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A Minimalistic Approach to Appearance
based Visual SLAM

Henrik Andreasson, Tom Duckett, and Achim J. Lilienthal

Abstract—This paper presents a vision-based approach to to other vision-based SLAM approaches is that there is no
SLAM in indoor / outdoor environments with minimalistic sens-  estimate of the positions of a set of landmarks involved,
ing and computational requirements. The approach is based on a enabling the algorithm to scale up better with the size of

graph representation of robot poses, using a relaxation algorithm th - t Instead fi imilarity i
to obtain a globally consistent map. Each link corresponds to a € environment. Instead, a measure Of image simiianty 1S

relative measurement of the spatial relation between the two Used to estimate the relative pose between corresponding
nodes it connects. The links describe the likelihood distribution images (“visual relations”) and the uncertainty of thisreste.

of the relative pose as a Gaussian distribution. To estimate the Gjven these “visual relations” and relative pose estimates
covariance matrix for links obtained from an omni-directional between consecutive images obtained from the odometry of

vision sensor, a novel method is introduced based on the relative . . . . .
similarity of neighbouring images. This new method does not the robot (‘odometry relations”), the Multilevel Relaati

require determining distances to image features using multiple algorithm [2] is then used to determine the maximum likeli-
view geometry, for example. Combined indoor and outdoor exper- hood estimate of all image poses. The relations are exmatesse
iments demonstrate that the approach can handle qualitatively as a relative pose estimate and the corresponding covarianc
different environments (without modification of the parameters) A key insight is that the estimate of the relative pose in

that it can cope with violations of the “flat floor assumption” to the “Vi | relati " g t dto b ¢
some degree, and that it scales well with increasing size of the € ‘visual relations” does not need (o be very accurate as

environment, producing topologically correct and geometrically 10ng as the corresponding covariance is modeled apprefyiat
accurate maps at low computational cost. Further experiments This is because the relative pose is only used as an initial

demonstrate that the approach is also suitable for combining estimate that the Multilevel Relaxation algorithm can atlju
multiple overlapping maps, e.g. for solving the multi-robot SLAM - according to the covariance of the relation. Thereforeneve
problem with unknown initial poses. . L2 ) . . -

with fairly imprecise initial estimates of the relative Bss

Index Terms—SLAM, Omnidirectional Vision it is possible to build geometrically accurate maps usirg th
geometric information in the covariance of the relative @os
I. INTRODUCTION estimates. Mini-SLAM was found to produce consistent maps

This paper presents a new vision-based approach to '{Hevariqus environmen_t;, ingluding, for example, a dataotet
problem of simultaneous localization and mapping (SLAMf" €nvironment containing indoor and outdoor passages (pat
Especially compared to SLAM approaches using a 2-d la gpgth of 1.4 km) and an_ln.door data set covering five floor
scanner, the rich information provided by a vision-basdg"€!s Of a department building.
approach about a substantial part of the environment allows P urther to our previously published work [3], we extended
dealing with high levels of occlusion [1] and enables soksi 1€ Mini-SLAM approach to the multi-robot SLAM problem,
that do not rely strictly on a flat floor assumption. Camerdl€monstrating its ability to combine multiple overlapping

can also offer a longer range and are therefore advantageBlaPS With unknown initial poses. We also provide an evalua-
in environments that contain large open spaces. tion of the robustness of the suggested approach with respec

The proposed method is called “Mini-SLAM” since it isto poor odometry or a less reliable measure of visual siftyjlar

minimalistic in several ways. On the hardware side, it eelie

solely on odometry and an omni-directional camera as the Related Work
external source of information. This allows for less expens
systems compared to methods that use 2-d or 3-d lase
scanners. Please note that the robot used for the expesim ; .
was also equipped with a 2-d laser scanner. This laser scan ny approaches extract landmarks using local features in

however, was not used in the SLAM algorithm but only tdhe images and track the positions of these landmarks. As
visualize the consistency of the created maps the feature descriptor, Lowe’s scale invariant featuradfarm

Apart from the frugal hardware requirements, the method '§IFT) [Af] has been used yvidely [5], [6].' An initial estimate
also minimalistic in its computational demands. Map estim e relative pose change is often obtained from odometry [6]

tion is performed on-line by a linear time SLAM algorithm! 71, [8], or where multiple cameras are available as in [9],

on an efficient graph representation. The main differen&ao_]' multiple view geometry can be applied to obtain de_pth_
estimates of the extracted features. To update and maintain

H. Andreasson and A. J. Lilienthal are with the Departmenvisual landmarks, Extended Kalman Filters (EKF) [7], [11]
of Technology, Orebro University, Sweden e-mail{henrik.andreasson, and Rao-Blackwellised Particle Filters (RBPF) [6], [9] bav
achim.lilientha} @tech.oru.se. . .

T. Duckett is with the Department of Computer Science, Unitersf been used. In the visual SLAM method proposed in [11]
Lincoln, UK e-mail: tduckett@lincoln.ac.uk particle filters were utilised to obtain the depth of landksar

psing a camera as the external source of information in
M has received increasing attention during the pastsyear
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while the landmark positions were updated with an EKF. #hiti
landmark positions had to be provided by the user. A similar
approach described in [8] applies a converse methodoldgy. T
landmark positions were estimated with a Kalman filter (KF)
and a particle filter was used to estimate the path.

Due to their suitability for addressing the correspondence
problem, vision-based systems have been applied as an addi-
tion to laser scanning based SLAM approaches for detecting
loop closure. The principle has been applied to SLAM systems
based on a 2D laser scanner [12] and a 3D laser scanner [13].

In the approach proposed in this paper, the SLAM Optimizafg. 1. The graph representation used. The figure shows frgmees) and
tion problem is solved at the graph-level with the Multileverelations (edges), both the odometry and the visual relations,. Visual
Relaxation (MLR) method of Frese and Duckett [2] '|'hi$elattior;s]t arte ingjcat(atd wtitrljcgotted lines. Eg_ch ft(anﬁ)_ntainsarefgrenc? to
method could be replaced by altemative graph based SLAYELC] et exacted fom an onvidrectonal made, an odomety
methods, for example, the online method proposed by Grisett and an estimate of its covarian€g., . Fig. 2 shows images corresponding
et al. [14] based on the stochastic gradient descent meth@éhe region represented by the graph in this figure.
proposed by Olson et al. [15].

The rest of this paper is structured as follows. Section 1l de
scribes the proposed SLAM approach. Then the experimentabdometry relationsr, are created between successive
set-up is detailed and the results are presented in Sedtion fames. The relative posg,, is obtained directly from the
The paper ends with conclusions and suggestions for futgometry readings and the covarian@g, is estimated using

work (Section 1V). the motion model suggested in [16] as
4263 +125% 0 0
[I. MINI-SLAM C,. — 4 0 d2512vd + 1262, 0
A. Multi-Level Relaxation 0 0 d*53, +126;

The SLAM optimization problem is solved at the graph- )
level with the Multilevel Relaxation (MLR) method of Fresevhered andt are the total distance traveled and total angle

and Duckett [2]. A map is represented as a set of nodejated between two successive frames. Dheparameters
connected in a graph structure. An example is shown in Fig.'glate to the forward motion, thé, parameters to the side
Each node corresponds to the robot pose at a particular tifjgtion and thej, parameters to the rotation of the robot. The
and each link to a relative measurement of the spatial celatiS’X -parameters adjust the influence of the distaricand

between the two nodes it connects. A node is created for edgftion in the calculation of the covariance matrix. They
omni-image in this work and the terms node and frame aféere tuned manually once and then kept constant throughout

used interchangeably in this paper. the experiments.
The MLR algorithm can be briefly explained as follows.
The input is a setR of m = |R| relations onn planar
frames (i.e., a two-dimensional representation is usedfhE
relation r € R describes the likelihood distribution of the 1) Similarity Measure:Given two images/, and I, fea-
pose of framea relative to frameb. Relations are modeled tures are first extracted using the SIFT algorithm [4]. This
as a Gaussian distribution with meafi and covariance>”. esults in two sets of featurek, and F; for frame o and
The output of the MLR algorithm is the maximum likelihood?- Each featureF’ = [z,y], H comprises the pixel position
estimation vector: for the poses of all the frames. Thus, a%.¥] and a histogrant/ containing the SIFT descriptor. The
globally consistent set of Cartesian coordinates is obthinSimilarity measures, , is based on the number of features that
for the nodes of the graph based on local (relative) afp@tch betweer, and F}.

inconsistent (noisy) measurements, by maximizing thel tota The feature matching algorithm calculates the Euclidean
likelihood of all measurements. distance between each feature in imdgend all the features

in imagel,. A potential match is found if the smallest distance

] is smaller than 60% of the second smallest distance. This

B. Odometry Relations criterion was found empirically and was also used in [17]. It
The Mini-SLAM approach is based on two principles. Firsiguarantees that interest point matches are substantietitgrb

that odometry is sufficiently accurate if the distance tledlés than all other possible matches. We also do not allow feature
short. Second, that by using visual matching, corresparelerio be matched against more than one other feature. If a eatur
between robot poses can be detected reliably even thodgis more than one candidate match, the match which has the
the search region around the current pose estimate is lafdggest Euclidean distance among the candidates is selected
Accordingly, two different types of relations are created iExamples of matched features are shown in Fig. 2.
the MLR graph, based on odometry and relations based on  The matching step results in a set of feature p&irs with
visual similarity r,,. a total number), ; of matched pairs. Since the number of

C. Visual Similarity Relations
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Fig. 2. Examples of loop closure detection outdoors (top)iaddors (bottom). In the outdoor example the distance to tiaebed features is larger than in
the indoor example. Left: feature matches at the peak of thdasityivalue, Sg7s,758 = 0.728 (top) andS7,360 = 0.322 (bottom). Middle: feature matches
two steps (equivalent te-3 meters distance) awagsgo,758 = 0.286 (top) andSg, 360 = 0.076 (bottom). The pose standard deviatiopr, = oyrv Was
estimated as 2.06: (top) and 1.09n (bottom), respectively, and the medp as 0.199m (top) and -0.534mn (bottom). Right: evolution of the similarity
measureS against the distance travelled (obtained from odometrygttogr with the fitted Gaussian.

features varies heavily depending on the image content, tieea reference imagd,. Panoramic images were recorded

number of matches is normalized £ ; € [0, 1] as at a translational distance of 0.5, 1.0 and 2.0 meters to the
M, , reference imagé,. The ground truth rotation was obtained by
Sap = 7 “ (2) manually measuring the displacement of correspondingpixe

2(nr, 1) in areas along the displacement of the camera. The results in
whereng, andnyr, are the number of features iy, and;, Table | demonstrate the good accuracy obtained. Even at a
respectively. A high similarity measure indicates a petaally  displacement of 2 meters the mean error is only 7.15 degrees.
similar position.

2) Estimation of the Relative Rotation and VariancEhe
relative rotation between two panoramic imagksand I,
can be estimated directly from the horizontal displacenoént

TABLE |
ERRORS OF RELATIVE ROTATIONY ESTIMATE IN RADIANS.

the matched feature paifg, ;. If the flat floor assumption is transl (m) | errorg | gerror,
violated this will be only an approximation. Here, the risfat 05 0.100 | 0.0630
rotations,, for all matched pairp € P,; are sorted into 1.0 0.104 | 0.0500
a 10 bin histogram and the relative rotation estimaje is 20 0125 | 0.0903

determined as the maximum of a parabola fitted to the largest
bin and its left and right neighbour, see Fig. 3.

To evaluate the accuracy of relative rotation estima#tgs
we collected panoramic images in an indoor laboratory en
ronment and computed the relative orientation with respeté‘tt

The rotation variances?,, is estimated by the sum of
gduared differences between the estimate of the relative ro
ion u,* and the relative rotation of the matched pafts.

2 1 Ty 2
Relative rotation histogram Toro = Ma,b -1 Z (Me o op) (3)
16 T T T — pEP. b
141 /\ e pahnom” To increase the robustness towards outliers, a 10% Wirebriz
g 12r ; ) mean is applied. For the evalutated data this had only a minor
g lor ‘ ) effect on the results compared to using an un-truncated mean
2 8r ‘ 1 3) Estimation of Relative Position and Covarianc&he
E o ‘ \ ] Mini-SLAM approach does not attempt to determine the
= af / ; \ ] position of the detected features. Therefore, the relgtive
21 ; \ . sition between two frameg and b cannot be determined
03 5 ) 5 9 5 very accurately. Instead we use only image similarity of the
Relative orientation (rad) surrounding images to estimaje,*, ;1;*] as described below.

) . L It would be possible to estimate the relative position using
Fig. 3. Relative orientation histogram from two omnidirectl images taken ltiol . b hi Id i d dditi |
2 meters apart. The dotted line marks the relative orientaiiimatey.,” . multiple _V'eW geometry but t '_S would introduce additiona

complexity that we want to avoid.



IEEE TRANSACTION ON ROBOTICS, SPECIAL ISSUE ON VISUAL SLAM

g0O0pO0OmEmEgg OO

Fig. 4. Left: The physical distance to the features will iefige the number
of features that can be identified from different poses ofrdi®t. The filled
squares represent features that could be matched in allrblveeposes while
the unfilled squares represent the features for which quoretences could
not be found from all poses. The left wall in the figure is clogethe robot.
Thus, due to the faster change in appearance, the numbertofdeaf the
left wall, which can be matched over successive images, temds tless
compared to the number of matched features of the right walhtR@utdoor
robot used in this paper, equipped with a Canon EOS 350D caeretaa
panoramic lens from 0-360.com, which were used to collect #ta,ca DGPS
unit to determine ground truth positions, and an LMS SICK seamused for

Fig. 5. Left: Full similarity matrix for thelab data set. Brighter entries
indicate a higher similarity measuf Right: Zoomed in image. The left area
(enclosed in a blue frame) corresponds to a sequence of stynilaeasures
that gives a larger position covariance than the right secpiéred frame).

whered,, is the calculated mean of the fitted Gaussian and
the estimated relative orientation (Sec. II-C2).
In the experimental evaluation, the Gaussian was estimated
using 5 consecutive frames. To evaluate whether the ewaluti
of the similarity measure in the vicinity of a visual relatio

isualization and for obtaining ground truth. . .
visualizat ning ground fr can be reasonably approximated by a Gaussian, the mean error

between the 5 similarity measures and the fitted Gaussian
was calculated for the outdoor/indoor data set (the data set

Instead, geometric information is obtained from an estimais described in Sec. 1ll-A). The results in Table Il indicate
of the covariance of the relative position between a currefifat the Gaussian represents the evolution of the sinyilarit
frame b and a previously recorded frame This covariance a reasonable way. Please note that frams recorded at a
estimate is computed using only the similarity measufesf |ater time than frame: meaning that the covariance estimate
frame b with a and the neighbouring frames of Ca-b can be calculated directly without any time lag.

The number of matched features between successive frame$) Selecting Frames to Matchtn order to speed up the
will vary depending on the physical distance to the featuresigorithm and make it more robust to perceptual aliasing (th
see Figs. 2 and 4. Consider, for example, a robot locatedgroblem that different regions have similar appearancely o
an empty car park where the physical distance to the featutRgse frames are selected for matching that are likely to be
is large and therefore the appearance of the environmest doe
not change quickly if the robot is moved a certain distance.
If, on the other hand, the robot is located in a narrow corrido
where the physical distance to the extracted features ifl,sma
the number of feature matches in successive frames tends to
be smaller if the robot was moved the same distance.

The covariance of the robot pose estimate [x,y]

2
Oory Ogpro Oyro
Cn, = * N 2 Y (4)
Ogrv Oyro Oyro
is computed based on how the similarity measure varies over s Sab/\ b

the setN(a), which contains frame: and its neighbouring
frames. The analyzed sequence of similarity measures is
indicated in the zoomed in visualization of a similarity mmat
shown in Fig. 5. In order to avoid issues estimating the
covariance orthogonal to the path of the robot if the robat wa
driven along a straight path, the covariance matrix is sfirepl

by settingo2,, = criw and o0y~ = 0. The remaining
covariance parameter is estimated by fitting a 1D Gaussian A
to the similarity measureSy ,),, and the distance travelled

as obtained from odometry, see Fig. 6. Two parameters are
determined from the nonlinear least squares fitting process 6.  Gaussian fitted to the distance travelléd(as obtained from

mean ¢,) and Va”ance‘([ -). The initial estimate of the jometry) and the similarity measures between fraraad the frames of the
relative position[u.» s My ] of a 'visual relation is calculated asneighbourhoodV(a) = {a — 2,a — 1,a,a + 1,a + 2}. From the similarity
measures, both a relative pose estima,te and a covariance estima(@,.v
are calculated between nodeand nodeb. The orientation and orientation
variance are not visualized in this figure.
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TABLE I

STATISTICS OF THE ERRORe BETWEEN THE GAUSSIAN FIT AND THE As long as no visual relatiom, has been added, either

SIMILARITY MEASURES S,_2p, ..., Sq2,5 FOR EACH NODE FOR WHICH  betweena and b or any of the frames betweem and b,
THE FIT WAS PERFORMED IN THE OUTDOORNDOOR DATA SET. the relative covariancé€’;, , can be determined directly from
node pair ‘ . ‘ o the odometry covarlancéiro and C,» as described above.

However, when a visual relatlom“b betweena and b is
added, the covariance of the estimdig, decreases. Using
the covariance intersection method [18], the covariance fo
frameb is therefore updated as

<a-—2,b> | 0.031| 0.0441
<a-—1,b> | 0.029 | 0.0348

<a,b> 0.033 | 0.0601
<a-+1,b> | 0.026 | 0.0317

<a+2,b> | 0028 | 0.0388
ot Ca, = Ca, @ (Cs, + Cpan), 9)
2 1000 # of similarity calculations at each frame where @ is the covariance intersection operator. The co-
S N variance intersection method weighs the influence of both
‘—g 800 h covarianceg’, andC), as
3
8 600 - . _ 19—
> Ca®Cp=wCi'+(1-wCz' ™ (10)
S 400f g
£ 200 i The parametew € [0,1] is chosen so that the determinant of
E the resulting covariance is minimized [19].
0 0 100 200 300 400 500 600 700 800 900 - The new covariance estimate is also used to update the

Frame index frames betweem andb by adding the odometry covariances
Fig. 7. Number of similarity calculations performed at eachmigain the Cag_, IN OppOSIte order (I e. simulate that the robot is movmg
outdoor/indoor data set. The first frames were compared artrane 240, backwards from framé to a). The new covariance estimate

since up to then none of the previous frames were within theckearea for framej € (a,b) is calculated as

around the current pose estimate defined by the estimated pwadgance.

The diagonal line indicates the linear increase for the tiasethe frames to o .

match are not pre-selected. Cx, B C”J @ (Cz, + Cag )- a1

5) Visual Relation Filtering: To avoid adding visual re-
lations with low similarity, visual similarity relations-%:
located close to each other. between frame: and frameb are only added if the similarity
Consider the current framé and a previously recordedmeasure exceeds a threshald: S,, > t,s. In addition,
framea. If the similarity measure was to be calculated betweeimilarity relations are only added if the similarity valse
b and all previously added frames, the number of frames to bas its peak at frame (compared to the neighbouring frames
compared would increase linearly, see Fig. 7. Instead,dsamV (a)). There is no limitation on the number of visual relations
are only compared if the current frandeis within a search that can be added for each frame.
area around the pose estimate of frameThe size of this
search area is computed from the estimated pose covariance.
From the MLR algorithm (see Section II-A) we obtalnD Fusing Multiple Data Sets
the maximum likelihood estimaté; for frame b. There is, Fusion of multiple data sets recorded at different times is
however, no estimate of the corresponding covariarigghat related to the problem of multi-robot mapping where each of
could be used to distinguish whether frames likely to be the data sets is collected concurrently with a differentotob
close enough to framieso that it can be considered a candidatéhe motivation for multi-robot mapping is not only to reduce
for a match, i.e. a frame for which the similarity measurthe time required to explore an environment but also to merge
Sq.» should be calculated. So far, we have defined two typ#se different sensor readings in order to obtain a more ateur
of covariances: the odometry covarian€g, and the visual map. The problem addressed here is equivalent to “multyrob
relation covariance”,. . To obtain an overall estimate of theSLAM with unknown initial poses” [20] because the relative
relative covariance between frameand b we first consider poses between the data sets are not given. The exploration
the covariances of the odometry relationsbetweena andb  problem is not considered in this paper.

and compute relative covarian¢g. =~ as Only a minor modification of the standard method described
’ above is necessary to address the problem of fusing multiple

Cpo, = Z R;Cr,, R (7) data sets. The absence of relative pose estimates between
je(a,b—1) the data sets is compensated for by not limiting the search

region for which similarity measureS are computed. This is

R; is a rotation matrix, which is defined as implemented by incrementally adding data sets and settieg t

COS(QAC?H — @?) —sin(z9 20, jg) 0 relative pose betwe_er} _consecutively e_tdded data setsllinitia

R, = | sin@@’, ,—4") cos(@?,,—2% 0 (8) to (0,0,0) with an infinite pose covariance. Such odometry
J J+1 J Tjt1 J ’ . . . .
0 0 1 relations between data sets appear as long, diagonal lines i

Fig. 16 representing the transition betwelh to studarea
Wherefcf. is the orientation estimated for framje and studarea to lab — studarea.
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I1l. EXPERIMENTAL RESULTS “‘é’ tr Do udi%’:g; ,,,,, |

In this section, we present results from five different data E 08y :' udarea - - -
sets with varying properties. An overview of all data sets is g osf 1
presented in Table Ill. All data sets were collected with our :E: 0.4- ]
mobile robot Tjorven, see Fig. 4. The platform uses “skid- ? ook | |
steering”, which is prone to bad odometry. In the different B O E S e
data sets different wheel types (indoor / outdoor) were used Z O oa o5 o8
The robot’s odometry was calibrated (for each wheel type) by Threshold -y

f!rSt driving forward 5 meters o Obta_“n a distance per e.nCOdl—elg. 8. The influence of the threshold parametgs on the relative MSE.

tick value, and second by completing one full revolution to

determine the number of differential encoder ticks per argu

rotation. Finally the drift parameter was adjusted so that t _ _

robot would drive forward in a straight line, i.e. to compates Seconds using a data set with an average of 522.3 features

for the slightly different size of the wheel pairs. with standard deviation of 21.4. Please note, however,theat
The omni-directional images were first converted t#nplementation used for feature matching in this paper was

panoramic images with a resolution of 1000 x 289. Wheot optimised for computational efficiency.

extracting SIFT features the initial doubling of the images

not performed, i.e. SIFT features from the first octave were oOutdoor / indoor data set

ignored, simply to lower the amount of extracted features.

The results are presented both visually with maps obtainedo‘ large set of 945 omni-directional images was collected

; . i imalver a total distance of 1.4 kilometers with height diffeves
by superimposing laser range data using the poses estima FUp to 3 meters. The robot was driven manually and the data
with Mini-SLAM and quantitatively by the mean square P ' y

iere collected in both indoor and outdoor areas over a period
. . . N §2 days (due to the limited capacity of the camera battery).
~ .GT m

pose pairs< &;,x; > between the estimated pose 1) Comparison to ground truth obtained from DGP%o

i T
?hned otht?m(;(I)rrrie?c???;r:r;?or%zzzgg ;:;weggﬁg os:rgstli(r::\ével a%valuate the accuracy of the created map, the robot position
b g P as measured with differential GPS (DGPS) while collecting

ground truth data can be determined directly. We applied t €. omni-directional images. Thus, for every SLAM pose-esti
method suggested by Arun et al. [21]. . . - T GRS
. ? . . mate there is a corresponding DGPS positioti;, >.
To investigate the influence of the thresheld, described . . v
. . DGPS gives a smaller position error than GPS. However,
in Section II-C5, the MSE was calculated for all data sets for . RO .
. ; P nce only the signal noise is corrected, the problem with
which ground truth data were available. The result in Fig. : ; . . . .
multipath reflections still remains. DGPS is also only avail
shows that the value of the threshe]d can be selected so that . . .
o . : ~able if the radio link between the robot and the station-
it is nearly optimal for all data sets and that there is a negio ; . .
ary GPS is functional. Thus, only a subset of pose pairs

in which minor changes of the,; do not strongly influence ~ 7, .
9 &s gy #;,zPEPS >,y can be used for ground truth evaluation.

the accuracy of the map. Throughout the remainder of tr@GPS measurements were considered only when at least five

section a const'ant threshodgs 0.2 s used . .. satellites were visible and the radio link to the station@BS
In order to give a better idea of the function of the Mini- : ) . o
. . : was functional. The valid DGPS readings are indicated as

SLAM algorithm, the number of visual relations per nod

depending on the thresholtl, is shown in Fig. 9. The ﬁght (blue) dots in Fig. 10. The total number of pairs used

: . .~ to calculate the MSE for the whole map was 377 compared to
overview of all data sets presented in Table Il also comstéie .
S . : the total number of frames of 945. To measure the difference
number of similarity calculations performed and the evitue

: . . etween the poses estimated with Mini-SLAM and the
run time on a Pentium 4 (2GHz) processor with 512 MB OE o DGOPS e . .
RAM memory. This time does not include the time require GPS positions: (using UTM WGS84, which provides

A : L . a metric coordinate system), the two data sets have to be
for the similarity computation. Each similarity calcuta aligned. Since the correspondence of the filtered pose pairs
(including relative rotation and variance estimation)k@30 gned. P P P

0.9

TABLE Il % 0.8 I outdoor / {nqogr 777777
FOR EACH DATA SET. NUMBER OF NODES#, VISUAL RELATIONS #7,, ft 07k lab Slutéairieafi ,
PERFORMED SIMILARITY CALCULATIONS #5S, AVERAGE NUMBER OF > o6k W . lab-studarea - |
EXTRACTED VISUAL FEATURESu PER NODE WITH VARIANCE G 17, S o5l i
EVALUATION RUN TIME T (EXCLUDING THE SIMILARITY COMPUTATION). % 0.4l i
= 03f A
| #a [ #ro | #5 | we | or [T (s) gO020 TN 1
outdoor / indoor 945 | 113 | 24784 | 4975 | 1700 | 66.4 0 L ey
) 0 01 02 03 04 05 06
multiple floor levels | 409 | 198 | 13764 | 337.9 | 146.7 | 21.0 Threshold — g
lab 86 60 443 | 571.5| 39.6 3.6
studarea 134 | 31 827 426.6 | 51.1 9.4 Fig. 9. The amount of visual nodes added to the graph deperuintye
lab — studarea 86 | 10 | 101 | 459.8| 1258 | 3.8 thresholdt,s.
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connections between the floor levels by three elevators. The
data contain loops in 2-d coordinates and also involving
different floor levels. This data set consistst of 419 pamica
images and covers a path with a length of 618 meters. The
geometrical layout differs for the different floors, see.Fi§.

No information about the floor level is used as an input to the
system, hence the robot pose is still described u&ing, 6).

1) Visualized resultsThere are no ground truth data avail-
able for this data set. It is possible, however, to get a Visua
impression of the accuracy of the results from Fig. 12. The
figure shows occupancy grid maps obtained from laser scanner
readings and raw odometry poses (left), or the Mini-SLAM
_ POPS _ _ pose estimates (right), respectively. All floors are drawn o
Fig. 10. DGPS data with aligned SLAM estimates: displayed on 45 of each other without any alignment. To further illusgra
an aerial image of the area. The darker (red) squares show ithieSMAM ..
pose estimates and the lighter (blue) squares show the DG&S fr which the Mini-SLAM results, an occupancy map was also created
the number of satellites was considered acceptable. Thatiteviseen at the separately for each floor from the laser scanner readings and
bottom (the car park) is mainly caused by the fact that the atlt is elevated \jini-SLAM pose estimates, see Fig. 13. Here, each pose was
compared to the rest of the environment. . . T ’

assigned to the corresponding floor level manually.

This experiment mainly illustrates the robustness of data

association that is achieved using omni-directional vislata.

MSE of the SLAM pose estimates and odometry to |

200 T T T T T T T T R X 2 X
odomey The similarity matrix and a similarity access matrix for the

150} ; b “Multiple floor levels” data set are shown in Fig. 14.

100t i

, C. Partly overlapping data
=or MAH i This data set consists of three separate indoor sets: lab
ol ar w (lab), student areasfudarea) and a combination of both
0 100 200 300;2,?165&26?(00 700 800 900 (lab—studarea), see Fig. 15. Similar to the data set described
in Sec. 1lI-B, omni-directional images, 2D laser range data
Fig. 11. Evolutio_n of the MSE between'tl_’le ground t!’Uth positbbtained and Odometry were recorded. Ground truth pag@%‘ were
from DGPS readingsePGFS and the Mini-SLAM estimate of the robot . . .
posez as frames are added to the map. Drops in the MSE indicate tl'g?termmed using the laser scanner and odometry togetkter wi
the consistency of the map has been increased. The final MSkeofatv the MLR approach as in [2].
odometry was 377.5n°. 1) Visualized resultsFig. 16 shows the final graph (left), a
plot of laser scanner readings merged using poses from odom-
etry (middle) and poses obtained with Mini-SLAM (right).
is known, < &;,zPGPS >, an optimal rigid alignment can beFig. 17 shows the similarity matrix and the similarity aces
determined directly with the method by Arun et al. [21] aatrix for thelab — studarea data set.
described above. 2) Comparison to ground truth obtained from laser based
The mean square error (MSE) betweeff*”S andz for the SLAM: As described in Sec. II-D, fusion of multiple maps is
data set shown in Fig. 10 is 4.89 meters. To see how it evolv@stivated both by its need in multi-robot mapping and by the
over time when creating the map, the MSE was calculatéttreased accuracy of the resulting maps. Instead of simply
from the new estimatesg after each new frame was added.
The result is shown in Fig. 11 and compared to the MSE
obtained using only odometry to estimate the robot's pmsiti
Please note that the MSE was evaluated for each frame added.
Therefore, when DGPS data are not available, the odometry
MSE z° will stay constant for these frames. This can be seen,
for example, for the frame®50 — 440 in Fig. 11. For the same
frames, the MSE of the SLAM estimateis not constant since
new estimates are computed for each frame added and loop
closing also occurs indoors or generally when no DGPS is
available. The first visual relation, was added around frame
260. Until then, the error of the Mini-SLAM estimaté and
the odometry MSEx° were the same.

MSE pose distance error

B. Multiple floor levels Fig. 12. Occupancy grid map of all five floors drawn on top of eattter.

; P qG4iLeft: Gridmap created using pose information from raw odomeRight:
This data set was collected inside a department bwldn'agmg the estimated robot poses from Mini-SLAM.

at Orebro University. It includes all (five) floor levels and
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Fig. 13. Occupancy maps for floor levels 1-5, computed usingr lssanner data at each estimated pose. The assignmentaifpogies to floor levels was
done manually and is only used to visualize these maps.

Fig. 16. Left: A part of the final MLR graph containing the tardifferent data sets. Middle: Laser range scanning basedusiag the raw odometry.
Right: Laser range scanning based map using the Mini-SLAMgos

Fig. 15. Sub-maps for the partly overlapping data. Léétb. Middle:
studarea. Right: lab — studarea, overlapping bothab and studarea.

Fig. 14. Left: Pose similarity matrix for the “Multiple floorVels” data set.

Right: Similarity access matrix showing which similarity measuwere used L .
in the Mini-SLAM computation. Brighter pixels were used moréen. 3) Robustness evaluatiorthe suggested method relies on

incremental pose estimates (odometry) and a visual siigilar

adding the different maps onto each other, the fused maps TABLE IV
also use additional information from the overlapping p&otS MSERESULTS BEFORE AND AFTER MERGING OF THE DATA SETS AND
improve the accuracy of the sub-maps. This is illustratéthin USING ODOMETRY ONLY.

ble IV which shows the MSE (again obtained by determining

the rigid alignment betwees and z¢7) before and after the | tab | studarea | lab— studarea
fusion was performed. While the data sété and studarea before fusion | 0.002 |  0.029 0.036
shows a negligible change in accuraky; — studarea clearly after fusion | 0.002 | 0.029 0.013
demonstrate a large improvement. raw odometry| 0.065 | 0.481 1.296
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IV. CONCLUSIONS ANDFUTURE WORK

Mini-SLAM combines the principle of using similarity of
panoramic images to close loops at the topological leveh wit
a graph relaxation method to obtain a metrically accurate
map representation and with a novel method to determine the
covariance for visual relations based on visual similaafy
neighbouring poses. The proposed method uses visual simila
ity to compensate for the lack of range information abouéloc
image features, avoiding computationally expensive asd le
Fig. 17. Left: Pose similarity matrix for thiub — studarea data set. Right:  general methods such as tracking of individual image fesatur
Similarity access matrix showing which similarity measures used in the . . .
proposed method. Brighter pixels were used more often. Experimentally, the method scales well to the investigated

environments. The experimental results are presentedsinali
) means (as occupancy maps rendered from laser scans and
measur_eS. The robustness of the method is evaluated I%Yoses determined by the Mini-SLAM algorithm) and by com-
corrupting these two inputs and evaluating the performancg,ison with ground truth (obtained from DGPS outdoors or
For this evaluation, thetudarea data set is used and the test§ car-pased SLAM indoors). The results demonstrate tieat th
were repeated 10 times. Mini-SLAM method is able to produce topologically correct

In the first test, the similarity measureéswere corrupted 54 geometrically accurate maps at low computational cost.
by adding a random value drawn from a Gaussian distributigijm e extension of the method was used to fuse multiple
N(0,0) with varying standard deviation, see Table V. The a5 sets so as to obtain improved accuracy. The method has
amou.nt of_added nq;e _has to be co.mpared to the rangea%fo been used without any modifications to successfully map
[0, 1] in which the similarity measuré' lies, see Eqg. 2. a building consisting of 5 floor levels.

The robustness evaluation with respect to the similarity Mini-SLAM generates a 2-d map based on 2-d input from

measureS shows that the system can handle additional nOi%%ometry. It is worth noting that the “outdoor / indoor” datet
to some extent, but incorrect visual relations will affelset .

) o includes variations of up to 3 meters in height. This indésat
accuracy of the final map. This illustrates that the propos t the Mini-SLAM can cope with violations of the flat
method, as many others, would have difficulties in percétytuaﬂo

imilar locati . th tainty of th 46 or assumption to a certain extent. We expect a graceful
zlm'isarhigﬁa 1ons In case the uncertainty of the pose e madegradation in map accuracy as the roughness of the terrain

increases. The representation should still be useful ftr se

In_ the se<_:(_)nd test,_the odomef[ry values were corrupted I%%alization using 2-d odometry and image similarity, g.g.
addmg add!t|ona| noise to the |_ncremental dl_starabear_]d using the global localization method in [1], which in additi
the orientationd. The corrupted incremental distandé is could be used to improve the robustness towards perceptual
calculated as aliasing when fusing multiple data sets. In extreme caskes, o

d =d+0.1dN(0,0) + 0.20N(0,0), (12) course, itis possible that the method would create inctersis
maps, and a 3-d representation should be considered.

The bottleneck of the current implementation in terms
0" =6+ 0.2dN(0,0) + ON(0,0). (13) of computation time is the calculation of image similarity,
tﬂﬁhiCh involves the comparison of many local features. The
sgggested approach, however, is not limited to the paaticul
measure of image similarity used in this work. There are

and the orientatiod’ as

Since the odometry pose estimates are computed incretyen

the whole later trajectory is affected when adding noise at
particular time step.
The results of the robustness evaluation with the corrupted

odometry are shown in Fig. 18 together with the MSE of raw odometry—+—
SLAM const cov. odom: - - -
§LAM incI cov. odqm.L ¥ -1

the corrupted odometry. These results show that the system i

robust to substantial odometry errors. A failure case isvsho 100 ‘
in Fig. 19. 80
%\ 60
TABLE V I 40
MSE RESULTS(mean AND stddev) AFTER ADDING A RANDOM VARIABLE O ol
DRAWN FROM N (0, ¢) TO EACH SIMILARITY MEASURE S .- = o
o ‘ mean ‘ stddev —20 7
- | | | |
0.02| 003 | 0.004 99 0.5 1 1.5 2 2,
0.05| 0.03 0.011 Added noise €

0.10 0.11 0.074
Fig. 18. MSE resultsriean andstddev) for  (odometry) and: (estimated

0.20 | 0.94 0.992 poses) after corrupting the odometry by adding random vatiiasn from
0.40 | 1.35 1.304 N(0,0). The plot also shows the MSE when the odometry covariance is
0.80 | 1.49 1.240 increased with the added noise.
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conesponmnp'
Wme /
i

Fig. 19. A failure case where the corrupted odometry erroaimectoo large
resulting in a corrupted map. Left: SLAM map. Right: raw odometr

many possibilities to increase the computation speedreithe
using alternative similarity measures that are faster tomge
while still being distinctive enough, or by optimizing the
implementation, for example, by executing image compasso
on a graphics processing unit (GPU) [22].

Further plans for future work include an investigation of
the possibility of using a standard camera instead of an
omni-directional camera, and incorporation of visiondzhs

odometry to realise a completely vision-based system.
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