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Abstract— In this paper we present a vision-based approach
to self-localization that uses a novel scheme to integrate feature-
based matching of panoramic images with Monte Carlo local-
ization. A specially modified version of Lowe’s SIFT algorithm
is used to match features extracted from local interest points in
the image, rather than using global features calculated from the
whole image. Experiments conducted in a large, populated indoor
environment (up to 5 persons visible) over a period of several
months demonstrate the robustness of the approach, including
kidnapping and occlusion of up to 90% of the robot’s field of
view.

I. I NTRODUCTION

One of the most basic abilities needed by robots is self-
localization (“where am I?”). This can be divided into geomet-
ric and topological localization. Geometric localization tries
to estimate the position of the robot as accurately as possible,
e.g., by calculating a pose estimate(x, y, θ), while topological
localization gives a more abstract position estimate, e.g., “I’m
in the coffee room”. Difficult situations require the robot
to be able to relocalize itself from scratch, e.g., when the
robot is started (no prior knowledge of its position), or if
the robot is lost or “kidnapped” (incorrect prior knowledge).
There has been extensive research on using accumulated
sensory experience to improve localization performance, in-
cluding approaches such as Markov localization [7], Particle
Filters/Monte-Carlo localization (MCL) [8] or by using a
voting scheme as presented in [1].

Panoramic or omni-directional cameras have become pop-
ular for self-localization in recent years because of their
relatively low cost and large field of view, which makes it
possible to create features that are invariant to the robot’s
orientation, for example, using various colour histograms [1],
[2], [3], or Eigenspace models [4]. Approaches that do not
use rotationally invariant features create multiple images from
the same location by shifting the panoramic view [5] or
by rotation [6], which increases the amount of data several
times. Another approach is to only take pictures at the same
orientation [4], e.g., only when the robot is facing north.
Recent work has combined panoramic vision with MCL,
including feature matching using the Fourier coefficient [9]
and colour histograms [10].

Fig. 1. Robot platform in the test environment.

The main difference in our work from the previous ap-
proaches is that we use local features extracted from many
small regions of the image rather than global features extracted
from the whole image, which makes the method very robust to
variations and occlusions, e.g., due to moving persons. We use
a version of Lowe’s SIFT algorithm [13], which is modified so
that stored panoramic images are only recognised from a local
area around the corresponding location in the world (Section
II). A novel scheme is introduced for combining local feature
matching with a Particle Filter for global localization (Section
III), which minimizes computational costs as the filter con-
verges. Our experiments were explicitly designed to test the
system under a wide variety of conditions, including results in
a large populated indoor environment on different days (∼2
month apart) under different lighting conditions (Section IV).
The results demonstrate that the robot is able to localize itself
from scratch, including experiments in “kidnapping”, and that
the performance shows a graceful degradation to occlusions
(up to 90% of the robot’s field of view).

II. L OCAL FEATURE MATCHING

To be able to match the current image with the images
stored in the database, each image is converted into a set of
features. The matching is done by comparing the features in
the database with the features created from the current image.
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Fig. 2. Creation of the neighbourhoodNp. Before matching, the interest
point p and the surrounding pixels are rotated by angleθ to a fixed orientation
(facing forwards relative to the robot). This means that matching of two
interest points in different images will be independent of the orientation of
those points.

A. Selection of Interest Points

To select interest points, a neighbourhoodN of 3x3 pixels
is selected around each pixel in the image. The derivatives
Dx andDy are calculated with a Sobel operator for all pixels
in the blockN . For each pixel the minimum eigenvalueλ is
calculated for matrixA where

A =
[ ∑
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∑
Dxi,j Dyi,j∑
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Dyi,j
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yi,j

]
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and
∑

is performed over the neighbourhood ofN . The pixels
with the highest values ofλ are then selected by thresholding.
If points are closer than a distance of 5 pixels the weakest
point is removed. For further details see [11], or the function
cvGoodFeaturesToTrack in the OpenCV library [12].

To get rotationally invariant features, the neighbourhoodNp

is created by rotating the surrounding pixels the same angleθ
as the interest pointp is rotated, see Fig. 2. This is done using
bilinear interpolation. By doing thisNp will be independent
of the rotationθ.

In our experiments, 100 interest points were selected for
each panoramic image. The diameter of the panoramic view is
approximately576 pixels. For each interest point, the radius
r and orientationθ are also stored (Fig. 2) for subsequent
processing described in Section III-B.

B. Modified SIFT algorithm (MSIFT)

SIFT was developed by Lowe [13] for local feature gener-
ation in object recognition applications. The features are in-
variant to image translation, scaling and rotation, and partially
invariant to illumination changes and affine or 3D projection.
These properties make SIFT very suitable for mobile robots
because landmarks can be observed from different angles,
distances or illumination [14].

However, for the purpose of self localization, we actually
do not want full invariance to translation and scale: we would
like view matching to be successful only in the vicinity of
the location where the original image was recorded in the

c)
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Fig. 3. Creation of MSIFT features. a): Rotation and magnitude for each
pixel. The circle in b) represents the Gaussian weighting function. Note that
the histograms in c) are created by bilinear interpolation from surrounding
pixels represented as a dashed square in b).

database. Therefore, we make a number of simplifications to
the basic algorithm, described as follows.

To ensure rotational invariance, each interest point is first
rotated to the same global orientation as shown in Fig. 2,
as described above. (In the full SIFT algorithm, a canonical
orientation is stored for each interest point.)

Around each interest point, a sub-window of32×32 pixels
is selected. Image gradients are then calculated for each pixel
in the sub-window. This is implemented by first calculating
the matrix of derivatives inx− and y− directions, and then
converting to polar coordinates. The result is a32×32 matrix
giving the gradient magnitude and orientation for each pixel
in the sub-window (Fig. 3a).

The magnitude and orientation values are then accumulated
into 16 orientation histograms summarising the contents of
the whole sub-window (these histograms are the so-called
“keypoint descriptors” or feature vector used for matching
interest points). Each histogram has8 bins, i.e., the orienta-
tion information is discretised into8 possible values. Each
bin accumulates the total weighted magnitude information
for a particular orientation. A Gaussian function is used to
weight the gradient magnitude values in order to avoid sudden
changes in the histograms with small changes in the position
of the window (Fig. 3b). To avoid boundary effects when
gradients are changing from one histogram area to another,
each pixel gradient is therefore stored in the four closest
histograms using bilinear interpolation (Fig. 3c). (In the full
SIFT algorithm, a Gaussian kernel is convolved at multiple
resolutions in a pyramid of scaled images [15] to detect interest
points at different scales, whereas in our approach we only find
interest points in one resolution, since we do not require scale
invariance.)

Matching of features in two images in then performed using
squared Euclidean distance between the two corresponding
histograms. In the full SIFT algorithm, the histograms are
first normalised to have unit length. However, we found
that localization performance was improved by omitting the
normalisation step.



III. M ONTE CARLO LOCALIZATION

The use of Monte Carlo methods or Particle Filters [16]
became quite popular in the last years to estimate the state
of a system at a certain time based on the current and past
measurements. The probabilityp(Xt|Zt) of a system being in
the stateXt given a history of measurementsZt = {z0, ..., zt}
is approximated by a set ofN weighted particles:

St = {x(i)
t , π

(i)
t }, i = 1...N. (2)

Each particlex(i)
t describes a possible state weighted with

π
(i)
t which is proportional to the likelihood that the system is

in this state. Particle Filtering consists of three main steps:

1) Create new particle setSt+1 set by resampling from old
particle setSt based on particle weightsπ(i)

t , i = 1...N
2) Predict particle states based on dynamic model

p(x(i)
t+1|x

(i)
t , ut) with odometryut, i = 1...N

3) Calculate new weights by application of the measure-
ment model:π(i)

t+1 ∝ p(zt+1|Xt+1 = x
(i)
t+1), i = 1...N .

The estimate of the system state at timet is the weighted
mean over all particle states:

X̂t = E(St) =
N∑

i=1

π
(i)
t x

(i)
t . (3)

The weightsπ
(i)
t are normalized so that

∑N
i=1 π

(i)
t = 1.

In our case the state is described by a three dimensional
vectorxt = (xW , yW , θ)t containing the position of the robot
(xW , yW ) and the orientationθ. ThexW andyW coordinates
are initialized randomly within a radius of one meter around
a randomly selected database position. The orientationθ is
estimated from the closest database position as described
in III-B with an added normal distribution with a standard
deviation of π/8 radians. The prediction and measurement
of particles are described in the following sections. In the
experiments, a total of 500 particles were used and 10% of
these were randomly reinitalized to enable relocalization.

A. Dynamic Model

All state variablesx(i)
t = (xW , yW , θ)t are updated from the

odometry readingsut from the robot. To cope with inaccuracy
(Fig. 6 shows the odometry fromRun1 and Run2), the
odometry values are added with normal distribution. The
angle is added with standard deviation of 0.1 radians and the
translation with a standard deviation of 2% of the translation
length.

B. Measurement Model

To calculate the weight of particles only the database
location that is closest to the current particle is used (see
also Fig. IV-A). This means that the computation time will
decrease as the particles converge around the true location
of the robot, since fewer of the features in the database
will need to be matched to the current image. Fig. 4 shows
the decreasing number of matched database locations against
distance travelled after initialization of the Particle Filter.

Fig. 4. Number of database features to match against distance travelled for
Run1 with 50% occlusion.

The weight is based on the number of interest points that
matches between the current and the database image features
(matchi). A candidate interest point match is considered if
the lowest match value, calculated from the squared Euclidian
distance between the histograms,M1 is at least 0.6 times
smaller than the next lowest match valueM2, the factor that
was found empirically and also used in [3]. This guarantees
that the interest point match will be significantly better com-
pared to the other possibilities, see also Fig. 5. No interest
point is allowed to be matched against more than one other
interest point. If an interest point has more then one candidate
match, the match which has the lowest match value among
the candidate matches is selected.

To reduce the impact of false matches, the position of the
matched interest points angles and radius are compared, as
well as the homogeneity of the match distribution. To be able
to compare the anglesθp and θp′ of two matched interest
pointsp andp′ (see Fig. 2), the rotationφ of the robot between
the matched images has to be estimated.φ is estimated by
creating a 32 bin histogram fromθp−θp′ using all the matched
interest points.φ is then calculated from the highest bin in the
histogram, i.e., the robot orientation can be estimated with a
precision of360/32 degrees.

For each interest point match where|θp − θp′ − φ| < 0.2
one extra point is added to the match score (matchi). Another
point is added tomatchi if |rp − rp′ | < 10, where the radius
is calculated in pixels. Finallymatchi is multiplied by 1.5
if more then 60% of the match points pass the angle criteria
stated above, in order to award homogeneity. These factors
were found empirically.

All particles that are closest to the same database point will
have the same match value. To avoid drifting of the particles
away from the database positions, a weighting function is used.
The final weighted match valuematchi is used to calculated
the weight byπ(i)

t = match3
i , in order to reward higher match

values with out any need for normalization.



Fig. 5. Matching an image (above) against the database (below).

Finally to increase the inertia of the particles to overcome
sections with few matches, only matches that generates high
weights compared to previous ones are used. This is done by
using a ’forgetting factor’fforget. The new weight is used
only if π

(i)
t+1 > π

(i)
t · fforget, otherwiseπ

(i)
t · fforget is used

as the new weight. In the experimentsfforget = 0.9.

IV. EXPERIMENTS

The localization system consists of a database of features
where each set of features represents one location (place in a
topological map). The features were calculated from images
taken at the known positions. To obtain these positions and
the ground truth data for performance evaluation, a SLAM
implementation was applied using the technique described in
[17]. A total of 603 images were collected covering an area
of approximately 60×55 meters, as shown in Fig. 6. New
laser scans and images were recorded if the rotation since the
previous image exceeded 15 degrees or when the translation
exceeded 0.5 meters. For each image the corresponding pose
estimate from the SLAM algorithm was stored.

A. Building the database

Since all the features used are rotationally invariant, it is
only necessary to use images with different location and not
orientation, i.e., when the robot is travelling back and forward
along a corridor it is sufficient to save the data in one direction.
The building of the database starts after the run is completed
and optimised with SLAM. The images are used in the same
order as they were taken. An image is added to the database
if the metric distance to the nearest stored image exceeds a
thresholdT . In this paper, a value ofT = 0.4 meters was
used. For each image that should be a part of the database,

a feature set are calculated and stored for the 100 strongest
interest points, as described in Section II.

The method were evaluated using a set of test runs that
overlap with the area covered by the database, as shown in
Fig. 6.

B. Evaluation Method

To calculate performance, the Euclidian distance between
positions of the test image and the median value of the 90%
of the particles which had the highest fitness value are used
to be more robust towards outliers. The database map and
the different run maps were manually fitted and ’placed’ on
top of each other. To get more evaluation data, each dataset
was used multiple times by dividing it into smaller runs. The
new runs contained 30 images each covering approximate 9
meters where each run has a different starting position. To
test the robustness additional levels of occlusion were simu-
lated by removing interest points. The occlusion percentage
indicates the proportion of the current image (field of view)
where interest points were deleted. For the global localization
problem the particles were reinitialized after each completed
run (see Fig. 7). To evaluate the kidnapped robot scenario
a randomly selected run was used to accumulate knowledge
before the robot was ’virtually’ moved by randomly selecting
another run (see Fig. 8).

C. Results

Run2 is from a corridor, see Fig. 6, which contains a lot
of similar features, e.g., doors to office rooms, and a lack of
furniture or objects. Difficulties were also from that a lot of
different features were detected if doors were open or closed.
This could explain the lower performance compared toRun1

andRun4 which mostly take place in the student area and the
labs. The student area contains more different features such
as staircases and art. The labs are more cluttered with various
objects, which tend to move around over time.Run3 passes
parts of the Ph.D. corridor, the coffee room and the secretary
offices.

Each run was recorded at a different time compared to the
database.Run1 was taken 2 days before the database, both
Run2 and Run3 were taken 56 days after whileRun4 was
taken 64 days after.Run4 and most ofRun3 were collected
with the robot driving in the opposite direction compared to
the database, see Fig. 6.

For MSIFT 16 histograms with 8 directions gave 128
numbers for one feature. To match two images using 100
features takes∼0.02 second with a 2GHz Pentium.

V. CONCLUSION

By using experiments with data collected on different days
over a period of several months, it has been shown that even if
the room has gone through some changes regarding location of
furniture, objects and persons, servere occlusion it is possible
to extract good position estimates. Future work could be to
create a less heuristic method for the matching by using
epipolar geometry or similar. Then it would be possible to
get more accurate position estimate to initalize the particles.



Fig. 6. Left: area covered by the database. Middle: ground truth information from SLAM,Run4 (black) and the database (gray). Right: Two of the test
sequences with ground truth and raw odometry data,Run1 (above) andRun2 (below).

Fig. 7. Localization errors against distance travelled for global localization experiments. Top left: results fromRun1. Top right: results fromRun2. Bottom
left: results fromRun3. Bottom right: results fromRun4.



Fig. 8. Localization errors against distance travelled for the kidnapped robot prolem. Top left: results fromRun1. Top right: results fromRun2. Bottom
left: results fromRun3. Bottom right: results fromRun4.
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