10 research outputs found

    Location Management in Wireless Sensor Networks with Mobility

    Get PDF
    Wireless sensor networks comprise motes which are nothing but small sensor devices. The challenging problems for motes are battery power, storage capacity, and less calculation power of the mote. In this paper developed structure for Real-Time Tracking, Sensing and Management System using IITH motes is proposed. Also the algorithm developed for location management of wireless sensor networks with the aspect of mobility is proposed. This developed framework and algorithm can be utilized in emergency events and safety threats and provides warning signals to handle the emergency

    LPS Auto-Calibration Algorithm with Predetermination of Optimal Zones

    Get PDF
    Accurate coordinates for active beacons placed in the environment are required in Local Positioning Systems (LPS). These coordinates and the distances (or differences of distances) measured between the beacons and the mobile node to be localized are inputs to most trilateration algorithms. As a first approximation, such coordinates are obtained by means of manual measurements (a time-consuming and non-flexible method), or by using a calibration algorithm (i.e., automatic determination of beacon coordinates from ad hoc measurements). This paper presents a method to calibrate the beacons’ positions in a LPS using a mobile receiver. The method has been developed for both, spherical and hyperbolic trilateration. The location of only three test points must be known a priori, while the position of the other test points can be unknown. Furthermore, the paper describes a procedure to estimate the optimal positions, or approximate areas in the coverage zone, where the test-points necessary to calibrate the ultrasonic LPS should be placed. Simulation and experimental results show the improvement achieved when these optimal test-points are used instead of randomly selected ones

    Measuring Time-of-Flight in an Ultrasonic LPS System Using Generalized Cross-Correlation

    Get PDF
    In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic Local Positioning System (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (Direct-Sequence Code Division Multiple Access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the Generalized Cross-Correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the Time Differences of Arrival (TDOA) between a reference beacon and the others

    Improving a wireless localization system via machine learning techniques and security protocols

    Get PDF
    The recent advancements made in Internet of Things (IoT) devices have brought forth new opportunities for technologies and systems to be integrated into our everyday life. In this work, we investigate how edge nodes can effectively utilize 802.11 wireless beacon frames being broadcast from pre-existing access points in a building to achieve room-level localization. We explain the needed hardware and software for this system and demonstrate a proof of concept with experimental data analysis. Improvements to localization accuracy are shown via machine learning by implementing the random forest algorithm. Using this algorithm, historical data can train the model and make more informed decisions while tracking other nodes in the future. We also include multiple security protocols that can be taken to reduce the threat of both physical and digital attacks on the system. These threats include access point spoofing, side channel analysis, and packet sniffing, all of which are often overlooked in IoT devices that are rushed to market. Our research demonstrates the comprehensive combination of affordability, accuracy, and security possible in an IoT beacon frame-based localization system that has not been fully explored by the localization research community

    Federated Sensor Network architectural design for the Internet of Things (IoT)

    Get PDF
    An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept

    Biologically inspired, self organizing communication networks.

    Get PDF
    PhDThe problem of energy-efficient, reliable, accurate and self-organized target tracking in Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited physical resources and abrupt manoeuvring mobile targets. A biologically inspired, adaptive multi-sensor scheme is proposed for collaborative Single Target Tracking (STT) and Multi-Target Tracking (MTT). Behavioural data obtained while tracking the targets including the targets’ previous locations is recorded as metadata to compute the target sampling interval, target importance and local monitoring interval so that tracking continuity and energy-efficiency are improved. The subsequent sensor groups that track the targets are selected proactively according to the information associated with the predicted target location probability such that the overall tracking performance is optimized or nearly-optimized. One sensor node from each of the selected groups is elected as a main node for management operations so that energy efficiency and load balancing are improved. A decision algorithm is proposed to allow the “conflict” nodes that are located in the sensing areas of more than one target at the same time to decide their preferred target according to the target importance and the distance to the target. A tracking recovery mechanism is developed to provide the tracking reliability in the event of target loss. The problem of task mapping and scheduling in WSNs is also considered. A Biological Independent Task Allocation (BITA) algorithm and a Biological Task Mapping and Scheduling (BTMS) algorithm are developed to execute an application using a group of sensor nodes. BITA, BTMS and the functional specialization of the sensor groups in target tracking are all inspired from biological behaviours of differentiation in zygote formation. Simulation results show that compared with other well-known schemes, the proposed tracking, task mapping and scheduling schemes can provide a significant improvement in energy-efficiency and computational time, whilst maintaining acceptable accuracy and seamless tracking, even with abrupt manoeuvring targets.Queen Mary university of London full Scholarshi

    Antenas setoriais para sistemas de localização em redes de sensores sem fios

    Get PDF
    Doutoramento em Engenharia EletrotĂ©cnicaThis work investigates low cost localization systems (LS) based on received signal strength (RSS) and integrated with different types of antennas with main emphasis on sectorial antennas. The last few years have witnessed an outstanding growth in wireless sensor networks (WSN). Among its various possible applications, the localization field became a major area of research. The localization techniques based on RSS are characterized by simplicity and low cost of integration. The integration of LS based on RSS and sectorial antennas (SA) was proven to provide an effective solution for reducing the number of required nodes of the networks and allows the combination of several techniques, such as RSS and angle of arrival (AoA). This PhD thesis focuses on studying techniques, antennas and protocols that best meet the needs of each LS with main focus on low cost systems based on RSS and AoA. Firstly there are studied localization techniques and system that best suit the requirements of the user and the antennas that are most appropriate according to the nature of the signal. In this step it is intended to provide a fundamental understanding of the undertaken work. Then the developed antennas are presented according to the following categories: sectorial and microstrip antennas. Two sectorial antennas are presented: a narrowband antenna operating at 2.4 to 2.5 GHz and a broadband antenna operating at 800MHz-2.4GHz. The low cost printed antennas were designed to operate at 5 GHz, which may be used for vehicular communication. After presenting the various antennas, several prototypes of indoor/outdoor LS are implemented and analyzed. Localization protocols are also proposed, one based on simplicity and low power, and the other on interoperability with different types of antennas and system requirements.O presente trabalho investiga sistemas de localização (SL) de baixo custo baseados na intensidade do sinal (RSS) e integrados com diferentes tipos de antenas com principal destaque para antenas sectoriais. Os Ășltimos anos testemunharam um crescimento surpreendente de redes de sensores sem fios (RSSF), onde entre diversas aplicaçÔes possĂ­veis, a localização tornou-se uma das principais ĂĄreas de pesquisa. TĂ©cnicas baseadas na intensidade do sinal caracterizam-se pela simplicidade e baixo custo de integração. A integração de SL baseados na intensidade do sinal recebido e antenas sectoriais (AS) oferecem uma solução eficaz para reduzir o nĂșmero de nĂłs necessĂĄrios e para combinar diversas tĂ©cnicas de localização. Esta tese de doutoramento foca-se no estudado de tĂ©cnicas, antenas e protocolos de acordo com os requisitos de cada sistema localização com especial atenção para sistemas de baixo custo baseados na intensidade do sinal e no Ăąngulo de chegada. Inicialmente sĂŁo estudadas tĂ©cnicas e SL de acordo com as necessidades do utilizador e as antenas que melhor se enquadram de acordo com a natureza do sinal. Esta etapa tem como objectivo proporcionar a compreensĂŁo fundamental do trabalho desenvolvido. Em seguida sĂŁo apresentadas as antenas desenvolvidas divididas em: antenas sectorias e antenas impressas de baixo custo. Duas antenas sectoriais sĂŁo apresentadas: uma de banda estreita a operar a 2,4-2,5GHz e outro de banda larga 800MHz-2.4GHz. As antenas impressas foram desenvolvidas para operar a 5 GHz, pelo que podem ser utilizadas para comunicação veicular. ApĂłs apresentação das diversas antenas vĂĄrios protĂłtipos de SL interiores/exteriores sĂŁo implementados e analisados. Protocolos de localização sĂŁo tambĂ©m propostos, um baseado na simplicidade e baixo consumo, outro na interoperabilidade com diferentes tipos de antenas e requisitos do sistema
    corecore