where a cost function is minimised using algorithms such as Levenberg-Marquardt, Gauss-Newton, gradient descent or conjugate gradient. The cost functions involved are geometrically interpretable and can statistically be optimal under an assumption of Gaussian noise. However, in addition to their sensitivity to initial conditions, these algorithms are often slow and bear a high probability of getting trapped in a local minimum or producing infeasible solutions, even for small noise levels. In light of the above, in this thesis we focus on developing new techniques for finding solutions via a convex optimisation framework that are globally optimal. Presently convex optimisation techniques in motion estimation have revealed enormous advantages. Indeed, convex optimisation ensures getting a global minimum, and the cost function is geometrically meaningful. Moreover, robust optimisation is a recent approach for optimisation under uncertain data. In recent years the need to cope with uncertain data has become especially acute, particularly where real-world applications are concerned. In such circumstances, robust optimisation aims to recover an optimal solution whose feasibility must be guaranteed for any realisation of the uncertain data. Although many researchers avoid uncertainty due to the added complexity in constructing a robust optimisation model and to lack of knowledge as to the nature of these uncertainties, and especially their propagation, in this thesis robust convex optimisation, while estimating the uncertainties at every step is investigated for the motion estimation problem. First, a solution using convex optimisation coupled to the recursive least squares (RLS) algorithm and the robust H filter is developed for motion estimation. In another solution, uncertainties and their propagation are incorporated in a robust L convex optimisation framework for monocular visual motion estimation. In this solution, robust least squares is combined with a second order cone program (SOCP). A technique to improve the accuracy and the robustness of the fundamental matrix is also investigated in this thesis. This technique uses the covariance intersection approach to fuse feature location uncertainties, which leads to more consistent motion estimates. Loop-closure detection is crucial in improving the robustness of navigation algorithms. In practice, after long navigation in an unknown environment, detecting that a vehicle is in a location it has previously visited gives the opportunity to increase the accuracy and consistency of the estimate. In this context, we have developed an efficient appearance-based method for visual loop-closure detection based on the combination of a Gaussian mixture model with the KD-tree data structure. Deploying this technique for loop-closure detection, a robust L convex posegraph optimisation solution for unmanned aerial vehicle (UAVs) monocular motion estimation is introduced as well. In the literature, most proposed solutions formulate the pose-graph optimisation as a least-squares problem by minimising a cost function using iterative methods. In this work, robust convex optimisation under the L norm is adopted, which efficiently corrects the UAV’s pose after loop-closure detection. To round out the work in this thesis, a system for cooperative monocular visual motion estimation with multiple aerial vehicles is proposed. The cooperative motion estimation employs state-of-the-art approaches for optimisation, individual motion estimation and registration. Three-view geometry algorithms in a convex optimisation framework are deployed on board the monocular vision system for each vehicle. In addition, vehicle-to-vehicle relative pose estimation is performed with a novel robust registration solution in a global optimisation framework. In parallel, and as a complementary solution for the relative pose, a robust non-linear H solution is designed as well to fuse measurements from the UAVs’ on-board inertial sensors with the visual estimates. The suggested contributions have been exhaustively evaluated over a number of real-image data experiments in the laboratory using monocular vision systems and range imaging devices. In this thesis, we propose several solutions towards the goal of robust visual motion estimation using convex optimisation. We show that the convex optimisation framework may be extended to include uncertainty information, to achieve robust and optimal solutions. We observed that convex optimisation is a practical and very appealing alternative to linear techniques and iterative methods
    corecore