
Biologically inspired, self organizing communication networks.
Hamouda, Yousef Elabd Mohammad

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/709

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

https://qmro.qmul.ac.uk/jspui/handle/123456789/709

 1

BIOLOGICALLY INSPIRED, SELF ORGANIZING
COMMUNICATION NETWORKS

By

Yousef Elabd Mohammad Hamouda

SUBMITTED FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

Supervised by Dr. Chris Phillips

School of Electronic Engineering and Computer Science

February 2011

 2

Abstract

The problem of energy-efficient, reliable, accurate and self-organized target tracking in

Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited physical

resources and abrupt manoeuvring mobile targets. A biologically inspired, adaptive

multi-sensor scheme is proposed for collaborative Single Target Tracking (STT) and

Multi-Target Tracking (MTT). Behavioural data obtained while tracking the targets

including the targets’ previous locations is recorded as metadata to compute the target

sampling interval, target importance and local monitoring interval so that tracking

continuity and energy-efficiency are improved. The subsequent sensor groups that track

the targets are selected proactively according to the information associated with the

predicted target location probability such that the overall tracking performance is

optimized or nearly-optimized. One sensor node from each of the selected groups is

elected as a main node for management operations so that energy efficiency and load

balancing are improved. A decision algorithm is proposed to allow the “conflict” nodes

that are located in the sensing areas of more than one target at the same time to decide

their preferred target according to the target importance and the distance to the target. A

tracking recovery mechanism is developed to provide the tracking reliability in the

event of target loss.

The problem of task mapping and scheduling in WSNs is also considered. A

Biological Independent Task Allocation (BITA) algorithm and a Biological Task

Mapping and Scheduling (BTMS) algorithm are developed to execute an application

using a group of sensor nodes. BITA, BTMS and the functional specialization of the

sensor groups in target tracking are all inspired from biological behaviours of

differentiation in zygote formation.

Simulation results show that compared with other well-known schemes, the

proposed tracking, task mapping and scheduling schemes can provide a significant

improvement in energy-efficiency and computational time, whilst maintaining

acceptable accuracy and seamless tracking, even with abrupt manoeuvring targets.

 3

Acknowledgment

First of all, all praises are for my God for giving me his boundless bounties especially

giving me a good health and powerful determinations to be able to do this thesis.

All my deep appreciations are due to my supervisor, Dr. Chris Phillips, for his

invaluable academic and technical supports and helps. He has not only academically

supervised me in the thesis, but he has also logically taught me the right way of

thinking, tracking problems and overcoming the challenges. Additionally, I register my

indebtedness to him. He always guides me to the right direction, helps me to solve any

academic problem and encourages me constantly.

I also would like to extend my thankfulness to all academic and administrative staff

in Electronic Engineering Department, especially my academic teachers. Also, I would

like to express my thankfulness to Queen Mary, University of London which awarded

me a full scholarship to do my PhD.

I also would like to thank my colleagues in the department, in particular, Ali,

Frankie, Oliver and Adeel. I extend my thankfulness to all my friends in UK, Egypt and

Palestine especially the dean of admission and registration, Dr. Fayik El Nawaak, Omer,

Mazen, Bahjat and Dr Abdallah Al Zain about their enthusiasm and encouragement

throughout my PhD.

Last but not least, I would like to truly dedicate this work to my parents in Palestine.

I record my profound gratitude to them. They have trained me, taught me and

encouraged me to pursuer my postgraduate studies. Many lovely thanks to my wife,

Ekram, who always technically and emotionally supported me throughout my PhD,

despite the vast separating distances. She has shown great patience and understanding

and exerted tremendous efforts looking after our kids. The thankfulness is extended to

my brothers, sisters and relatives in Egypt and Palestine for their constant emotional

support.

 4

Table of Contents

Abstract..2
Acknowledgment ...3
Table of Contents ..4
List of Figures..8
List of Tables ...11
Glossary of Terms ...12
Chapter 1 Introduction ..15

1.1 Chapter Introduction ...15
1.2 The Research Problem Definition...15

1.2.1 Brief Introduction about WSNs ...15
1.2.2 Target Tracking in WSNs ..16
1.2.3 Task Mapping and Scheduling in WSNs ...18

1.3 The Research Motivation..18
1.4 The Research Objectives...19
1.5 Novelty & Contributions...20
1.6 Notation Conventions ...21
1.7 Thesis Structure...21
1.8 Authorship...22

Chapter 2 Background and Literature Review ...24
2.1 Chapter Introduction ...24
2.2 Wireless Sensor Networks (WSNs) Overview & Applications............................24
2.3 Energy Consumptions Factors in WSNs...26
2.4 WSN MAC Protocols ...27
2.5 WSNs Routing Protocols ..30
2.6 WSNs Target Tracking ...32

2.6.1 Target Detection...33
2.6.2 Target Classification ..34
2.6.3 Node Selection ...35
2.6.4 Target Localization ..35
2.6.5 Target Tracking..37

2.6.5.1 Bayesian Networks ...38
2.6.5.2 Extended Kalman Filter (EKF) ...41

2.6.6 Behaviour Analysis ..41
2.6.7 Person Identification ..42
2.6.8 WSNs Target Tracking Architecture ...42

2.7 Biologically Inspired Research & Self-Organized Networks43
2.8 Task Mapping and Scheduling in WSNs ..44
2.9 State-of-the Art Review ..45

2.9.1 Biological Inspired Techniques and Algorithms ...45
2.9.2 Target Tracking in WSNs ..46

2.9.2.1 Target Tracking Framework ...46
2.9.2.2 Sensor Nodes Selection Algorithms ...52
2.9.2.3 Sensor Nodes Election Algorithms ...56
2.9.2.4 Target Tracking Techniques ...56

2.9.3 Task Mapping and Scheduling in WSNs ...58
2.10 Chapter Summary ...61

Chapter 3 Single Target Tracking in WSNs ..62
3.1 Chapter Introduction ...62

 5

3.2 Target Dynamic Model ...62
3.3 Sensor Detection and Measurement Model ..63
3.4 Energy Consumption Model ...64
3.5 Extended Kalman Filter for Single Target Tracking ..65
3.6 Multi-Sensor Adaptive Single Target Tracking Framework67
3.7 Target Metadata ..69
3.8 Adaptive Sampling Interval Selection Algorithm...71
3.9 Sensor Nodes Selection Management...73

3.9.1 Target Model..73
3.9.2 Sensor Nodes Selection Algorithm..74
3.9.3 Adaptive Group Size Algorithm ..75

3.10 Sensor Node Election..76
3.11 Tracking Recovery Mechanism ..78
3.12 Sensor Nodes Deployment..81
3.13 Complete Single Target Tacking Algorithms ...82
3.14 Biologically Inspired and Self-Organizing Aspects..84
3.15 Chapter Summary ...85

Chapter 4 Multi Target Tracking in WSNs...86
4.1 Chapter Introduction ...86
4.2 Target Dynamic Model ...86
4.3 Sensor Detection and Measurement Model ..87
4.4 Extended Kalman Filter for Multi-Target Tracking ...88
4.5 Multi-Sensor Distributed Multi-Target Tracking (MS-DMTT)90

4.5.1 Problem Formalization...90
4.5.2 MS-DMTT Framework and Assumptions ...91
4.5.3 Sampling Interval Selection, Sensors Selection, Sensors Election and
Recovery Mechanism..92
4.5.4 Distributed Multi-Target Selection (DMS) Algorithm92

4.6 Multi-Sensor Adaptive Multi-Target Tracking (MS-AMTT)...............................93
4.6.1 Problem Formalization...94
4.6.2 MS-AMTT Framework and Assumptions ...95
4.6.3 The Proposed Algorithms for MS-AMTT scheme ..96
4.6.4 Adaptive Target Importance ..97
4.6.5 Local Search Algorithm...99

4.6.5.1 Initial Solution Selection...99
4.6.5.2 Neighbourhood Structure..100
4.6.5.3 Complete Local Search Heuristic Algorithm..101
4.6.5.4 Computational Complexity ...102

4.6.6 Main and Leader Node Election ..103
4.7 Biologically Inspired and Self-Organized Aspects...103
4.8 Chapter Summary ...104

Chapter 5 Task Mapping and Scheduling in WSNs ...106
5.1 Chapter Introduction ...106
5.2 Biological Task Mapping and Scheduling (BTMS) Algorithm..........................106

5.2.1 Application Model ...106
5.2.2 Problem Formulation ...107
5.2.3 BTMS Algorithm ...108
5.2.4 Decision-Making Algorithm..112
5.2.5 Computational Complexity Analysis ...112
5.2.6 Biological Inspired Aspects in BTMS Algorithm..113

 6

5.3 A Biological Independent Task Allocation (BITA) Algorithm..........................113
5.4 Chapter Summary ...115

Chapter 6 Simulation Environment ...116
6.1 Chapter Introduction ...116
6.2 Event Driven Simulation...116
6.3 Simulation Framework..116
6.4 Object Oriented Programming ..117
6.5 CSMA/CA Event List ...119
6.6 Chapter Summary ...120

Chapter 7 Simulation Results ...121
7.1 Chapter Introduction ...121
7.2 Simulation Assumptions ...121
7.3 MS-ASTT Scheme Evaluation..122

7.3.1 Simulation Setup..122
7.3.2 Recovery Mechanism Evaluation ..123
7.3.3 Impact of Adaptive Node Election...125
7.3.4 Impact of Group Size ...126
7.3.5 Comparison with other STT Schemes Using Fixed Trajectory129
7.3.6 Impact of Adaptive Group Size ...133
7.3.7 Results Discussion ...134

7.4 MS-DMTT Scheme Evaluation ..136
7.4.1 Simulation Setup..136
7.4.2 Sensor Nodes Selection..136
7.4.3 Tracking Error and Sampling Interval ...137
7.4.4 Results Discussion ...138

7.5 MS-AMTT Scheme Evaluation ..139
7.5.1 Simulation Setup..139
7.5.2 Sensor Node Selection ...139
7.5.3 Targets’ Importance and Group Size ...141
7.5.4 Tracking Update Error ...143
7.5.5 Local Search Iteration ..144
7.5.6 Comparison with Other Well-Known MTT Schemes145
7.5.7 Results Discussion ...146

7.6 BTMS Algorithm Evaluation..147
7.6.1 Simulation Setup..147
7.6.2 Network Node Density...148
7.6.3 Real Example of Distributed Visual Surveillance148
7.6.4 CET and Energy Consumption using Random DAG149
7.6.5 Network Lifetime Performance ...151
7.6.5 Results Discussion ...151

7.7 BITA Algorithm Evaluation ...151
7.7.1 Simulation Setup..152
7.7.2 Cooperative Execution Time (CET) ..152
7.7.3 The Performance Metric (Pm) ...152

7.8 Code Verification..153
7.9 Chapter Summary ...153

Chapter 8 Discussion and Conclusions ...155
8.1 Chapter Introduction ...155
8.2 Discussion ...155

8.2.1 Target Tracking in WSNs ..155

 7

8.2.2 Task Mapping and Scheduling in WSNs ...156
8.3 Conclusions...157

Chapter 9 Future Work ..160
Appendix A Simulation Framework...162

A.1 Appendix Introduction ...162
A.2 Detailed Description of Simulation Framework ..162

A.2.1 Target Tracking Model ...162
A.2.2 Task Mapping and Scheduling Models...164

A.3 Event Handling Pseudo Code...166
A.3.1 TArrive Event..166
A.3.2 LOCALIZATION Event...166
A.3.3 PREDICTION Event...166
A.3.4 NextSnapshot Event ..167
A.3.5 Ready Event ..167
A.3.6 UPDATE Event...168
A.3.7 RECOVERY Event...168
A.3.8 Wait DIFS (waitDIFS) Event..169
A.3.9 Back off (Backoff) Event ..169
A.3.10 Transmit (TX) Event ...170
A.3.11 Collision (waitACK) Event...171
A.3.12 Receive (RX) Event ..171
A.3.13 TICK Event ...172

A.4 Appendix Summary ...172
Appendix B Code Verification ..173

B.1 Target Tracking Verification..173
B.1.1 Analytical Analysis ...173
B.1.2 Simulation Results...176
B.1.3 Multi Target Tracking and the Optimal Solution..178

B.2 BITA Algorithm Verification...179
B.2.1 Analytical Analysis ...179
B.2.2 Simulation Results...180

B.3 BTMS Algorithm Verification ...180
B.3.1 BTMS Algorithm and GA Algorithm ...180
B.3.2 Analytical Analysis ...181
B.3.3 Simulation Results...182

References ..185

 8

List of Figures

Figure 1 Single Target Tracking in WSNs..16
Figure 2 MTT in WSNs ..18
Figure 3 WSN Architecture ..25
Figure 4 Sensor Node Main Components ...25
Figure 5 Hidden Terminal Problem ..29
Figure 6 RTS/CTS Handshake..30
Figure 7 Target Tracking Stages...33
Figure 8 2D Localization ..37
Figure 9 Bayesian Model ..39
Figure 10 Network Framework [16] ...47
Figure 11 Leader Volunteering using Voronoi Diagram[69] ...48
Figure 12 The illustration of Presented Scenario in [92] ..48
Figure 13 WSN Tracking Architecture [5] ...49
Figure 14 WSN Tracking Network Architecture [93] ..50
Figure 15 Tracking Network Structure [68] ...51
Figure 16 WSN Tracking Framework [81]...52
Figure 17 The uncertainty of the Target Position [98]..55
Figure 18 Radio Consumption Model...64
Figure 19 MS-ASTT Framework in WSNs ..68
Figure 20 Target Metadata..69
Figure 21 Target Location Metadata...71
Figure 22 Adaptive Sampling Interval..72
Figure 23 Sampling Interval as a Function of Location Metadata..................................72
Figure 24 Chemical Diffusion Strength ..74
Figure 25 Adaptive Group Size Algorithm...76
Figure 26 Target Lost Scenario...78
Figure 27 Target Recovery Levels..79
Figure 28 Node Deployment...81
Figure 29 Algorithm Running in the Helper Node ...82
Figure 30 Algorithm Running in the Main Node..83
Figure 31 Conflict Nodes in Multi-Target Tracking...90
Figure 32 MS-DMTT Framework in WSNs...91
Figure 33 Chemical Diffusion Strength ..92
Figure 34 The DMS Algorithm...93
Figure 35 MS-AMTT WSN Framework ...96
Figure 36 Algorithm Running in the Leader Node ...97
Figure 37 Adaptive Target Importance...98
Figure 38 Target Importance as a Function of Location Metadata.................................98
Figure 39 neighbourhood Structure ..101
Figure 40 Maximum Allowable Iteration as a Function of Minimum Location Metadata
...103
Figure 41 An Example DAG ..107
Figure 42 BTMS Algorithm..110
Figure 43 Level-Based DAG ..110
Figure 44 Arrangement the Tasks in Non-increasing Order...111
Figure 45 The Decision Making Rules ...112
Figure 46 Overall Simulator Structure..117
Figure 47 The Simulation World Model...118

 9

Figure 48 CSMA/CA Event Graph...119
Figure 49 Target Trajectory using 1.0max=T min and Velocity=10m/s...........................123
Figure 50 Number of Recovery Events Variations with maxT ..124
Figure 51 Energy Consumption Variations with maxT ..124
Figure 52 Total Recovery Time Variations with maxT ..125
Figure 53 Number of Recovery Events versus Group Size with a 95% Confidence
Interval ..126
Figure 54 Total Recovery Time versus Group Size with a 95% Confidence Interval..126
Figure 55 Overhead Message Characteristics...127
Figure 56 Total Messages versus Group Size...127
Figure 57 Average Overhead Time versus Group Size ..128
Figure 58 Energy Consumption versus Group Size with a 95% Confidence Interval..128
Figure 59 Number of Retransmissions versus Group Size with a 95% Confidence
Interval ..129
Figure 60 Real and Estimated Target Trajectories..129
Figure 61 Sampling Interval for Different Schemes...130
Figure 62 Location Metadata Variations ..130
Figure 63 Tracking Update Error for Different Schemes ...131
Figure 64 Tracking Prediction Error for Different Schemes ..131
Figure 65 Energy Consumption for Different Schemes..132
Figure 66 Overhead and Recovery Times...133
Figure 67 Real and Estimated Target Trajectories..133
Figure 68 Group Size Variation..134
Figure 69 Updated Tracking Error using Adaptive Group Size134
Figure 70 Selected Sensors considering Target Importance...136
Figure 71 Selected Sensors without considering Target Importance............................137
Figure 72 (a) Real and Estimated Trajectories and (b) Sampling Interval for Different
Targets...137
Figure 73 Tracking Update Error for Different Targets with Target Importance.........138
Figure 74 Tracking Update Error for Different Targets without Target Importance....138
Figure 75 Selected Sensors using Closest-Sensor Selection...140
Figure 76 Selected Sensors using MS-AMTT considering Target Importance............140
Figure 77 Selected Sensors using MS-AMTT without considering Target Importance
...140
Figure 78 Real and Estimated Trajectories for Different Targets.................................141
Figure 79 Target Importance for Different Targets ..142
Figure 80 Target Metadata for Different Targets..142
Figure 81 Group Size using MS-AMTT without considering Target Importance142
Figure 82 Group Size using MS-AMTT considering Target Importance.....................143
Figure 83 Location and Velocity Errors using MS-AMTT without (red curves) and with
(blue curves) considering of the Target Importance ...144
Figure 84 DAG of Visual Surveillance...148
Figure 85 CET versus Deadline ..150
Figure 86 Consumed Energy versus Deadline..150
Figure 87 Lifetime Ratio versus Number of Tasks with a 95% confidence interval...151
Figure 88 CET versus Number of Tasks (N) ...152
Figure 89 Performance Metric versus Node Group Membership Size (ng)..................153
Figure 90 Target Tracking Handling within the Simulator...163
Figure 91 Sending RDis Packets...165

 10

Figure 92 Routing Algorithm 1...165
Figure 93 Routing Algorithm 2..165
Figure 94 LOCALIZATION Event ..166
Figure 95 PREDICTION Event ..167
Figure 96 NextSnapshot Event ...167
Figure 97 Ready Event..168
Figure 98 UPDATE Event ..168
Figure 99 RECOVERY Event ..169
Figure 100 waitDIFS Event ..169
Figure 101 Backoff Event ...170
Figure 102 TX Event...170
Figure 103 waitACK Event...171
Figure 104 RX Event ..171
Figure 105 Target Tracking Snapshot at Time= 9.6998 seconds173
Figure 106 CSMA/CA Contention ...174
Figure 107 Target Tracking Snapshot at Time 9.6998 Seconds176
Figure 108 Simulation Snapshot: TRang Packet Transmission from HN1177
Figure 109 Simulation Snapshot: TRang Packet Transmission from HN2177
Figure 110 Update and Prediction Stages ...177
Figure 111 Election Algorithm ...178
Figure 112 Transmission of GTrig Messages ...178
Figure 113 BITA Algorithm Verification...179
Figure 114 CET versus Number of Tasks Simulation Results180
Figure 115 BITA: Simulation Results for N=100...180
Figure 116 Level-Based DAG for Code Verification...181
Figure 117 BTMS Analytical Analysis...182
Figure 118 Task Generator Results...183
Figure 119 Decomposition Fitness Function Results ...183
Figure 120 Task Mapping ...184
Figure 121 Summary of BTMS Results..184

 11

List of Tables

Table 1 CSMA/CA FHSS Parameters ...122
Table 2 Lifetime, Load Balancing Performance and Energy Consumption for Different
δ Values ..125
Table 3 Recovery Results for Different Schemes...132
Table 4 Average Location and Velocity Errors ..144
Table 5 Average Iterations, Computational Time and Tracking Loss..........................144
Table 6 Average Iterations and Computational Time...145
Table 7 Average Location and Velocity Errors ..145
Table 8 Average Iterations and Computational Time using 500 Sensors.....................146
Table 9 Average Iterations and Computational Time using1000 Sensors....................146
Table 10 Results for Visual Surveillance DAG...149
Table 11 Target Estimated Locations Database..175
Table 12 Election Algorithm Information ..175

 12

Glossary of Terms

2D Two Dimensions

3D Three Dimensions

ACK Acknowledge

ACO Ant Colony Optimization

AGF Approximate Grid-based Filter

APTEEN Adaptive Periodic Threshold-sensitive Energy Efficient sensor

Network

BS Base Station

BITA Biological Independent Task Allocation

BTMS Biological Task Mapping and Scheduling

BU Bottoms Up

CDMA Code Division Multiple Access

CET Collaborative Execution Time

CH Cell Head or Cluster Head

CoRAl Collaborative Allocation Algorithm

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CTS Clear-to-Send

CW Contention Windows

DAG Directed Acyclic Graph

DBF Distributed Bellman-Ford

DCA Distributed Computing Architecture

DIFS Distributed Inter-Frame Space

DMS Distributed Multi-target Selection

DOA Direction of Arrival

DSDV Destination Sequenced Distance Vector Routing

DTW Dynamic Time Warping

DVS Dynamic Voltage Scaling

EcoMapS Energy-Constrained Task Mapping and Scheduling

EKF Extended Kalman Filter

FDMA Frequency Division Multiple Access

FHSS Frequency-Hopping Spread Spectrum

 13

FSM Finite-State Machine

FTM Fast Tracking Mode

GA Genetic Algorithm

GAF Geographic Adaptive Fidelity

GEAR Geographic and Energy Aware Routing

GF Grid-based Filter

GOAFR Greedy Other Adaptive Face Routing

GPS Global Positioning System

HMM Hidden Markov Model

HN Helper Node

HTTP Hypertext Transfer Protocol

IP Internet Protocol

KF Kalman Filter

LADAR LAser Detection And Ranging

LB Lower Bound

LEACH Low Energy Adaptive Clustering Hierarchy

LIDAR Light-Imaging Detection And Ranging

LOS Line of Sight

LWT Levelized Weight Tuning

MAC Media Access Control

MACA Multiple Access Collision Avoidance

MACAW Multiple Access Collision Avoidance with Acknowledgment

MCC Mega Clock Cycles

MCFA Minimum Cost Forwarding Algorithm

MECN Small Minimum Energy Communication Network

MN Main Node

MS-AMTT Multi-Sensor Adaptive Multi-Target Tracking

MS-ASTT Multi-Sensor Adaptive Single Target Tracking

MS-DMTT Multi-Sensor Distributed Multi-Target

MTMS Multihop Task Mapping and Scheduling

MTT Multi Target Tracking

NFA Nondeterministic-Finite-State Automaton

NP Nondeterministic Polynomial-time

 14

OSI Open System Interconnection

PDA Personal Digital Assistant

PDF probability density function

PDP Predicted Detection Probability

PEGASIS Power-Efficient Gathering in Sensor Information Systems

PF Particle Filter

PHY Physical

PIR Passive Infrared

PSO Particle Swarm Optimization

RADAR RAdio Detection And Ranging

RFID Radio frequency Identification

RX Receive

RNG Random Number Generator

ROI Region of Interest

RSSI Received Signal Strength Indication

RT-MapS Real-time Task Mapping and Scheduling

RTS Request-to-Send

SIFS Short Inter-Frame Space

SL Simplified Lagrangian

S-MAC Sensor-Media Access Control

SONAR SOund Navigation And Ranging

SPIN Sensor Protocols for Information via Negotiation

SRC Source Address

SSM State Space Model

STT Single Target Tracking

TDMA Time Division Multiple Access

TDNN Time-Delay Neural Network

TDOA Time Delay of Arrival

TEEN Threshold-sensitive Energy Efficient sensor Network

TMM Track Maintenance Mode

TMS Task Mapping and Scheduling

WSN Wireless Sensor Network

 15

Chapter 1 Introduction

1.1 Chapter Introduction

This chapter provides a brief introduction about the research topic. The problem

definition is firstly established. After this the motivation and objectives of the research

are summarized. Next, the main contributions of this thesis are summarised. The thesis

structure and the publications are finally presented.

1.2 The Research Problem Definition

The problem of energy-efficient collaborative single and multiple target tracking in

Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited energy

resources and abruptly manoeuvring targets of different importance. Additionally, the

problem of task mapping and scheduling in WSNs is also considered.

The biological aspect of this research is to treat the target as a virtual chemical

emitter and to construct influence contours whose strength decreases with distance from

the target. The nodes that are influenced the strongest are more likely to be chosen to

track the target. Furthermore, as with differentiation observed in biological zygotes, the

sensor group differentiates, with specific nodes specializing to perform the required

functionalities.

In following sections, the problems of target tracking, task mapping, and scheduling

in WSNs are examined in more detail.

1.2.1 Brief Introduction about WSNs

Wireless Sensor Networks (WSNs) have become an emerging phenomenon in industry,

both for civil and military purposes. WSNs provide virtual snapshots of the physical

world by interpreting the physical events. WSNs consist of tiny electronic nodes

connected to each other via wireless communication protocols [1]. Each node is

equipped with embedded processors, sensor devices, storage, and radio transceivers.

Nevertheless, the sensor nodes typically have limited resources in terms of battery-

supplied energy, processing capability, communication bandwidth, and storage [2][3].

WSNs have attractive commercial applications such as healthcare, target tracking,

monitoring, smart homes, surveillance and intrusion detection [4].

 16

1.2.2 Target Tracking in WSNs

Target tracking in WSNs is a process of estimating the location, trajectory, velocity

and/or acceleration of a mobile target. It often needs accurate estimation and prediction

of the target state. Collaborative target tracking uses a multi-sensor scheme to improve

the tracking accuracy compared with single-sensor tracking [5]. Figure 1 shows the

Single Target Tracking (STT) scenario in WSNs. The Base Station (BS) or sink is

responsible for forwarding the desired information from the WSN to the headquarters

(i.e., main controller) through the Internet, via satellite or other wireless technology.

The target can be a human being, moving vehicle, animal, tank, enemy or any

interesting object that needs to be tracked. The target is usually mobile. Target

dynamics is the mathematical modelling of the target motion. Targets can move in

unexpected manner and this causes noise in the dynamic model. Target state is the

location, velocity and/or the acceleration. The trajectory of the target is the path that

target draws during its travel. Calculating the mobile target state and trajectory in the

presence of noise in its dynamic characterisation is one of the main challenges for target

tracking in WSNs.

Figure 1 Single Target Tracking in WSNs

Each sensor node has a sensor device to sense or detect the presence of the target in the

Region of Interest (ROI). Detection of the target is always handicapped by the presence

of noise. Therefore, using the noisy sensor readings to calculate the target state is a

further challenge. Due to the limited battery-supplied energy of the sensor nodes and the

difficulty to physically access them, energy-efficient target tracking is a crucial aim.

Additionally, hundreds or thousands of sensor nodes are deployed in the ROI. Thus,

 17

several sensor nodes may detect the target at the same time. Therefore, selecting the

necessary sensor nodes to track the target is a common problem in target tracking in

WSNs. To reduce the energy consumption, sensor nodes are scheduled to be in active or

sleeping modes. However, the target is mobile and requires sensor nodes to be in active

mode to detect and calculate its state. Therefore, predicting the future state of the target,

to proactively form the group of necessary sensor nodes to continue the tracking and

how to allocate duties within the group are pertinent research problems.

The tracking sampling interval or resolution is defined as the time between two

successive tracking events. If the sampling interval is set too large the tracking

accuracy, which indicates about the difference between the real and estimated states, is

degraded and the target may be unmonitored for long periods. Moreover, the target may

be lost if it travels in an unpredictable manner. On the other hand, decreasing the

sampling interval leads to increase the energy consumption because the tracking events

will be increased. Therefore, choosing a suitable sampling interval during the tracking

process is challenging. Furthermore, the tracking system should support to a mechanism

to recover the target state in the case of target loss.

Designing tracking schemes for Multi-Target Tracking (MTT) is more complex than

considering STT. Figure 2 shows a MTT WSN scenario. Targets can travel with

different movement patterns. Some targets may move in a uniform and predictable

fashion whilst others manoeuvre in a random manner. Therefore, for MTT tracking

continuity and tracking accuracy robustness sensor selection, the management of the

group of targets, the sampling interval calculation for each target, are additional

challenges that must be addressed.

 18

Figure 2 MTT in WSNs

In MTT, targets can be assigned different importance according to particular criteria.

Finding a technique to evaluate the target importance is an interesting issue in MTT. As

shown in Figure 2, if a sensor node detects more than one target, it has to decide which

target it will serve. We refer to this sensor node as being a “conflict” node.

1.2.3 Task Mapping and Scheduling in WSNs

Many WSNs applications such as target tracking and camera-based applications [6]

require real time execution, sensor node collaboration and computationally intensive

operations. Since an individual sensor node does not have the enough processing power

and possibly battery life to execute a complex application and meet the application

deadline, one solution to execute the complex application using a group of sensor

nodes. Task mapping assigns resources to tasks and task scheduling determines the

execution sequence of the tasks, to try to maximize performance objectives. It is well

known that optimal task mapping is an NP-complete problem [7]. Therefore, heuristic

techniques are needed to obtain near optimal solutions. In high performance computing

[8], task mapping and scheduling are deeply explored. However, the design objectives

for WSNs are different due to the limitations of the resources.

1.3 The Research Motivation

As physical limitations of sensor nodes in terms of battery-supplied energy, processing

performance, communication bandwidth, and storage become main challenges in

 19

designing WSNs, this research is explores cooperative target tracking given these

constraints. Briefly, the following points are the main requirements for this research:

• Improve the energy-efficiency and network lifetime for target tracking in WSNs

• Maintain tracking accuracy and reliability

• Accommodate the random motion of targets

• Provide support for target importance or priority

• Reduce the execution time of complex applications in WSNs

1.4 The Research Objectives

The main objectives of this research are listed below:

(1) Develop a reliable, accurate, energy-efficient, collaborative and self-organized target

tracking scheme in WSNs.

• Design WSN framework for multi-sensor target tracking

• Develop target tracking scheme in WSNs

• Develop an adaptive sampling interval mechanism

• Use adaptive sensors selection

• Implement adaptive group election

• Develop a target recovery scheme to recapture lost targets

• Provide a sensor node density calculation

• Support both STT and MTT

• Support the target importance in MTT

• Optimize or nearly optimize sensor selection in the case of MTT

• Tackle the problem of conflict nodes in the case of MTT

(2) Design algorithms for task mapping and scheduling in WSNs to parallelize the

execution of an application among a group of sensor nodes.

 20

• Develop an algorithm to execute an application across a group of sensor nodes.

The application is assumed to be divided into independent equal-weighted

subtasks

• Develop an algorithm to execute an application across a group of sensor nodes.

The application is assumed to be decomposed into smaller tasks with different

computation weights and dependencies

1.5 Novelty & Contributions

This thesis proposes a novel framework to design biologically inspired self-organized

communication networks. However, this thesis explores WSNs applications more

widely and uses target tracking as an example. The thesis makes the following unique

contributions:

1. This research introduces the formalization of target metadata pertaining to the

target’s past locations, by which the movement pattern of the target is computed.

Target metadata is employed to adaptively calculate the tracking sampling interval,

the targets’ importance in the case of MTT and the number of local search iterations

for the local search algorithm used in MTT.

2. This thesis introduces the first formulation associated with the conflict node concept

in MTT taking into account target importance. Novel strategies for choosing the

initial solution and neighbourhood structure are proposed in this thesis for the local

search to solve in real-time the combinational optimization problem of sensor

selection in MTT.

3. This research introduces an energy-efficient framework for STT and MTT in WSNs.

Adaptive sensor selection and “leader node” election algorithms are proposed. A

mechanism is developed to recover the tracking process in the event of of target

loss.

4. Two algorithms are introduced for task mapping and scheduling in WSNs. The first

algorithm assumes that the application can be divided into independent equally-

weighted subtasks. The other assumes that the application can be decomposed into

smaller tasks with different computation weights and dependencies.

5. The principle of differentiation found in biological zygotes is applied to the

proposed tracking, task mapping and scheduling schemes. Furthermore, this is the

 21

first research to treat the target to be served by the WSN as a virtual chemical

emitter that has different influence strengths on the sensor nodes.

1.6 Notation Conventions

In this thesis, matrices and vectors are denoted by bold letters. Variables and functions

are denoted by italic letters. The transpose of matrix]A[ij=A is denoted by]A[ji=′A

where ijA is the element at row i and column j . The inverse of the matrix A is denoted

by 1−A . The diagonal matrix of A is denoted by)(Adiag . The identity matrix is denoted

by I . The expectation of a random variable x is denoted by][xE .

1.7 Thesis Structure

This thesis is organized as follows:

Chapter 2 presents the background and literature review of the research. It includes a

general introduction about sensor network. Then, details about wireless routing and

Media Access Control (MAC) protocols are discussed. WSNs target tracing techniques,

frameworks and stages are presented. After that, biologically inspired researches and

self-organised networks are introduced. State-of-the art in literature concerning

biological inspired systems, target tracking in WSNs, and task mapping and scheduling

in WSNs are explored.

Chapter 3 introduces the proposed Single Target Tracking (STT) scheme in details.

The target dynamic, sensor detection, measurement and energy consumption models are

presented. Then, the Extended Kalman Filter (EKF) for STT in WSNs is introduced.

The framework and the assumptions for the proposed STT scheme are explained. The

target metadata representation is illustrated. The sampling interval, and sensor nodes

selection and election are presented. Recovery mechanism and sensor nodes

deployment strategies are introduced. Complete algorithms and protocols for the

proposed STT scheme are proposed.

Chapter 4 introduces the Multi-Target Tracking (MTT) in WSNs. Two proposed MTT

schemes in WSNs are introduces. Firstly, a Multi-Sensor Distributed Multi-Target

Tracking (MS-DMTT) scheme is proposed based on the assumption that the sensor

node can only detect and serve a single target at the same time. Secondly, a Multi-

Sensor Adaptive Multi-Target Tracking (MS-AMTT) scheme is introduced based on the

 22

assumption that the sensor node can detect and serve more than one target at the same

time.

Chapter 5 presents the Task Mapping and Scheduling (TMS) in WSNs. Firstly, a

Biological Task Mapping and Scheduling (BTMS) algorithm is proposed. In BTMS

algorithm, the application is assumed to be decomposed into dependent tasks with

different computation weights. Secondly, Biological Independent Task Allocation

(BITA) algorithm is introduced. In BITA algorithm, the application is assumed to be

decomposed into equal-weighted independent tasks.

Chapter 6 explains the simulation models used to evaluate the proposed target tracking

and TMS in WSNs. Event driven simulation is introduced. The main simulator flow

chart and used random number generator are presented. The data structure and different

event types with their pseudo code are discussed. Appendix A is included at the end of

this thesis to explain the simulation events and framework in details.

Chapter 7 proposes the performance and evaluation of the MS-ASTT, MS-DMTT,

MS-AMTT, BTMS and BITA schemes that proposed in Chapter 3, 4 and 5. A critical

assessment and discussion for the simulation results are also provided. Additionally, the

proposed schemes are compared against well-known schemes. Appendix B is included

at the end of this thesis to verify the proposed simulation.

Chapter 8 provides critical discussions for the presented results. It also summarizes this

thesis, the results and the original contributions of this research.

Chapter 9 presents the future work in target tracking, task mapping, and scheduling in

WSNs.

1.8 Authorship

The following research publications have been published or submitted by the author.

Journal Papers

1. Yousef E. M. Hamouda and Chris Phillips, “Adaptive Sampling for Energy-

Efficient Collaborative Multi-Target Tracking in Wireless Sensor Networks”,

IET Wireless Sensor Systems, 2011, Accepted for publication.

2. Yousef E. M. Hamouda and Chris Phillips, “Metadata Based, Optimal Sensor

Selection for Multi-Target Tracking in Wireless Sensor Networks”, International

 23

Journal of Research and Reviews in Computer Science, 2010, Accepted for

publication.

Conference Papers

1. Yousef E. M. Hamouda and Chris Phillips, "Metadata-Based Adaptive Sampling

for Energy-Efficient Collaborative Target Tracking in Wireless Sensor

Networks", The 10th IEEE International Conference on Computer and

Information Technology (CIT 2010), Bradford, UK.

2. Yousef E. M. Hamouda and Chris Phillips, “Biological Task Mapping and

Scheduling in Wireless Sensor Networks”, 2009 IEEE International Conference

on Communication Technology and Applications (ICCTA2009), pp. 914-919,

Beijing, October 2009.

3. Yousef E. M. Hamouda and Chris Phillips, “Biologically Inspired, Cooperative

Target Tracking Framework for Wireless Sensor Networks”, LCS 2009,

University College London, September 2009.

4. Yousef E. M. Hamouda and Chris Phillips, “Biologically Inspired, Self

Organizing Communication Networks”, PGNet2007 & EPRC, June 2008.

 24

Chapter 2 Background and Literature Review

2.1 Chapter Introduction

In Chapter 1, the main contributions and motivations of this research are identified. This

chapter explores the background and state-of-the art related to Wireless Sensor

Networks (WSNs), biological inspired target tracking, task mapping and scheduling. It

commences with an introduction to WSNs and their application. Then, Media Access

Control (MAC) and routing protocols are addressed and target tracking in WSNs is

examined. After that, biologically inspired self-organising networks are introduced. The

state-of-the art in literature concerning biological inspired systems, target tracking in

WSNs, task mapping and scheduling are considered. Finally, the chapter is summarised.

2.2 Wireless Sensor Networks (WSNs) Overview & Applications

WSNs are receiving much attention in industry, both for civil and military purposes.

WSNs provide virtual snapshots of the physical world by interpreting the physical

events. As shown in Figure 3, WSNs consist of electronic network nodes connected to

each other via wireless communication protocols [9][10]. WSNs have many advantages

such as easy random deployment, low-cost and small-size. WSNs contain hundreds or

thousands of tiny sensor nodes that are scattered in the sensor field which is the area in

which the sensor nodes are deployed. Deployment of the sensor nodes can be either in

random fashion such as in disaster situation where for example sensor nodes are

dropped from an airplane [9] or in planned manner such as deployment of WSNs in

smart homes or for fire alarm systems. The Base Station (BS) or sink is responsible for

forwarding the desired information from the WSN to the headquarters (i.e., main

controller) through the Internet, via satellite or other wireless technology. Most of

WSNs have fixed sensor nodes and BS. However, mobility of sensor nodes or BS is

desirable in many applications [11]. The sensor nodes cooperate [12] together to sense,

compute and transmit the information from harsh physical environments to external BS

or sink. For example, the sensor nodes cooperate to localise the target shown in Figure

3. Each sensor node can collect and route the data either to other sensor nodes or back

to the sink node via the path between them [13][14].

 25

Figure 3 WSN Architecture

As shown in Figure 4, each sensor node is equipped with an embedded processor and

storage to process the data, sensor devices to measure ambient conditions related to the

environment surrounding the node and transform them to electrical signals, and radio

transceivers to send and receive electromagnetic waves. Nevertheless, the sensor nodes

have very limited resources in terms of battery-supplied energy, communication

bandwidth, and computational processing and storage capabilities [2][3]. Therefore,

sensor nodes are typically cheap devices.

Figure 4 Sensor Node Main Components

Nowadays, commercial and industrial fields employ WSNs for a wide range of

applications such as healthcare, machine condition monitoring, environmental

monitoring including pollution monitoring, surveillance of people or vehicle (e.g.

access control, crowd flux statistics, congestion analysis, anomaly detection, bio-

chemical material detection such as diffused poison gas, alarming and person-specific

identification [15]), structural monitoring, navigation and control of moving vehicle,

wildlife habitat monitoring, tracking the movement of wild animals in wildlife

 26

preserves, forest fire, manufacturing job flow, home applications (e.g. smart homes),

detecting environmental ambient conditions (e.g. temperature, movement, sound, light,

activity and the presence of certain objects), inventory control, weather monitoring,

Single Target Tracking (STT), Multi-target Tracking (MTT) and disaster management

[1][16]. WSNs can also be used in military applications including target field imaging,

intrusion detection, enemy vehicles, detecting illegal crossings, security and tactical

surveillance.

2.3 Energy Consumptions Factors in WSNs

WSNs are usually deployed in harsh environments such as space, forests and

battlefields. Therefore, it is difficult to physically access the wireless sensor nodes after

deployment. In many cases, it is impossible to change or recharge the depleted sensor

node battery [17]. Therefore, maintaining battery life as long as possible is one of the

most crucial issues in WSNs because it increases the useful network lifetime [18].

Energy is consumed from the battery during sensing, communication and processing.

Sensor nodes wastes energy due to reasons outlined in [17][19][20], namely:

(1) Collisions: The collision takes place when two sensor nodes within the same

coverage area transmit packets at the same time (i.e., full collision). Therefore, the two

packets interfere with each other at the receiving sensor node which cannot distinguish

between them. However, a collision can also happen if one sensor node transmits

packets before the current transmitting sensor node finishes its transmission. This is

called a partial collision. In these collisions, the receiver will discard both packets

because they will be corrupt. Therefore, both of the transmitting sensor nodes will try to

retransmit again which increases the energy consumption.

(2) Idle Listening: Basically, each sensor node in WSNs can be in active, idle or sleep

modes. In active mode, a sensor node consumes energy in transmitting or receiving

data. In idle mode, the sensor node consumes energy to listen to the channel. In the

sleep mode, the sensor node sleeps and turns off the radio transceiver. The sensor node

in the idle state listens to the channel status to initiate transmission or to wait for traffic

from other sensor nodes. Thus, sensor nodes consume energy in channel listening.

According to the measurements obtained by Katz and Stemm [21], the idle: receiving:

transmission power consumption ratios are 1:1.05:1.4 on 915MHz.

 27

(3) Over-hearing: The sensor node may receive the packets destined for others which

is considered another energy wasting factor.

(4) Protocol Overhead: These are the control packets used by different communication

protocols. For example, contention-based protocols such as Carrier Sense Multiple

Access/Collision Avoidance (CSMA/CA) use control packets to manage channel access

and reduce the collisions. In contrast, with collision-free or scheduled protocols such as

Time Division Multiple Access (TDMA), the control traffic is less.

(5) Over-emitting: Energy is wasted when a sensor node sends packets although the

receiver is not ready to receive them.

Many methods have been adopted to minimize the consumed energy from WSNs such

as designing energy efficient MAC protocols [17], routing protocols and power control.

However, this research tackles this issue by: (1) controlling the sensor node activity by

scheduling sleep, idle and active modes for the sensor nodes, (2) controlling the

processing demands and time by executing applications only when necessary, (3)

parallelizing the execution of an application among a group of sensor nodes, and (4)

designing energy-efficient protocols and algorithms that use low overhead packets. The

use of an adaptive sampling interval in STT and MTT, adaptive MTT, and biologically

task mapping and scheduling, introduced in Chapter 3, 4 and 5, address these issues

together.

2.4 WSN MAC Protocols

Sensor nodes within communication range share the same physical channel or medium.

Medium Access Control (MAC) protocols have been developed to coordinate the

channel access and thus to avoid the collisions resulting from two sensor nodes

accessing the same medium to send packets at the same time. MAC is a sub-layer of

data link layer of the Open Systems Interconnection (OSI) model. MAC protocols let

the sensor nodes decide when and how to access the channel. In the literature, this

mechanism is also called channel allocation or multiple access.

Broadly speaking, MAC protocols are categorised into two classes which are

collision-free or scheduled and contention-based protocols. Time Division Multiple

Access (TDMA), Frequency Division Multiple Access (FDMA) and Code Division

Multiple Access (CDMA) are examples of collision-free MAC protocols. The basic

 28

concept of their operation is to avoid collisions and interference by assigning users or

sensor nodes to separate sub-channels which are separated by time, frequency or

orthogonal codes [22][23]. On the other hand, sensor nodes in contention-based

protocols compete for access to the shared medium by using probabilistic coordination.

Therefore, collisions may arise with these protocols. Two common contention-based

protocols are ALOHA [24] and CSMA [25]. In ALOHA, a sensor node starts

transmission when needed without any coordination and it reschedules another

transmission in the event of a collision. There are two main types of ALOHA protocol,

namely: slotted ALOHA, in which sensor node transmits at the next available slot, and

pure ALOHA, in which the sensor node transmits a packet as soon as it is generated. On

the other hand, a CSMA protocol senses the channel before transmitting. If the channel

is busy, the sensor node delays access and retries later. Several extensions have been

developed for CSMA to support different environmental conditions. Furthermore,

CSMA is adopted for IEEE 802.11 [26]. As mentioned in Section 2.2, WSNs differ

from traditional wireless networks because WSNs have limited battery energy of the

sensor node and WSNs have to be employed large number of sensor nodes in ad hoc

fashion. Therefore, MAC protocols have to consider collision avoidance, energy

efficiency, scalability of the WSN and adaption to network topology changes due to

sensor node death and movement [19]. CSMA is an important contention-based MAC

protocol because it is considered the basic approach for contention-based MAC

protocols for use in WSNs. The main principle of its operation is to listen before

attempting transmission. In [27], the performance of CSMA is assessed for WSNs.

Basically, WSNs are multi-hop wireless networks. Two well-known problems in multi-

hop wireless networks are the hidden terminal and exposed terminal problems

[28][154]. Exposed terminal problem occurs when a node can not send packets because

one of its neighbours is transmitting. In Figure 5, the hidden terminal problem is

explained. Assume three sensor nodes, node 1, 2 and 3, form a two-hop wireless

network, in which node 1 and 2 are neighbours, and node 2 and 3 are neighbours. When

node 1 sends data to node 2, node 3 will not hear that transmission. Therefore, node 3

may start sending at the same time in which node 1 is sending to node 2 (i.e., resulting

in a Full Collision) or during the transmission of node 1 to node 2 (i.e., Partial

Collision). In both cases, node 2 will received collided or corrupted packets. Because to

this problem, CSMA/CA [29], where CA refers to Collision Avoidance has been

developed.

 29

Figure 5 Hidden Terminal Problem

As shown in Figure 6, CSMA/CA uses a short handshake between the source and the

destination before the actual transmission. The source (i.e., node 2) sends a Request-to-

Send (RTS) packet to the destination (i.e., node 3). The source’s neighbours (i.e., node

1) hear the RTS packet and they defer their own transmission until the current

transmission finishes. When the destination receives an RTS, it replies with a Clear-to-

Send (CTS) packet. Like before, the destination’s neighbours (i.e., node 4) hear the CTS

packet and they defer their own transmission until the current transmission is finished.

After that, the source starts to send the actual data. However, CSMA/CA does not

address completely the hidden terminal problem because the collision may happen on

RTS packets. Since an RTS packet is very short, the collision from RTS will be very

short as well.

Multiple Access Collision Avoidance (MACA) [30] uses the same concept of

CSMA/CA but it adds a duration field in RTS and CTS packets to indicate the amount

of time to transmit the data so that the neighbours of the sender have to wait this amount

of time before their own transmissions. Further improvements have been carried out

with the MACA protocol and a new protocol called Multiple Access Collision

Avoidance with Acknowledgment (MACAW) [31] has been developed. MACAW adds

an acknowledgement (ACK) packet after each actual data packet transmission.

Therefore, the handshake between source and destination in MACAW is RTS-CTS-

DATA-ACK. In Figure 6, the destination replies by acknowledging the source for each

data packet received from the source. IEEE 802.11 [26] has adopted all the features of

CSMA/CA, MACA and MACAW in its MAC layer.

 30

Figure 6 RTS/CTS Handshake

Sensor-MAC (S-MAC) is a MAC protocol designed especially for WSNs [32][33]. It is

a contention-based protocol that has been developed to improve the energy efficiency in

multi-hop WSNs. S-MAC has mechanisms to reduce the energy wastage from the

consumption factors mentioned in Section 2.3.

In this thesis, CSMA/CA will be used as MAC protocol in the simulation models to

evaluate the proposed tracking, task mapping and scheduling schemes. Further details

are introduced in Chapter 7 and Appendix A.

2.5 WSNs Routing Protocols

Routing protocols are the algorithms used for the Layer-3 of the OSI model. They

determine the best path or route between the source and the destination. In Internet

Protocol (IP) networks [34], routers are usually fixed and provide the routing

information to fixed clients as well. On the other hand, ad hoc networks and some

WSNs [35][36] are infrastructure independent in which each sensor node can operate as

a client and a router. Sensor nodes in ad hoc networks and some WSNs can move

randomly and the network topology dynamically changes. Therefore, mobility is the

main design consideration for routing protocols in ad hoc networks and WSNs. Other

design challenges for routing protocols in ad hoc networks and WSNs include the

limited wireless bandwidth and sensor node resource constraints. However, routing in

WSNs is very challenging [13][14] due to their needed requirements. First, it is

impractical to build global addressing scheme like the IP-based one due to the large

number of sensor nodes that make the addressing overhead too great. Therefore, in

WSNs, getting the data is more important than knowing the addresses of which sensor

nodes sent the data. Second, a sensor node has very limited resources in term of battery

 31

and processing power. Therefore, very careful resource management is required to

design routing protocols for WSNs. Third, WSNs are designed based on the required

application. For example, a tactical surveillance application design is different from a

periodic weather monitoring. Fourth, data collected by many sensor nodes in particular

WSN is based on common phenomena. Therefore, data redundancy can arise. Finally,

WSNs are location aware because the data collection normally depends on position.

Global Positioning System (GPS) [37] hardware is not feasible to be equipped in all

sensor nodes due to sensor node resource constraints. Techniques based on triangulation

that, for example, allows sensor nodes to determine approximately their positions using

radio strength, triangulation or multilateration [38] perform quite well under conditions

where a few sensor nodes know their position using, for example, GPS.

Routing protocols are classified into proactive, reactive and hybrid protocols based

on how and when the source searches for a route to the destination. In proactive

protocols, each sensor node has the routes to all destinations regardless of whether or

not it is needed, while in reactive protocols the routes are computed on demand when

they are needed. Hybrid protocols are a combination of these two ideas. In addition,

WSN routing protocols can be classified according to the network structure as flat,

hierarchical, or location-based [13]. The flat architecture introduces a fully peer-based

distributed network where each terminal acts as an ordinary sensor node and a gateway

at the same time. Therefore, all the sensor nodes play the same roles. Data centric

routing is used in flat protocols instead of using a global identifier to each sensor node.

The BS sends queries to sensor nodes located in certain regions and waits for the reply

from the sensor nodes. The data is specified using attribute-based naming that includes

the data properties. There are many flat routing protocols including Sensor Protocols for

Information via Negotiation (SPIN) [39] and [40], Directed Diffusion [41], Rumor

routing [42] and The Minimum Cost Forwarding Algorithm (MCFA) [43]. On the other

hand, the hierarchal architecture or cluster-based routing classifies the sensor nodes into

ordinary nodes, cluster head nodes or gateway nodes. The main function of the cluster

node is to control the other nodes inside the cluster and relay the traffic within the

cluster. The gateway node connects the clusters together to relay or forward the data

and control traffic between clusters. The routing information and overhead can be

reduced in the case of hierarchal architectures; especially in large-scale networks [44].

Therefore, lifetime and energy efficiency can be improved. The cluster head is selected

 32

as a higher energy sensor node. It processes and sends the data. The other sensor nodes

in the cluster perform the sensing. Hierarchal routing is typically a two layer routing

scheme where one layer selects the cluster head and the other is for routing. There are

many hierarchal routing protocol including Low Energy Adaptive Clustering Hierarchy

(LEACH) [18], Power-Efficient Gathering in Sensor Information Systems (PEGASIS)

[45], Threshold-sensitive Energy Efficient sensor Network (TEEN) [46], Adaptive

Periodic Threshold-sensitive Energy Efficient sensor Network (APTEEN) [47] and

Small Minimum Energy Communication Network (MECN) [48]. The location-based

routing protocols employ sensor node position information to build the routing table.

There are many location-based routing protocol including Geographic Adaptive Fidelity

(GAF) [49], Geographic and Energy Aware Routing (GEAR) [50] and The Greedy

Other Adaptive Face Routing (GOAFR) [51].

However, Destination Sequenced Distance Vector routing (DSDV) [52], which is a

proactive ad hoc routing protocol, has been implemented in the simulation model. It is

based on classical Distributed Bellman-Ford (DBF) algorithm. In DBF, each sensor

node maintains the first sensor node (hop) on the shortest path to every other sensor

node in the network. Each sensor node maintains routing table for all possible

destinations and the number of routing hops to reach that destination. A sequence

numbering system (labelling the routes) is used to differentiate stale routes from the

new routes.

2.6 WSNs Target Tracking

Target tracking is one of the most useful and used applications in both civil and military

applications. The main purpose of target tracking is to monitor the location of the target

in two or three-dimensional coordinates [53]. In automated visual or video surveillance,

target tracking goals are advanced to not only determine the target’s location but also to

obtain a description of what is happening in the region of interest (ROI) and then to

perform suitable actions according to the interpretation obtained from the ROI [54].

Therefore, the tracking system can detect abnormal behaviour and hostile intent. Two

popular target tracking infrastructures in WSNs are a camera-based approach which

relays on image analysis and computer vision [55] and an acoustic-based one [56]

which uses the strength of acoustic signal received from the target to calculate the target

range and direction angle. Some systems mix both approaches. Generally as shown in

 33

Figure 7, every target tracking system includes some or all of the following stages:

target detection, target classification, nodes selection, group election, target localization,

target tracking, behaviour and activity analysis, personal identification, and handover

[15][54][57].

Figure 7 Target Tracking Stages

2.6.1 Target Detection

The main objective of detection is to detect the presence of the target in the ROI by

sensor networks. Therefore, the system has to discriminate between the target absence

and presence. Loosely speaking, targets emit signals characterized their presence in the

ROI which can be sensed from sensor nodes [58]. The sensors can be classified based

on the type of measurement information or modalities they read from the world (i.e.,

target’s signal emissions). Passive sensors detect the target using target’s natural

energy. Vision-based, magnetic-based, seismic-based, thermal-based and acoustic-based

sensors are passive sensors [59][60]. More advanced detection techniques combine

these methods such as using camera and microphone arrays (i.e., audiovisual sensor

network) detection [61]. For example, vision-based or camera-based sensors work

similarly like human eyes through using the electromagnetic spectrum to generate the

image. In vision-based WSNs [15][54][55], target detection is achieved using motion

and object detection which aims to separate the region corresponding to the moving

 34

target from the rest of the image. Motion and object detection requires environmental

(i.e., background) modelling and motion segmentation. Temporal differencing,

background substation and optical flow are the most used approaches for motion

segmentation. In acoustic-based sensor networks as another example, a vehicle

produces sounds when travelling on a road. On the other hand, active sensors provide

their own energy to detect the targets and that energy is reflected by the target in the

ROI. RADAR (RAdio Detection And Ranging), LADAR (LAser Detection And

Ranging) or LIDAR (Light-Imaging Detection And Ranging), Ultrasonic and SONAR

(SOund Navigation And Ranging) [59][60] are examples of active sensors. For

instance, a radar sensor radiates a series of pulses from antennas. When the pulses reach

the desired target, some of the pulses’ energy will be reflected back toward the radar

antennas. The reflected energy will be measured and timed. The distance or range to the

target is calculated from the time required for the pulses to travel to the target and come

back again to the sensor. All these detection techniques are under the umbrella of

tokenless detection approaches in which the target does not carry any additional device.

In a token-based detection approaches, the target carries a token or tag which is a device

such as laptop, Personal Digital Assistant (PDA), Radio Frequency Identification

(RFID) tag or wireless device. The token assists in the detection and tracking. The

target can also be classified by the unique token identifier [62].

In this thesis, passive sensor devices are used to detect the acoustic signals produced

from the targets. The target to be tracked is assumed to be an isotropic sound source.

The emitted acoustic density from the sound source (i.e., the target) is assumed to be

known. The target acoustic power intensity received by the sensor nodes is modelled as

decreasing with the distance from the target according to power n which is the

attenuation decay factor and is typically between 2 to 5 according to the environment

and atmospheric conditions [27]. Further details are presented in Chapters 3 and 4.

2.6.2 Target Classification

In this thesis, target class, importance or priority is involved. Target class can be

obtained from target classification [63]. Target classification techniques aim to classify

the target in terms of its type or importance. For instance, a target could be human,

animal, moving vehicle or any objects of interest in the scene. Moreover, human objects

are classified for example based on their historical behaviours or importance. Target

classification can be regarded as pattern recognition task. Therefore, two main

 35

approaches are used for classifications which are shape-based and motion-based

classifications [15]. Shape information such as points, boxes, silhouettes and blobs are

used to classify the target using shape-based classification. In motion-based

classification, a strong clue to classify the object is salient features in its motion.

Another form of target classification is token or tag tracking [62]. The token carried by

the target is an electronic device such as RFID tag, PDA, laptop and wireless sensor

device. All target information is stored and obtained from its tag [64].

However, in this thesis target importance is adaptively calculated based on the

historical movement pattern of the target. A target is more important if it moves in

random fashion with sharp bends. However, the proposed MTT algorithm also supports

offline assignment of the target importance according to the target class or type. More

details are provided in Chapters 3 and 4.

2.6.3 Node Selection

Due to the high number of the deployed sensor nodes in the ROI, typically several

sensor nodes can detect the target. However, some of these sensor nodes provide useful

information that improves the accuracy of the target state estimation. Moreover, some

of sensor node’s information might be useful but redundant while some might contain a

lot of measurement errors. In order to prolong the network lifetime and save resources

in terms of energy, bandwidth and processing, the target tracking task should only use

the necessary sensor nodes that optimally reduce uncertainly of the target state. In other

words, nodes selection techniques aim to activate the best necessary sensor nodes at

each snapshot to perform the target tracking. Additionally, sensors selection requires

communication between sensor nodes and this consumes energy. Therefore, a balance

between the accuracy of the tracking and the cost to perform sensors selection is a main

goal. In summary, sensors selection that belongs to the category of sensor network

management field [65] is essential for tracking continuity, resource economy and

tracking accuracy. In Chapter 3 and 4, proposed algorithms and techniques to select the

best tasking sensor nodes to track the target at each tracking snapshot will be presented.

2.6.4 Target Localization

The objective of the localization is to estimate the current location of a moving target in

the ROI by the sensor network. Mainly, the localization techniques are based on three

kinds of physical measurement obtained or derived from sensor node readings. The

following paragraphs present these measurement techniques in the context of acoustic-

 36

based passive sensors. Firstly, in the Time Delay of Arrival (TDOA) [66][61]

technique, the detection mechanism relays the estimation of arrival angle for audio

signal using TDOA or steered beamforming. A TDOA method requires accurate time

delay measurements. It is suitable for broadband signals. Secondly, Direction of Arrival

(DOA) [67] requires a costly antenna array in each sensor node and is suitable for

narrow band signals. It has lower quality compared to the other approaches [68]. TDOA

and DOA are time delay-based localization approaches. Finally, in the Received Signal

Strength Indication (RSSI) method, the sensor nodes in ROI use the received or

measured acoustic energy emitted from the target (i.e., audio source) to locate it [56].

Therefore, RSSI is energy-based localization approach. This method is primarily based

on the fact that the acoustic energy level decays with increasing distance between the

audio source (i.e., target) and the listener (i.e., sensor node). Therefore, the target

location can be determined using the acoustic energy readings from different known

sensor node locations. In [56], it shows RSSI is a suitable choice for WSNs because it

reduces the computational and communication costs. Furthermore, no accurate time

synchronization is required between the sensor nodes. Therefore, energy-based

localization approaches are more robust than time delay-based localization approaches

which are sensitive to errors in time synchronization and echo effects [69]. Hence,

target tracking algorithms proposed in this thesis adopt the RSSI technique. The RSSI

mathematical model used in this research is presented in Chapters 3 and 4.

Triangulation is one method to obtain the target location using the known sensor

node locations and the distance or range between these sensor nodes and the target [38].

In 3D localization, at least four sensor nodes readings are required, while three sensor

nodes readings are required for 2D localization. In 2D localization shown in Figure 8,

the set of equations to compute the unknown target location ()TTT yx ,=ξ using gn sensor

nodes (){ }giiS niyx ≤≤= 1,,ξ is given as [38]:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

−+−

2

2
1

22

2
1

2
1

.

.

)()(

.

.
)()(

ggg nTnTn

TT

R

R

yyxx

yyxx

 (2.1)

 37

where iR is the measured distance or range between the sensor node i and the target. By

subtracting the first row in (2.1) from the rest, a liner system of 1−gn equations is

obtained as follows:

 BAu = (2.2)

where,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−+−−

+−+−−

×=

2
1

22
1

22
1

2

2
1

2
2

2
1

2
2

2
1

2
2

.

.
5.0

yyxxRR

yyxxRR

ggg nnn

B ,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

=

)()(
.
.

.

.
)()(

11

2121

gg nn yyxx

yyxx

A and ⎥
⎦

⎤
⎢
⎣

⎡
=

T

T

y
x

u .

(xT, yT)

(x1, y1)

(x2, y2) (x3, y3)

Unknown Target

Known Sensor 3Known Sensor 2

Known Sensor 1

R2 R3

R1

Figure 8 2D Localization

Equation (2.2) can be solved using least squares method [64][70] as follows:

BAAAu 1 ′′=⎥
⎦

⎤
⎢
⎣

⎡
= −)(

T

T

y
x

 (2.3)

2.6.5 Target Tracking

The primary goal of target tracking is to estimate the trajectory, velocity and

acceleration of a mobile target. Therefore, tracking is a series of localization problems.

In camera-based target tracking [15][54][55], target tracking is achieved from one frame

to another in the image sequence. Region-based, active contour-based, feature-based

and model-based tracking are the primary tracking categories in camera-based target

tracking. In region-based tracking, the motion region is obtained by subtracting the

background from the image region that varies from frame to another. In active contour-

based tracking, the contour of the target is tracked instead of involved the whole image

region. Feature-based tracking extracts the target features using recognition and

matches the features between images to track the target. For example, a target is

bounded with rectangular box whose centroid is selected as the feature used for target

 38

tracking. In model-based tracking, the target tracking is achieved by matching a known

projected target model to the image data. In acoustic-based WSNs which will adopt in

this thesis, target tracking aims to determine the target states such as location and

velocity at every sampling interval which is the time between the two tracking

snapshots. The localization method described in Section 2.6.4 can be used to track a

target in acoustic-based WSNs.

2.6.5.1 Bayesian Networks

The target-tracking problem is considered a dynamic system. A dynamic system

[71][72] is defined as the system where its states change over time. A state-space

approach is used to model the dynamic system to estimate the system states using noisy

measurements obtained from the system. The system states are encapsulated into a state

vector that contains all required information to describe the system under investigation.

For instance, kinematic characteristics including position, velocity and acceleration of

the target are the information required to describe the tracking problems. The noisy

measurements (i.e., observations) are related to the system states and encapsulated into

the measurement vector. Generally, the dimension of the measurement vector is less

than or equal the dimension of the state vector. Basically, two discrete-time models are

required to describe the dynamic system in order to obtain the current and predicted

system states. The first model is called the system model, state transition or evolution

model in which the evolution of the system states over the time is described. The second

model is called the measurement model, which is relating the noisy observations of the

system states. For target tracking, the system model equation that describes the

evolution of the target state { }NRX ∈∈+ kk xn ,)1(with respect to the time k is given by:

)](),(,1[)1(kkkfk wXX +=+ (2.4)

In Equation (2.4), f is the evolution function or system transition function and possibly

nonlinear and time-varying function that relates the current state)1(+kX with the

previous state)(kX . Therefore, Equation (2.4) is considered a first order Markov

process. wnk Rw ∈)(is the process noise (or state noise) in the interval between k and

1+k with known distribution which is independent of time. xn and wn are the

dimensions of the state and process noise (or state noise) vectors respectively, N is the

natural numbers and R is the real numbers. The measurement model at time 1+k that

 39

relates the target noisy observations or measurements znk Rz ∈+)1(with the target states

)1(+kX is given by:

)]1(),1(,1[)1(+++=+ kkkhk vXz (2.5)

where, h is the measurement function and is possibly a nonlinear and time-varying

function, vnk Rv ∈+)1(is the measurement noise whose know distribution is independent

of both process noise and time, zn and vn are dimensions of the measurements and

measurement noise vectors, respectively. The measurements)1(+kz are conditionally

independent. A survey of target measurement models is found in [73]. The dimensions

xn , vn , zn and wn can be different. In fact, filtered estimates of)1(+kX are calculated

recursively based on all available measurements or observations up to time 1+k . As

shown in Figure 9, the models described in Equation (2.4) and (2.5) are described as a

Hidden Markov Model (HMM) or state space model (SSM) in which the unobserved

states (i.e., hidden states) are filtered from the measurements. Therefore, it is a recursive

filter that sequentially updates the previous estimates.

Figure 9 Bayesian Model

Target estimated states are calculated in a probabilistic distribution form, which called

belief. Therefore, the state-space approach is suited for recursive Bayesian filtering.

This means that degree of belief in the state)1(+kX at different time 1+k is calculated

given all measurements }1),({1 +≤=+ kiiZk z up to time 1+k . Therefore, it is required to

calculate recursively in time the posterior Probability Density Function (PDF)

]|)1([1++ kZkp X by assuming that initial PDF (i.e., prior))0|0()]0([]|)0([0 ppZp == XX

(where 0Z is the set of no measurement) and the state vector)1(+kX are known. Thus,

]|)1([1++ kZkp X at time 1+k is obtained recursively using two stages known as

prediction and update. Generally, estimating the state]|)1([lZkp +X is called prediction

if 1+kl p , update if 1+= kl and smoothing if 1+kl f .

 40

In the prediction stage, the prior PDF]|)1([kZkp +X of the system state at time 1+k

is calculated (i.e., predicted) without knowing the measurement)1(+kz and using the

system model described in Equation (2.4) via Chapman-Kolmogorov equation which is

give by:

)(]|)([)](|)1([]|)1([kdZkpkkpZkp kk XXXXX ∫ +=+ (2.6)

where,]|)([kZkp X at time k is available and)](|)1([kkp XX + (i.e., transition distribution

of the first order Markov process) is the probabilistic model of state evolution defined in

Equation (2.4) given the known statistics of)(kw .)](|)1([kkp XX + is referred to as the

prior distribution. The update stage is achieved at time 1+k where a measurement

)1(+kz is available. Using Bayes’ rule, the prior PDF]|)1([kZkp +X calculated using

Equation (2.6) is updated to get the posterior PDF]|)1([1++ kZkp X of the current state

via the following equation:

)](|)1([
]|)1([)]1(|)1([]|)1([1 kkp

ZkpkkpZkp k
k zz

XXzX
+

+++
=+ + (2.7)

where the likelihood function,)]1(|)1([++ kkp Xz , (i.e., marginal distribution of Markov

process) is defined in Equation (2.5) given the known statistics of)1(+kv and

)](|)1([kkp zz + (i.e., the normalized constant) is defined as:

kk dxZkpkkpkkp]|)1([)1(|)1([)](|)1([+++=+ ∫ XXzzz (2.8)

Therefore, the HHM or SSM are described by:

)](|)1([kkp XX + for 0≥k (2.9)

)]1(|)1([++ kkp Xz for 0≥k (2.10)

The recurrence Equations (2.6) and (2.7) are the optimal and exact Bayesian solution to

compute the posterior PDF. However, this solution is a conceptual solution and cannot

be calculated analytically because the integrals in Equations (2.6) and (2.7) are not

tractable. Kalman Filter (KF) [72][74][75] and Grid-based Filter (GF) [76] approaches

are optimal and analytically possible and exact under the following assumptions: (1)

)](),(,1[kkkf wX+ and)]1(),1(,1[+++ kkkh vX are known and linear functions, and (2))(kw

and)1(+kv are drawn from known Gaussian distribution. Therefore, the PDF of

distribution]|)1([lZkp +X for 1+kl p , 1+= kl and 1+kl f are Gaussian at all times. On

 41

the other hand, if these assumptions do not hold (i.e., one or both of the models in

Equation (2.4) and (2.5) are nonlinear or/and one or both of the system and

measurement noises are non-Gaussian), Extended Kalman Filter (EKF) [72][74][75],

Approximate Grid-based Filter (AGF) [76] and Particle Filter (PF) [77][78][79]

approximate the optimal Bayesian solution to get suboptimal solutions. However, EKF

will be used in this thesis. In the Section 2.6.5.2, EKF will be introduced and in

Chapters 3 and 4 further mathematical details about EKF are provided.

2.6.5.2 Extended Kalman Filter (EKF)

EKF [72][74][75] is based on the linearization of the nonlinearities in the dynamic

and/or the measurement models. It deals with conditional mean and covariance. In

Equations (2.4) and (2.5))(kw and)1(+kv are assumed to be adaptive, zero-mean and

white with)(kQ and)1(+kR covariance matrices respectively such that:

0)]([=kE w &)(])()([kkkE Qww =′ (2.11)

0)]1([=+kE v &)1(])1()1([+=′++ kkkE Rvv (2.12)

The main purpose of EKF is to calculate the predicted and update states and their

covariance matrices in both prediction and update stages. In the prediction stage at time

k , the predicted state,)|1(ˆ kk +X to time 1+k is driven from the dynamic model and the

measurements (kZ) up to time k , such that]|)1([)|1(ˆ
kZkEkk +≈+ XX . The state

prediction error of)|1(ˆ kk +X is defined as)|1(ˆ)1()|1(~ kkkkk +−+=+ XXX . Thus, the state

prediction covariance matrix is }|])|1(~)][|1(~{[)|1(kZkkkkEkk ′++=+ XXP . Similarly, in

the update stage at time 1+k , the updated state,)1|1(ˆ ++ kkX of time 1+k is defined as

]|)1([)1|1(ˆ
1++≈++ kZkEkk XX . The state updated error of)1|1(ˆ ++ kkX is defined as

)1|1(ˆ)1()1|1(~
++−+=++ kkkkk XXX . Thus, the state updated covariance matrix is

}|])1|1(~)][1|1(~{[)1|1(1+′++++=++ kZkkkkEkk XXP . The mathematical equations to

calculate the sates and their covariance matrices are presented in Chapters 3 and 4 for

single and multi target tracking in WSNs.

2.6.6 Behaviour Analysis

After target tracking, understanding target behaviour is the next stage [15][54].

Behaviour understanding is to classify the target feature data by matching it to a group

of labelled reference behaviours. This concept allows the detection of suspicious human

 42

behaviour via automated visual surveillance. Video understanding can be performed

using two main steps, which are lower-level processing and higher-level artificial

intelligence. Target detection and classification are lower level computer vision

functions. Behaviour recognition gained from tracking is higher level processing. Many

methods are used for behaviour understanding and analysis such as HMM, Dynamic

Time Warping (DTW), Finite-State Machine (FSM), Nondeterministic-Finite-State

Automaton (NFA), Time-Delay Neural Network (TDNN), Syntactic/Grammatical

Techniques, Self-organized Neural Network, Agent-Based Techniques and Artificial

Immune Systems. However, behaviour analysis is beyond the scope of this thesis.

2.6.7 Person Identification

Personal identification [15][54] is a special behaviour understanding. The main

biometric features used in personal identification are face and gait recognition. Face

detection, face tracking, face feature detection and face recognitions are the main steps

in face recognition. Model-based, statistical, physical-parameter-based, spatio-temporal

motion-based and fusion of gait with other biometric are main methods for gait

recognition. However, personal identification is beyond the scope of this thesis.

2.6.8 WSNs Target Tracking Architecture

Target tracking in WSNs can be classified into centralized or distributed approaches

[68]. In a centralized target tracking system, the sensor nodes detect the target and send

its signature to the BS or fusion centre. The fusion centre performs the detection and

tracking algorithms based in the information fetched from the sensor nodes. However,

since hundreds or thousands of sensor nodes are spread over ROI, a lot of information

about the target signature sensed from the sensor nodes will be sent to the fusion centre

at the same time. Therefore, the centralized approach causes the lifetime of WSNs to be

limited due to the huge communication overhead between the sensor nodes and the

fusion centre. On the other hand, distributed approach systems [80] are designed so that

the WNS is divided into regions, cells or clusters via clustering algorithms. One leader,

cluster head, cell head or manager node for each region is selected. Other sensor nodes

in the cluster are members. The processing is performed cooperatively between the

leader and sensor nodes.

There are static clustering and dynamic clustering architectures in WSNs [68]. In

the static clustering techniques, the clusters are formed at the time of network

 43

deployment. Since the clusters attributes, leader and members are static all the time.

Static clustering improves the energy consumption of the WSNs. However, static

clustering does not offer fault tolerance. If the cluster head dies due to energy depletion

for example, the network may not have enough sensor nodes to carry the tracking.

Additionally, sensor nodes in different clusters cannot share their information and

collaborate on data processing.

In dynamic clustering architectures, the formation of the cluster is triggered by

certain events such as detection of a target or prediction of the target next location. An

election algorithm is performed to elect the leader of the cluster. The group leader has

the responsibility of management the current group and formation of the next group

[57][69][81][82]. However, dynamic clustering consumes the energy in forming and

disbanding the clusters for seamless tracking.

In this thesis, a dynamic distributed architecture is adopted. A group of tasking

sensor nodes is selected to cooperatively track the target in WSN. One of the group

sensor nodes is elected to be the leader. More details are presented in Chapters 3 and 4.

2.7 Biologically Inspired Research & Self-Organized Networks

Many possible definitions have been proposed for self-management or self-organized

networks. A self-management system [83] can be described according to eight

characteristics, which are self-configuration, self-healing, self-optimization, self-

protection, self-awareness, environment-awareness, openness and transparency.

Generally, a famous idiom that indicates these elements is the self-* property. Self-

configuration means that the communication system has to dynamically configure and

reconfigure itself based on the dynamic changes of the network or environment. The

self-healing property allows the communication system to detect the failure and thus

contain it, replace it with another feature or eliminate it without affecting the system.

Additionally, the system has to behave proactively in term of prediction of the

problems. Maximizing the resource management and utilization, and achieving efficient

load balancing are the main two functions of self-optimization systems. Self-protection

element has the responsibilities of protection of the systems from the attacks and

performing all the system security aspects. Self-awareness or self-knowledge allows the

system to know itself in terms of available resources, applied load etc. Additionally, the

communication system must be aware of the execution environment to cope with any

 44

environmental changes. Openness means that communication system has to operate in

different environments and conditions. Finally, communication system should operate

in a transparent fashion with respect to the users. Its complexity has to be hidden.

Characteristics and behaviours inspired by biological and ecological systems have

become enthusiastic research methodologies in communication and information

technologies. For example, advanced self-management phenomena can be found in the

nature itself [84]. Ants in their colony cooperate to find the shortest path to the food

source; schools of fish swim in patterns to improve the response time to attacks; human

autonomic nervous system works cooperatively to identify the things.

As shown in Chapters 3, 4 and 5, the target tracking, and task mapping and

scheduling schemes proposed in this thesis are under the umbrella of the biologically

inspired, self-organized communication networks. Further details are explored in these

chapters.

2.8 Task Mapping and Scheduling in WSNs

Task mapping is defined as the mechanism to assign available resources to tasks or

jobs. Recourses include the processing capability, available storage, remaining energy

and network bandwidth. Task scheduling is the execution sequence of the tasks or jobs

so that the performance objectives are optimized. The performance objectives are

defined according to the underlying system requirements and they can include

execution time and/or energy consumption.

Applications can be divided either into independent or dependent tasks. It is well

known that optimal task mapping is an NP-complete problem [7], where NP stands for

Nondeterministic Polynomial-time. The polynomial time refers to the algorithm’s

running or execution time. An algorithm is a polynomial time if its running time is no

larger than a polynomial function of its input size. No fast solution of an NP-compete

problem is known. As the size of the NP-compete problem increases, the time required

to solve it using a given algorithm increases. Therefore, heuristic techniques or

approximately algorithms are needed to obtain near-optimal solutions.

In this thesis, two algorithms are developed for task mapping and scheduling in

WSNs. The first algorithm assumes the application can be divided into independent

 45

tasks and the second assumes that there are dependencies between the application tasks.

Chapter 5 explores these algorithms in depth.

2.9 State-of-the Art Review

In this section, a literature review of relevant biological research, target tracking in

WSNs and task mapping and scheduling in WSNs will be explored and analysed. The

advantages and limitations of the current approaches to target tracking, and task

mapping and scheduling in WSNs are considered. The proposed target tracking, task

mapping and scheduling schemes in WSNs are presented in detail in Chapters 3, 4 and 5

to address the limitations of the current work.

2.9.1 Biological Inspired Techniques and Algorithms

In this thesis, the proposed target tracking, task mapping and scheduling in WSNs

schemes are inspired from biological principles. However, a number of researchers have

already considered applying biological and ecological principles within communication

networks for different purposes. Therefore, this section will only mention the biological

aspects of their research insofar as they relate to target tracking, task mapping and

scheduling in WSNs. However, the reader can refer to the given references for further

background.

In [85][86][87], a biological-inspired architecture has been introduced to allow

network services to adopt and scale with dynamic network conditions. In these papers,

the network service such as HTTP is designed as biological abstract entities, which can

perform biological behaviours such as migration, replication, reproduction and death.

Additionally, the authors in [85][86][87] assume that the service can autonomously die,

migrate and replicate depending on the locally available information such as their

neighbours’ resource availability. In [88], the authors have developed novel models

inspired from molecular biology to achieve autonomic capabilities in communication

networks.

In [89], a biologically inspired system has been implemented to provide autonomous

adaptation to the environmentally dynamic changes such as network traffic, user

location and resource availability. The authors in this paper have developed a

middleware platform that has biological features as well as the application services. In

[89], the platform can migrate, replicate, reproduce, exchange energy and die

accordingly to the network conditions.

 46

In [90], the authors map the network service that is executed using platforms to ants

and bees. Ants and bees work continually in their colonies from birth to death. They

move to other location to find food. In times of crisis, they stop looking for food and

protect their colonies from intruders. In [90], network service behaves like ants and

bees. When a network service is created, it registers with the system. After that, it

begins to perform activities. It stops its work if another high or priority network service

wants to work. It also can migrate among platforms.

In [91], a combination of Ant Colony Optimization (ACO) and Particle Swarm

Optimization (PSO) has been developed in one algorithm to be used in distributed

multi-agent systems to search for multiple targets. In [91], the system is inspired from

biological swarm intelligence so that the agents interact locally. The agent can detect

the target within its local sensing range. In [91], agent can behave like ants. The ants

work cooperatively to determine the shortest path to the source of the food. Each ant

lays down chemical trails of pheromones. The ants follow the high intensity

pheromones. This biological behaviour allows the ants to adapt with the environment

changes. The same principle of ants is applied to the agents in [91]. In [91], the agent

builds virtual pheromone data structure whenever it detects a target. It broadcasts this

target information to its neighbours. The agent may move toward the target if it receives

information about the target and the pheromone intensity is strong enough.

2.9.2 Target Tracking in WSNs

In fact, many researchers focus on target tracking in WSNs. As described in Section 2.6,

several operational steps are involved in tracking system. In this section, the literature

review about tracking framework, sensor nodes selection, sensor nodes election and

target tracking techniques are proposed. In Chapters 3 and 4, the proposed tracking

schemes for STT and MTT are presented.

2.9.2.1 Target Tracking Framework

In [16][69][5][92] dynamic clustering architectures are proposed. In [16], there is one

leader at a time in the vicinity of the target. Based on information-driven approach and

the cost, the current leader selects the new leader. The current target state is sent to the

new leader. As shown in Figure 10, during the target movement from the left to the

right, the leader node hand offs from sensor node to sensor node [16]. In [16], initially,

the user query arrives in the network from sensor node “Q”. The query is directed to the

 47

region of interest. Sensor node “a” is the initial leader. It computes the initial estimate

of the vehicle state, determines the next best leader (b) and hands off the state

information to “b”. Sensor node “b” uses its measurement to update the state estimation

using Bayesian filter, for example. The process is repeated through the next leaders “c”,

“d”, “e” and “f”. Sensor nodes “d” and “f” send back the state estimation to the

queering sensor node “Q”. However, the framework in [16] does not consider the

energy-efficiency of sensor nodes that can be achieved by scheduling the sensor nodes

to be in active or sleeping modes as necessary. Further to this, all sensor nodes should

be in active mode to be able to receive the queries sent by the user. Additionally, a

single target is assumed to be tracked.

Figure 10 Network Framework [16]

In [69], dynamic clustering for target tracking in WSN is proposed. A sensor node can

volunteer to be a cluster head (CH) if it receives signal from the target exceeds a

predefined threshold. Other sensor nodes around the target are invited to become cluster

members. Cluster members send the target signature to the cluster head and then cluster

head performs the processing. Two or more sensor nodes can receive a good sound

signal above the threshold and volunteer as cluster head. As shown [69] in Figure 11, a

probabilistic leader volunteering is achieved using Voronoi diagram. If the target inside

the inner dotted circle, the target will be inside the Voronoi cell of CHi . After the CH

localizes the target, it sends the target state to the sink node. The simulation results in

 48

[69] show that the dynamic clustering proposed in [69] reduces the target localization

error compared to the static clustering approaches. However, like the scheme in [16],

the scheme in [69] does not consider the sensor node scheduling between the sleeping

and active modes. Therefore, the framework in [69] is not energy-efficient.

Figure 11 Leader Volunteering using Voronoi Diagram[69]

In [92] as shown in Figure 12, the elected leader node forces all its neighbours to sense

the target by broadcasting a message to them. However, hundreds or thousands of

sensor nodes are deployed in the area of interest. Therefore, communication between

sensor nodes neighbours to inform them to sense the target is expensive in term of

energy consumption.

Figure 12 The illustration of Presented Scenario in [92]

In [5], dynamic clustering for WSNs target tracking is proposed. The framework

assumes that the sensor nodes are in the sleeping mode and triggers by using ultralow

power channel to perform the sensing tasks. In [5], when the target entering the ROI, it

 49

is initially detected using some low-power sensor nodes such as passive infrared (PIR)

sensor nodes. As the authors in [5] explain, in Figure 13 the sensor nodes in the current

cluster send the measurement information to the CH. The CH calculates the target states

using the information received from the sensor nodes. The CH chooses the next cluster

nodes and the next CH. Although, MTT is not considered in [5], we believe that the

framework in [5] is energy-efficient.

Figure 13 WSN Tracking Architecture [5]

In [93] and [94], a distributed tracking algorithm is presented in a static clustering

architecture. As shown in Figure 14, each cluster head (CH) knows all information of

all sensor nodes inside its cluster all the time. Three sensor nodes are assumed to be

enough to determine the target state (i.e., location and velocity) using triangulation. The

target current location and predicted next location is calculated. The current CH

migrates the target states to the next predicted CH. Using the information of the sensor

nodes inside the CH database, the next CH selects from its cluster three sensor nodes

that have the smallest distances from the predicted target location under condition that

the target will be in their sensing range. The CH asks its neighbours for help if it cannot

find three sensor nodes in its cluster. However, we believe that the scheme presented in

[93] and [94] is not energy-efficient because the CH is in communication with all sensor

nodes inside its cluster to ascertain their information at all times. Additionally, the

target state probability distribution is not considered in the tracking scheme presented in

[93] and [94].

 50

Figure 14 WSN Tracking Network Architecture [93]

The static architecture in [68] is shown in Figure 15. The target may enter the area

across one of the four corners of the sensing area. The specialized photo sensor nodes in

the corner are active all the time and they can sense any target entering the sensing area.

The acoustic sensor nodes are only in active mode if there is a target. The sensing area

is divided into equal regions and one cluster head (i.e., processing node) is located in

the centre of each region. The cluster heads collect the sensing information from the

specialized photo and acoustic sensor nodes, process the data and send the target states

to the base station. The results in [68] show that the static clustering approach reduces

the energy consumption compared with the dynamic architecture schemes. However,

there are no techniques in [68] to explain the formation of this static clustering and the

energy consumption required to form it. Moreover, it is difficult to build static

architecture in areas that are difficult to be physically accessed such that forests,

mountains and under water. The scheme in [68] does not include a method by which the

sensor nodes can be informed to be in active mode at the time of target arrival.

 51

Figure 15 Tracking Network Structure [68]

In [81], a static WSN architecture for target applications is presented. As shown in

Figure 16, sensor nodes are arranged in triangular form where the sensing range is equal

to the side length of the triangles. All sensor nodes are in sensing mode all the time. The

sensor nodes detect the target either using passive sensing such as the received signal

strength or active sensing by emitting a signal to the target and calculating the time of

the reflected signals from the target. Each sensor node has to know at least the

information about the sensor nodes that are two hops away from it. In [81], three sensor

nodes are assumed to be sufficient to calculate the target location using trilateration

algorithm. One of these three sensor nodes will be the master and the other two nodes

are slaves. The master node runs the tracking algorithms and the slave nodes send the

target range to the master. The sensor nodes tracking the target are changed when the

target moves through the triangles. For example, when the target enters the area A1

instead of the slave S2, the slave S6 starts to track the target with the master S0 and

other slave S1. However, setting the sensor nodes to be in sensing mode all the time

increases the energy consumption of the sensor nodes and in turn reduces the network

lifetime. Additionally, energy is consumed during the information gained by each

sensor node about the sensor nodes that are two hops away from it. Moreover, in [81]

there is no technique to show how the sensor nodes can be arranged in triangular form.

 52

Figure 16 WSN Tracking Framework [81]

2.9.2.2 Sensor Nodes Selection Algorithms

In [93] and [94] the nearest three sensor nodes to the target predicted location are

proactively selected to track the target at next tracking snapshot. However, these sensor

nodes have to be inside the cluster where the target is located. Therefore, the sensor

nodes inside other clusters will not be selected even if they are closer to the predicted

location of the target than the sensor nodes inside the cluster in which the target is

currently located. In [81], the nearest three sensor nodes to the target are selected to

track it. These approaches to select the closest sensor nodes to the target are

computationally efficient. However, they do not take into account the uncertainty in the

target state calculation and this degrades the accuracy in the prediction and tracking

[82].

In [92], the number of sensor nodes to track the target is calculated so that the

tracking accuracy is improved by a predefined improvement value. In [92], detection

fusion coefficients of all sensor nodes that detect the target are computed based on their

received target signal power. After that, the sensor nodes that have the highest detection

fusion coefficients are selected. Nevertheless, this approach is practically difficult and

costly in term of energy and processing because all sensor nodes within the range of the

target will perform measurements from which the useful ones are then selected.

In [95], the sensors selection is based on the proximity of the sensor node to the target

and the co-linearity between the sensor nodes. The co-linearity between a set of sensor

 53

nodes increases when the lines connected the sensor nodes are more likely a straight

line. [95] shows that the tracking error is reduced with decreasing co-linearity between

the sensor nodes and decreasing the proximity of the sensor node to the target. In [95],

three sensor nodes are selected to track the target at each tracking event. The selection

algorithm consists of two steps. Firstly, two sensor nodes are selected from the set of

the sensor nodes that their distances to the predicted target location is less than or equal

the sensing range. The selection of the two sensor nodes is based on the angle that the

target is located between them, and the proximity to the predicted location of the target.

Secondly, the third sensor node is selected so that it has the minimum co-linearity with

the selected two sensor nodes in the first step. However, [95] does not consider the

uncertainty in the target state calculation and this degrades the accuracy in the

prediction and tracking [82]. Furthermore, as declared in [95], the computational

complexity in first step of sensors selection is)(2NO where N is the number of sensor

nodes that can detect the target. Therefore for 20=N , it is required to evaluate

190!2)!2(! =−NN combinations to get the first two sensor nodes and another 20=N

operations to get the third one. Obviously, this is expensive in terms of computing and

energy consumption especially for large value of N and considering MTT.

The algorithms for sensor selection based on the most informative sensor nodes is

set by how much the amount of information the sensor node can bring (i.e., how much

this sensor node data is useful) or how much uncertainly (i.e., opposite to accuracy) of

the target state the sensor node can reduce. In [16] and [82] the next sensor node to

track the target is selected based on maximizing the information utility measure. The

information utility measure is calculated in [16] and [82] for each sensor node based on

the Mahalanobis distance between the sensor node and the predicted location of the

target taking into the account the covariance of the target state. The results in [16] and

[82] show that sensor selection based on Mahalanobis distance effectively reduces the

uncertainty in the target state compared with the sensor selection based on the nearest

neighbour criteria by which the next sensor nodes is the nearest neighbour to the current

sensor node. However, the tracking algorithm used in [16] and [82] selects only one

sensor node at each time step. Moreover, it does not show how to select the sensor

nodes whose measurements are potentially useful.

In [96] the next sensor node is selected so that the expected conditional entropy of

the posterior target location is minimized. The statistical entropy measures how much

 54

the randomness of a given random variable. Nevertheless, this approach is practically

difficult and costly in term of energy because all sensor nodes within range of the target

will perform measurements from which the useful ones are then selected. Furthermore,

only one sensor node at each time step is selected in [96].

In [97], the sensor nodes selection is based on the mutual information between the

target state and the measurement to determine how much this measurement is useful.

The mutual information is the amount of the information obtained from one random

variable by observing another. However, like [96], this method requires the

measurements to be available before the sensor nodes selection.

In [98], sensors selection technique based on information utility measurement for

bearing-only sensor nodes is presented. As shown in Figure 17,),(iii yxS = is the sensor

node location. The covariance ellipsoid is used to represent the covariance matrix. The

covariance ellipsoid of the target prior position PDF (i.e.,,)|(:11 kk Zp +X) is shown in

Figure 17. Its long and short axes are xσ3 and yσ3 respectively. In the bearing sensor

nodes [98], the sensor nodes along the shorter axis of the ellipsoid reduce the target

position uncertainty of the prior PDF. The shadowed area is the modified uncertainty of

target position and it results from the intersection between the sensor node bearing

errors and the original covariance ellipsoid. This area is approximated to Gaussian

distribution. The covariance matrix of this new a Gaussian distribution is computed.

The determinant of the covariance matrix is proportional to the rectangular region

enclosing the covariance ellipsoid representing the covariance matrix. Therefore, in

[98], the sensor node is selected so that it minimizes the determinant of the covariance

matrix of the new Gaussian distribution. However, the selection algorithm used in [98]

selects only one sensor node for each tracking snapshot. Additionally, the energy cost to

select the next sensor node is not considered. The rectangular region of the covariance

ellipsoid will be zero in case of shrinking the smallest principal axis to zero while the

uncertainty longest principal axis might remain large [82].

 55

Figure 17 The uncertainty of the Target Position [98]

In [5], the probability for the sensor node to detect the target within its detection region

is introduced. The PDF of the predicted target location is computed. Then, the predicted

detection probability (PDP) of the sensor node is computed as the integration of the

probability that the sensor node detects the target and the probability of the target to be

in the predicted location. At each time step, the sensor nodes with the highest PDP are

selected to track the target. However, this technique is concerned with the detection

probability rather than the usefulness of the measurements obtained from the sensor

nodes.

All the above approaches only consider single target tracking. Most of the research

into MTT [99][100-102] focuses on the data association problem that is the techniques

to know which measurements were generated by which targets. Sensor nodes selection

management in MTT receives less attention [103]. In [103] and [104], a near-optimal

sensor node subset is found to track multiple targets. Sensor nodes in [103] and [104]

are assumed to be able to detect more than one target at a time. The objective function

to select the near-optimal sensor node subset is to maximize the overall tracking

accuracies of the targets. Off-the-shelf convex optimization and local search techniques

are employed to obtain a near-optimal solution. However in [103], the targets move in a

predictable fashion and the optimization problem uses all the sensor nodes to find the

near-optimal solution. This is computational expensive. Moreover, the system does not

provide a mechanism to predict the sensor nodes that may detect the target at each time

step; furthermore there is no mechanism to set the target priorities and the maximum

allowable iterations for the local search algorithm.

 56

The above research in MTT does not consider the concept of conflict nodes

whereby a sensor node that is not capable of detecting and serving more than one target

at the same time has to decide to which target it will serve.

2.9.2.3 Sensor Nodes Election Algorithms

In [69] and [81], the cluster leader is elected so that it is the nearest sensor node to the

target. In [92], the leader node is the sensor node that has the minimum statistical

expectation of the difference between the target and the sensor node location. However,

the communication is always between the sensor nodes in the cluster and the target.

Therefore, the election in [69][81][92] does not reduce the communication energy

consumption between the cluster nodes.

In [82], the leader node is chosen so that it is the closest node to the centroid of the

cluster. In [5], the cluster leader is elected so that the total energy consumption used for

all cluster members to transmit their measurements to it is minimized. The election in

[82] and [5] will improve the communication energy efficiency of the cluster nodes.

However, all these election techniques do not consider load balancing between the

cluster nodes in terms of resources availability. Therefore, if the elected leader node has

a low battery level, it will die quickly leaving gaps in the WSN and in turn reduces the

network lifetime.

2.9.2.4 Target Tracking Techniques

Most of the existing research into STT in WSNs adopts a uniform or fixed sampling

interval, which is the time between two successive tracking events [93][94][82],

[96][16][92][95][97][105 - 108]. In case of MTT in WSNs, most of the research focuses

on the data association problem and uses fixed sampling interval [99][100 - 104].

However, the target can be lost if its motion includes abrupt changes and the sampling

interval is chosen to be a large value. On the other hand, energy consumption is

increased if the sampling interval is chosen to be a small value. The rest of this section

explores the STT schemes in WSNs that use an adaptive sampling interval.

In [109], a simple prediction model is used to locate a moving object. The sampling

interval is changed based on the average historical target speed. However, changes in

the target direction are not considered in the sampling interval calculation. Additionally,

the sampling interval for each averaged speed of the target is calculated offline.

 57

In [5] and [110], adaptive sampling interval target tracking schemes are proposed

but they do not consider randomness in the motion of the target, i.e., undergoing “sharp

bends” in its path. As shown in Chapter 7, the proposed tracking scheme is compared

against the uniform schemes and the tracking schemes presented in [5] and [110].

In the tracking scheme proposed by Xiao in [110], the sampling interval is

computed so that the updated tracking accuracy is satisfied. A single sensor node is

selected to track the target at each tracking event. The sampling interval is chosen in

[110] to be between minimum and maximum values. Two operational modes are

proposed in [110] which are Fast Tracking Mode (FTM) and Track Maintenance Mode

(TMM). FTM mode is used when the current tracking error, that is defined as the

“trace" of the updated state covariance matrix, is not satisfied or non of the sensor nodes

that may detect the target at the next tracking snapshot can achieve a satisfactory

updated tracking error using any allowable sampling interval. In this case, the sampling

interval is set to its minimum value and the sensor node is selected so that it minimizes

the next updated tracking error and energy consumption used for communication

between it and the current sensor node. TMM mode is used when the current tracking

error is satisfied and at least one sensor node can achieve an update tracking error

within acceptable limits using a certain sampling interval. In this case, the authors in

[110] developed a discrete search algorithm to select the sensor node and the sampling

interval so that the energy consumption used for communication between the next

potential sensor node and the current sensor node is minimized using a biggest value of

the sampling interval. The discrete algorithm divides the allowable values of the

sampling interval into a discrete set of numbers. Then, for each value of the sampling

interval starting from the biggest value, the energy consumption used for

communication between the next potential sensor node and the current sensor node is

calculated. If some sensor nodes satisfy the next updated tracking error for a given

sampling interval, the sensor node that has the minimum updated tracking error is

selected and the discrete search algorithm is terminated. However, in [110], one tasking

sensor node at each time step is selected. Furthermore, choosing the tracking accuracy

threshold after which the updated tracking error is not satisfied dramatically affects the

total energy consumption and it is not easy to set it as it depends on the motion pattern

of the target. Additionally, Xiao’s scheme assumes the sensor nodes that can detect the

 58

target at each time step are known without including a method or technique to identify

them.

In Lin’s approach [5], the sampling interval is calculated based on the predicted

tracking accuracy. This scheme can guarantee the predicted position accuracy to be less

than or equal the predefined threshold. Like [110], FTM and TMM operational modes

are adopted. FTM is used when current updated position uncertainty, which is defined

as the “trace” of the updated position covariance matrix, cannot be satisfied. In this

case, the sampling interval is set to its minimum value. On the other hand, TMM is

operated when both the current updated and predicted position uncertainties are

satisfactory. In this case, the sampling interval is calculated so that the predicted

position uncertainty is equal a predefined threshold value. The sensors selection strategy

in [5] is illustrated in the Section 2.9.2.2. However, it is difficult to decide in [5] the

value of the threshold because the target can sometimes make unexpectedly abrupt

changes in motion. Therefore, choosing a large threshold value may cause loss of the

target. On the other hand, choosing a small threshold value wastes energy if the target

travels in a uniform manner.

2.9.3 Task Mapping and Scheduling in WSNs

Task mapping and scheduling are considered in depth in traditional parallel computing

environments including high performance computing, heterogeneous computing, grid

computing and distributed computing systems [8][111 - 120]. However, the design

objectives of these traditional parallel processing systems are different from those of

WSNs. For example, in [112] and [114] the goal is to minimize the execution time of

the applications. However, the execution time of the application in WSNs has to meet

the application deadline (i.e., time constraint) after which the execution of the

application will not be useful anymore. Battery energy and wireless communication

constraints are not considered in traditional parallel processing systems. Thus, task

mapping and scheduling in traditional parallel processing systems cannot directly apply

to WSNs. A number of researchers have already considered task mapping and

scheduling in WSNs. In the following paragraphs the state-of-the art for task mapping

and scheduling in WSNs are introduced.

In [121], a fast online collaborative allocation algorithm (CoRAl) is proposed to

dynamically reconfigure WSNs according to the sensor node’s activity changes (i.e.,

sleep versus active modes) or new hot spots occurring (e.g. new target is detected).

 59

CoRAl allocates the resources to the tasks so that the system utility is maximised.

However, CoRAl does not consider the battery level as a part of sensor node resources

and it does not address the energy consumption problem.

In [122], six heuristic task mapping and scheduling techniques, Min-Min, Levelized

Weight Tuning, Bottoms Up, Genetic Algorithm, Simplified Lagrangian, Lower Bound

and A* are compared and evaluated in heterogeneous ad hoc grid environment. In

[122], the application is modelled using the Directed Acyclic Graph (DAG). Min-Min is

a task mapping and scheduling technique used in traditional parallel computing

[112][113]. In [122], the fitness value is defined as the weighted sum of the execution

time and energy consumption required to execute a task in a particular sensor node. In

Min-Min used in [122], for each task the fitness value is calculated across all sensor

nodes and thus the sensor node that has minimum fitness value is temporality selected

and stored with the corresponding task in a pair. Among all node/task pairs, the pair that

has the minimum fitness value is permanently selected for mapping. After that, the

energy and time availabilities of the selected sensor node and any other sensor nodes

that are involved to send/receive any dependencies to/from the selected machine are

updated. The procedures are repeated until all tasks are mapped. Levelized Weight

Tuning (LWT) is a task mapping and scheduling technique used in distributed

heterogeneous environments [114]. In LWT used in [122], a DAG representing the

application is arranged into levels according to the data precedence constraints. At each

level, each task is assigned a priority based on the size of its output data items. For each

task from the low level to the high level and from the high priority to the low priority in

each level, the LWT is run to map the tasks to the sensor nodes. The Bottoms Up (BU)

heuristic proposed on [122] combines Min-Min and LWT. However, it starts from the

highest level to the lowest level. A* is a tree search technique that starts from the root

node. A* has been found to be a highly effective method for searching a tree or graph

[122]. Simplified Lagrangian (SL) proposed in [122] is a simple version of Lagrangian

approaches that have been used for job scheduling in industrial environments [111].

Genetic Algorithm (GA) is used to search a large solutions space to find exact or

approximate optimized solution. The GA used in [122] is a modified version of GA

used in [123]. With Lower Bound (LB) proposed in [122], the sensor node that has the

minimum percentage of energy consumption is chosen. The simulation results in [122]

show that GA gives the best performance. The performance metric using GA is better

 60

than Min-Min by 7%. The performance metric in [122] is defined as the summation of

the percentage of energy consumed by each sensor node to complete the mapped tasks,

averaged across all sensor nodes. On the other hand, the time required to perform GA is

high compared to Min-Min. However, unlike the case of WSNs, [122] assumes

individual channels for each sensor node and each sensor node can transmit and receive

data at the same time. Moreover, [122] ignores the energy consumption to receive a data

item and the cost of the initial data item.

In [124], a task allocation heuristic algorithm that consists of three operational

phases has been developed to provide energy-balanced task allocation in a single-hop

cluster of homogeneous sensor nodes. In the first phase, the tasks are serialized into

clusters so that the execution time of the application is minimized. In the second phase,

the task clusters are assigned to the sensor nodes that have minimum normalized energy

dissipation, which is the sum of energy dissipation of the clusters assigned to the sensor

node normalized by the sensor node remaining energy. In the third phase, the CPU

voltage levels of tasks are adjusted with the goal of maximizing the system lifetime

subject to the application deadline. The process of changing the CPU voltage level is

known as Dynamic Voltage Scaling (DVS) [125]. The operation of DVS is mainly

based on the fact that the processing energy consumption is proportional with the cube

of the CPU voltage [125]. On the other hand, the execution time is reduced with

decreasing the CPU voltage. However, [124] assumes the energy consumption to

transmit a data item is the same in the sender and receiver, which is not realistic.

Additionally, [124] does not employ the broadcast nature of WSNs where sensor nodes

are equipped with Omni-directional antennas.

The authors in [126 - 128] proposed a different algorithm for task mapping and

scheduling in WSNs. In [126], Energy-Constrained Task Mapping and Scheduling

(EcoMapS) algorithm is implemented for energy-constrained application in single-hop

clustered. The objective of EcoMapS is to find a task mapping and scheduling solution

so that the schedule length is minimised under energy consumption constraint.

However, EcoMapS does not guarantee the in-time completion of the application before

the application deadline. In [127], a real-time task mapping and scheduling (RT-MapS)

algorithm is proposed for collaborative in-network processing in single-hop cluster

WSN with enabling DVS feature. In [128], Multihop Task Mapping and Scheduling

(MTMS) solution is presented to map and schedule application tasks in multi-hop

 61

cluster WSN. The main goal of RT-MapS and MTMS is to minimize energy

consumption subject to meeting the application deadline. MTMS and RT-MapS use

DVS and Min-Min algorithms in its operation. However, MTMS and RT-MapS do not

allow mapping the task to its immediate predecessors. Additionally, they involve all

sensor nodes in the task mapping decision-making. Moreover, the Min-Min algorithm

adopted by them is initially introduced in traditional parallel computing for mapping

and scheduling independent tasks. Therefore, there are no any dependencies among

tasks and in turn there is no communication cost between the processors. In Min-Min,

the fitness value for each task is calculated across all sensor nodes and thus the sensor

node that has minimum fitness value is temporality selected and stored with the

corresponding task in a pair. Among all node/task pairs, the pair that has the minimum

fitness value is selected for mapping. Therefore in Min-Min approach, only the selected

pair will be permanently mapped and the procedures will be repeated to map other

tasks. In case of an application that can be divided into tasks with dependencies, the

first pair is permanently selected based on the other pairs and communication between

the pairs to exchange the dependencies. If the same procedures are repeated to

permanently map the next pair, the calculations that are used to map the first pair will

not valid anymore because the pairs that are produced to permanently map the second

pair may not be the same as the pairs generated to permanently map the first pair.

Task mapping and scheduling of an application that can be divided into independent

tasks is introduced in traditional parallel processing system [112][113]. However, it

receives less attention in WSNs.

2.10 Chapter Summary

This chapter introduces the structure, applications, and MAC and routing protocols of

WSNs. In this thesis, CSMA/CA is selected as the MAC protocol and DSDV as the

routing protocol and both of them are implemented in the simulator to evaluate the

proposed tracking, task mapping and scheduling schemes. The structure and

requirements for target tracking in WSNs are presented. Background material

concerning relevant biological analogies, task mapping and scheduling in WSNs are

considered. In the next chapter, the proposed single target tracking scheme is introduced

in detail.

 62

Chapter 3 Single Target Tracking in WSNs

3.1 Chapter Introduction

In the previous chapter, background material and a literature review relating to WSNs,

target tracking, task mapping and scheduling and biological systems are considered.

This chapter presents the proposed Single Target Tracking (STT) scheme in detail. The

target dynamic, sensor detection, measurement and energy consumption models are

presented. Then, the Extended Kalman Filter (EKF) for STT in WSNs is introduced.

After that, the framework and the assumptions for the proposed STT scheme are

explained. The target metadata representation is illustrated; then, sampling interval

determination, sensor node selection and election are presented. The recovery

mechanism and sensor node deployment strategies are then introduced. After that,

complete algorithms and protocols for the proposed STT scheme are proposed. Finally,

a chapter summary is provided

3.2 Target Dynamic Model

In this chapter, a STT is considered. The target (T) state vector at time step k consists

of the target coordinates (i.e.,)(kxT and)(kyT) and velocities (i.e.,)(kxT& and)(kyT&) in

xy plane and is written in a vector form as follows:

[]′=)()()()()(kykykxkxk TTTT &&X (3.1)

The target location at time step k and the sensor node (is) location can be expressed by

the following vectors:

])()([)(′= kykxk TTTL (3.2)

][′=
iii sss yxL (3.3)

The target (T) dynamic is modelled using the discrete-time white noise acceleration

model [72][74][75]. Therefore, the system model described in Equation (2.4) at time

step k can be written as:

)()()()1(kkkk wXAX +=+ (3.4)

 63

where ⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
k

k
k

s

s

AZ
ZA

A , ⎥
⎦

⎤
⎢
⎣

⎡ Δ
=

10
)(1

)(
kt

ksA , ⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

Z , kk ttkt −=Δ +1)(is the

sampling interval which is the time between two successive tracking snapshots (i.e., at

time steps k and 1+k) and is calculated at time step k and)(kw is the process noise

which models the target velocity variations (i.e., acceleration) and is assumed to possess

a zero-mean White Gaussian Distribution with)(kQ covariance matrix:

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
kQ

k
qk

s

s

Z
ZQ

Q (3.5)

where
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΔΔ
ΔΔ

=
)(2/)(

2/)(3/)()(2

23

ktkt
ktktksQ and q is scalar that represents the amount of

randomness in the process noise.

3.3 Sensor Detection and Measurement Model

As mentioned in Section 2.6.1, passive sensor devices are used to detect the acoustic

signals produced form the targets. Therefore, the target is assumed to be an isotropic

sound source. Recall from Section 2.6.4, The RSSI method is used to model the

acoustic signals. The acoustic power intensity received by sensor node is at time step

1+k is calculated according to the following model [58][129][130]:

)1(
)1()1(

+
+

=+
kR

kSkP n
s

s
i

i (3.6)

where)1(+kS is the emitted acoustic density from the sound source (i.e., the target) at

time step 1+k which is assumed to be known ,)1(+kR
is is the noisy geometric distance

between the sensor node is and the target at time step 1+k and n is the attenuation

decay factor which is typically between 2 to 5 according to the environment and

atmospheric conditions [131]. Therefore, by measuring)1(+kP
is ,)1(+kR

is can be

calculated using Equation (3.6). Using a group of)1(+kng tasking sensor nodes denoted

by },...,,{)1()1(21 +=+ kng g
ssskS to track the target T at time step 1+k and according to

Equation (2.5), the measurement model at time step 1+k is given by:

)1()]1(,1[)1(++++=+ kkkk vXhz (3.7)

 64

where)1(+kv is the measurement noise which is assumed a zero-mean White Gaussian

Distribution with)1(+kR covariance matrix,)1(+kz is the target noisy measurements

vector which is given by:

′
⎥⎦
⎤

⎢⎣
⎡ +++=+

+
)1(...)1()1()1(

)1(21
kRkRkRk

kgnsssz (3.8)

and)]1(,1[++ kk Xh is the measurement function which is calculated as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+′−+

−+′−+

−+′−+

=++

++
])1([])1([

.

.
])1([[])1([

])1([])1([

)]1(,1[

)1()1(

22

11

kgnkgn sTsT

sTsT

sTsT

kk

kk

kk

kk

LLLL

LLLL

LLLL

Xh (3.9)

where])1([])1([
ii sTsT kk LLLL −+′−+ is the Euclidean distance in matrix-form between

the target T and sensor node is at time step 1+k . The measurement noise variances of

the sensor nodes are assumed to be independent. Therefore, the measurement noise

covariance matrix is defined as),...,,()1(222
)1(21 +

=+
kgnsssdiagk σσσR . The process and

measurement noises are assumed to be independent of time and with respect to each

other.

3.4 Energy Consumption Model

Energy is consumed during sensing, communication and processing activities. As in

[132] and [133], the energy the transmitter consumes is from the dissipated energy to

run the radio electronics and the power amplifier while the receiver consumes energy to

run the radio electronics. This is shown in Figure 18.

Figure 18 Radio Consumption Model

Therefore, the energy consumption to transmit l -bit message over a distance d is:

 65

⎪⎩

⎪
⎨
⎧

≥+

+
=

oMPelec

oFSelec
TX

dddllE

dddllE
dlE

4

2

...

...
),(

ε

ε p
 (3.10)

where od is the threshold value which is the border between the free space transmission

(i.e., odd p) and the multipath fading transmission (i.e., odd ≥). 2d and 4d are used to

model the power loss in free space and multipath channels, respectively. elecE is the

electronic energy that depends on factors such as coding, modulation and filtering, and

FSε and MPε are the amplifier energy (ampε) for free space and multipath channels

respectively. The energy consumption to receive l -bit message is:

lElE elecRX .)(= (3.11)

For a CPU with clock frequency f , the energy consumption to execute N clock cycles

[133][134] is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

ƒ
)(.2 NeIVNCVNE T

dd
Vn

V

oddddcomp (3.12)

where ddV is the supply voltage, TV is the thermal voltage, the CPU clock speed is

modelled as a function of the supply voltage through the equation ()cK −≈ ddV ƒ and

KnICc ,,,, 0 are CPU dependent parameters.

3.5 Extended Kalman Filter for Single Target Tracking

In the EKF [72][74][75], the predicted target state is given by:

))|(ˆ)()|1(ˆ kkkkk XAX =+ (3.13)

with associated predicted covariance matrix given by:

)()()|()()|1(kkkkkkk QAPAP +′=+ (3.14)

 The predicted measurement vector is calculated as follows:

)]|1(ˆ,1[)|1(ˆ kkkkk ++=+ Xhz (3.15)

 The Jacobian matrix of h at)|1(ˆ)1(kkk +=+ XX is:

 66

41,)1(1]H[

)|1(ˆ)1(at ,
)1(

)]1(,1[)1(

ij ≤≤+≤≤=

+=+
+∂

++∂
=+

jkni

kkk
k

kkk

g

XX
X

XhH
 (3.16)

where

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=+=+
+∂

++∂

=+=+
+∂

++∂

=+=+
+∂

++∂

=+=+
+∂

++∂

=

4j)|1(ˆ)1(at
)1(

)]1(,1[

3j)|1(ˆ)1(at
)1(

)]1(,1[

2j)|1(ˆ)1(at
)1(

)]1(,1[

1j)|1(ˆ)1(at
)1(

)]1(,1[

H

1i

1i

1i

1i

ij

kkk
ky

kk

kkk
ky

kk

kkk
kx

kk

kkk
kx

kk

T

T

T

T

XXXh

XXXh

XXXh

XXXh

&

& (3.17)

By performing the partial integrations for Equation (3.9), Equation (3.17) leads to:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

=
−+′−+

+
=

=
−+′−+

+

=

4j 0

3j
])|1(ˆ[])|1(ˆ[

-)|1(ˆ
2j 0

1j
])|1(ˆ[])|1(ˆ[

-)|1(ˆ

H
i

i

s

s

ij

ii

ii

ss

T

ss

T

kkkk

ykky

kkkk

xkkx

LLLL

LLLL
 (3.18)

where)|1(ˆ kkT +L is the target predicted location and is calculated as:

])|1(ˆ)|1(ˆ[)|1(ˆ kkykkxkk TTT ++=+L (3.19)

and for any variable x :

22
22

)()(
))()((

byax

axbyax
x −+−

−
=−+−

∂
∂ (3.20)

22
22

)()(
))()((

byax

bybyax
y −+−

−
=−+−

∂
∂ (3.21)

In the update stage where the measurements at time step 1+k are available, the

measurement residual which is the difference between the actual and predicted

measurements can be calculated as follows:

)|1(ˆ)1()1(kkkk +−+=+ zzr (3.22)

with associated residual or innovation covariance matrix:

)1()|1()1()1()1(+′++++=+ kkkkkk HPHRS (3.23)

 67

The update state estimate is give by:

)1()1()|1(ˆ)1|1(ˆ ++++=++ kkkkkk rKXX (3.24)

with associated updated covariance matrix:

)1()1()1()|1()1|1(+′++−+=++ kkkkkkk KSKPP (3.25)

where the filter gain is defined as:

)1()1()|1()1(1 ++′+=+ − kkkkk SHPK (3.26)

A detailed derivation of the EKF equations and further explanation about EKF are

found in [72], [74] and [75].

3.6 Multi-Sensor Adaptive Single Target Tracking Framework

In this chapter, a Multi-Sensor Adaptive Single Target Tracking (MS-ASTT) scheme is

proposed for STT in WSNs. Like [5], the STT framework introduced in this section is

energy efficient and similar in some respects to the framework proposed in [5].

However, a comparison between the STT scheme in [5] and the proposed MS-ASTT

scheme is provided in Chapter 7. Figure 19 shows the framework of the proposed MS-

ASTT scheme. The sensor nodes are randomly deployed according to a uniform

distribution in the sensing area to track the target. Each sensor node knows its location

using GPS [37] or triangulation [38] where some sensor nodes called anchor or beacon

nodes determine their positions using GPS and other sensor nodes use triangulation to

calculate their positions by using the known anchor positions and their distances to

these anchors. Each sensor node knows the location and battery level of its neighbours.

Therefore, if any sensor node performs communication or processing activities which

lead to significantly reduced battery level, it informs its neighbours about the updated

battery level. The sensor nodes have the capability to measure the target range, for

example by using an acoustic signal emitted from the target. To improve the energy

efficiency, three operational modes are assumed for the sensor node which are sensing,

communication and sleeping. When the target enters the sensing area, the border sensor

nodes detect it. Therefore, the border sensor nodes are in both sensing and

communication modes all the time. All other sensor nodes are in sleeping mode.

Therefore, these sensor nodes have to be triggered to “wakeup” if they are needed for

communication and/or sensing. Sensor nodes in sleeping mode use a low energy

 68

communication channel [134] to receive trigger message from other sensor nodes. The

BS or sink is responsible for forwarding the desired information from the WSN to the

headquarters (i.e., main controller) through the Internet, via satellite or other wireless

technology.

Figure 19 MS-ASTT Framework in WSNs

As shown in Figure 19, at each tracking time step, one member of the group that is

formed is elected to manage the tracking scheme. This is the Main Node (MN) and the

other members are called Helper Nodes (HNs). The main goals of the proposed MS-

ASTT scheme are to proactively select the next group, elect one sensor node to be the

MN, calculate the next sampling interval and perform recovery in the case of target loss

so that the network lifetime, energy efficiency and tracking accuracy are improved. The

tracking error is used to indicate the tracking accuracy. Two definitions for tracking

error are used in this thesis. Firstly, the tracking error can be defined as the difference

between the real state and the updates or predicted state of the target. Secondly, the

tracking error is defined based on the uncertainty associated with the updated or

predicted covariance matrix. The tracking initialization is started when a mobile target

enters the sensing area. The border sensors sense the target, localize the target using a

triangulation technique, which is presented in Section 2.6.4, and set the initial error

covariance. Thus, the border sensors predict the next target state using EKF, select the

 69

next group, perform the election of the next MN, initiate the sampling interval to its

minimum value and trigger the next group to wakeup. The group of sensor nodes track

the target cooperatively. The algorithms that run in the group of sensor nodes are

presented in Section 3.13.

3.7 Target Metadata

In this thesis, behavioural data obtained while tracking the target including the target’s

previous locations is recorded as metadata. As shown in Figure 20, At each tracking

time step k , the target metadata)(kTMD consists of information about the target’s

previous movement pattern, predicted state)|1(ˆ kk +X and its covariance matrix

)|1(kk +P (i.e., predicted error) and next tracking time (1+kt), which is the current

time plus the current sampling interval (i.e.,)(ktt k Δ+). The predicted state and its

covariance matrix are used to calculate the updated state and its covariance matrix using

EKF. The next tracking time allows the next tracking group to be made aware of the

target arrival time in their vicinity.

The location metadata),(mKkM that includes the last kK m ≤ target update locations

is calculated from the target’s previous movement pattern. As shown in Section 3.8, the

target location metadata is used to calculate the sampling interval at each tracking time

step. Additionally, as shown in Chapter 4, the target location metadata is employed to

compute the target importance and the number of allowable iterations for the local

search in the case of MTT. Therefore, the location metadata is calculated by the sensor

nodes in distributed manner. In this case, a sensor node requires information about the

past movement pattern of the target. This could lead to an increase in the size of target

metadata message. However, message coding and compression can be used to reduce

the size [155] if necessary. On the other hand as shown in Section 3.6, since the main

controller has all the information about the target tracking states, it can be employed to

calculate the target location metadata in a centralized fashion. In this thesis, the target

metadata message is assumed to be coded to a small size so that the CSMA/CA can be

used without the need of using RTS/CTS handshaking.

Movement
Pattern

Predicted
State

Predicted
Error

Next Tracking
Time

Figure 20 Target Metadata

The location metadata of the target indicates the historical movement pattern of the

target. It can be calculated from the previous target locations that are computed from the

 70

tracking algorithms such as EKF. At time step k , the location metadata of the last mK

tracking snapshots (i.e., tracking events) are modelled as follows:

),(
),(),(

mt

mn
m Kkd

KkdKkM = (3.27)

where),(mt Kkd and),(mn Kkd are the total and the net travel of the target during the last

mK tracking snapshots, respectively. The net travel of the target,),(mn Kkd is the

distance between the updated target location at time step mKk − and the current target

location at time step k . The updated target location is expressed in the following vector

form:

])|(ˆ)|(ˆ[)|(ˆ kkykkxkk TTT =L (3.28)

Therefore, the net travel of the target,),(mn Kkd can be calculated according to:

)]|(ˆ)|(ˆ[])|(ˆ)|(ˆ[),(mmTTmmTTmn KkKkkkKkKkkkKkd −−−′−−−= LLLL (3.29)

The total travel of the target,),(mt Kkd is the overall distance between the last mK

tracking snapshots. The total travel),(mt Kkd is calculated according to:

∑
−

−=

++−′++−=
1

)]1|1(ˆ)|(ˆ[])1|1(ˆ)|(ˆ[),(
k

Kkj
TTTTmt

m

jjjjjjjjKkd LLLL (3.30)

As shown in Figure 21 (i), the maximum value of the net travel is equal to the total

travel where the target is moving in straight line. In this case, the location metadata of

the target at point “D” is equal to one. This indicates that the target is moving in a

uniform fashion. On the other hand as shown in Figure 21 (ii), the minimum value of

the net travel is zero when the target returns to the same point it started from. In this

case, the location metadata of the target at point “D” is equal to zero which indicates

that the target is moving in random manner. Otherwise as shown in Figure 21 (iii), the

location metadata of the target is between one and zero. Therefore,),(mKkM is reduced

when the target starts to move in bends. The location metadata of the target is thus

bounded in the interval 1),(0 ≤≤ mKkM .

 71

Figure 21 Target Location Metadata

3.8 Adaptive Sampling Interval Selection Algorithm

Unlike STT schemes using a uniform sampling interval, which are introduced in

Chapter 2, the proposed MS-ASTT scheme adaptively calculates the sampling interval

to improve the energy efficiency and maintain a good accuracy with seamless target

tracking. The value of the sampling interval is reduced when the target manoeuvres in

an unpredictable fashion. This improves the tracking accuracy with seamless target

tracking. Moreover, the prediction of the next target state presented in Section 3.5 is

more likely to succeed. Conversely, the sampling interval is set to a larger value when

the target travels in a uniform, predictable manner. This improves the energy efficiency

of the WSN. One example is shown in Figure 22. Figure 22 (a) illustrates the trajectory

of a mobile target. The sampling interval is large when the target travels in straight line

(i.e., a uniform manner) while it should be small during the target manoeuvrings. In

Figure 22 (b), the location metadata at time 4t and 7t are calculated using three

previous tracking snapshots. The location metadata at time 7t ,)3,7(M is equal to 1 and

in turn the sampling interval is set to a large value because the target is moving in a

uniform manner. On the other hand, the location metadata at time 4t ,)3,4(M is less

than 1 and in turn the sampling interval is set to a smaller value because the target is

moving in an unpredictable manner.

 72

Figure 22 Adaptive Sampling Interval

The sampling interval at time step k ,)(ktΔ is permitted to adaptively change in the

interval maxmin)(TktT ≤Δ≤ . Therefore, minT is the minimum sampling interval, which

should be less than the time required for channel access, propagation delay and any

necessary data processing. maxT is the maximum sampling interval, which is determined

according to the amount of the motion randomness and manoeuvring of the target [135].

The sampling interval,)(ktΔ is calculated based on the current location metadata,

),(mKkM and the previous sampling interval,)1(−Δ kt . The measured sampling interval,

)(ktmΔ is defined to model the impact of the location metadata,),(mKkM such that

maxmin)(TktT m ≤Δ≤ . As shown in Figure 23,)(ktmΔ is modelled as a liner function of the

location metadata,)),(()(mm KkMfkt =Δ , according to the following equation:

minminmax),()()(TKkMTTkt mm +−=Δ (3.31)

),(mKkM

)(ktmΔ

Figure 23 Sampling Interval as a Function of Location Metadata

 73

Therefore the current sampling interval)(ktΔ is the weighted sum of the current the

measured sampling interval,)(ktmΔ and the previous sampling interval,)1(−Δ kt as

follows:

)()1()1()(ktktkt mΔ−+−Δ=Δ αα (3.32)

where,]10[∈α . Therefore, if the measured sampling interval changes from a low value

to high one, the sampling interval smoothly increases to reach the high value and vice

versa. This gives extra confidence that the target completes its previous motion pattern.

Therefore, the sampling interval increases smoothly when the target changes its

movement pattern from a manoeuvring pattern to a uniform pattern to avoid the

unexpected movement of the target during changing its movement pattern.

Higher speed targets require a smaller sampling interval. Therefore, in Figure 23,

the ratio between maxT and minT is selected according to the speed of the target. If the

target moves at variable speed, the ratio between maxT and minT should be adaptively

calculated according to the current target speed. However, within Chapter 7 the

proposed tracking algorithms are evaluated during periods when the target is travelling

with constant speed. Nevertheless, the proposed tracking algorithms are evaluated for

different target speeds.

3.9 Sensor Nodes Selection Management

In this section, the sensor nodes selection algorithm is presented. At the beginning, the

target model is presented. After that, the selection strategy of the sensor nodes is

introduces. Finally, the adaptive group size of the sensor nodes to track the target is

presented.

3.9.1 Target Model

In this thesis, as shown in Figure 24, the target to be tracked, such as human being or a

moving vehicle, is treated as a virtual chemical emitter that influences the sensor nodes

with a varying strength which is determined according to the target importance and the

target proximity to the sensor nodes. Therefore, the target’s influence on the sensors

nodes is referred as chemical diffusion strength (G). The chemical diffusion strength of

the target decreases with distance from the target to the sensor node. More details are

provided in Section 3.9.2.

 74

Figure 24 Chemical Diffusion Strength

3.9.2 Sensor Nodes Selection Algorithm

Unlike [16], [82], [96] and [98], the MS-ASTT scheme uses multi-sensors to track the

target to improve the tracking accuracy and continuity [5]. The sensor nodes selection

algorithm is primarily based on the information associated with the predicted target

location PDF. At each tracking time step k , using the predicted target location PDF, the

sensor nodes that are most influenced by the target are proactively selected to form the

group,)1(+kSg that will track the target at the time step 1+k . The group,)1(+kSg is

selected from the neighbours ()(kSn) of the current main node,)(kMN . The Mahalanobis

distance),|1(iskkD + [136], which considers the predicted target location covariance

)|1(kk +P in its calculations, is obtained between the target predicted location PDF and

each sensor node)(kSs ni ∈ as follows:

)]|1(ˆ)[|1(])|1(ˆ[),|1(1 kkkkkkskkD TsTTsi ii
+−+′+−=+ − LLΣLL (3.33)

)|1(kkT +Σ is the predicted target location covariance matrix. If)|1(kk +P is in a form of:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+

44434241

34333231

24232221

14131211

PPPP
PPPP
PPPP
PPPP

)|1(kkP (3.34)

then,)|1(kkT +Σ is calculated as:

⎥
⎦

⎤
⎢
⎣

⎡
=+

3331

1311

PP
PP

)|1(kkTΣ (3.35)

),|1(iskkD + and the target importance,)1(+kZT are used to model the target chemical

diffusion strength,),|1(iskkG + as follows:

 75

)s,|1(
)1(),|1(

ikkD
kZskkG T

i +
+

=+ (3.36)

)1(+kZT is used for multi-target tracking to give priority to more important targets.

Therefore, if the sensor node is located in the sensing areas of more than one target at

the same time, preference is given to target that has the strongest chemical strength (G)

as evaluated by the sensor node. This is presented in detail in Chapter 4. In sensor nodes

selection, preference is given to the sensor nodes that have the strongest chemical

diffusion strength (G) of the target. Therefore, the selection fitness function by which

the sensor nodes will be selected is computed as follows:

∑
∈∀

+
+

=+

)(

),|1(
),|1()](,,|1[

kSj
j

i
niS

n

skkG
skkGkSskkf (3.37)

The l th sensor node,)1(+∈ kSg gl where)1(1 +≤≤ kngl is selected so that:

⎭
⎬
⎫

⎩
⎨
⎧

∈+=
−=

=
j

j

j
niniSs gUSskSskkfg

i

1

1
\ :)](,,|1[maxarg

l

l (3.38)

where j

j

j
n gUS

1

1
\

−=

=

l

 is the set of)(kSn members excluding the ones from 1g to 1−lg , and

)1(+kng is the group size at time step 1+k .

3.9.3 Adaptive Group Size Algorithm

Unlike the STT researches proposed in Chapter 2, the size)1(+kn g of next sensor

nodes group)1(+kSg is adaptively changed according to the tracking error at time 1+k

to enhance the tracking accuracy, at each tracking time step k . However, increasing the

number of group members leads to increase the energy consumption. Therefore,

)1(+kn g is assumed to be bounded between a smallest value of min
gn and a biggest value

of max
gn where minmax

gg nn > . The “trace” of the covariance matrix is proportional to the

circumference of the rectangular region of covariance ellipsoid [82]. Therefore, the

updated tracking error at time step 1+k is defined as follows:

)}1|1({})1(1,{k ++=++ kktarcekS Tg Σψ (3.39)

where)1|1(++ kkTΣ is the updated target location covariance matrix which is a part

from)1|1(++ kkP and can be calculated by the same way on which)|1(kkT +Σ is

 76

calculated in Equation (3.35).)1|1(++ kkP can be calculated using Equation (3.25)

without knowledge of the real measurements of)1(+kSg members. The adaptive group

size algorithm shown in Figure 25 tries to reduce the tracking error by increasing the

group size.

1. if min)(gn nkn ≥ do:

2. min)1(gg nkn =+ ;

3. while)()1(knkn ng ≤+ do:

4. Select)1(+kSg using Equation (3.37) and (3.38);

5. if max)1(gg nkn ==+ do:

6. Go to Step 13;

7. Calculate })1(1,{k ++ kSgψ using Equation (3.39);

8. if 0})1(1,{k ψψ >++ kS g AND 1)()1(−≤+ knkn ng do:

9. Increment)1(+kng ;

10. end while;

11. else do:

12. Failure to track the target;

13. Finish;

Figure 25 Adaptive Group Size Algorithm

In the Figure 25, in line 1,)(knn is the size of the neighbours,)(kSn , of the current main

node,)(kMN . In line 8, 0ψ is a predefined tracking error threshold. The tracking

accuracy is considered good enough if the tracking error is less than a predefined

tracking error threshold. To improve the energy consumption,)1(+kng is initially set to

min
gn . If the tracking accuracy is not satisfactory,)1(+kng is incremented. The

maximum value of)1(+kng should not exceed)(knn and max
gn .

3.10 Sensor Node Election

In this section, the group is classified into one MN and a number of HN(s). The MN

typically performs more processing and communication activities. Hence, choosing the

MN is a crucial issue to maximize the network lifetime and energy saving. Based on

energy models proposed in Section 3.4, the data transmission energy consumption is

proportional to the square of the distance between the source and the destination. Node

centrality is defined to indicate how much the sensor node is in the group centre.

 77

Therefore, the energy-efficient communication is maximized by selecting the MN to be

the sensor node that has largest node centrality because the distances to the other sensor

nodes are minimized. Node centrality of the sensor node, is in the group,)1(+kSg is

calculated according to the following equation:

∑
+∈∀

−′−
=+

)1(

][][
1),1(

kSj
ssss

i

g

jiji

skC
LLLL (3.40)

Unlike the election techniques proposed in Chapter 2 for the related work, load

balancing among the group of nodes is another important factor to be considered in the

election algorithm, especially when the remaining energy in the nodes is diverse. This

means that load balancing is improved by selecting the node that has maximum

remaining energy as the MN. Therefore, the next MN,)1(+kMN , is elected so that it has

the largest election fitness function, Ef , which is computed as follows:

∑∑
+∈∀+∈∀

−+
+

+
×=++

)1()1(

)1(
),1(

),1()]1(,,1[

kSj
s

s

kSj
j

i
giE

g

j

i

g

E

E

skC
skCkSskf δδ (3.41)

where
isE is the remaining energy of sensor node is and]10[∈δ is a weighting

parameter used to balance the load with the energy consumption. The energy

consumption in the network is reduced when δ is set to 1 (i.e., considering only the

node centrality in the election algorithm). However, if δ is set to 1, a scenario where

the elected MN has the smallest energy remaining could cause the battery to run out and

bring about death of the MN. Death of nodes creates holes in the network causing

connectively loss and reduction in the network connectivity lifetime. Therefore,

considering the load balancing is crucial for improving the network lifetime.

Setting delta to 0 means only the residual energy of the nodes is considered by the

election algorithm. Although this will delay the onset of node death and increase the

network connectivity lifetime, by itself it can lead to less desirable election results. If

the group of nodes involved in the election of the MN has roughly the same residual

energy, then the centrality of the candidate MN should be given precedence even

though this node might have marginally less residual energy than its peers. Its superior

relative location could result in overall energy savings as the communication penalty

between the MN and the HNs is reduced. Therefore, the weighting parameter (δ) is

 78

adaptively chosen according to the variation in the remaining energy between the group

members as follows:

)1(
)max(
)min(

max

min +∈∀== kSs
E
E

E
E

gi
s

s

i

iδ (3.42)

where, minE and minE is the minimum and maximum remaining energy of the group

nodes, respectively. Therefore, when the variation in the remaining energy between the

group members is high, δ will be small and in turn the load balancing factor in

Equation (3.41) is strongly considered, and vice versa. The MN at time 1+k is selected

based on the following equation:

)]1(,,1[maxarg)1(++=+ kSskfkMN giEsi (3.43)

3.11 Tracking Recovery Mechanism

One of the main requirements of target tracking applications is reliability such that the

target is monitored at all times. Tracking can fail due to random and abrupt target

manoeuvring. In this section a recovery mechanism is developed to provide seamless

tracking reliability in case of target loss. Figure 26 shows a scenario of losing the target.

At time step k , the next target location is predicted and the next sensor group is formed.

However, the target changes its predictable direction sharply. This causes the tracking

algorithm to lose the track of the target.

Figure 26 Target Lost Scenario

Generally, the recovery mechanism can be invoked in the following situations:

 79

(1) Accuracy Failure: A low value of tracking accuracy indicates that the target may

be lost in subsequent time steps. Tracking can be recovered in case of insufficient

tracking accuracy. In this case, a tracking accuracy threshold has to be defined to allow

the tracking system to decide when the recovery procedure should be invoked. Tracking

accuracy can be predicted for the next tracking snapshot. Therefore, the tracking can be

proactively adjusted to avoid losing of the target.

(2) Prediction Failure: The target sometimes changes its direction unexpectedly so that

the next predicted group would not be able to detect it. Therefore, the target will be lost

and a recovery operation has to be performed to recapture it.

(3) Selection Failure: In some cases, the predicted PDF of the target location is not

accurate enough and in turn, the target will not be in the sensing region of all the next

group nodes. Therefore, recovery is required to ensure more sensor nodes are involved

to track the target.

(4) Node Failure: Recovery is needed as a result of sensor node failure within the

tracking group. Node failure can be caused by battery drain, or failure of the software or

hardware.

In this thesis, recovery is invoked in the case of prediction and selection failures. As

shown in Figure 27, recovery is performed in levels to reduce the energy consumption.

())|(ˆ),|(ˆ kkykkx TT

)|(3 kkTxσ
)|(kkvt Te

)|(3 kk
Tyσ

sR
)|(kkvt Te

sRsRsR sR

sR

sR

sR

sR

sR

Figure 27 Target Recovery Levels

At each level, more nodes are involved to capture the lost target. At each tracking time

step 1+k , the)1(+kMN activates a timer for recovery (Timer_recovery) which

 80

determines when recovery will start if one or more nodes of the group)1(+kSg does not

detect the target. If the timer “Timer_recovery” expires and)1(+kMN does not receive a

measurement from a particular HN, it will assume that the HN has not detected the

target. Thus, after triggering)(kMN to wakeup, the node)1(+kMN informs the old)(kMN

about the loss of the target. The node)(kMN will initiate first-level recovery by

informing the first-level recovery nodes to wakeup to capture the target. In the first-

level recovery, the recovery nodes (1
rS) are the nodes inside the rectangle:

seTxT

seTyT

Rtkkvkkkkxx

Rtkkvkkkkyy

T

T

+×+≤−

+×+≤−

)|()|(3)|(ˆ

)|()|(3)|(ˆ

σ

σ
 (3.44)

where, sR is the sensing range, et is the time elapsed since the target was last sensed,

Txσ and
Tyσ is the standard deviation of updated target x and y locations, respectively,

and)|(kkvT is the target updated speed which is defined.

)|()|()|(22 kkykkxkkv TTT && += (3.45)

In Equation (3.44), based on the normal distribution empirical rule [137], three standard

deviations from the mean are considered to guarantee the recovery nodes are within of

the predicted target location with 99.7% certainty. Each recovery node initiates sensing

to find the target and sends its measurement to the node)(kMN if it detects the target.

At the time of informing the first-level recovery nodes to wakeup and attempt to

capture the target, the node)(kMN activates the next recovery level timer (Timer_levels)

after which the next level of recovery will be performed if)(kMN does not receive at

least three target measurement readings from current recovery nodes. In the second

level recovery, the recovery nodes (2
rS) are inside the rectangle:

seTxT

seTyT

Rtkkvkkkkxx

Rtkkvkkkkyy

T

T

2)|()|(3)|(ˆ

2)|()|(3)|(ˆ

+×+≤−

+×+≤−

σ

σ
 (3.46)

excluding the recovery nodes from the first level (1
rS). Therefore, the recover nodes in

l th level recovery are defined as:

j
r

j

j
tr SUSS

1

1
/

−=

=
=

l
ll

 (3.47)

where, l
tS is the set of the nodes inside the rectangle:

 81

seTxT

seTyT

Rtkkvkkkkxx

Rtkkvkkkkyy

T

T

l

l

+×+≤−

+×+≤−

)|()|(3)|(ˆ

)|()|(3)|(ˆ

σ

σ
 (3.48)

and j
r

j

j
t SUS

1

1
/

−=

=

l
l denotes the nodes inside l

tS excluding all the recovery nodes in the

levels from 1 to 1−l .

3.12 Sensor Nodes Deployment

In this section, the sensor density to be deployed in a given area is considered. The

sensor nodes group that tracks the target consists of gn sensor nodes in each time step.

Therefore, to increase the likelihood of sensing the target by gn sensor nodes at all time

steps, the number of sensor nodes deployed in the sensing area should be calculated

correctly. Since the sensor nodes are assumed to be uniformly deployed over the

sensing area (A) with sensor nodes density of 2/ msensorsρ , the number of sensor nodes

in any given area (0A) is a Poisson process [138] with mean ρμ 0A= . This is shown in

Figure 28.

Figure 28 Node Deployment

The probability that the target is within the sensing range of gn sensor nodes is

calculated as follows:

!
),(

g

n

g n
enp

gμμ
μ−

= (3.49)

where, 2
0 sRA ρπρμ == . Therefore, the probability that the target is within the sensing

range of gn sensor nodes or more is calculated as:

 82

 ∑
=

=

− ×−=
g

s

ni

i

i
sR

g i
Ren

0

2

!
)(1)Pr(

2 ρπρπ
 (3.50)

For any given probability)Pr(gn , using trial and error the sensor density of ρ can be

computed. For example, for 1)Pr(=gn , mR s 50= and nodesng 3= , the value of

23 /106.5 msensors−×=ρ can guarantee the given probability. Thus, for a given sensing

area of 2300300 mA ×= , the number of sensor nodes required to be uniformly deployed is

nodesAm 500≈= ρ .

3.13 Complete Single Target Tacking Algorithms

Figure 29 shows the algorithm running in the HNs. The group MN proactively sends the

target metadata to the next group along with the group election results using a group-

triggering message (GTrig) so that the new group has knowledge of the target before it

arrives in their vicinity. The HNs measure the target ranges and send the data to the MN

using target range (TRan) messages.

1. while (true) do:

2. switch (event) {

3. Event 1: Receive GTrig or TRec message

4. Turn on the communication channel (i.e., communication mode);

5. Turn on the sensing circuits (i.e., sensing mode);

6. Set Timer_awake;

7. Event 2: Target Detection

8. Get the target range measurement;

9. Shutdown sensing circuit;

10. Send TRang message to the current MN;

11. Shutdown the communication channel;

12. Event 3: Timer_awake timeout

13. Shutdown sensing circuit and the communication channel;

14. }

15. end while
Figure 29 Algorithm Running in the Helper Node

Figure 30 shows the algorithm running in the MN. If the current MN does not receive

the target range measurement from all HNs after Timer_recovery, a target loss (TLos)

message is sent from the current node to the previous one to inform it about the loss of

the target. The previous MN performs the recovery in levels and informs the recovery

 83

nodes to capture the target through target recovery message (TRec). The algorithms

shown in Figure 29 and 30 are self-explanatory and should be easy to follow.

1. while (true) do:

2. switch (event) {

3. Event 1: Receive GTrig message

4. Turn on the communication channel and the sensing circuits;

5. Set Timer_recovery;

6. Event 2: Target Detection

7. Get the target range measurement and shutdown sensing circuit;

8. Event 3: (Receive TRang from all HNs) or (at least from three nodes in case of recovery)

9. if (Target is recovering) do:

10. Localize the target using triangulation and initialize its covariance matrix;

11. Set the sampling interval to its minimum value;

12. else do:

13. Use EKF to get the target updated state and its covariance matrix;

14. Calculate the sampling interval;

15. Use EKF to calculate the predicted target state and its covariance matrix;

16. Update the target location metadata;

17. Select the next group from the neighbours and perform the election of the next MN;

18. Send GTrig message to the next group;

19. Send the current target information to the sink;

20. Event 4: Timer_recovery timeout

21. if (All target range measurements are not received) do:

22. Send Tlost to the previous MN ;

23. Shutdown sensing circuit and the communication channel;

24. Event 5: Receive Tlost

25. Determine the first‐level recovery nodes and send them TRec;

26. Set Timer_levels;

27. Event 6: Timer_levels timeout

28. if (Target is still lost) do:

29. Increment the recovery level, determine the recovery nodes and send them TRec;

30. Set Timer_levels;

31. else do:

32. Shutdown sensing circuit and the communication channel;

33. }

34. end while

Figure 30 Algorithm Running in the Main Node

 84

3.14 Biologically Inspired and Self-Organizing Aspects

Although, other works, which are explored in Chapter 2, have been inspired by

biological and ecological principles, none of these assume the differentiation or

specialisation of sensor nodes functionalities that is inspired from the biological zygote

or human embryonic stem cell. When the zygote or embryo is formed, it comprises a

collection of similar cells. All the cells of the zygote are equal in terms of behaviours

and capabilities. Over time, the zygote cells start to specialize with different

functionalities. The embryo begins with about 150 cells. These cells divide into three

layers that are internal, middle and outer layers. Each layer develops in an independent

fashion. The internal layer or the endoderm specializes to form the respiratory and

digestive system. It also forms the glands such as the pancreas, liver, thymus and

thyroid. The middle layer or the mesoderm forms the bones and cartilage, muscles,

excretory system, the circulatory system (i.e., heart and blood vessels), the inner skin

layer (i.e., dermis), loins and genitalia, and the outer covering of the internal organs.

The outer layer or ectoderm becomes the brain, nervous system and epidermis (e.g.,

skin, hair, nails). This biological behaviour is called differentiation or specialization

[139].

The same principle is applied in the proposed MS-ASTT scheme; the sensor nodes

start equally and then exhibit some kind of specialisation in order to perform the target

tracking. The sensor nodes before the selection and election algorithms were all equal.

The selection algorithm differentiates the jobs of the sensors nodes so that some of them

will be selected to sense the target and others will remain in sleeping mode. The

election algorithm classifies the selected group nodes into one MN and possibly

multiple HN(s). Furthermore, this is the first research to treat the target as a virtual

chemical emitter.

The proposed MS-ASTT scheme is self-configured and self-organizing. A recovery

mechanism is designed to solve the problem of the tracking failures. Prediction is

provided to determine the target’s future location and prepare the tasking nodes before

the target arrives in their vicinity. Load balancing is adopted in the election of the leader

of the group of the tasking nodes to track the target. The sensors nodes are at all times

aware of their remaining resources. The proposed MS-ASTT scheme in this research

operates automatically without interaction with external administration. Therefore, the

complexity is hidden from the users.

 85

3.15 Chapter Summary

In this chapter, a MS-ASTT scheme for reliable target tracking in WSNs is presented.

The operation of the MS-ASTT scheme can be summarized in four steps. Firstly, the

sampling interval is computed according to the historical location metadata of the target

such that the prediction is likely to succeed and the tracking accuracy is maintained.

Secondly, the next tracking group is proactively selected. An adaptive group size

configuration mechanism is presented to improve the tracking accuracy. Thirdly, one of

the group nodes is elected as a MN so that the communication energy efficiency and

load balancing are improved. Finally, target recovery is supported to improve tracking

reliability in the case of target loss due to selection or prediction failures.

A node deployment strategy is introduced to guarantee the coverage of the target

with at least predefined number of sensor nodes. The complete algorithms for the

proposed MS-ASTT scheme are presented. The proposed MS-ASTT is self-configuring

and self-organizing, and inspired from the differentiation or specialisation principles

found in biological zygotes.

This chapter considers only the tracking of a single target. In Chapter 4 multi-target

tracking (MTT) in WSNs is considered.

 86

Chapter 4 Multi Target Tracking in WSNs

4.1 Chapter Introduction

Chapter 3 introduces the STT in WSNs. In this chapter, Multi-Target Tracking (MTT)

in WSNs is presented. The target dynamics, sensor detection and measurement models,

and EKF proposed in Chapter 3 are used in this chapter with slight modifications to

make them suitable for MTT. In this chapter, two MTT schemes for WSNs are

proposed. Firstly, a Multi-Sensor Distributed Multi-Target Tracking (MS-DMTT)

scheme is proposed based on the assumption that the sensor node can only detect and

serve a single target at the same time. Secondly, a Multi-Sensor Adaptive Multi-Target

Tracking (MS-AMTT) scheme is introduced based on the assumption that the sensor

node can detect and serve more than one target at the same time. After the description

of both schemes in detail, a chapter summary is provided.

4.2 Target Dynamic Model

In this chapter, MTT is considered. The target (jT) state vector at tracking time

)(kt
jT consists of the target coordinates and velocities in xy plane and is written as

follows:

])()()()([)(′= kykykxkxk
jjjjj TTTTT &&X (4.1)

The target location at time)(kt
jT and the sensor node (is) location can be expressed as:

])()([)(′= kykxk
jjj TTTL (4.2)

][′=
iii sss yxL (4.3)

The target (jT) dynamics is modelled using the discrete-time white noise acceleration

model [72][74][75]. Therefore, the system model described in Equation (2.4) at time

)(kt
jT can be written as:

)()()()1(kkkk
jjjj TTTT wXAX +=+ (4.4)

 87

where
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=)(

)(
)(k

k
k

j

j

j T

T
T VZ

ZV
A , ⎥

⎦

⎤
⎢
⎣

⎡ Δ
=

10
)(1

)(
kt

k j
j

T
TV , ⎥

⎦

⎤
⎢
⎣

⎡
=

00
00

Z and)(k
jTw is the process noise

which models the target velocity variations (i.e., acceleration) and is assumed to possess

a zero-mean White Gaussian Distribution with)(k
jTQ covariance matrix:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=)(

)(
)(k

k
qk

j

j

jj T

T
TT ΛZ

ZΛ
Q (4.5)

where,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ΔΔ

ΔΔ
=

)(2/)(

2/)(3/)(
)(2

23

ktkt

ktkt
k

jj

jj

j
TT

TT
TΛ ,

jTq is scalar that represents the amount of

randomness in the process noise and)()1()(ktktkt
jjj TTT −+=Δ is the sampling interval,

which is the time between the two tracking snapshots (i.e., at times)(kt
jT and

)1(+kt
jT) and is calculated at time)(kt

jT .

4.3 Sensor Detection and Measurement Model

As mentioned in Section 2.6.1, passive sensor devices are used to detect the acoustic

signals produced from the targets. Therefore, the target jT is assumed to be an isotropic

sound source. Recall from Section 2.6.4, the RSSI method is used to model the acoustic

signal. The acoustic power intensity received by sensor node is at time)1(+kt
jT is

calculated according to the following model [58][129][130]:

],1[

)1(
],1[

j
n
s

T
js TkR

kS
TkP

i

j

i +

+
=+ (4.6)

where)1(+kS
jT is the emitted acoustic density from the sound source (i.e., the target jT)

at time)1(+kt
jT which is assumed to be known ,],1[j

n
s TkR

i
+ is the noisy geometric

distance between the sensor node is and the target jT at time)1(+kt
jT and n is the

attenuation decay factor which is typically between 2 to 5 according to the environment

and atmospheric conditions [131]. Therefore, by measuring],1[js TkP
i

+ ,],1[j
n
s TkR

i
+ can

be calculated using Equation (4.6). Using a group },...,,{)1()1(21)()(+=+ knTg jTgj
ssskS of

)1()(+kn
jTg tasking sensor nodes to track the target jT at time)1(+kt

jT and according

to Equation (2.5), the measurement model at time)1(+kt
jT is given by:

 88

)1()]1(,1[)1(++++=+ kkkk
jjjj TTTT vXhz (4.7)

where)1(+k
jTv is the measurement noise which is assumed a zero-mean White Gaussian

Distribution with)1(+k
jTR covariance matrix, and the target noisy measurement vector

and measurement function are given by:

′

⎥⎦
⎤

⎢⎣
⎡ +++=+

+
],1[...],1[],1[)1(

)1()(21 jsjsjsT TkRTkRTkRk
kjTgnj

z (4.8)

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+′−+

−+′−+

−+′−+

=++

++
])1([])1([

.

.
])1([[])1([

])1([])1([

)]1(,1[

)1()())1()(

22

11

kjTgnjkjTgnj

jj

jj

jj

sTsT

sTsT

sTsT

TT

kk

kk

kk

kk

LLLL

LLLL

LLLL

Xh (4.9)

The process and measurement noises are independent of time and with respect to each

other. The measurement noise variances of the sensor nodes are assumed to be

independent and are assumed to be multiplicative noises [95]. Thus, the measurement

noise variance associated with target jT of sensor is at time)1(+kt
jT is calculated as:

],1[],1[2
jsjs TkRTk

ii
+=+ γσ (4.10)

where 10 ≤≤ γ . Therefore, the measurement noise covariance matrix is defined as:

⎥⎦
⎤

⎢⎣
⎡ +++=+

+
],1[],...,,1[],,1[)1(222

)1()(21 jsjsjsT TkTkTkdiagk
kjTgnj

σσσR (4.11)

4.4 Extended Kalman Filter for Multi-Target Tracking

In the Extended Kalman Filter (EKF) [72][74][75], the predicted target state is given

by:

))|(ˆ)()|1(ˆ kkkkk
jjj TTT XAX =+ (4.12)

with associated predicted covariance matrix given by:

)()()|()()|1(kkkkkkk
jjjjj TTTTT QAPAP +′=+ (4.13)

 The predicted measurement vector is calculated as follows:

)]|1(ˆ,1[)|1(ˆ kkkkk
jjj TTT ++=+ Xhz (4.14)

 89

 The Jacobian matrix of
jTh at)|1(ˆ)1(kkk

jj TT +=+ XX is:

41,)1(1]H[

)|1(ˆ)1(at ,
)1(

)]1(,1[
)1(

)(ij ≤≤+≤≤=

+=+
+∂

++∂
=+

jkni

kkk
k

kk
k

j

jj
j

jj

j

Tg

TT
T

TT
T XX

X

Xh
H

 (4.15)

where

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

=
−+′−+

+
=

=
−+′−+

+

=

4j 0

3j
])|1(ˆ[])|1(ˆ[

-)|1(ˆ
2j 0

1j
])|1(ˆ[])|1(ˆ[

-)|1(ˆ

H
i

i

s

s

ij

ijij

j

ijij

j

sTsT

T

sTsT

T

kkkk

ykky

kkkk

xkkx

LLLL

LLLL

 (4.16)

and)|1(ˆ kk
jT +L is the target predicted location and is calculated as:

])|1(ˆ)|1(ˆ[)|1(ˆ kkykkxkk
jjj TTT ++=+L (4.17)

In the update stage where the measurements at time step 1+k are available, the

measurement residual which is the difference between the actual and predicted

measurements can be calculated as follows:

)|1(ˆ)1()1(kkkk
jjj TTT +−+=+ zzr (4.18)

with associated residual or innovation covariance matrix:

)1()|1()1()1()1(+′++++=+ kkkkkk
jjjjj TTTTT HPHRS (4.19)

The update state estimate is given by:

)1()1()|1(ˆ)1|1(ˆ ++++=++ kkkkkk
jjjj TTTT rKXX (4.20)

with associated updated covariance matrix:

)1()1()1()|1()1|1(+′++−+=++ kkkkkkk
jjjjj TTTTT KSKPP (4.21)

where the filter gain is defined as:

)1()1()|1()1(1 ++′+=+ − kkkkk
jjjj TTTT SHPK (4.22)

 90

4.5 Multi-Sensor Distributed Multi-Target Tracking (MS-DMTT)

In this section, a MS-DMTT scheme is proposed based on the assumption that a given

sensor node can only track and serve a single target at a time. The MS-DMTT scheme

deals with each target separately. This means that the MS-DMTT scheme is a series of

STT problems. Therefore, each target has separate tracking time steps that are

independent of others. However, the problem of conflict nodes, which arises only in

case of MTT, is considered and formalized at the beginning of this section. Next the

framework and assumptions associated with the MS-DMTT scheme are explained. The

sampling interval selection, sensor nodes selection, sensor node election and recovery

mechanisms and algorithms are presented. Finally, the Distributed Multi-target

Selection (DMS) algorithm that solves the conflict nodes problem is introduced.

4.5.1 Problem Formalization

Figure 31 shows a MTT scenario for WSNs. Two targets are assumed to be tracked. At

a particular time the target locations are shown in Figure 31. Each target is

cooperatively tracked and served using a group of sensor nodes. Unlike the MTT

schemes proposed in Chapter 2, this thesis considers the problem of conflict node

selection, which is shown in Figure 31. sR is the sensing range. All sensor nodes in

the conflict area can detect and serve both Target 1 and Target 2. However, each sensor

node is assumed to be able to track and serve only one target at a time [140][141].

Therefore, each conflict node has to locally decide its preferred target that it will track.

Figure 31 Conflict Nodes in Multi-Target Tracking

A sensor node can detect a new target whilst serving another target. If a sensor node

prefers the new target, it will leave the group of the old target. Therefore, the group of

the old target has to reconfigure itself to collect one more node to replace the departing

node.

 91

4.5.2 MS-DMTT Framework and Assumptions

Figure 32 shows the framework of the proposed MS-DMTT scheme. The same

framework as used in the MS-ASTT scheme (presented in Section 3.6) is employed. For

simplification, measurement origin uncertainty [103] and the false alarms from the

sensor field are not considered further here.

Figure 32 MS-DMTT Framework in WSNs

At each time step k , one member of the group that is formed to track the target jT is

elected to be the Main Node,)(kMN
jT and the other members are called Helper Nodes

)(kHNs
jT . The main goals of the proposed MS-DMTT scheme are to proactively select

next groups to track the targets, elect one sensor node from each group to be the
jTMN of

that group, calculate the next sampling intervals for the targets, reform the group in case

of the conflict node problem and perform recovery in the case of target loss so that

tracking continuity is maintained. This is to be done such that the network lifetime,

energy efficiency and tracking accuracy are improved. The tracking initialization is

started when mobile targets enter the sensing area. The border sensors sense the targets,

localize them using triangulation as presented in Section 2.6.4, and set the initial error

covariance. Thus, the border sensors predict the targets’ next states using EKF, select

the next groups, perform the election of the next
jTMN , initialise the sampling intervals

to their minimum value and trigger the next groups to wakeup. If any node is receives

more than one request to track targets, it performs the Distributed Multi-Target

 92

Selection (DMS) algorithm to decide its preferred target. For example, in Figure 32, the

conflict node receives the strongest target influence from Target 1. Therefore it decides

to serve Target 1, which is in more important (i.e., higher priority).

4.5.3 Sampling Interval Selection, Sensors Selection, Sensors Election and

Recovery Mechanism

The sampling interval selection, sensor nodes selection, sensor node election and

recovery mechanism techniques and algorithms used for STT in Chapter 3 are adopted

with the MS-DMTT scheme. However, these techniques and algorithms are performed

for each target separately based on the target trajectory, movement patterns, importance

and sensor nodes locations and resources.

4.5.4 Distributed Multi-Target Selection (DMS) Algorithm

In this thesis, the target importance or priority of the target, is considered. Sensor

measurement noise is less when the sensor is closer to the target [95]. Therefore, the

target chemical diffusion strength, G (i.e., influence strength on the sensor node) is

inversely proportional with distance, D from the node and is higher for the targets of a

higher importance. The chemical diffusion strengths for the targets versus the distance

from the sensor node are plotted in Figure 33. As shown in Figure 33, Target 1 has a

higher priority than Target 2. Thus, the chemical diffusion strength of Target 1 is higher

than the case of Target 2.

Figure 33 Chemical Diffusion Strength

The conflict node (cs) that is located in the sensing areas of the targets set (ΤS) at the

same time decides locally their preferred target by running the DMS algorithm given in

Figure 34. In the algorithm,)s,(cjTD in line 1 is the Mahalanobis distance between the

jT predicted location PDF and conflict node (cs). Both target importance and the

distance from the target to the sensor node are considered in the calculation of target

 93

influence. Therefore, if two targets share the same importance, the conflict node will

select the closer one. On the other hand, conflict node will select the target with more

importance if the two targets are the same distance from it. Otherwise, the ratio between

the target importance and distance is computed for target selection. The algorithm

shown in Figure 34 should be self-explanatory and easy to follow.

1. For all Τ∈ STj , calculate
)s,(

)1(
),(

cj

T
cj TD

kZ
sTG j

+
= ;

2. Select the target (sT) with maximum),(cj sTG ;

3. If more targets have the same vale of maximum),(cj sTG :

4. Select the target (sT) with maximum)1(+kZ
jT ;

5. If cs is already a member of group)(cTgS for a target (cT) and sc TT ≠ :

6.if (cs is a MN of)(cTgS) do:

7. Reform the)(cTgS by selecting one more node and electing a new MN;

8. Handover the MN responsibilities to the new MN;

9. Abort)(cTgS group;

10. else do: // cs is HN

11. Abort)(cTgS group and inform the MN to reform the group)(cTgS ;

12. end if of line 5;

13. Join the group)(sTgS of the selected target sT ;

Figure 34 The DMS Algorithm

4.6 Multi-Sensor Adaptive Multi-Target Tracking (MS-AMTT)

In this section, a MS-AMTT scheme is proposed based on the assumption that the

sensor node can detect and serve more than one target at the same time. MS-AMTT

scheme deals with all targets at the same tracking time steps. Therefore, all targets have

the same tracking time steps. Additionally, sampling interval for all target are the same

and fixed. At the beginning of this section, the problem of sensor nodes selection is

formalized as a combinatorial optimization problem. Then, The framework and

assumptions of MS-AMTT scheme is explained. The main functionalities for the group

members that track the target are introduced. After that, the target importance

calculation technique is present. The local search strategy to get near-optimal solution

for the sensor nodes selection is presented. The computational complexity of the

 94

proposed MS-AMTT scheme is then proposed. Finally, the election technique to select

the MN for each tracking group and the leader node for all groups is introduced.

4.6.1 Problem Formalization

At each time step k , the main aim of MS-AMTT is to select the next sensor groups that

will track the targets at the next time step 1+k . Assume)|1()(kkS
jTd + is defined as

the predicted detecting nodes of target jT with size)|1()(kkn
jTd + at time step 1+k . It

is calculated at time step k and contains all the predicted sensors that may detect the

targets at time step 1+k . It considers the sensors inside the circle:
2])|1(ˆ)][|1(ˆ[sTT Rkkkk

jj
=′+−+− LXLX (4.23)

where sR is the sensing range of the sensor nodes,)|1(ˆ kk
jT +L is defined in Equation

(4.17) and][′= yxX . Assume,)|1(kkSD + with size of)|1(kknD + is a set of all the

predicted detecting nodes of targets and is calculated as:

)|1()|1(
1

)(kknkkn
M

TdD +=+ ∑
=l

l (4.24)

)|1()........|1()|1()|1()()()(21
kkSkkSkkSkkS

MTdTdTdD +∪+∪+=+ (4.25)

 where M is the number of the targets. Define)|1()(kkS
jTg + with size of

)|1()(kkn
jTg + as the predicted sensors group of target jT . It is calculated at time step

k and contains the predicted group nodes to track the target jT at time step 1+k .

Assume)|1()|1(kkSkkS DG +⊂+ with size of)|1(kknG + is a set of all targets sensor

groups and is calculated as:

)|1()|1(
1

)(kknkkn
M

TgG +=+ ∑
=l

l (4.26)

)|1()........|1()|1()|1()()()(21
kkSkkSkkSkkS

MTgTgTgG +∪+∪+=+ (4.27)

The closest sensor nodes selection is not always the best solution for target tracking

because of triangulation and co-linearity in [95]. Therefore, the objective function for

sensor groups’ selection is to minimize the overall updated errors of all targets. The

 95

updated error of a target is defined as the “trace” of its updated covariance matrix. At

time step k , the objective function is defined as:

()
()() })1|1(,0max)(

)1|1({)|1(
1

thTT

M

Tobj

EkktracekZ

kktracekkF

−++

+++=+ ∑
=

ll

l

l

P

P
 (4.28)

where,)(kZTl is the importance of target lT at time step k and thE is a predefined

tracking error threshold. Using Equation (4.21),)1|1(++ kkTlP can be calculated at time

step k for a sensor group without knowledge of the sensor measurements at time step

1+k . The optimal sensors groups)|1(* kkSG + that will track the targets at time 1+k is

selected as:

)|1(minarg)|1(
)|1(

* kkFkkS objkkSG
G

+=+
+

 (4.29)

subject to:

MkknG 3)|1(=+ (4.30)

Mjkkn
jTg ≤≤∀≥+ 11)|1()((4.31)

However, this is NP-hard combinatorial optimization problem [142][143]. The number

of combinations that need to be calculated to find the optimal solution for this problem

is:

))!|1()|1(()!|1(
)!|1(C

)|1(
)|1()|1(

)|1(kknkknkkn
kkn

kkn
kkn

GDG

Dkkn
kkn

G

D D

G +−++
+

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+ +

+ (4.32)

Therefore, it is infeasible to find a solution to this problem in real-time especially for

bigger vales of)|1(kknD + and)|1(kknG + . In this chapter, a local search algorithm

is thus used to find near-optimal solution in real-time. More details are provided in

Section 4.6.5.

4.6.2 MS-AMTT Framework and Assumptions

Figure 35 shows the framework of the proposed MS-AMTT scheme. The same

framework of MS-DMTT scheme, which is presented in Section 4.5.2, is used in MS-

AMTT scheme.

 96

Figure 35 MS-AMTT WSN Framework

The target metadata strategy proposed in Chapter 3 is used in MS-AMTT scheme. The

MS-AMTT scheme operates in four steps. Step (1) computes the target importance and

number of local search iterations based on the location metadata pertaining to the

target’s past locations, by which the movement pattern is computed, Step (2) selects the

next groups of sensors to track the targets in order to optimize or nearly optimize the

tracking performance and continuity. Step (3) elects one sensor from each target group

to act as the “Main Node” and select others to be “Helper Nodes”. Finally, in Step (4)

one node is elected to be the “Leader Node” of all the target groups. MS-AMTT scheme

aims to improve the tracking continuity, energy-efficiency and prediction success. At

each time step k , the Main Node and Helper Nodes for target jT are denoted by

)(kMN
jT and)(kHNs

jT respectively. Additionally, the leader node is denoted by)(kLN .

The tracking initialization is started when each target enters the sensing area. The

border sensors sense the target, localize it using, for example, triangulation [27], and set

the initial covariance error. Thus, the border sensors predict the next target state using

EKF, select the next groups of the targets, perform the election of the next
jTMN and

LN , and trigger the next groups and LN to wakeup.

4.6.3 The Proposed Algorithms for MS-AMTT scheme

At each time step k , helper nodes,)(kHN
jT measure the target ranges and send the data

to the)(kMN
jT . The)(kMN

jT calculates the current and predicted target states using

EKF, and sends them to the)(kLN . The)(kLN performs the management and other

 97

computational duties according to the algorithm shown in Figure 36. Detailed

description of this algorithm is provided in Sections 4.6.4, 4.6.5 and 4.6.6.

1. Send the current target states to the sink

2. Compute the targets’ location metadata),(mT KkM
j

3. Calculate the targets’ importance)(kZ
jT using the

 location metadata),(mT KkM
j

4. Update the target metadata)(kTMD
jT

5. Select the next target groups for time step

 1+k according the Equation (4.29)

6. Perform the election of the next)1(+kMN
jT

7. Perform the election of the next)1(+kLN

8. Trigger the next groups and leader node for time step 1+k to wakeup

9. Send)(kTMD
jT to the next groups and leader node

Figure 36 Algorithm Running in the Leader Node

4.6.4 Adaptive Target Importance

Unlike the MTT schemes proposed in [103] and [104], the target importance is

adaptively calculated according to the historical movement pattern of each target in

order to obtain seamless and accurate tracking. Figure 37 illustrates the trajectory of a

mobile target, jT . As shown in Figure 37 (a), if the target jT is in manoeuvring with

sharp-bends or random movement, its importance)(kZ
jT will be large. From Equation

(4.29), the aim is to find a solution where the objective function is minimized in order to

determine which nodes will be assigned to track the various targets. However, if some

targets move erratically there is a risk that the overall node mapping solution would

assign insufficient nodes to track these targets, whilst more sensor nodes are used to

track predictable targets than are needed. To take this into account the second term of

the summation in Equation (4.29) is invoked if its tracking error of a particular target

exceeds a threshold value. This causes the tracking cost of this target to be increased

and so inflate the overall fitness cost, making this solution less desirable. Conversely, if

tracking errors remain below this threshold then the additional cost term is not

introduced when looking for the least cost solution. However, target importance can be

determined offline based on actual priorities of the targets or if the target movement

pattern is known in advance. The target movement pattern is modelled using the

 98

location metadata. Location metadata for the target jT ,),(mT KkM
j

 proposed in Chapter 3

is calculated for each target jT .

Figure 37 Adaptive Target Importance

In Figure 37 (b), the location metadata at time 4t and 7t are calculated using three

previous tracking snapshots. If the location metadata at time 7t ,)3,7(
jTM is equal to 1

in turn the target importance is set to a small value because the target is moving in a

uniform manner. On the other hand, if the location metadata at time 4t ,)3,4(
jTM is less

than 1 the target importance is set to a large value because the target is moving in a

unpredictable manner. As shown in Figure 38, the target importance)(kZ
jT is permitted

to adaptively change in the interval mT ZkZ
j

≤≤)(0 .)(kZ
jT and is assumed to be a linear

function of the location metadata,)),(()(mTT KkMfkZ
jj

= , according to the following

equation:

)),(1()(mjmj KkMZkZ −= (4.33)

),(mj KkM

)(kZj

Figure 38 Target Importance as a Function of Location Metadata

 99

4.6.5 Local Search Algorithm

A local search algorithm is used to find near-optimal solution in the real-time for the

combinatorial optimization problem [142][144]. It is possible in polynomial time to find

a local optimal solution that is the best in the sense that there is nothing better in its

local neighbourhood. Given a feasible solution, the set of solutions that are close in

some sense to it is called local neighbourhood [142]. The current solution of the local

search algorithm starts with an initial solution, which should be chosen carefully as

described in Section 4.6.5.1. It then evaluates the objective function for the local

neighbourhood around the current solution. Two possible implementations of local

search are first improvement (first-fit) and best improvement (best-fit) [142]. In first-fit,

the current solution is set to the first neighbour that has better objective function. In

best-fit, the objective function has to be computed for the overall neighbourhood and

the current solution is set to the neighbour which has the best objective function. The

local search is terminated if there is no solution in the neighbourhood that has a better

objective function than the current solution.

In fact, the choice of the initial solution and local neighbourhood structure is crucial

because it influences the efficiency and computational time of the local search

algorithm [145]. In the following sections, a detailed description concerning the initial

solution, neighbourhood structure and local search heuristic are presented.

4.6.5.1 Initial Solution Selection

At each time step k , assume the initial solution for the groups tracking the targets at

time step 1+k is)|1(kkIs + with size of)|1(kknG + nodes.)|1(kkIs + is divided into

equal M subsets (one for each target) such that:

{ })|1(),....,|1(),|1()|1()()()(21
kkIkkIkkIkkI

MTsTsTss +++=+ (4.34)

Each subset of)|1(kkIs + consists of three sensor nodes such that:

{ } MjiiikkI
jjjj TsTsTsTs ,..,2,1)3(),2(),1()|1()()()()(=∀=+ (4.35)

Each subset defined in Equation (4.35) is calculated as follows. The biologically

inspired target model proposed in Chapter 3 is used. For each target jT , the

Mahalanobis distance),|1(iT skkD
j

+ [136] which considers the predicted target

location covariance)|1(kk
jT +P in its calculations is obtained between the target’s

 100

predicted location PDF and each of predicted detecting nodes)|1()(kkSs jdi +∈ as

follows:

)]|1(ˆ)[|1(])|1(ˆ[),|1(1 kkkkkkskkD
jijjij TsTTsiT +−+′+−=+ − LLΣLL (4.36)

)|1(kk
jT +Σ is the predicted target location covariance matrix and is calculate by the

same method proposed in Chapter 3. The target chemical diffusion strength

),|1(iT skkG
j

+ is defined as:

)s,|1(
1),|1(

ikkD
skkG

j
j

T
iT +
=+ (4.37)

Therefore, the selection fitness function by which the sensor nodes will be selected is

computed as follows:

∑
+∈∀

+

+
=+

)|1(

)(

)(

),|1(

),|1(
],|1[

kkS
T

iT
iTS

jTd

j

j

j skkG

skkG
skkf

l

l
 (4.38)

The ith sensor node, 31)|1()()()(≤≤∀+∈ ikkSii
jj TdTs is selected so that:

})|1(&)(\)|1(

 :],|1[{maxarg)(

)(
1

)(

1

1
)(

)()(

kkIUqiUkkS

sskkfii

Ts

M

j

Ts

i

q
Td

iiTS
s

Ts

jj

j
i

j

++

∈+=

≠
=

−

= l

l
l

 (4.39)

where)(
1

)(

1

1
)(&)(\)|1(

l

l
l

Ts

M

j

Ts

i

q
Td IUqiUkkS

jj

≠
=

−

=
+ is the set of)|1()(kkS

jTd + members excluding

the ones from)1()(jTsi to)1()(−ii
jTs and the ones that already selected for other targets.

4.6.5.2 Neighbourhood Structure

At each time step k , assume the current solution for the groups tracking the targets at

time step 1+k is)|1(kkCs + with size of)|1(kknG + sensor nodes. The remaining

set)|1(kkSr + with size)|1(kknr + contains the sensor nodes in)|1(kkSD + excluding

the ones in)|1(kkCs + . Therefore,)|1(kkSr + and)|1(kknr + are calculated as:

)|1(\)|1()|1(kkCkkSkkS sDr ++=+ (4.40)

)|1()|1()|1(kknkknkkn GDr +−+=+ (4.41)

 101

Each sensor in)|1(kkSr + replaces one by one the)|1(kknG + sensors in)|1(kkCs +

to form)|1(kknG + neighbours. Therefore, the neighbour sets,)|1(kkNs + of the

current solution,)|1(kkCs + and its size,)|1(kkns + are calculated as:

)}|1()|1(){|1()|1(kknkknkknkkn GDGs +−++=+ (4.42)

)}|1(),.......,|1(),|1({)|1())|1(()2()1(kkNkkNkkNkkN kknssss s
+++=+ + (4.43)

The neighbours are generated according to the following algorithm shown in Figure 39.

Therefore, we have a maximum of)|1(kkns + neighbours for the current solution

)|1(kkCs + . However, the neighbours will be generated one by one during the search to

reduce the computational complexity.

1. Compute the objective function for each node)|1(kkSs ri +∈

when it is used alone to detect all targets.

2. Sort the)|1(kkSr + nodes in non‐increasing order based on the

number of targets detected by sensors in)|1(kkSr + .

3. Sort the)|1(kkSr + resulted from Step 2 in non‐decreasing order

based objective function for sensors in)|1(kkSr + .

4. Set the neighbour numberl to 1.

5. for each sensor)|1(kkSs ri +∈ do:

6. for each sensor)|1(kkCs sj +∈ do:

7.)|1()|1()(kkCkkN ss +=+l ;

8. In)|1()(kkNs +l , replace js by is ;

9. if)|1()(kkNs +l detect all targets by at least one node do:

10. Store)(lsN in neighbours structure ()|1(kkNs +);

11. Increment l ;

12. end inner for;

13. end outer for;

Figure 39 neighbourhood Structure

4.6.5.3 Complete Local Search Heuristic Algorithm

A First-fit local search approach is used in this thesis. The complete search algorithm is

summarized as follows:

 102

Step (1) Compute the initial solution)|1(kkIs + , set the current solution)|1()|1(kkIkkC ss +=+

and set 0=iter .

Step (2) Calculate the objective function)|1()(kkFCF objsobj += for)|1(kkCs + and set the

neighbour number 1=l .

Step (3) Compute the neighbour)|1()(kkNs +l .

Step (4) If iter > maximum allowable iterations (AI), go to Step 7.

Step (5) Calculate the objective function)|1()()(kkFNF objsobj +=l of)|1()(kkNs +l .

Step (6) If)()(lsobj NF <)(sobj CF , 1+= iteriter , set)(lss NC = and go to Step (2).

 Else

• 1+= ll .

• if)|1(kkns +>l go to Step 7.

• else go to Step 3.

Step (7) Return)|1(kkCs + as the result of the local search and finish.

4.6.5.4 Computational Complexity

In the neighbourhood structure discussed in Section 4.6.5.2, one sensor node is changed

from the current solution to get the new neighbours. Therefore, the complexity for the

neighbourhood structure is bounded by)}|1()|1({ kknkknO DG ++ . In the local search

algorithm described is Section 4.6.5.3, the worst case is to search the entire

neighbourhood structure. Therefore, the complexity is bounded

by)}|1()|1({ kknkknO DG ++ . However, the maximum allowable iterations (AI) can

dramatically control the computational time of the local search algorithm. Unlike the

MTT scheme proposed in [103] and [104], the MS-AMTT scheme controls the number

of iterations to reduce the computational time and energy consumption whilst normally

maintaining seamless tracking. The computational time increases with increasing AI .

However, using a small AI can degrade the tracking performance and lose targets

especially if the targets move in a random fashion. In this thesis, the maximum

allowable iterations (AI) is adaptively calculated according to the historical location

metadata of the targets. Generally speaking AI is set to a small value if the targets move

in uniform manner because the targets can be successfully predicted using EKF and

vice versa. The maximum allowable iterations (AI) is permitted to adaptively change in

 103

the interval maxmin III A ≤≤ . As shown in Figure 40, at each time step k , the maximum

allowable iterations (AI) is calculated based in the following equations:

{ }),(),...,,(),,(min
21min mTmTmT KkMKkMKkMM

M
= (4.44)

minmaxminmax)()(MIIIkIA −+= (4.45)

where maxI and minI are the maximum and minimum of AI respectively.

minM

)(kI A

maxI

minI

Figure 40 Maximum Allowable Iteration as a Function of Minimum Location Metadata

The computational complexity of the location metadata calculation is)(mMKO .

However, the target’s importance and maximum allowable iterations are calculated

once for the current solution and its neighbours at each time step.

4.6.6 Main and Leader Node Election

The group is classified into one MN and a number of HN(s). One more node is selected

to be the LN of the groups. The MN and LN typically perform more processing and

communication activities. Hence, choosing the MN and LN is a crucial issue to improve

the energy saving and network lifetime. The election mechanism proposed in Chapter 3

is used to elect the MN and LN. At time step k , the group main node,)|1(kkMN
jT + at

the next time step 1+k of the target jT is elected from the selected group of nodes for

the target,)|1()(kkS
jTg + . The leader node,)|1(kkLN + of the target groups is elected

from the sensor nodes inside the area that is surrounded by group MNs. The election

algorithm details are provided in Chapter 3.

4.7 Biologically Inspired and Self-Organized Aspects

Like the MS-ASTT scheme, the principle of biological differentiation is applied in the

MS-DMTT and MS-AMTT schemes; the sensor nodes start equally and then exhibit

 104

some kind of specialisation in order to perform target tracking. The sensor nodes before

the selection and election algorithms are all equal. The selection algorithm differentiates

the jobs of the sensors nodes so that some of them will be selected to sense the target

and others will remain in their sleeping mode. The election algorithm classifies the

selected group of nodes into one MN, HN(s) and an LN. Furthermore, this is the first

research to treat the target as a virtual chemical emitter.

The proposed MS-DMTT and MS-AMTT schemes are self-configured and self-

organizing without the need for external administration. Therefore, their complexity is

hidden from the users. Furthermore, a recovery mechanism is designed to solve the

problem of tracking failures. Prediction is provided to anticipate the target future

location and prepare the tasking nodes before the target arrives in their vicinity. Load

balancing is adopted in the election of the leader of the group of tasking nodes to track

the target. The sensor nodes are all the time aware of their remaining resources.

4.8 Chapter Summary

In this paper, MS-DMTT and MS-AMTT schemes are presented for multi target

tracking for WSNs. The MS-DMTT scheme is developed based on the assumption that

the sensor node can only detect and serve one target at the same time. On the other

hand, the MS-AMTT scheme is developed based on the assumption that the sensor node

can detect and serve more than one target at the same time.

In MS-DMTT scheme, at each tracking step, the sampling interval is computed such

that the prediction is likely to succeed and the tracking is continuous. The next tracking

groups for the targets are then proactively selected and one of the group members is

elected as a group MN such that the energy efficiency of the communication and

network lifetime are improved. Finally, conflict nodes locally decide the preferred

target based on target importance and their distance from the target.

In the MS-AMTT scheme, at each tracking step, a target’s importance and

maximum allowable iterations are computed. Then, the next tracking groups are

proactively selected such that the tracking continuity and accuracy are improved. After

this, one of the group members is elected as the MN and another node from the area

surrounding the MNs is elected to be the LN so that the communication energy

efficiency and network lifetime are improved.

 105

In the Chapter 5 task mapping and scheduling in WSNs is proposed to improve the

network lifetime and the execution time of applications that may be running across a

group of sensor nodes.

 106

Chapter 5 Task Mapping and Scheduling in WSNs

5.1 Chapter Introduction

Chapter 3 and 4 introduce single and multi target tracking in WSNs, respectively. In this

chapter, Task Mapping and Scheduling (TMS) in WSNs are presented. Firstly, a

Biological Task Mapping and Scheduling (BTMS) algorithm is proposed. In the BTMS

algorithm, the application is assumed to be decomposed into dependent tasks with

different computation weights. Secondly, the Biological Independent Task Allocation

(BITA) algorithm is introduced. In BITA, the application is assumed to be decomposed

into equal-weighted independent tasks. Finally, a chapter summary is provided.

5.2 Biological Task Mapping and Scheduling (BTMS) Algorithm

BTMS is a TMS algorithm in which an application is executed by a group of sensor

nodes in parallel. Tracking algorithms are one of the attractive applications that can

employ BTMS especially as these algorithms are computational intensive and require

real time execution [6]. At the beginning of this section, a model for a general high-

level application is considered. After that the problem of TMS in WSNs is formulated.

Then, the BTMS algorithm is presented. To increase the network lifetime, decision-

making rules are then introduced.

5.2.1 Application Model

The application is assumed to be decomposed into dependent tasks with different

computation weights. A DAG is adopted to provide a general model for the application

[120][124][146]. The DAG),(EVA= consists of a set of vertices V representing the (n)

tasks, { }nivV i ,...,2,1: == , and a set of edges E representing the (e) communication

dependencies, { }eiE k ,...,2,1: == ξ . The edge Ek ∈ξ between Vvv ji ∈& is denoted as ije ,

where jv is called the immediate successor of iv and iv is called the immediate

predecessor of jv . Therefore, the task cannot be executed until it receives all the results

from its immediate predecessors. This dependency between tasks execution is called the

communication dependencies constraint. As shown in Figure 41, a task without

immediate predecessors is an entry-task or a source-task while a task without immediate

successors is an exit-task or a sink-task. In WSNs, the entry-tasks are used for sensing

or gathering the raw data to detect physical phenomena. Therefore, task placement

 107

constraints can be defined as only one source task can be assigned to the sensor node. In

Figure 41, 1v and 2v are source-tasks, 8v is the sink-task, 3v and 4v are the immediate

predecessors of 6v , and 7v is the immediate successor of 5v and 4v . The task 3v cannot

be executed until it receives the communication edges (i.e., dependencies) 13e and 23e

from tasks 1v and 2v respectively. The latency constraint of the application means that

the application should be executed before the application deadline, P .

Figure 41 An Example DAG

5.2.2 Problem Formulation

Assume, { }misS inet ,...,2,1, == are the set of sensor nodes for a homogenous WSN so that

fppp
msss ==== ...

21 where isp is the processor speed of sensor node is and f is the

value of the processor speed for all sensor nodes. During the network operation,

assume a sensor node Ts makes a request to its neighbouring sensor nodes to ask them

to share in the execution of an application. Assume the set of neighbours that decide to

participate the sensor node Ts in the execution of the application are

{ }nin nisS ,....,2,1, == . Therefore, the overall set of sensor nodes that can share to execute

the application in parallel are { } { }Tnmim sSnisS ∪=== ,...,2,1: where 1+= nm nn . Define

,...}2,1:{ =Ζ= Ζ
gg SS as a set of the subsets, mg SS ⊂Ζ where },...,2,1:{ ΖΖ == gig nisS and

mg nn ≤Ζ . Unlike the CoRAl algorithm [121] which does not consider the energy

consumption, the main goal of the BTMS algorithm is to find the set of the sensor

nodes, opt
gS so that the energy efficiency of executing an application is optimized or

nearly optimized without violating the latency constraint of the application. Therefore,

unlike the EcoMapS algorithm [126], the BTMS algorithm can guarantee the execution

 108

of the application before the application’s deadline. The main objective of BTMS is to

find g
opt
g SS ⊂ where },...,2,1:{ opt

gi
opt
g nisS == and m

opt
g nn ≤ so that the total energy

consumption using opt
gS ,)(opt

gSenergy is minimized subject to meet the application’s

deadline. Mathematically, this optimization problem can be formulated as:

)(minarg Z
gS

opt
g SenergyS Z

g
= (5.1)

∑∑ +=
Z
g

Z
g S

comp
S

comm
Z
g EESenergy)((5.2)

Subject to:

PCET ≤ (5.3)

where CET is the Collaborative Execution Time of the application, and commE and

compE are the total energy consumption of the data communication and computation

required to execute the application using opt
gS sensor nodes, respectively . In the WSN

target-tracking schemes proposed in Chapter 3 and 4, Ts can be the MN and the set nS

consists of the HN(s). In fact, the task mapping and scheduling problem is an NP-

complete problem [7]. Therefore, the BTMS algorithm, which is greedy heuristic

algorithm, is proposed to obtain near-optimal solution.

5.2.3 BTMS Algorithm

In the DAG),(EVA= , each task Vvi∈ can be modelled as a tuple of the form: {
ivN ,

ivt ,

ivE }.
ivN is the number of its computational cycles and

ivt is its execution time where:

ƒ
ii vv Nt = (5.4)

ivE is the computational energy consumption to execute it. Each edge Ek ∈ξ (i.e.,

denoted as ije) between tasks iv and jv can be modelled as a tuple of the form: {
ijeb ,

ijet ,
ijeE }.

ijeb is the data size of the dependency generated from task iv and needed to

execute task jv . ijet is the time required to transmit the
ijeb bits from the sensor node on

which iv is mapped to the sensor node on which jv is mapped.
ijeE is the

communication energy consumption required to transmit and receive
ijeb bits. If iv and

 109

jv are mapped in the same sensor node, ijet and
ijeE are set to zero. Otherwise, ijet is the

transmission and propagation times needed to transmit and receive the
ijeb bits such that:

cdBbt
ijijij eee += (5.5)

where c is the speed of light, B is transmission speed and
ijed is the distance between

sensor nodes where the iv and jv are mapped.
ivE and

ijeE are calculated using the

energy consumption models proposed in Chapter 3. Therefore, unlike the TMS

techniques proposed in [122] and [124], BTMS considers the energy consumption for

every communication and processing activity. Moreover, the BTMS algorithm

differentiates between energy costs at the sender and receiver according to the energy

consumption models proposed in Chapter 3. Each sensor node neti Ss ∈ is a tuple of the

form: {
isNID ,

isE ,
isx ,

isy , thE } where
isNID is the sensor identification,

isE is the

remaining energy of the sensor node, (
isx ,

isy) is the 2D location of the sensor node

and thE is the threshold energy after which the sensor node cannot participate any

processing activity. Figure 42 shows the BTMS algorithm.

In line (1), the level-based DAG is built so that the lowest level contains the entry-

tasks and the highest level contains the exit-tasks. The immediate predecessors of the

tasks in each level are only located at the lower levels [122]. Figure 43 shows the DAG

before and after converts it to level-based DAG.

Unlike, the RT-MapS [127] and MTMS [128] algorithms, in line 2 in each level, the

tasks are arranged in non-increasing order so that the large tasks in each level are

mapped first. This arrangement leads to less CET because the large tasks will be

executed in parallel with small tasks rather than executing small tasks and then waiting

until large tasks finish execution.

Figure 44 explains the motivation for this arrangement using a simple scenario.

Assume a particular level in the DAG contains four tasks 1, 2, 3 and 4. Assume three

sensor nodes share execution of the application. In Figure 44 the height of the rectangle

that contains the task number indicates the task size. In Figure 44 (a), the tasks are

mapped in order while in Figure 44 (b), the tasks are arranges in non-increasing order

before mapping. In Figure 44 (b), task 1, 2 and 3 are executing during execution of task

4. Therefore, the CET with tasks arranged in non-increasing order leads to a smaller

CET than without any such arrangement.

 110

 1. Convert the DAG into level‐based DAG;
2. Sort the task in each level in decreasing order;

3. Select []10∈λ ;

4. for each task Vvi ∈ from the lowest level do:

5. for each node mj Ss ∈ do:

6. Calculate),(ijT vsE ;

7. Calculate),(ijf vst ;

8. Calculate),(ij vsf ;

9. End of inner for loop;

10. Map and schedule the task iv to the node js that has minimum),(ij vsf ;

11. Update the nodes energy remaining;

12. Do not assign any more tasks to the nodes that has energy less than thE ;

13. end of outer for loop;

14. Calculate the execution time (CET);

15. if (PCET >) do:

16. Ignore the current task allocation,

17. Choose different λ ;

18. Go to step 4;

19. end if;

20. Finish;

Figure 42 BTMS Algorithm

Figure 43 Level-Based DAG

 111

Figure 44 Arrangement the Tasks in Non-increasing Order

In line (6),),(ijT vsE is the total energy required to execute the task iv on the sensor

node js and is calculated as:

()∑
∈∀

++=
)(

),(
i

kii
vpredk

sevijT EEvsE ε (5.6)

where, sε is the average energy consumption required to manage the communication

(i.e., including the collision cost and the channel access management) and)(ivpred is

the set of all immediate predecessors indices of iv . In line (7),),(ijf vst is the time

required to execute the task iv on the sensor node js and is calculated as:

ivijsijf tvstvst +=),(),((5.7)

where,),(ijs vst is the start execution time of the task iv on the sensor node js . It is

calculated as follow:

()
⎩
⎨
⎧

⎭
⎬
⎫++=

∈∀
sef

vpredk
jijs kiki

i

ttsavavst τ
)(

max),(max),((5.8)

where,)(jsava is the availability of the sensor node js (i.e., the time at which the

sensor node can execute the next task), sτ is the average time required to manage the

communication (i.e., including the collision cost and the channel access management)

and kift is the completion time of the immediate predecessor (k). In line (8), the fitness

function),(ij vsf of executing the task iv on the sensor node js is calculated as:

() ⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
=

max

),(
*1

),(
*),(

E
vsE

P
vst

vsf ijTijf
ij λλ (5.9)

 112

where, maxE is the maximum energy level of the sensor nodes and []10∈λ is a design

parameter which controls the weight of minimizing the total energy consumption and

the application execution time, CET .

5.2.4 Decision-Making Algorithm

Unlike the related work of TMS in WSNs proposed in Chapter 2, decision-making rules

are defined in each sensor node to increase the network lifetime and connectivity. The

decision-making rules shown in Figure 45 allow the sensor node to decide whether it

can participate in the processing activities or not. Dead sensor nodes give rise to holes

in the network. Therefore, the sensor node can participate in the processing activities if

the energy level of a sensor node is above a threshold value and the sensor node has

enough neighbours to relay the data in the network (i.e., it is identified as

NotOnlyRelayNode). On the other hand, the sensor node will prefer to remain a relay

node to forward the data to other sensor nodes if it is located in scarce area or if its

remaining energy is under a threshold value. Therefore, the network connectivity and

lifetime is improved.

1. if ((ths EE
i
>) && (NotOnlyRelayNode)) do:

2. Participate the processing activities;

3. end if;

4. else do:

5. Do not participate the activity;

6. end else;

Figure 45 The Decision Making Rules

5.2.5 Computational Complexity Analysis

Recalling Section 5.2.1 and 5.2.2, assume there are mn sensor nodes and the DAG has

n computational tasks. In BTMS algorithm presented in Figure 42, the loop in line 4 is

executed in)(nO time and the loop in line 5 is executed in)(mnO . Thus, the

computational complexity of BTMS algorithm is)(mnnO . Min-Min technique is the

core of the MTMS algorithm [128]. As discussed in Chapter 2, Min-Min technique

involves all tasks with all nodes to map a particular task. Thus, its computational

complexity [128] is)(2
mnnO . Therefore, BTMS is less complex than MTMS because

BTMS does not involve all tasks to map a particular task.

 113

5.2.6 Biological Inspired Aspects in BTMS Algorithm

Unlike the related work on TMS in WSNs proposed in Chapter 2, BTMS is biological

inspired algorithm. The same biological principles presented in Chapter 3 are applied in

the proposed BTMS. The network nodes start equally in a default state and then exhibit

some kind of differentiation to execute an application. As shown in Section 5.2.3 and

5.3.4, the application tasks are mapped to the sensor nodes according to their resource

availability and locations where according to Equation (3.10), the energy consumption

for the communication is related to the distance between sensor nodes. Therefore, each

node will be specialized to execute different tasks.

5.3 A Biological Independent Task Allocation (BITA) Algorithm

In this section, the BITA algorithm is presented. In BITA, the application is assumed to

be decomposed into equal-weighted independent tasks. The equal-weighted of the tasks

means that all tasks require the same number of CPU clocks to be executed. A

collection of independent tasks is called a meta-task [111][112]. BITA can be used to

allocate these equal-weighted independent tasks among a group of sensor nodes

according to their available resources and locations. The BITA algorithm is the first task

allocation technique used in WSNs to map independent tasks of equal-weighted among

a group of sensor nodes.

Assume an application can be decomposed into (N) independent equal-weighted

tasks. Like BTMS, during the network operation, assume a sensor node Ts makes a

request to its neighbouring sensor nodes to ask them to share in the execution of an

application. Assume the set of the neighbours that decide to participate the sensor node

Ts in the execution of the application are { }nin nisS ,....,2,1, == . Therefore, the overall set

of sensor nodes that can share to execute the application in parallel are

{ } { }Tnmim sSnisS ∪=== ,...,2,1: where 1+= nm nn . The tasks are assumed to be submitted

for execution from Ts to the { }nin nisS ,....,2,1, == nodes. Similarly, the results of task

execution are submitted back to Ts . Obviously, the tasks mapped to Ts do not required

submission.

Unlike the CoRAl algorithm [121], BITA explicitly considers the sensor node

energy resource. Based on energy models proposed in Chapter 3, the data transmission

energy consumption is proportional to the square of the distance between the source and

the destination. Therefore, the nearer the sensor node (mi Ss ∈) to the sensor node (Ts),

 114

the less communication power is required to submit the tasks to is and get the results

from it in return, the more tasks can be located to is . Furthermore, in order to prolong

the network lifetime, the node resource availability is considered. The more resource

that is available at sensor node mi Ss ∈ , the more tasks that can be allocated to it.

In this thesis, the sensor node is treated as a virtual chemical emitter that influences

other sensor nodes with a varying strength, which is determined according to the sensor

node proximity to other sensor nodes. Therefore, the sensor’s influence on other sensors

nodes is characterised by chemical diffusion strength (G). The chemical diffusion

strength of a sensor node decreases with distance. Mathematically, the chemical

diffusion strength (G) of sensor node is on another sensor node js is calculated as

follows:

⎪
⎩

⎪
⎨

⎧

=

≠
′−−=

jiZ

ji
ssG jiji ssssji]][[

1

),(XXXX (5.10)

where,][′=
iii sss yxX and][′=

jjj sss yxX are the 2D locations of sensor nodes is and js

respectively, ijssss d
jiji
=′−−]][[XXXX is the distance between sensor nodes is and js ,

and Z is a real number . The decomposed fitness functions),,(giD Ssf δ that indicates

the ability of sensor nodes to execute the tasks is calculated for each sensor node mi Ss ∈

as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
∑∑
∈∀∈∀ m

k

i

m Sk
s

s

Sk
Tk

Ti
miD E

E

ssG
ssGSsf *)1(

),(
),(*),,(ββδ (5.11)

where 10 ≤≤ β . To improve the load balancing and energy efficiency, each sensor node

mi Ss ∈ is assigned a number of tasks,),(Nsn i so that:

),,(
),(

.........
),,(

),(
),,(

),(

2

2

1

1

mnD

n

mDmD Ssf
Nsn

Ssf
Nsn

Ssf
Nsn

m

m

δδδ
=== (5.12)

NNsn
mSk

k =∑
∈∀

),((5.13)

Therefore,

 115

∑
∈∀

=

mSk
mkD

miD
i Ssf

SsfNNsn
),,(

),,(*),(
δ

δ
 (5.14)

Therefore, from Equations (5.10) and (5.14), the value of Z determines how much the

sensor node Ts can participate in the task execution. Larger values of Z give larger

values of),,(gTD Ssf δ and),(Nsn T . The chemical diffusion strength of sensor node

Ts itself is assumed to be the same as the chemical diffusion strength of Ts on any

sensor far away from Ts by 2/rR where rR is the radio range. Therefore, Z in Equation

(5.10) is set to rR/2 .

The target tracking proposed in Chapter 3 and 4 is one that is assumed to be

partially decomposed into independent equal-weighted tasks because it has intensive

matrix calculations. Furthermore, a stream equal independent network jobs can be

allocated in WSNs using BITA. The sensor node Ts can be the MN and the set nS

consists of the HN(s).

The same biological inspired aspects adopted in the BTMS algorithm are applied in

the operation of the BITA algorithm. Each sensor node specializes to execute particular

tasks according to its available resources and its location.

5.4 Chapter Summary

In this chapter, TMS in WSNs is presented. If the application can be decomposed into

independent tasks, BTMS is used as TMS algorithm. The main aim of BTMS is to

reduce the energy consumption and the execution time such that the application

deadline is met. Conversely, BITA is used as the TMS algorithm in the case when the

application can be divided into independent equal-weighted tasks. The main goal of the

BITA algorithm is to reduce the execution time of the application by parallelizing its

execution and to increase the network lifetime by adopting load balancing.

In Chapter 6 the simulation environment, data structures and simulation events are

introduced in relation to the simulator used to evaluate the proposed target tracking, and

task mapping and scheduling techniques proposed in Chapter 3, 4 and 5.

 116

Chapter 6 Simulation Environment

6.1 Chapter Introduction

Chapters 3 and 4 present STT and MTT schemes for WSNs. In Chapter 5, a task

mapping and scheduling (TMS) scheme is proposed. In this chapter, the simulation

models used to evaluate the proposed target-tracking and TMS are explained. In the

beginning of the chapter, event driven simulation is introduced. The main simulator

flow chart and the random number generator used are then introduced. The data

structures and different event types are discussed. A chapter summary is provided at the

end.

6.2 Event Driven Simulation

Most real systems are complex. Hence, analytical solutions become very difficult to

obtain. Therefore, simulations are used to evaluate the system numerically. Mainly, two

types of simulation exist which are discrete and continuous simulations. System states

that describe the system at a particular time are discrete in discrete simulation and

continuous in continuous simulation. A discrete event simulation is a simulation in

which the system is modelled as it evolves over a time (i.e., dynamic simulation).

Therefore, the system state variables change instantaneously at separate points in time

(i.e., discrete simulation). As a result, the system can only change at a countable number

of points in times, at which the events can occur. Therefore, the event is an

instantaneous occurrence that may change the state of the system [147][148]. The

proposed target tracking and TMS in this thesis are considered as complex discrete

systems. Therefore, a discrete event simulation has been developed to evaluate them.

6.3 Simulation Framework

Figure 46 shows the overall structure of the implemented event-driven simulator. The

chart summarizes the steps involved to run one experiment (i.e., trial) of the simulator.

The simulator starts by reading the input parameters and constants. Then, the output

files are created and initialized to store the results. After that, the cumulative statistical

counters are initialized. The simulation initialization routine is called to initialize the

simulation clock, build data structures and create the first event. After that, the timing

function is called to obtain the next event and advance the simulation clock. Depending

 117

on the next event type, the appropriate event subroutine is called. Extra events are added

to the event list based on the current event. The simulation stop condition is checked. If

the condition is met, the simulator generates the statistical report and terminates. If the

condition is not met, the timing function is called again to obtain the next event and

advance the simulation clock. The simulation stop condition varies depending on the

simulated scenario.

Figure 46 Overall Simulator Structure

6.4 Object Oriented Programming

Although existing simulators could have been used to evaluate the proposed scheme,

such as NS2 and SensorSim, the authors chose to implement their own tool to evaluate

the proposed schemes in a way that better matched the particular characteristics of the

scenarios. This includes the mobility models, MAC layer behaviour, energy

consumption model and tracking protocol operation. The concept of adaptive sampling

and consideration of the target classes are not implemented in any existing simulators.

 118

Additionally, many physical and MAC layers aspects of these simulators are not

required. Therefore, the same programming effort or maybe more would be spent

adapting one of the available simulators rather than developing a bespoke solution. C++

[149][150], which is an object-oriented language, has been used to build the simulation

models. The class principle and use of libraries in C++ helped to implement large

models in a modular fashion.

The Mersenne Twister [151] random number generator has been implemented in a

separate class with attributes to set different seeds and functions that implement

different property distributions. Objects are declared from the random number generator

class as needed. The node is modelled in a class and node objects from this class are

used to create the network node data structures. The target attributes are encapsulated in

a class and objects of that class are initiated as needed. The messages are also

implemented in one class and objects of this class are created when the node needs to

send a message.

As shown in Figure 47, the world where the network is deployed is modelled as a 2-

dimensional array using a random placement of the sensor nodes. The distance between

any two objects),(),,(jjjiii yxOyxO in the world can be calculated using Euclidean

distance:

22)()(jijijiij yyxxOOd −+−=−= (6.1)

Figure 47 The Simulation World Model

Simulation parameters can be read from an input file or they can be declared as

constants. Vectors, lists and arrays are primarily used to store the simulation data

 119

structures. Detailed description about the developed simulators is introduced in details

in Appendix A.

6.5 CSMA/CA Event List

In the simulator, the packet exchange is designed based on the CSMA/CA MAC

protocol. When the target arrives at the sensing area, the main events that manage the

message exchange between nodes are target arrival, ready to send, wait Distributed

Inter-Frame Space (DIFS), back off, transmission, reception, wait acknowledgment

(i.e., collision), and tick events. Figure 48 shows these in an events graph. Defer and

Process shown in the Figure 48 are not events. They are included just to clarify certain

event operations. As shown, target arrivals allow the simulation to commence. After

that, the nodes that detect the target start to transmit control packets to identify the

group and serve the target. The tick event is triggered periodically in the simulator to

record some of the simulation results. The simulation is stopped based on predefined

conditions. The pseudo code for each event is explained briefly in Appendix A.

Figure 48 CSMA/CA Event Graph

 120

6.6 Chapter Summary

In this chapter, the simulation environment is explained. The simulator employs

Mersenne Twister random number generator. The event graph is presented. Detailed

description about the developed simulators is presented in Appendix A. For further

information, the pseudo code of the main events is given in Appendix A. The next

chapter discusses the simulation results. A critical assessment of the results is also

provided.

 121

Chapter 7 Simulation Results

7.1 Chapter Introduction

In this chapter a performance evaluation of the MS-ASTT, MS-DMTT, MS-AMTT,

BTMS and BITA schemes that are proposed in Chapter 3, 4 and 5 is given. A critical

assessment and discussion of the simulation results is also provided. Additionally, the

proposed schemes are compared against well-known approaches. Finally, a summary of

the chapter is provided.

7.2 Simulation Assumptions

In this section the assumptions common to all simulations presented in this chapter are

introduced. The performance of the proposed schemes presented in Chapter 3, 4 and 5

are evaluated using a C++ simulation environment and 1.73 GHz Pentium IV processor.

Unless specifically stated, to improve the statistical significance of the simulation

results [137], the results are averaged over 20 runs using different random sensor

placements with a fixed density. Line of sight (LOS) communication is assumed

between the nodes within the same coverage area. Two nodes are in the same coverage

area if the distance between them is equal to or less than the radio range, which is set to

100m. The radio range is set to be twice the sensing range [69]. Therefore, the sensing

range is set to 50m. The Carrier Sense Multiple Access/Collision Avoidance

(CSMA/CA) protocol proposed in Section 2.4 is used as the MAC layer protocol.

According to the Bianchi model [152], the parameters of CSMA/CA using Frequency-

Hopping Spread Spectrum (FHSS) as a physical layer protocol are listed in Table 1. As

in [133], the energy model parameters for Equation (3.10) to Equation (3.12) are set as

follows: ,//10 2mbpJFSamp ==εε ,26mVVT = ,5.0=c ,67.0 nFC = ,96.1 mAIo =

26.21=n , VMHzK /28.239= , ,/50 bnJEelec = and MHzf 100= . If the sensor

node detects the target, the sensing energy cost is assumed to be 8 × 10-9 J [5]. In the

MS-ASTT scheme, all the sensor nodes are assumed to have identical measurement

noise variances, 001.02 =sσ [5]. For the MS-DMTT and MS-AMTT schemes, γ in

Equation (4.10) is set to 0.001 [5]. The amount of randomness in the process noise is

50=
jTq for all targets [5].)1(+kS in Equation (3.6) and)1(+kS

jT in Equation (4.6) are

set to 40 for all k and all targets [110]. n in Equation (3.6) and Equation (4.6) is set to

 122

2 for all k and all targets [110]. The adaptive sampling interval, α in Equation (3.32)

is set to 0.5 so that the weight of measured sampling interval is the same as the previous

sampling interval. The adaptive sampling and target importance, mK in Equation (3.27)

is chosen to cover snapshots over the last 2 seconds of the target path. DSDV discussed

in Chapter 2, has been implemented in the model as the multi-hop network layer routing

protocol.

Parameter Value
Packet Payload 8184 bits
PHY Header 128 bits
MAC Header 272 bits
ACK 112 bits + PHY Header
RTS 160 bits + PHY Header
CTS 112 bits + PHY Header
Channel bit rate 1Mbps
Propagation delay 1μs
Slot Time 50μs
SIFS 28μs
DIFS 128μs
ACK_Timeout 300μs
CTS_Timeout 300μs
CWmin 255
CWmax 1024

Table 1 CSMA/CA FHSS Parameters

7.3 MS-ASTT Scheme Evaluation

In this section, the MS-ASTT scheme proposed in Chapter 3 is evaluated and compared

with other well-known STT schemes. The results are critically assessed at the end of

this section.

7.3.1 Simulation Setup

As described in Section 3.12, a uniformly distributed random deployment of 500

wireless sensor nodes across an area of 300m × 300m can guarantee the coverage of the

target at any location by at least 3 sensors. For simplicity [5][110], the data processing

required to localize the target, predict the target next state, update the target state and

recover the target location in case of loss are assumed to be =N 1, 2, 2 and 1 MCC

(Mega Clock Cycles), respectively. The size of every message used for the operation of

the MS-ASTT scheme is assumed to be 288=l bits. The energy consumption to trigger

the nodes to wakeup using the low energy communication channel is neglected [134].

The “Timer_recovery” and “Timer_levels” timers used for recovery are set to 0.05

 123

seconds. Unless specifically stated, an adaptive sampling interval is used according to

Equation (3.31) and Equation (3.32) with 1.0min =T sec and 5.0max=T sec [5][110]. The

maximum energy level of each sensor node max
isE is set to 100J. The group size to track

the target 3)(=kng for all k . The recovery mechanism presented in Chapter 3 is used to

recapture lost targets.

7.3.2 Recovery Mechanism Evaluation

In this scenario, a single target travels in straight line for 10 min starting from the

position (10, 10). When the target reaches the edge of the sensing area, it randomly

changes its direction to keep travelling inside the sensing area. In Equation (3.31), maxT

is changed during the simulation over the interval]5.01.0[while minT is kept fixed to

a value of 0.1 seconds. Figure 49 shows the real and estimated trajectories of the target

after 5 min. The estimated trajectory is close to the true trajectory.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x (m)

y
(m

)

Real Trajectory
Estimated Trajectory

Figure 49 Target Trajectory using 1.0max=T min and Velocity=10m/s

In Figure 50, 51 and 52, the number of recovery events, the total energy consumption

and the total recovery time are plotted versus maxT for different velocity values. In Figure

50, the number of recovery events increases with increasing maxT and velocity.

 124

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

Tmax (sec)

N
um

be
r o

f R
ec

ov
er

y
Ev

en
ts

Velocity=10m/s
Velocity=20m/s
Velocity=30m/s

Figure 50 Number of Recovery Events Variations with maxT

In Figure 51, the energy consumption decreases dramatically with increasing maxT

because less tracking snapshots are processed. On the other hand, with increasing

velocity, the increase in the energy consumption is small, although the number of

recovery events is larger for higher velocities. As shown in Figure 52, the time required

for recovery increases with increasing maxT and velocity. Finally, first and second level

recoveries are found to be sufficient to successfully recover the tracking. Moreover, the

percentage of level-1 recoveries during this scenario is 99.38%.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

4

6

8

10

12

14

16

Tmax (sec)

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Velocity=10m/s
Velocity=20m/s
Velocity=30m/s

Figure 51 Energy Consumption Variations with maxT

 125

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Tmax (sec)

To
ta

l R
ec

ov
er

y
Ti

m
e

(s
ec

)

Velocity=10m/s
Velocity=20m/s
Velocity=30m/s

Figure 52 Total Recovery Time Variations with maxT

7.3.3 Impact of Adaptive Node Election

The effect of the weighting parameter δ , defined in Equation (3.41) is evaluated in this

section. The same scenario as used in Section 7.3.2 is employed with 1.0min =T sec,

5.0max =T sec and velocity 10m/s. The simulation is stopped after 600 minutes. The

network lifetime is defined as the time at which the first sensor node death occurs. The

performance metric that indicates the load balancing performance is defined as follows:

m

EE

P

m

j
ss

m

jj∑
== 1

max

 (7.1)

where m is the number of the sensor nodes in the network (i.e., 500),
jsE is the

remaining energy of the sensor node js and max
jsE is the initial energy of the sensor

node js which is chosen randomly over the interval, 10 max <<
isE Joules. mP is

recorded at the end of each simulation run. Table 2 shows the lifetime, mP and energy

consumption for different δ values. Setting δ to zero improves the load balancing (i.e.,

mP) and in turn the network lifetime. On the other hand, choosing a value of unity for

δ reduces the energy consumption of the network. Adaptive calculation of δ reduces

the energy consumption and improves load balancing.

Approach Lifetime(min) Pm Energy (J)
0=δ 14.23 0.628 198.964
1=δ 2.55 0.479 198.848

Adaptive δ 14.04 0.636 198.893
Table 2 Lifetime, Load Balancing Performance and Energy Consumption for Different δ Values

 126

7.3.4 Impact of Group Size

The effect of the group size,)(kng that is formed to track the target is evaluated in this

section. The same scenario as used in Section 7.3.3 is used. The group size is set to

fixed values of 1, 2, 3, 4 and 5. In Figure 53 and 54, the total number of recovery events

and time required during the simulation decreases with increasing the group size

because the tracking accuracy is improved with increasing the sensor node

measurements.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

Group Size(ng)

N
um

be
r o

f R
ec

ov
er

y
Ev

en
ts

Figure 53 Number of Recovery Events versus Group Size with a 95% Confidence Interval

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Group Size(ng)

To
ta

l R
ec

ov
er

y
Ti

m
e

(s
ec

)

Figure 54 Total Recovery Time versus Group Size with a 95% Confidence Interval

In Figure 55, different overhead messages are plotted. The number of “TRan” messages

increase with increasing group size. “GTrig”, “TLos” and “TRec” messages decrease

with increasing the group size because as shown in Figure 53 the number of recovery

events increases with decreasing the group size. The number of “TRec” messages equals

to the number of “TLos” messages if only level-1 recovery is needed. In Figure 56, the

number of overall overhead increases with group size.

 127

1 2 3 4 5
0

2000

4000

6000

ng

TR
an

1 2 3 4 5
1220

1240

1260

1280

1300

ng

G
Tr

ig

1 2 3 4 5
0

5

10

15

ng

TL
os

1 2 3 4 5
0

5

10

15

ng

TR
ec

Figure 55 Overhead Message Characteristics

1 1.5 2 2.5 3 3.5 4 4.5 5
1000

2000

3000

4000

5000

6000

7000

Group Size(ng)

To
ta

l M
es

sa
ge

s

Figure 56 Total Messages versus Group Size

In Figure 57, the overhead time is defined as the time required at each tracking time

step to send the “TRan” and “GTrig” messages. The overhead time increases with the

group size. However, the overhead time is always less than the minimum sampling

interval (i.e., 1.0min =T sec).

 128

1 1.5 2 2.5 3 3.5 4 4.5 5
0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

Group Size(ng)

A
ve

ra
ge

 O
ve

rh
ea

d
Ti

m
e

(s
ec

)

Figure 57 Average Overhead Time versus Group Size

In Figure 58, the energy consumed during the simulation period is plotted. In Figure 53,

the number of recovery events with a group size of 2 is less than with a group size of 1

by only about 0.3. Therefore, the energy consumption rises at group size of 2 because as

shown in Figure 56 more messages are required for the larger group size. However, it

then reduces at a group size of 3 because as shown in Figure 53, the number of recovery

events at group size of 3 is less than the group size of 2 by about 8. After that, it starts to

rise again at group size of 4 and 5 as more messages are required for larger group sizes,

whilst there is little impact on the number of recovery events.

1 1.5 2 2.5 3 3.5 4 4.5 5
3.25

3.3

3.35

3.4

3.45

3.5

Group Size(ng)

En
er

gy
 C

on
su

m
pt

io
n

(J
)

Figure 58 Energy Consumption versus Group Size with a 95% Confidence Interval

In Figure 59, the total number of retransmissions at the simulation end increases with

increasing the group size because as shown in Figure 55 more ”TRan“ messages are

sent with increasing group size. This increases the possibility that sensor nodes will

access the channel at the same time and in turn increases the possibility of the

collisions.

 129

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

Group Size(ng)

N
um

be
r o

f R
et

ra
ns

m
is

si
on

s

Figure 59 Number of Retransmissions versus Group Size with a 95% Confidence Interval

7.3.5 Comparison with other STT Schemes Using Fixed Trajectory

In this section, a single target travels for 2 minutes with constant speed of 10m/s and

importance, 1=TZ , along the path shown in Figure 60. The border sensors initiate the

tracking process with initial target state] 5 100 5 [0 ′ and initial covariance matrix

I10 [110], where I is the identity matrix. In this section, the tracking update error is

defined as the “trace” of the updated state covariance matrix,)|(kkP while the tracking

prediction error is defined as the “trace” of the predicted target location covariance

matrix ()|1(kkT +Σ). In Figure 60, the true and estimated target trajectories for the

proposed MS-ASTT scheme are plotted. The estimated trajectory is close to the true

trajectory.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x (m)

y
(m

)

Real Trajectory
Estimated Trajectory

Figure 60 Real and Estimated Target Trajectories

The proposed MS-ASTT scheme is compared against the schemes of Xiao [110], Lin

[5] and one with a uniform sampling interval of 0.1sec. The sampling interval variation

over time for different schemes is plotted in Figure 61.

 130

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Simulation Time (sec)

Sa
m

pl
in

g
In

te
rv

al
 (s

ec
)

Uniform Scheme
Lin Scheme
Xiao Scheme
Proposed Scheme

Figure 61 Sampling Interval for Different Schemes

In Xiao’s scheme the next sampling interval is computed so that the tracking update

error is satisfactory. The threshold of the updated tracking error for Xiao’s approach is

set to 18. In Lin’s approach the next sampling interval is calculated so that the tracking

prediction error is satisfactory. The predicted tracking error threshold for Lin’s

approach is set to 5. In the proposed MS-ASTT scheme, the measured sampling interval

is proportional to the location metadata shown in Figure 62. Therefore, the sampling

interval is a weighted sum of the measured sampling interval and previous sampling

interval. The sampling interval is large during times when the target travels along a

uniform path. On the other hand, the sampling interval reduces when the target

manoeuvres sharply. The sampling interval progressively increases to its maximum

value once the target’s path returns to a steady trajectory. In Figure 61 the average

sampling interval plotted for the proposed MS-ASTT scheme is 0.48 second.

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time (sec)

Lo
ca

tio
n

M
et

ad
at

a

Figure 62 Location Metadata Variations

 131

The tracking update and prediction errors are plotted in Figure 63 and 64, respectively,

for different schemes. The uniform scheme obviously produces the smallest tracking

error because the tracking snapshot is performed every 0.1 seconds. Unless there is no

recovery, the tracking update error for the Xiao scheme is guaranteed to be less than or

equal the threshold value (i.e., 18). Similarly, unless there is no recovery, the tracking

prediction error for Lin’s scheme is guaranteed to be less than or equal the threshold

value (i.e., 5). Although the tracking error in the proposed MS-ASTT scheme is the

largest, it still successfully tracks the target over the complete observation period.

0 20 40 60 80 100 120
100

101

102

Simulation Time (sec)

U
pd

at
ed

 E
rr

or

Uniform Scheme
Lin Scheme
Xiao Scheme
Proposed Scheme

Figure 63 Tracking Update Error for Different Schemes

0 20 40 60 80 100 120
10-2

10-1

100

101

102

Simulation Time (sec)

Pr
ed

ic
te

d
Er

ro
r

Uniform Scheme
Lin Scheme
Xiao Scheme
Proposed Scheme

Figure 64 Tracking Prediction Error for Different Schemes

The total energy consumption for different schemes is plotted in Figure 65. At the end

of the simulation, the total energy consumption of the uniform, Lin, Xiao and proposed

MS-ASTT schemes are 3.2J, 1.1J, 2.4J and 0.68J, respectively, averaged over 20

simulations. Therefore, the proposed MS-ASTT approach can save 79%, 38% and 72%

of the energy used by uniform, Lin and Xiao schemes, respectively, representing a

significant improvement.

 132

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

Simulation Time (sec)

To
ta

l E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Uniform Scheme
Lin Scheme
Xiao Scheme
Proposed Scheme

Figure 65 Energy Consumption for Different Schemes

In Table 3, the number of recovery events and total recovery time during the simulation

are tabulated. The uniform scheme using a sampling interval of 0.1 second does not

have any recovery events. The proposed MS-ASTT scheme has the largest number of

recovery events.

The STT Approach Number of Recoveries Recovery Time (sec)
Proposed MS-ASTT 1.25 0.094893

Lin Scheme 1.10 0.079778
Uniform Scheme 0 0

Xiao Scheme 0.1 0.007326
Table 3 Recovery Results for Different Schemes

The overhead and recovery times are plotted in Figure 66. The overhead time is the sum

of the times required for communication and processing. The communication time is

due to “TRan” and “GTrig” transmissions. The processing time is due to the EKF

update or localization processing, sampling interval calculations, EKF prediction

processing, the group selection algorithm and the MN election processes. The recovery

time is the sum of “Timer_recovery” and all “Timer_levels” timers, and “TLos” and

“TRec” transmission times. As shown in Figure 66, both times are less than 0.1 seconds

which is the minimum sampling interval.

 133

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Tracking Time Steps (sec)

Ti
m

e
(s

ec
)

Overhead Time
Recovery Time

Figure 66 Overhead and Recovery Times

7.3.6 Impact of Adaptive Group Size

In this section, the adaptive group size algorithm proposed in Section 3.9.3 is evaluated.

The tracking error threshold (0ψ) shown in Figure 25 is set to 0.001. A single target

travels for 2 minutes with constant speed of 10m/s and importance, 1=TZ , along the

path shown in Figure 67..

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x (m)

y
(m

)

Real Trajectory
Estimated Trajectory

Figure 67 Real and Estimated Target Trajectories

The border sensors initiate the tracking process with initial target state] 5 0 5 [0 ′ and

initial covariance matrix I10 [110]. The adaptive group size algorithm uses 1min =gn and

10max=gn . In Figure 67, the true and estimated target trajectories are plotted. The

estimated trajectory is close to the true trajectory

The number of sensors for each tracking step is plotted in Figure 68. The results are

approximated to integer numbers. Five sensors are the most used group size. However,

more or less sensors could be used to try to guarantee the updated tracking accuracy.

 134

0 20 40 60 80 100 120
3

4

5

6

7

8

9

10

Tracking Time Steps (sec)

G
ro

up
 S

iz
e

(n
g)

Figure 68 Group Size Variation

The tracking error defined in Equation (3.39) is plotted in Figure 69. The updated

tracking error is initially large (i.e., about 20 at time 0). Note that the initial tracking

error is not shown in Figure 69 to permit showing other values of the update tracking

error more clearly. The tracking error stabilizes as more measurements are obtained.

Most of the time, the updated tracking error is below the threshold because more

sensors are involved for tracking when updated tracking error is high.

0 20 40 60 80 100 120
6

7

8

9

10

11
x 10-4

Tracking Time Steps (sec)

up
da

te
d

Er
ro

r

Tracking Error Threshold

Figure 69 Updated Tracking Error using Adaptive Group Size

7.3.7 Results Discussion

In Figure 50 the number of recovery events increases with increasing the maxT and the

velocity because the prediction of the next state is more likely to fail when maxT or the

velocity is large, especially during sharp manoeuvrings of the target that happen at the

edge of the sensing area. Figure 50 to Figure 52 show that increasing of the number of

recovery events slightly increases the energy consumption and dramatically increases

the time required for recovery. Therefore, the proposed recovery mechanism is energy

 135

efficient and the main cost of the recovery is the time required to perform it which can

lead to target loss during the recovery process.

In Table 2, if δ is set to 1, the load balancing in terms of energy remaining will not

be considered in the election algorithm. Therefore, if the battery level of the MN that

performs most of the processing and management tasks is small, the MN will die

quickly leaving a “hole” in the network coverage and in turn the network lifetime is

reduced. Adaptive selection of δ improves the network lifetime and energy saving.

As shown in Figure 53 and 58, group sizes of 1 and 2 have high number of recovery

events compared to other group sizes. Therefore, energy consumption increased due to

the high number of recovery events. Therefore, selecting group size greater than or

equal to 3 can improve the number of recovery times and energy consumption for this

particular scenario.

In Figure 61, the sampling interval for the proposed MS-ASTT scheme is large

during times when the target travels along a uniform path, and hence the energy

efficiency is improved. The sampling interval reduces during the target manoeuvrings to

improve the tracking accuracy and continuity.

As shown in Figure 63, 64 and Table 3, the proposed MS-ASTT scheme has the

highest tracking error and number of recovery events compared with other schemes.

However, the number of recovery events of the MS-ASTT scheme is less than 2

recoveries. Additionally, the proposed MS-ASTT scheme provides the minimum energy

consumption as shown in Figure 65. In fact, there is trade-off between the tracking error

and the energy consumption. As shown in Figure 58 for group sizes of more than or

equal to 3 sensor nodes, the energy consumption increases with increasing group size.

However, the group size can be used to maintain the tacking error that is below a

predefined threshold. Therefore, the trade-off between the tracking error and energy

consumption can be decided according to the target and the application.

In Figure 68 and 69, the updated tracking accuracy is satisfied. The group size is

small for small update tracking errors. It starts to rise when the update tracking error is

exceeds the threshold. However, a maximum value of group size is selected to reduce

the likelihood of channel access contention and the increment of energy consumption

due to the use of large numbers of group nodes.

 136

7.4 MS-DMTT Scheme Evaluation

In this section, the MS-DMTT scheme proposed in Chapter 4 is evaluated. The

simulation assumptions are presented firstly. Then, different results are presented. The

results are critically discussed at the end of this section.

7.4.1 Simulation Setup

As described in Section 3.12, a uniformly distributed random deployment of 500

wireless sensor nodes across an area of 300m × 300m can guarantee the coverage of one

target at any location by at least 3 sensors. In this simulation, three targets are assumed

to be tracked and any sensor node is capable of tracking and serving only one target at a

time. Therefore, 1500 wireless sensor nodes are required to be randomly deployed

across the sensing area. For all targets, an adaptive sampling interval is used with

1.0min=T sec and 5.0max=T sec [5][110].

7.4.2 Sensor Nodes Selection

Three targets, Target 1, Target 2 and Target 3 with importance of 30, 20 and 10

respectively are assumed to be tracked. In Figure 70 and 71, particular locations and the

selected sensor nodes for the three targets are shown with and without consideration of

the target importance respectively.

155 160 165 170 175 180
145

150

155

160

165

170

x (m)

y
(m

)

Target 1
Target 2

Target 3

Target 1 Nodes
Target 2 Nodes
Target 3 Nodes

Figure 70 Selected Sensors considering Target Importance

 137

150 155 160 165 170 175

146

148

150

152

154

156

158

160

162

164

166

168

x (m)

y
(m

)

Target 1

Target 2

Target 3

Target 1 Nodes
Target 2 Nodes
Target 3 Nodes

Figure 71 Selected Sensors without considering Target Importance

In Figure 70, since Target 1 is the most important one, its selected group of nodes are

the nearest to it compared with other targets. In Figure 71, the sensor selected for a

particular target cannot then be reselected for another, even if it has higher importance.

7.4.3 Tracking Error and Sampling Interval

In this section, Target 1, 2 and 3 travel for 60 seconds with constant speed of 10m/s and

importance of 30, 20 and 10, respectively, along the paths shown in Figure 72 (a). The

border sensors initiate the tracking process with initial Target 1, 2 and 3 states of

] 5 15 5 [15 ′ ,] 5 16 5 [15 ′ and] 5 14 5 [15 ′ , respectively. The initial covariance matrix

for all targets is I10 [5]. In Figure 72 (a), the true and estimated target trajectories for the

proposed scheme are plotted. The estimated trajectories are close to the true trajectories.

The sampling interval variations for different targets are plotted in Figure 72 (b).

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x (m)

y
(m

)

Target 3

Target 1

Target 2

Real Trajectory
Estimated Trajectory

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Simulation Time, sec

Sa
m

pl
in

g
In

te
rv

al
, s

ec

Target 1
Target 2
Target 3

 (a) (b)

Figure 72 (a) Real and Estimated Trajectories and (b) Sampling Interval for Different Targets

 138

The tracking update error of jT is defined as the “trace” of the updated state covariance

matrix)|(kk
jTP . The tracking update errors for each target with and without

consideration of target importance are plotted in Figure 73 and 74, respectively. As

shown in Figure 72, targets travel close to each other during the first 20 seconds.

Therefore, conflict nodes arise during this period. In Figure 73, during the first 20

seconds, the tracking update error is smaller for high importance targets. On the other

hand, in Figure 74, tracking update error takes a similar value for all targets.

0 10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

Simulation Time (sec)

U
pd

at
ed

 E
rr

or

Target 1
Target 2
Target 3

Figure 73 Tracking Update Error for Different Targets with Target Importance

0 10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

Simulation Time (sec)

U
pd

at
ed

 E
rr

or

Target 1
Target 2
Target 3

Figure 74 Tracking Update Error for Different Targets without Target Importance

7.4.4 Results Discussion

As shown in Figure 72 and 73, the proposed MS-DMTT scheme can successfully track

targets that move along paths that include random abrupt manoeuvrings. The sampling

interval for each target is adaptively calculated according to the target location

metadata. The calculation of the sampling interval for each target is independent of

other targets. Therefore, the MS-DMTT scheme is a series of MS-ASTT problems. In

 139

Figure 72 (b), the sampling interval for each target is based on its past movement

pattern (i.e., location metadata). However, the conflict nodes problem can arise in the

case of the MS-DMTT scheme because it supports multiple target tracking. The DMS

algorithm introduced in Section 4.5.4 is invented to tackle the conflict node problem.

The DMS algorithm is a new technique in MTT literature. However, in Section 7.3.5

the proposed MS-ASTT scheme is compared against well-known STT algorithms and

the results show that the proposed MS-ASTT scheme performs better than other

approaches in terms of energy-efficiency. Therefore, since MS-DMTT is a series of

MS-ASTT problems, it will perform better than other tracking schemes that adopt an

adaptive sampling interval. Furthermore, the proposed DMS algorithm is evaluated and

the results are plotted in Figure 73 and 74. The tracking error is smaller for targets with

higher importance because conflict nodes prefer to serve and track the high importance

targets.

7.5 MS-AMTT Scheme Evaluation

In this section, the MS-AMTT scheme proposed in Chapter 4 is evaluated and

compared with other well-known MTT schemes. The simulation assumptions are

presented first. Then, different results are plotted. The results are critically discussed at

the end of this section.

7.5.1 Simulation Setup

In this simulation, three targets are assumed to be tracked and the sensor node is

assumed to detect and serve more than one target at the same time. As described in

Section 3.12, a uniformly distributed random deployment of 500 wireless sensor nodes

across an area of 300m × 300m can guarantee the coverage of a target at any location by

at least 3 sensors. The sampling interval)(ktΔ is set to 1 sec for all k and all targets.

mZ , maxI and minI for Equation (4.33) and (4.45) are set to 100, 30 and 10, respectively.

7.5.2 Sensor Node Selection

Assume three targets, Target 1, 2 and 3 are to be tracked. Target 1 and 3 move in a

uniform manner and Target 2 follows a manoeuvring pattern. Figure 75, 76 and 77

show the particular target locations and the selected sensor nodes for the three targets

using the selection strategies of closest-sensor, MS-AMTT considering the target

importance and MS-AMTT without considering the target importance (i.e.,
jTZ is zero

for all targets), respectively.

 140

40 60 80 100 120 140 160 180 200 220 240
100

120

140

160

180

200

220

240

x (m)

y
(m

)

Target 1

Target 2

Target 3

Target 1 Nodes
Target 2 Nodes
Target 3 Nodes

Figure 75 Selected Sensors using Closest-Sensor Selection

50 100 150 200 250
80

100

120

140

160

180

200

220

x (m)

y
(m

)

Target 1

Target 2

Target 3

Target 1 Nodes
Target 2 Nodes
Target 3 Nodes

Figure 76 Selected Sensors using MS-AMTT considering Target Importance

50 100 150 200 250
80

100

120

140

160

180

200

220

x (m)

y
(m

)

Target 1
Target 2

Target 3

Target 1 Nodes
Target 2 Nodes
Target 3 Nodes

Figure 77 Selected Sensors using MS-AMTT without considering Target Importance

In the blind closest-sensor selection technique shown in Figure 75, the nearest three

sensor nodes to the predicted target location are selected for each target. In Figure 76,

Target 2 has more sensor nodes to track it because its importance is the highest (i.e.,

 141

Target 2 moves randomly). This compensates for the potential failure in the next state

predictions for Target 2 despite to its random movement and allows for seamless

tracking of all targets. In Figure 77, the tasking sensor nodes are selected based on the

overall update tracking error of the targets defined in Equation (4.28) without

considering the target’s importance. As shown in Figure 77, Target 3 is tracked by the

highest number of nodes despite it moving in a uniform manner.

7.5.3 Targets’ Importance and Group Size

In Figure 78, Target 1, 2 and 3 travel for 60 seconds with constant speed of 10m/s. The

border sensors initiate the tracking process with initial Target 1, 2 and 3 states of

] 5 300 5 [0 ′ ,] 5 0 5 [0 ′ and] 5 0 5 [300 ′ respectively. The initial covariance matrix for

all targets is I10 . In Figure 78, the true and estimated target trajectories for the MS-

AMTT scheme considering the target importance are plotted. The estimated trajectory is

close to the true trajectory.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x (m)

y
(m

)

Target 1

Target 2

Target 3

Real Trajectory
Estimated Trajectory

Figure 78 Real and Estimated Trajectories for Different Targets

The target importance and location metadata variation over time for each target are

plotted in Figure 79 and 80 respectively. The target importance is inversely proportional

to the location metadata of the targets according to the Equation (4.33). As shown in

Figure 78 and 79, the target importance is small during times when the targets travel

along a uniform path. On the other hand, the target importance increases when the target

manoeuvres sharply.

 142

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Simulation Time (sec)

Ta
rg

et
 Im

po
rt

an
ce

Target 1
Target 2
Target 3

Figure 79 Target Importance for Different Targets

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time (sec)

Lo
ca

tio
n

M
et

ad
at

a

Target 1
Target 2
Target 3

Figure 80 Target Metadata for Different Targets

In Figure 81 and 82 the group size for each target using MS-AMTT, with and without

consideration of the target importance, are plotted.

0 10 20 30 40 50 60
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Simulation Time (sec)

G
ro

up
 s

iz
e

Target 1
Target 2
Target 3

Figure 81 Group Size using MS-AMTT without considering Target Importance

 143

0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Simulation Time (sec)

G
ro

up
 s

iz
e

Target 1
Target 2
Target 3

Figure 82 Group Size using MS-AMTT considering Target Importance

In Figure 82, during the target manoeuvrings, its importance is high and hence the

objective function is biased by this. Therefore, the final solution involves more sensor

nodes for targets that move with abrupt changes of speed and direction. On the other

hand, sensor group sizes for targets are chosen in Figure 81 without consideration of the

target importance.

7.5.4 Tracking Update Error

In Figure 83, the location and velocity errors, which are defined as the difference

between the estimated and real values, are plotted for MS-AMTT with and without

consideration of the target importance. Generally, the location and velocity errors are

high during the target manoeuvrings due to the prediction error and they are low when

the targets travel in predictable and uniform fashion. However, as shown in Figure 83

the location and velocity errors when considering the target importance are small

compared with MS-AMTT without considering the target importance. The Root Mean

Square Error (RMSE) of location and velocity over 20 simulations runs for MS-AMTT

scheme and the closest-sensor selection strategy during its successful tracking time are

tabulated in Table 4. The percentage of tracking loss time for the closest-sensor

selection strategy is shown in Table 5. Obviously, closest-sensor selection strategy has

the largest errors because this strategy assigns the same number of sensor nodes for

each target without considering the movement patterns for the targets (i.e., targets’

importance).

 144

0 20 40 60
0

5

10 Target 1

Simulation Time (sec)

Lo
ca

tio
n

Er
ro

r (
m

)

0 20 40 60
0

5

10 Target 1

Simulation Time (sec)

Sp
ee

d
Er

ro
r (

m
/s

)

0 20 40 60
0

5

10 Target 2

Simulation Time (sec)
Lo

ca
tio

n
Er

ro
r (

m
)

0 20 40 60
0

5

10 Target 2

Simulation Time (sec)

Sp
ee

d
Er

ro
r (

m
/s

)

0 20 40 60
0

5

10 Target 3

Simulation Time (sec)

Lo
ca

tio
n

Er
ro

r (
m

)

0 20 40 60
0

5

10 Target 3

Simulation Time (sec)

Sp
ee

d
Er

ro
r (

m
/s

)

Figure 83 Location and Velocity Errors using MS-AMTT without (red curves) and with (blue

curves) considering of the Target Importance

Location RMSE (m) Velocity RMSE (m/s) Sensor Selection
Strategy T1 T2 T3 T1 T2 T3

MS-AMTT with Importance 0.2 0.2 0.4 0.3 0.3 0.8
MS-AMTT without Importance 0.6 0.6 0.7 0.5 0.8 0.9

Closest-sensor Selection 4.9 2.0 2.7 2.9 2.1 2.0
Table 4 Average Location and Velocity Errors

7.5.5 Local Search Iteration

The average number of iterations, computational time and the percentage of tracking

loss events for MS-AMTT with and without considering the target importance, and

closest-sensor schemes are shown in Table 5. The tracking loss is the percentage of the

time during which the target is lost. The computational time of the MS-AMTT scheme

with considering the target importance is greater than the case of MS-AMTT without

consideration of target importance. The closest-sensor selection scheme obviously does

not require any local search to select the tasking sensor nodes. However, due to target

sharp manoeuvring, the closest-sensor selection approach tracks the target only 20% of

the simulation time.

Sensor Selection
Strategy

Number of
Iterations

Computational
Time (sec)

Percentage
Tracking Loss

MS-AMTT with importance 10.038 1.585 0
MS-AMTT without importance 9.421 1.215 0

Closest-sensor Selection 0 0 80
Table 5 Average Iterations, Computational Time and Tracking Loss

 145

The performance results for adaptive and fixed allowable iterations are tabulated in

Table 6 and 7. With increasing allowable iterations, the average number of iterations

and computational time increase while the location and velocity errors decrease.

However, using adaptive allowable iterations yields similar errors to the fixed schemes

using high allowable iterations whilst the computation time is near that of the fixed

scheme using small allowable iterations.

Allowable
Iterations

Number of
Iterations

Computational
Time (sec)

30 13.682 2.350
20 12.500 1.914
10 9.019 1.014

Adaptive 10.038 1.585
Table 6 Average Iterations and Computational Time

Location RMSE (m) Velocity RMSE (m/s) Allowable
Iterations T1 T2 T3 T1 T2 T3

30 0.2 0.2 0.3 0.2 0.3 0.7
20 0.4 0.3 0.4 0.4 0.3 0.8
10 0.6 1.1 0.6 0.8 1.4 0.9

Adaptive 0.2 0.2 0.4 0.3 0.3 0.8
Table 7 Average Location and Velocity Errors

7.5.6 Comparison with Other Well-Known MTT Schemes

In Table 8 and 9, the performance of the proposed MS-AMTT scheme considering

target importance is compared with “Tharmarasa” and “naive” approaches [103] using

500 and 1000 sensor nodes. The maximum allowable iterations is set to infinity. This

means that the local search runs until the final solution is found. In Tharmarasa’s

method, the objective function for each sensor node is computed using that sensor node

alone. Then, the sensor nodes are ranked according to their objective functions. The best

Gn sensor nodes are chosen as the initial solution. For each current solution, the

remaining sensor nodes are ranked based on their individual objective functions (i.e.,

when using each sensor node alone). Then, each sensor node of those remaining are

ranked, replacing one-by-one the Gn sensors in sC to form Gn neighbours. The naive

method chooses the sensor nodes that have the maximum index (i.e., sensor

identification) as the initial solution. The remaining sensor nodes are ordered by index

 146

to generate the neighbourhood. As shown in Table 8 and 9, the proposed MS-AMTT

method has the smallest value of computational time and the number of iterations.

Local Search
Strategy

Computational
Time (sec)

Number of
Iterations

MS-AMTT Method 3.528 14.523
Tharmarasa Method 6.944 30.497

Naive Method 8.042 32.698
Table 8 Average Iterations and Computational Time using 500 Sensors

Local Search
Strategy

Computational
Time (sec)

Number of
Iterations

MS-AMTT Method 20.352 15.264
Tharmarasa Method 79.969 37.193

Naive Method 84.428 38.920
Table 9 Average Iterations and Computational Time using1000 Sensors

7.5.7 Results Discussion

The closest-sensor selection strategy shown in Figure 75 is not always a good solution

due to the target location triangulation calculation [103], the sensor nodes’ co-linearity

[95] and the prediction failure of the target next state that likely happens during random

movements of the target. Moreover, the sensor nodes selected for Target 2 shown in

Figure 75 are far from the target’s true location because the sensor node selection is

based on the distance from the predicted target location which is not accurate for Target

2 due to its manoeuvring. Therefore as shown in Table 4, the average location and

velocity errors of the closest-sensor selection strategy is high compared with the MS-

AMTT scheme. Figure 76 and 77 show that considering the target importance in the

objective function of sensor selection, defined in Equation (4.28), can force the

selection of more sensor nodes for manoeuvring targets and, in turn, the tracking

continuity is improved for all targets. On the other hand, the goal of the objective

function without consideration of the target importance is simply to minimize the

overall tracking error of the targets.

As shown in Table 5, considering the target importance in the objective function

requires more iterations to obtain a solution. Therefore as shown in Figure 78 and 79,

the target importance is small during times when the targets travel along a uniform path,

and hence the local search efficiency (i.e., the number of iterations to get a suitable

solution) is improved because the solution is obtained without the objective function

being biased by the target importance. On the other hand, the target importance

increases when the target manoeuvres sharply, and hence the tracking error shown in

 147

Figure 83 is reduced and seamless tracking is achieved because more sensor nodes are

involved in the tracking for more important targets as shown in Figure 82. For example,

at time 18 seconds in Figure 82, Target 1 is manoeuvring. Therefore, Target 1 has more

selected sensor nodes to improve its tracking accuracy and maintain continuity.

Unlike the proposed MS-AMTT scheme, the number of sensor nodes used in

Tharmarasa’s method is not ranked by the number of targets they detect. Additionally,

the solutions used in Tharmarasa’s method do not check whether all targets are detected

by at least one sensor node. Therefore, as shown in Table 8 and 9, the proposed MS-

AMTT scheme performs better than Tharmarasa’s method.

As shown in Table 8 and 9, the main drawback of the using optimization techniques

for sensor selection in MTT is the risk of experiencing a computational time that

exceeds the sampling interval. However there are different approaches to overcome this

drawback. One approach is to use more powerful processing but this may not be

appropriate for tiny sensor nodes. Another approach is to increase the sampling interval

[103] but this will degrade the tracking accuracy and potentially lose targets for long

periods. A third approach is to adopt BTMS and BITA algorithms presented in Chapter

5 so that the execution of the algorithm is parallelized among a group of nodes. As

shown in Section 7.6 and 7.7, this approach is efficient both in terms of execution time

and energy saving.

7.6 BTMS Algorithm Evaluation

In this section, the performance of the BTMS algorithm, presented in Chapter 5, is

evaluated. Recall from Chapter 5, BTMS is used to parallelise the execution of an

application that can be decomposed into a number of dependent tasks. The performance

of BTMS algorithm is compared against the MTMS [128] algorithm.

7.6.1 Simulation Setup

This simulation setup is performed before the target tracking simulations take place.

The sensor nodes are randomly (i.e., using uniform distribution) deployed across an

area of 1km × 1km. sε , sτ and λ in Equation (5.6), Equation (5.8) and Equation (5.9)

are set to 0.5uJ, 0.6528ms and 0.5, respectively. At the beginning of the simulation, the

sensor node Ts , that makes a request to its neighbouring sensor nodes to ask them to

share in its execution of an application, is selected randomly from the all sensor nodes.

The subtasks of the application DAG are mapped to the neighbours of the sensor node

 148

Ts according to the BTMS scheme proposed in Figure 42. This means that it is not

necessary to use all the neighbours of sensor node Ts to execute the application DAG.

Mapping and scheduling are performed in the neighbours of sensor node Ts until all

subtasks of the DAG are completed.

7.6.2 Network Node Density

The sensor node density is first calculated. The simulation finishes for each trial when

the number of target arrivals reaches fifty. Some of these targets will find nodes that can

detect and serve them and other targets will not find any nodes around them. Therefore,

the percentage of targets served is calculated after the end of each trail based on the

formula:

 100* /50) targetsserved of(Number (%) PercentageDetection Target = (7.2)

The target detection percentage reaches 100% when the node density is about 350 nodes

in the chosen evaluation area. It means that all the target arrivals will find at least one

node to serve them. For this reason, the node density is chosen to be 350 nodes in the

ensuing simulations.

7.6.3 Real Example of Distributed Visual Surveillance

In [128], a distributed visual surveillance application is presented. Figure 84 shows an

example visual surveillance DAG.

Figure 84 DAG of Visual Surveillance

Tasks Vo to V3 represent background subtraction and bounding box abstraction. The

moving object will be bordered by a rectangular bounding box from each camera and it

is represented by the vertices of the bounding box. Tasks V4 to V7 represent the

estimation error. To eliminate the estimation error, the location estimations from all

 149

cameras are combined in task V8 to V10. The communication edges e04 to e37 represent

the bounding box coordinates. e48 to e9,10 represent the estimation object location and

error estimation. Finally, the object location is calculated and sent to the sink node.

The Collaborative Execution Time (CET) and energy consumption is evaluated for

the visual surveillance application DAG using the proposed BTMS and MTMS

algorithms [103]. The simulation results are averaged over 20 runs with different visual

image sizes (i.e., different number of computational cycles for the tasks and data size

for communication edges). The average CET and energy consumption are tabulated in

Table 10.

BTMS can perform better than MTMS in terms of CET and energy consumption. In

BTMS, tasks in each level are arranged in decreasing order. Therefore, the large tasks

are mapped first. Therefore, this feature decreases the CET because instead of executing

large task after finishing the small ones, the large tasks will be executed concurrently

with the execution of smaller ones

Algorithm CET (ms) Energy Consumption (mJ)
BTMS 25.496 2.304713
MTMS 44.2731 2.468315

Table 10 Results for Visual Surveillance DAG

7.6.4 CET and Energy Consumption using Random DAG

In this section, the simulation is repeated 250 times using 250 different DAGs. Each

DAG is created using the following parameters: maximum immediate successors

(maxSucc) of entry and normal tasks = 3, the minimum immediate successors

(minSucc) of entry and normal tasks = 1, number of entry tasks = 5, number of normal

tasks = 10 and number of exit tasks = 1. The entry tasks should not have any immediate

predecessors and the exit tasks should not have any immediate successors. All other

tasks (i.e., normal tasks) have at least one immediate predecessor. The number of

immediate successors (numSucc) of entry to a normal task, (vi) are uniformly

distributed over [minSucc, min {maxSucc, number of tasks greater than (vi) without

including the entry tasks}]. After that the immediate successors of entry or normal

tasks, (vi) are chosen randomly from the tasks greater than (vi) without including the

entry tasks.

The deadlines are chosen so that they increase with increasing the computational

load. For simplicity, deadlines are selected to be equal to the serial execution time,

 150

which is the time needed to execute the application using one sensor node. Therefore,

the deadlines increase with increasing computational load. In Figure 85, the CET

increases with increasing deadlines for a fixed communication load (i.e., the data size

for all communication edges). With increasing communication load, CET increases for

a specified deadline. Therefore, CET increases with increasing communication and

computational load.

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Deadline (ms)

C
ET

 (m
s)

Communication Edges = 10KB
Communication Edges = 30KB
Communication Edges = 50KB

Figure 85 CET versus Deadline

In Figure 86, the energy consumption increases with increasing deadline for fixed

communication load because as the computational loads increases, the deadline will

increase and in turn, the computational energy consumption increases. With increasing

communication load, energy consumption increases for a specified deadline because

more energy will be dissipated when there is more communication. Therefore, energy

consumption increases with increasing communication and computational load.

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

22

Deadline (ms)

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

Communication Edges = 10KB
Communication Edges = 30KB
Communication Edges = 50KB

Figure 86 Consumed Energy versus Deadline

 151

7.6.5 Network Lifetime Performance

In this section, the simulation is repeated twenty times for different network topologies.

The average lifetime performance ratio (LTBTMS / LTMTMS) of the lifetimes of the

proposed BTMS and the MTMS algorithms are plotted in Figure 87. The BTMS

algorithm improves the lifetime relative to MTMS.

4 6 8 10 12 14 16
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Number of Tasks

LT
BT

M
S/L

T M
TM

S

Figure 87 Lifetime Ratio versus Number of Tasks with a 95% confidence interval

7.6.5 Results Discussion

In Figure 85, the deadline has to be large enough so that CET can meet it. Therefore,

the BTMS would be inefficient if the computational complexity was small relative to

the communication overhead.

Figure 87 shows that BTMS improves the network lifetime compared with MTMS

because BTMS adopts the decision rules presented in Chapter 5. The BTMS algorithm

allows the mapping of tasks onto nodes on which the predecessors are mapped.

Therefore, the energy consumption is reduced.

7.7 BITA Algorithm Evaluation

In this section, the performance of BITA is evaluated. Recall from Chapter 5, the BITA

algorithm is used to parallelise the execution of applications that can be decomposed

into independent and equal tasks. The performance of BITA is compared against

Distributed Computing Architecture (DCA) [133] in which the cluster head performs

high-level tasks. Therefore, in DCA, the number of sensor nodes or the group size (mn)

that can share to execute the application in parallel is 1.

 152

7.7.1 Simulation Setup

In this simulator, 350 wireless sensor nodes are randomly (i.e., using uniform

distribution) deployed across an area of 1km × 1km. The sensor node Ts that makes a

request to its neighbour sensor nodes to ask them to share it in the execution of an

application is selected randomly from the all sensor nodes. After finishing serving the

current application at Ts , another one is randomly selected. Each sensor node is

assumed to be able to execute 10 tasks per second. Z and β are set to 0.02 and 0.5 in

Equation (5.10) and Equation (5.11) respectively. Each task is assumed to consume 1

unit of energy. Unless specifically stated otherwise, the total number of application

independent tasks (N) is set to 100 and the maximum battery capacity of the sensor

nodes (max
ksE) is set to 500 units. The simulator is run twenty times with different node

deployments and is stopped after 10 minutes.

7.7.2 Cooperative Execution Time (CET)

In Figure 88, for a fixed group size (mn), the CET increases with increasing the number

of tasks (N) because the computational load increases with more tasks (N). BITA ends

with less CET than DCA because of the parallel computation used by BITA. CET

decreases with increasing group size (mn) because based on Equations (5.12) to (5.14),

more load balancing can be achieved which increases the execution parallelism.

100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

Number of Tasks (N)

C
ET

 (m
s)

DCA (nm=1)

BITA (nm=2)

BITA (nm=3)

BITA (nm=4)

Figure 88 CET versus Number of Tasks (N)

7.7.3 The Performance Metric (Pm)

In this simulation, max
ksE is set randomly between 100 to 500 units using a discrete

uniform distribution. The network performance metric (Pm) is defined in Equation (7.1).

 153

In Figure 89, the performance metric (Pm) versus the group size (mn) is plotted. Due to

node cooperation, BITA has a lower (Pm) than DCA because the 100 energy units

required for each application is distributed between the group of sensor nodes and

consequently the node can live for longer. With increasing group size (mn), a lower (Pm)

is achieved because based on Equation (5.14), we can obtain more load balancing

among the nodes.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Group Size (nm)

Pe
rf

or
m

an
ce

 (P
m

)

Figure 89 Performance Metric versus Node Group Membership Size (ng)

7.8 Code Verification

In Appendix B, code verification for the proposed target tracking, and BITA and BTMS

algorithms is presented. Analytical analysis is compared with simulation results to

confirm the correctness of the simulation models.

7.9 Chapter Summary

This chapter presents different performance simulation results for the proposed target

tracking and task mapping and scheduling algorithms. The simulation results show that

the proposed schemes can successfully track targets that move along paths that include

random abrupt manoeuvrings. The MS-ASTT scheme is compared against Xiao’s and

Lin’s schemes and the results show that the proposed MS-ASTT approach reduces the

energy consumption whilst maintaining seamless tracking. Simulation results show that

the tracking accuracy of the proposed MS-DMTT scheme is better for targets of higher

importance. Simulation results also show that the proposed MS-AMTT scheme reduces

the computational time whilst maintaining seamless tracking compared with

Tharmarasa’s and “naive” approaches.

 154

A critical assessment of these results is given. Code verification is given in

Appendix B by analyzing typical scenarios analytically and comparing with the

simulation results.

 155

Chapter 8 Discussion and Conclusions

8.1 Chapter Introduction

The STT, MTT and TMS schemes in WSNs are presented in Chapter 3, 4 and 5,

respectively. In Chapter 7, simulation results evaluating the proposed target tracking

and TMS are introduced. This chapter provides a discussion of the simulation results,

and the conclusion for this thesis.

8.2 Discussion

In this section, the results provided in Chapter 7 are analysed and discussed. The

proposed target tracking schemes are firstly discussed. After that, the proposed task

mapping and scheduling algorithms are analysed.

8.2.1 Target Tracking in WSNs

In Section 7.3.2, the recovery mechanism in target tracking is examined. The target

recovery provides a reliability mechanism for the tracking operation such that the target

can be recaptured if it is lost during the tracking process. Increasing the tracking

sampling interval leads to an increasing number of recovery events because the

prediction of the target state is more likely to fail, especially during sharp manoeuvrings

of the target. Despite the recovery mechanism being reasonably energy-efficient the

main drawback is the time required for recovery.

The results presented in Section 7.3.3 show an improvement in network lifetime and

energy saving when adopting the adaptive calculation of the weighting parameter of

Equation (3.41). The MN is elected to be the nearest node of a group of nodes in the

case of having the same energy level for all group members. On the other hand, the MN

is elected to be the node that has the maximum energy remaining if the group nodes

have different energy levels. In Section 7.3.4, increasing the group size reduces the

number of recovery events, which is costly in terms of time. In Section 7.3.5, the idea of

using an adaptive sampling interval according to the target historical location improves

the energy efficiency compared with other well-known schemes. Furthermore, the target

can be successfully tracked during the abrupt manoeuvrings. Energy saving is a crucial

goal in WSNs because the sensor nodes have limited energy. If one sensor node dies, it

reduces the coverage in the network. Sensor nodes are typically very difficult to access

after deployment. Therefore, if one sensor dies due to running out of energy, often it

 156

cannot be recharged. The main drawback of the proposed STT is the lack of the tracking

accuracy compared with other tracking schemes. However, the tracking accuracy can be

improved by using multiple sensor nodes to track the target. Therefore, there is trade-off

between improving the tracking accuracy and the energy consumption. In Section 7.3.6,

the updated tracking accuracy is satisfied by using adaptive group size. The group size

is small for small update tracking errors. It starts to rise when the update tracking error

exceeds the threshold. Consequently, according to the results in Section 7.3.4 the

number of recovery events is reduced.

In Section 7.4, the problem of conflicting nodes in MTT is handled. It is shown that

it is possible to improve the tracking accuracy of high importance targets compared

with others, by setting the conflict nodes preference for serving high importance targets.

In Section 4.6, sensor selection in MTT is considered as a solution of an optimization

problem whose main goal is to maximize the overall tracking accuracy of the targets.

The simulation results in Section 7.5 show that the proposed MS-AMTT scheme

reduces the average location and velocity errors compared with the closest-sensor

selection strategy as the sensor nodes are selected based on the objective of improving

the overall tracking accuracy. The adaptive calculation of target importance according

to the target’s previous locations improves the tracking continuity for all targets because

the targets that travel in irregular patterns assigned more sensor nodes to track them (as

they are classified as high importance targets). The proposed MS-AMTT scheme is

compared against Tharmarasa’s and naive methods and it is found to perform better

than other schemes because the number of sensor nodes used in Tharmarasa’s method is

not ranked by the number of targets they detect. The computational complexity of the

proposed MS-AMTT scheme is controlled by adaptively calculating the maximum

number of allowable iterations according to the target’s metadata. The main drawback

of the using optimization techniques for sensor selection in MTT is the computational

time that may exceed the sampling interval. However, this drawback can be overcome

by adopting the BTMS and BITA algorithms proposed in Chapter 5.

8.2.2 Task Mapping and Scheduling in WSNs

In Section 7.6 and 7.7, the proposed BTMS and BITA algorithms are evaluated. The

application execution is shared among more than one sensor node, which enables

distributing the resources required to serve the target among the group nodes.

Additionally, this concurrent processing decreases the prevalence of gaps in the network

 157

caused from dying nodes and consequently increases the network lifetime. Moreover,

decision maker is introduced in each node specifically to improve the lifetime of the

network. The concurrent processing also facilitates the timely completion of real time

applications by exploiting the speed-up resulting from the decomposition. As a result,

the service time (i.e., CET) is improved, the rate of node deaths reduces and network

can stay alive for longer. As shown in the simulation results of BTMS, there is a

communication cost associated with exchanging the tasks dependencies among the

nodes. Therefore, the parallelism of the application is useful if the computational costs

of its dependent tasks are high enough compared to the communication costs of the

dependencies. For example, with an application that has small computational cycles, it

may be faster to execute it using one node rather than parallelizing it among several

nodes because the time to send the dependencies among the nodes may well exceed the

execution time of the whole application. This is a well-known result in parallelism. The

coarse granularity parallelism which has large amounts of computational work

compared with communication events is better that fine granularity parallelism which

has small amounts of computational work compared with communication events [153].

8.3 Conclusions

In this thesis, the problem of energy-efficient, reliable, accurate and self-organized

target tracking in WSNs is considered for sensor nodes with limited physical resources

and abrupt manoeuvring targets. MS-ASST, MS-DMTT and MS-AMTT schemes are

proposed for target tracking. The main motivations of this research are to improve the

tracking accuracy, reliability and continuity, and the energy-efficiency of the target

tracking system.

The MS-ASST scheme is used for STT and its operation can be summarized in four

steps. Firstly, the sampling interval is computed using the location metadata pertaining

to the target’s past locations. Secondly, the next tracking group is proactively selected

based on information associated with the predicted target location probability density

function. The group size is adaptively changed such that the tracking accuracy is

improved. Thirdly, one of the group nodes is elected as a MN so that energy efficiency

and load balancing are improved. Finally, target recovery is supported to provide

tracking reliability in case of target loss due to selection or prediction failures.

Therefore, the tracking continuity and energy-efficiency are improved. In the MS-

 158

DMTT scheme, a decision algorithm is proposed to allow the “conflict” nodes that are

located in the sensing areas of more than one target at the same time to decide their

preferred target according to the target importance and their distance to the target. The

operational steps in MS-ASST scheme are as used for the MS-DMTT scheme but for

multiple targets.

In MS-AMTT scheme, the target importance and allowable iterations are computed

according to the location metadata derived from target’s past locations, by which the

movement pattern is computed. Then, the next tracking groups are proactively selected

such that the tracking continuity and accuracy are improved. After that, one node from

the group is elected to be the MN and the LN is elected from the sensor nodes inside the

area that is surrounded by group MNs.

In this thesis, the problem of task mapping and scheduling in WSNs is also

considered. BITA and BTMS algorithms are developed to execute an application using

a group of sensor nodes. BTMS is used as the TMS algorithm to parallelize the

execution of an application by decomposing it into dependent tasks. A DAG is adopted

to model the application. BTMS is designed to map and schedule the application’s tasks

to sensor nodes so that the energy consumption is reduced and the application deadline

is met. BITA is used as the TMS algorithm when it is possible to divide the application

into independent equal-weighted tasks. The main goal of BITA is to reduce the

execution time of the application by parallelizing its execution and to increase the

network lifetime by exploiting load balancing.

The proposed tracking and TMS approaches are inspired from the biological

principles. The inspiration is mainly from the biological behaviours of differentiation in

zygote formation and the chemical emission. In target tracking schemes, the sensor

nodes before the selection and election algorithms were all equal. The selection

algorithm differentiates the functions of the sensors nodes so that some of them will be

selected to sense the target and others will remain in a sleeping mode. The election

algorithm classifies the selected group nodes into one MN and possibly one or more

HN(s). In addition, the target is treated as a virtual chemical emitter. The nodes start

from an initially uniform state and then exhibit some kind of differentiation to execute

an application in a coordinated manner. The application tasks are mapped to the sensor

nodes according to the node’s available resources and location. Therefore, each node is

specialized to execute particular tasks based on its suitability.

 159

Simulation results show that compared with other well-known schemes, the

proposed tracking, task mapping and scheduling schemes can provide a significant

improvement in energy-efficiency, network lifetime and computational time, whilst

maintaining acceptable accuracy and seamless tracking, even with abrupt manoeuvring

targets.

 160

Chapter 9 Future Work

The proposed STT tracking schemes are evaluated assuming targets travel with constant

speed. Therefore, the ratio between maxT and minT in Equation (3.32) is fixed. The

tracking algorithms could be developed further by accommodating variable speed

targets. In this case, the ratio between maxT and minT would need to be calculated at

various times according to the speed of target.

Determination of minimum sampling interval of the target so that tracking

continuity and energy-efficiency are improved is a research topic receiving considerable

attention. An analogy can be made with Nyquist theory where to avoid aliasing, the

minimum sampling frequency should be at least two times the highest frequency

contained within the signal [23].

In the target dynamic models proposed in Chapters 3 and 4, the acceleration of the

target is modelled by a Gaussian distribution. The proposed tracking scheme can be

evaluated in future work using more advanced dynamic models that are introduced in

[73].

The sensing area, target states and sensor node coordination are assumed to be in a

two-dimensional plane. Future work could focus on advancing the proposed algorithms

for use with three-dimensional space.

In this thesis, EKF is adopted to calculate the predicted and updated target states and

their covariance matrices. The Particle Filter (PF) proposed in Chapter 2 can be also

used for the same purpose. Evaluating the proposed algorithms using PF and comparing

them with the ones using EKF would be an interesting research topic with target

tracking. Other filtering techniques, which are proposed in Chapter 2, could be used as

well.

An acoustic signal is used in this thesis to permit a passive detection mechanism to

measure the range of the target. Bearing sensor nodes can measure the angle of the

target with respect to the sensor location [67][98]. Therefore, future work could focus

on the sensor nodes that can measure the angle as well as the range of the targets using

other passive or active detection techniques. Furthermore, sensor nodes are assumed to

detect the target with 100% probability if the target is in their sensing range. The

detection model could be advanced by assuming a predefined probabilities model for

the sensor node detection [5].

 161

In the proposed MTT schemes, false alarms in the network and the data association

problem that determines which measurements were generated by which targets are not

tacking into the account. The proposed MS-AMTT could be developed further by

taking into the account false alarms within the network. It could then be enhanced by

considering the problem of data association.

In the proposed task mapping and scheduling algorithms, the application is

modelled using a DAG. Generating the DAG representations of the proposed STT and

MTT tracking algorithms could be examined further in future work.

 162

Appendix A Simulation Framework

A.1 Appendix Introduction

This appendix introduces the simulation framework. Detailed descriptions of the target

tracking, task mapping and scheduling models are firstly presented. After that, the

pseudo code for the various simulation events is explained. The C++ code is enclosed

with this thesis (or available from the author).

A.2 Detailed Description of Simulation Framework

In this section, the developed models are introduced in detail. Firstly, the target tracking

model is presented. After that, task mapping and scheduling models are explained.

A.2.1 Target Tracking Model

Figure 90 shows the pseudo code of the target-tracking model. In line 1, the needed

C++ libraries are included such as math, input/output, list, vector and string libraries.

The external libraries (header files) include the Mersenne Twister random variable

generator, matrices manipulation and implemented data structure header files. In the

data structure header file, the sensor node defines a class that encapsulates all the node

attributes such as node ID, remaining energy, CSMA/CA attributes, neighbours

information and routing table. As discussed in Chapter 6, the simulation is event driven.

Therefore, the event is defined as a class that includes the event parameters such as

event time (which indicate the time of event execution), event place (that shows on

which node the event will be executed) and event name. In line 2, the simulation

constants are given, including the sensing area dimensions, radio range, sensing range,

CSMA/CA parameters, recovery timers, weighted parameters, energy-consumption

parameters, tracking parameters, number of sensor nodes and event names. The global

variables and statistical counters include writer variable that writes the results in text

files, world array that models the sensing area, the number of dying nodes variable,

matrices that encapsulate the target predicted and updated states, and their covariance

matrices, group vector, that stores the current tasking group to track the target, the

number of recovery events, the overhead time, a random variable that is generated for

Mersenne Twister class, the events variable that is declared as list, the sensor nodes

variable that are stored in vector and total energy consumption counter.

 163

1. Include the required C++ and external libraries;

2. Declare the simulation constants, global variables and statistical counters;

3. Open the text files to store the simulation results;

4. Initialize the simulator { //start of initialization

5. Set the simulation time (sTime) to zero;

6. Create the sensor nodes;

7. Create the sensing area and deploy the sensor nodes randomly in it;

8. Schedule the TArrive event at sTime and insert it in the event list variable;

9. } //end of initialization

10. while (sTime < Stop Condition) do:

11. Get the next event from the event list and update the sTime (i.e., sTime = Event time);

12. switch (event) do:

13. TArrive: Execute the target arrive procedure;

14. LOCALIZATION: Execute the target localization procedure;

15. PREDICTION: Execute the target prediction procedure;

16. NextSnapshot: Execute the target next snapshot procedure;

17. Ready: Execute the Ready event procedure to transmit messages;

18. UPDATE: Execute the target update procedure;

19. RECOVERY: Execute the target recovery procedure;

20. TICK: Execute the TICK event procedure;

21. waitDIFS: Execute the waitDIFS event procedure;

22. Backoff: Execute the Backoff event procedure;

23. TX: Execute the TX event procedure;

24. RX: Execute the RX event procedure;

25. waitACK: Execute the waitACK event procedure;

26. end switch

27. end while

28. Write the results into the text files;

29. Initialize all the statistic counters and simulation parameters;

30. Change the node deployment;

31. if (number of runs is not over) do:

32. go to step 4;

33. finish;

Figure 90 Target Tracking Handling within the Simulator
In line 3, the text files that store the results are created using the writer variable. In line

6, the sensor nodes are created as objects from the class that encapsulates the node

attributes. These objects are then stored in the sensor nodes variable that is declared as a

vector. In line 7, sensor nodes are deployed randomly in the sensing area. The world

 164

variable is a 2D array that stores the node ID. Therefore, the ID for each node is

randomly stored in the world array. From line 13 to 25, the procedure for different

events is executed. In Section A.3, the pseudo code for these events is introduced.

A.2.2 Task Mapping and Scheduling Models

TMS models are developed using the same principle used to simulate the target tracking

schemes, which is presented in Section A.2.1. Therefore, the CSMA/CA events shown

in Figure 90 are also used to evaluate the BTMS and BITA algorithms. More events are

added to code the proposed TMS algorithms. The application DAG is created according

to the strategy introduced in Section 7.6.3. The Ts node defined in Sections 5.2.2 and

5.3 is represented as the target and its neighbours represented as the group nodes.

Basically, each group node will have routing information (i.e. single-hop routes)

about its neighbours. However, multi-hop routing paths between nodes that are not in

the same radio range are determined. Destination Sequenced Distance Vector Routing

(DSDV) has been implemented in this model as multi-hop network layer protocol.

DSDV is a proactive routing protocol, in which each node maintains a routing table for

the whole network topology. However, in this thesis, DSDV only runs inside the group

of nodes that detect the target. The node uses the Route Discovery (RDis) unicast

messages to exchange the routing table information. At the same time as sending an

RDis packet, the node sets its Routing_timer which is used to indicate finishing of the

RDis packet transmission and thus to start transmission the next control packets. The

Routing_timer is chosen to be 200ms. The node only sends the routing table information

to the neighbours that do not have this information. Each node stores information about

the source of the routing packets. For example, for single hop-communication, RDis

packets will not be sent by any nodes because all nodes have routing information about

each other. Another example is shown in Figure 91. Both node 1 and 3 have

information about node 2 from the RDis message sent by node 2. Node 2 has

information about both node 1 and 3 from the RDis messages sent by them. Therefore,

node 1 and 3 will not have any routing information to be sent to node 2. On the other

hand, node 2 will send RDis to both node 1 and 3 to inform them about each other.

Since the communication could be multi-hop ad hoc links, the RDis message is sent

three times to ensure the group nodes have a full routing table about all the neighbours

which detect the same target.

 165

Figure 91 Sending RDis Packets

Therefore, the algorithm shown in Figure 92 is mainly used when the node sends the

RDis packets to each neighbour.

1. for (node routing table) do: //loop the node routing table

2. if (the record is not in my neighbour routing table) do:

3. send this record to my neighbour;

4. end if

5. end for
Figure 92 Routing Algorithm 1

The RDis message mainly contains the routing table records of the available group

nodes paths. When a node receives an RDis packet, it updates its routing table based on

the shortest path (i.e. the minimum number of hops to the destination). For each routing

record in the RDis message, the node runs the algorithm shown in Figure 93.
1. Route_Flag = true;

2. for (node routing table) do: //loop the node routing table

3. if (the received route record is in my routing table) do:

4. Route_Flag = false;

5. if (number of hops in the received record < number of hops in the routing table) do:

6. Delete the old route from the routing table;

7. Add the new shorter route to my routing table;

8. Add the nodes which have this record;

9. end if

10. end if

11. if (Route_Flag) do: //The node does not have this record

12. Add the received routing record to the node routing table;

13. end if

14. end for
Figure 93 Routing Algorithm 2

 166

A.3 Event Handling Pseudo Code

In this section, the pseudo code associated with events to perform the CSMA/CA as

MAC protocol and the target tracking is introduced. The graph of CSMA/CA events is

shown in Figure 48.

A.3.1 TArrive Event

In the target arrival (TArrive) event, the initial real state (i.e., location and velocity in

2D coordinates) of the target is declared. After that, the localization (LOCALIZATION)

event is scheduled at time of simulation time plus the required time to perform the

calculation of the target localization.

A.3.2 LOCALIZATION Event

The target localization (LOCALIZATION) event pseudo code is shown in Figure 94. In

line 3, the sensor nodes that are in active mode cooperate to calculate the updated target

state. In this case, the updated covariance matrix is initialized to a predefined value.

1. Calculate the energy consumption required to localize the target;

2. Update the total energy consumption counter;

3. Localize the target updated state and initiate the updated covariance matrix;

4. Set the sampling interval to its minimum value;

5. Schedule the PREDICTION event at sTime plus the required time to execute EKF;

 prediction stage and insert it in the event list variable;

6. Schedule the NextSnapshot event at sTime plus current sampling interval;

Figure 94 LOCALIZATION Event

A.3.3 PREDICTION Event

In Figure 95, the pseudo code associated with the PREDICTION event is shown. In line

4, the current main node selects the next tracking group according to the algorithm

described in Section 3.9.2. The group size is adjusted so that the updated tracking error

is satisfied based on the adaptive group size algorithm presented in Section 3.9.3. In line

5, the main node is elected according the election algorithm described in Section 3.10.

In line 6, the current main node schedules Ready event to wakeup the next selected

group via a GTrig message.

 167

1. Calculate the target predicted state and its covariance matrix using EKF;

2. Calculate the energy consumption required to predict the next target state;

3. Update the total energy consumption counter;

4. Select the next tasking group nodes so that the updated tracking accuracy is satisfied;

5. Elect one sensor node as MN;

6. Schedule Ready event immediately to send GTrig message;

Figure 95 PREDICTION Event

A.3.4 NextSnapshot Event

In Figure 96, the pseudo code associated with the NextSnapshot event is shown. The

NextSnapshot is the event at which the target arrives to the next tracking step. In line 2,

the real state of the target is computed. The target real state evolves according to the

current target motion types, which could be uniform motion in straight line, circular

motion in circles and curvature motion in curves. In line 3 to 7, each helper node

initiates a TRan message transmission if it detects the target.

1. Schedule the RECOVERY event at sTime plus Timer_recovery;

2. Compute the current real state of the target;

3. for all helper nodes of the current group do:

4. if (target is in the vicinity of the node) do:

5. At time sTime plus the required time for sensing, schedule on the sensor node the

 Ready event to send TRan message to the main node;

6. end if;

7. end for;

Figure 96 NextSnapshot Event
A.3.5 Ready Event

As shown in Figure 97, the Ready event is used to initiate messages transmissions. Each

node is modelled so that it has output (qOut) and input (qIn) buffers. The node drops the

message if its output buffer is full. If the output buffer is not empty, the node adds the

message to queue of the output buffer to be served after finishing the leading message

in the queue. Otherwise, the node defines a back off (bo) number which is a random

number generated from uniform distributed over [0, CW], where CW is the predefined

contention window. After that, the node senses the channel. If the channel is free, the

node schedules a waitDIFS event after DIFS seconds from the simulation time (sTime),

where DIFS is predefined Distributed Inter-Frame Space. Otherwise, the node defers

the transmission and adds the message to output buffer. Finally, after the predefined

timer expires, the node schedules the next Ready event to initiate the next message.

 168

1. Prepare the message to be sent;
2. if (qOut is full) do:
3. drop the message;
4. else do: //else of if in line 2
5. if (qOut is empty) do:
6. bo = uniform distributed over(0, CW);
7. if (Channel is free) do:
8. schedule waitDIFS at t = sTime + DIFS;
9. else do: //channel is busy
10. add the message to the qOut;
11. defer = true;
12. else do: //else of if in line 5
13. add the message to the qOut;
14. schedule the next Ready at t = sTime + predefined Timer;

Figure 97 Ready Event

A.3.6 UPDATE Event

If the main node detects the target and receives TRan messages from all helper nodes, it

schedules the UPDATE event at current sTime plus the required time to execute EKF

update stage and the sampling interval calculation. Figure 98 shows the pseudo code

associated with the UPDATE event. In line 2, the sampling interval is calculated from

the past target location using the algorithm introduced in Section 3.8.
1. Calculate the target updated state and its covariance matrix using EKF;

2. calculate the next sampling interval;

3. Calculate the energy consumption required to update the target state and calculate the

 sampling interval;

4. Update the total energy consumption counter;

5. Schedule the PREDICTION event at sTime plus the required time to execute EKF;

 prediction stage and insert it in the event list variable;

6. Schedule the NextSnapshot event at sTime plus current sampling interval;

Figure 98 UPDATE Event

A.3.7 RECOVERY Event

If the one of the tasking group nodes does not detect the target, the main node sends the

TLos message to the old main node. The old main performs the first level recovery. The

pseudo code associated with the RECOVERY event is shown in Figure 99. In line 1 and

11, the first and second level recovery nodes are calculated according to the mechanism

presented in Section 3.11.

 169

1. Calculate the first level recovery nodes;

2. Calculate the energy consumption required for first level recovery;

3. Update the total energy consumption counter;

4. Schedule Ready event to send TRec message at sTime plus the required time to perform

 the first level recovery;

5. if (number of response > group size) do:

6. Localize the target using the received target measurements;

7. Set the sampling interval to its minimum value;

8. Schedule the PREDICTION event at sTime plus the required time to execute EKF;

 prediction stage and insert it in the event list variable;

9. Schedule the NextSnapshot event at sTime plus current sampling interval;

10. else do:

11. perform level 2 recovery;

Figure 99 RECOVERY Event

A.3.8 Wait DIFS (waitDIFS) Event

In the waitDIFS event shown in Figure 100, if the channel was free during the last

DIFS, the node schedules a BackOff event after one predefined time slot. Otherwise, if

the channel is now free, the node finishes the deferring and schedules waitDIFS after

DIFS time.

1. if (Channel was free during the last DIFS) do:
2. schedule BackOff at t = sTime + Slot Time;
3. else do:
4. if (Channel is free) do:
5. defer = false; // stop the defer
6. schedule waitDIFS at t = sTime + DIFS;
7. else do:
8. defer = true;

Figure 100 waitDIFS Event

A.3.9 Back off (Backoff) Event

In this event, which is explained in Figure 101, if the channel was free during the last

time slot, the node checks the back off (bo) value. If bo is over and the channel is now

free, the node schedules a TX event immediately. If bo is over and the channel is now

busy, the node defers the transmission. The node decrements bo and schedules BackOff

event after one predefined time slot, if bo is not over. If the channel was busy at any

time during the last time slot and the channel is now busy, the node defers the

transmission. If the channel was busy at any time during the last time slot and the

channel is now free, the node schedules waitDIFS after DIFS time.

 170

1. if (Channel was free during the last time slot) do:
2. if (bo = 0) do:
3. if (Channel is free) do:
4. Schedule TX immediately;
5. else do: //else of if in line 3
6. defer = true;
7. else do: //else of if in line 2
8. Decrement bo;
9. Schedule Backoff at t = sTime + time slot;
10. else do: //channel became busy one time in the previous time slot
11. if (Channel is free) do: // currently the channel is free
12. schedule waitDIFS at t = sTime + DIFS;
13. else do: // currently the channel is busy
14. defer = true;

Figure 101 Backoff Event

A.3.10 Transmit (TX) Event

With the TX event shown in Figure 102, the source node defers its transmission if there

is acknowledgment (ACK) being sent from it. ACK transmission is initiated after

receiving a unicast message. The ACK message will be ignored if the source node is

sending other messages at the same time. The simulator determines the source node’s

neighbours. After that the channel status of the source node and its neighbours are set to

the busy state. The message transmission times to the neighbours are calculated

according to the following equation:

ptsRX t t tt ++= (A.1)

where are st and p t are the simulation time and propagation time, and tt is the

transmission time which can be calculated based on the following equation:

 Speed ChannelSize Messaget t = (A.2)

Then, the simulator schedules receive (RX) event. Finally, the source node schedules

waitACK event, if the message is unicast.

1. if (node is sending ACK) do:
2. defer = true; //do not send this packet and defer
3. else do:
4. if (message to be sent is ACK & the node is busy in sending other packets) do:
6. do not send the ACK;
7. else do:
8. Determine the neighbour nodes;
9. Set Channel flag to busy state in the node and the node’s neighbours;
10. Schedule RX at tRX;
11. if (message is unicast) do:
12. Schedule waitACK at t = t(RX) + ACK Timeout;

Figure 102 TX Event

 171

A.3.11 Collision (waitACK) Event

As shown in Figure 103 the source node initiates retransmissions of unicast messages

that are not acknowledged. The maximum number of retransmissions is set in the node.

The source node discards the message if the maximum permitted number of

retransmissions is exceeded. For each retransmission, the CW is extended until it

reaches to maximum value (CWmax). After that, the source node starts the transmission

procedures by scheduling waitDIFS event.

1. if (Number Of Retransmissions is not over) do:
2. Increment Number Of Retransmissions;
3. CW = 2*CW;
4. if (CW > CWmax) do:
5. CW = CWmax;
6. bo = uniform distributed over(0, CW);
7. Schedule waitDIFS at t = sTime + DIFS;
8. else do:
9. message dropped;
10. send the next message in the qOut;

Figure 103 waitACK Event

A.3.12 Receive (RX) Event

At the RX event shown in Figure 104, the simulator sets the channel status to free for

the source node and its neighbours. The source node and its neighbours end the

deferring action, if any. Each source node’s neighbour ignores the message if there are

full or partial collisions. Otherwise, it processes the broadcast message and

acknowledges the unicast message. The source node’s neighbour either processes the

unicast message if it is the final destination or redirects the message to the next hop.

1. Set channel status for free state in the node and its neighbours;
2. Cancel node and its neighbours defer if any;
3. for (all node neighbours) do:
4. if (no full or partial collisions) do:
5. if (message is unicast) do:
6. Send ACK after SIFS time;
7. if (The node is the final destination) do:
8. Process the message;
9. else do:
10. Update message header and redirect it to the next hop;
11. else do: //the message is broadcast
12. Process the message;
13. else do: // message is collided
14. Ignore the message in the collided receivers;

Figure 104 RX Event

 172

A.3.13 TICK Event

This is an interruptible event that runs periodically. The TICK event runs in the

simulator every given number of seconds (e.g. once each second). Some simulation

results are reported when the TICK event occurs. In the TICK event subroutine, the

statistical counters are updated.

A.4 Appendix Summary

In this appendix, the simulation framework is described in detail. The target tracking,

task mapping and scheduling implementations are first introduced. After that, the

pseudo code for individual event handling is explained.

 173

Appendix B Code Verification

B.1 Target Tracking Verification

In this section, target-tracking schemes proposed in Chapter 3 and 4 are verified. The

target-tracking scenario presented in Section 7.3.5 is assumed. The snapshot at time of

9.6998 second is verified in this section. Figure 105 shows the target real location and

the group nodes at time of 9.6998 second.

Figure 105 Target Tracking Snapshot at Time= 9.6998 seconds

B.1.1 Analytical Analysis

As shown in the Figure 105, nodes 487, 272 and 312 can detect the target because

md 3)3()5.0(22
1 =+= , md 5.6)003.0()5.6(22

2 =+= and md 6.4)9.2()5.3(22
3 =+= are

less than the sensing range (i.e., 50m). When the MN (i.e., 487) detects the target, it

measures its range and schedules the recovery process after a Timer_recovery of 0.05

second. Therefore, the recovery event is scheduled at time = 9.6998 + 0.05 = 9.7498

second. The HNs (i.e., 272 and 312) measure the target range and send it to the MN

through TRang message. The HNs contend to transmit the TRang message as shown in

Figure 106. All the nodes will wait DIFS = 128 ms and check the channel. If the

channel is free, each node picks up a random number from the simulator RNG to set the

back off times. The random back off values for nodes 272, and 312 are 40, 207 time

slots (TS) respectively.

 174

Figure 106 CSMA/CA Contention

The following equations are used to calculate the reception time after which the MN

receives the TRang packet:

RateBit elSize/ChannPacket)Time(t Transition TX = (B.1)

Delayn Propagatio Time Transition Time Simulation)Time(tReception RX ++= (B.2)

Therefore, transmission time for TRang packet is ms 0.288)10*288/(1 t 6
TX == and for ACK

is ms 0.240 106)*240/(1 tTX == . The propagation delay is neglected. Therefore, node 272

initiates its transmission at time = 9.6998 + DIFS + 40*TS = 9.70196 second and its

reception at time = 9.70196 + 0.000288 = 9.70225 second. The wait for ACK event will

be scheduled at time = 9.70196 (Time of transmission) + tTX + 0.0003 (ACK timeout)

= 9.70255 second. When the MN (i.e., 487) receives the TRang packet, it transmits

ACK to the node 272 at time = 9.70225 (Time of reception) + 0.000028 (SIFS time) =

9.70228 second. The ACK will be received at node 272 at time = 9.70228 (Time of

ACK transmission) + 0.000240 (Transition Time of ACK) = 9.70252 second, which is

less than the ACK timeout.

Node 312 initiates its transmission at time = 9.70252 (Received Time of ACK at

node 272 where the channel becomes free) + DIFS + (207-40)*TS = 9.71099 second

and its reception at time = 9.71099 + 0.000288 = 9.71128 second. The wait for ACK

event will be scheduled at time = 9.71099 (Time of transmission) + tTX + 0.0003 (ACK

timeout) = 9.71158 second. When the MN (i.e., 487) receives the TRang packet, it

transmits ACK to the node 312 at time = 9.71128 (Time of reception) + 0.000028 (SIFS

time) = 9.71131 second. The ACK will be received at node 312 at time = 9.71131

 175

(Time of ACK transmission) + 0.000240 (Transition Time of ACK) = 9.71155 second,

which is less than the ACK timeout.

After the MN receives the TRang packets from the HNs, it uses the EKF to calculate

the target estimated state and the next sampling interval. These processes require 2MCC

/100MHz=0.02 seconds. Therefore, the update stage finished at time = 9.71128 (time of

second TRang reception) + 0.02 = 9.73128 second. The target estimated location at time

9.6998 second is (48.4992, 184.003). The target estimated location is used with the

previous locations to calculate the next sampling interval. Table 11 shows the target

location after inserting its current location. The data in Table 11 covers the target

locations for more than 2 seconds history. Therefore, the oldest target location (i.e.,

index 1) will not be used in calculation.

Index Time (sec) Tx (m) Ty (m)
1 7.72404 38.4992 166.683
2 8.22393 40.9992 171.013
3 8.72918 43.4992 175.343
4 9.22848 45.9992 179.673
5 9.73128 48.4992 184.003

Table 11 Target Estimated Locations Database

The net travel is the distance between the target location in index 2 and index 5 that are

shown in Table 11 while the total travel is the sum of the distances between indices 2

and 3, 3 and 4, and 4 and 5. Therefore the net travel is 15 m, the total travel is 15 m and

in turn the metadata is 15/15=1. The previous sampling interval was 0.5 seconds.

Therefore, the measured sampling interval = (0.5 - 0.1) * 1 + 0.1 = 0.5 second and the

sampling interval = 0.5 * 0.5 + 0.5 * 0.5 = 0.5 second. The next target snapshot will be

scheduled at time = 9.6998 (the last time the target was detected) + 0.5 (sampling

interval) = 10.1998 second.

After that prediction of the target next state and the group formation are performed.

These processes require 2MCC /100MHz=0.02 seconds. Therefore, the prediction stage

finished at time = 9.73128 (finish time of update stage) + 0.02 = 9.75128 second. The

target estimated location at time 9.6998 second is (50.9992, 188.333). Table 12

summarizes the selected node’s information.

Node
isx (m)

isy (m) Td (m) Tdc /1= (m-1) Ef
272 55 184 22.6058 0.0442364 0.367548
312 45 187 25.4403 0.0393077 0.326597
446 57 196 27.1655 0.0368114 0.305855

Table 12 Election Algorithm Information

 176

In Table 12, Td is the sum of the distances from other group nodes. Tdc /1= is the node

centrality. δ defined in Equation (3.41) is assumed to be 1. Ef is calculated based on

Equation (3.41) as (c of the node)/summation of all c. Therefore, the MN for the next

group is 272 because it has the maximum value of Ef .

The old MN (i.e., 487) sends the target information to the next group a long with the

group election results by broadcasting a GTrig so that the new group has knowledge of

the target before it arrives in their vicinity. The random back off value for nodes 487 is

121 time slots (TS) respectively. Therefore, node 272 initiates its transmission at time =

9.75128 (finish time of prediction stage) + DIFS + 121*TS = 9.75746 second and its

reception at time = 9.75746 + 0.000288 = 9.75775 second.

B.1.2 Simulation Results

The simulation results of the scenario explained in Section B.1.1 are shown in this

section through code output snapshots. Figure 107 shows the group nodes to track the

target at time 9.6998 second. The target real location, the time of the recovery event and

the HNs back off values are shown in Figure 107 as well.

Figure 107 Target Tracking Snapshot at Time 9.6998 Seconds

Figure 108 and 109 shows the transmission and reception of TRang unicast (refer as

message_type = 0) packets from the HNs 272 and 312 to the MN 485. The message

serial numbers are used to ignore the received messages if they are sent twice due to the

collision. The MN receives the TRang packet and other neighbours reject it. After that,

the MN sends ACK message to inform the HNs about the correct reception of TRang

messages.

Figure 110 shows the calculations of update stage, sampling interval, prediction

stage and selection. The update stage that includes the sampling interval selection

requires 0.02 seconds and the prediction stage that includes the formation of the next

group needs 0.02 seconds as well.

 177

Figure 108 Simulation Snapshot: TRang Packet Transmission from HN1

Figure 109 Simulation Snapshot: TRang Packet Transmission from HN2

Figure 110 Update and Prediction Stages

 178

In Figure 111, the election of the next MN is shown. Centrality for each node is

calculated first. Then, the MN is selected so that it has the maximum election fitness

function. In this case, node 272 is elected as the MN.

Figure 111 Election Algorithm

Finally, Figure 112 shows the time of transmitting and reception of the GTrig packet

from the current MN to the next group. The destination is set to 0 to indicate that this

message is broadcast packet.

Figure 112 Transmission of GTrig Messages

The simulation snapshot shown in this section and the analysis presented in Section

B.1.1 are both analytical matched. This indicates that the simulator is performed and run

correctly.

B.1.3 Multi Target Tracking and the Optimal Solution

The simulation results in [103] show that the Tharmarasa’s approach is close to the

optimal solution. In Section 7.5.6, the simulation results show that the performance of

the proposed MS-AMTT scheme is better than the Tharmarasa’s approach in terms of

computational time and number of iterations. Therefore, the proposed MS-AMTT

 179

scheme is closer to the optimal solution compared with the Tharmarasa’s approach

given a limited number of iteration.

B.2 BITA Algorithm Verification

In this section, the BITA algorithm presented in Chapter 5 is verified. Assume the

scenario shown in Figure 113 where the sensor node (Ts) is 57 and the nS nodes that

will share Ts in the execution of the application are 52 and 30. Assume the application

can be divided into 100=N independent equal-weighted tasks.

Figure 113 BITA Algorithm Verification

B.2.1 Analytical Analysis

The sensor node (Ts) performs the BITA algorithm. Assume the energy level for the

three nodes is 100J. Based on Equation (5.10), for 102.0 −= mZ , the influences of the

nodes 52, 57 and 30 on the sensor node 57 are calculated as follows:

122
5752 0.00894427)100()50(1),(−=+= mssG , 1

5730 0.02501),(−== mssG and

1
5757 02.0),(−== mZssG . Based on Equation (5.11) and for 5.0=β , the decomposed

fitness functions are calculated as follows:

() () 0.370981300100*5.0)0.008944270.02(0.020.02*5.0),5.0,(57 =+++=mD Ssf
() () 0.258039300100*5.00.02)0.00894427(0.020.00894427*5.0),5.0,(52 =+++=mD Ssf
() () 0.370981300100*5.0)0.008944270.02(0.020.02*5.0),5.0,(30 =+++=mD Ssf

Based on Equation (5.14), for 100=N tasks, each group node will execute the

following number of tasks:

37.0981)370981.0258039.0370981.0(370981.0*100)100,(57 =++=sn
25.8039)370981.0258039.0370981.0(258039.0*100)100,(52 =++=sn
37.0981)370981.0258039.0370981.0(370981.0*100)100,(30 =++=sn

Assume, each node ks can execute 10=f tasks per second. Defines
ksT as the

execution finish time for the tasks allocated to the node ks . Therefore, Cooperative

Execution Time (CET) can be calculated according to the following equations:

 180

)(max
km sSk TCET ∈∀= (B.3)

f
NsnT k

s k

),(
= (B.4)

Therefore, sec 3.70981)37.0981/10 ,25.8039/10 1/10,max(37.098CET == . The same analytical

analysis can be done for different N .

B.2.2 Simulation Results

Figure 114 shows the CET simulation results for the scenario in Section B.2.1 using

different number of tasks N . Figure 115 shows more results detail for 100=N . Both

analytical analysis and simulation results are matched.

BITA (ng=3)

0
2

4
6

8
10
12

14
16

18
20

100 150 200 250 300 350 400 450 500
Number of Tasks (N)

C
ET

 (s
ec

on
d)

BITA (ng=3)

Figure 114 CET versus Number of Tasks Simulation Results

Figure 115 BITA: Simulation Results for N=100

B.3 BTMS Algorithm Verification

In this section, BTMS algorithm analytic analysis is compared with simulation results to

verify the simulator. One simple scenario is verified in this section.

B.3.1 BTMS Algorithm and GA Algorithm

The simulation results in [122] shows that GA reduces the energy consumption among

the sensor nodes by only 7% compared with Min-Min approach. The simulation results

in Section 7.6.3 show that the proposed BTMS algorithm reduces the energy

 181

consumption by 8% compared with BTMS algorithm that is based on Min-Min

approach. Therefore, the performance of the proposed BTMS algorithm is close to the

GA.

B.3.2 Analytical Analysis

The DAG application is generated as described in Section 7.6 with 3 entry tasks, 4

normal tasks and one exit task. Figure 116 shows one of the level-based DAGs which

be used for the code verification. The numbers beside each task denote the number of

clock cycles in Mega Clock Cycle (MCC). The numbers between the tasks edges

represent the edge data size in Kilo bit (Kb) to be transmitted between tasks.

Figure 116 Level-Based DAG for Code Verification

After converting the DAG into level-based DAG as shown in Figure 116, the tasks in

each level are ordered in decreasing manner with respect to their number of

computational cycles. Therefore, the BTMS will begin to map task 2 at level 0. For all

group nodes, it uses Equation (5.6) and (5.7) to calculate the required energy

consumption and the finishing execution time of task 2. Then, using Equation (5.9), the

fitness function of mapping task 2 to each node is calculated. Obviously, at this stage all

the nodes will have the same fitness function. Therefore task 2 will map to one of the

group nodes, which is node 47. This is shown in Figure 117.

The same procedures are applied to map task 3. All the nodes apart from node 47

will have the same fitness function. The availability of node 47 is greater than other

nodes. Therefore, the fitness function of node 47 is greater than all other node. Task 3

will be mapped to one of the group nodes except node 47, which will be node 159. By

using the same mechanism, task 1 will be mapped to node 318.

 182

Figure 117 BTMS Analytical Analysis

At level 1, task 7 will be mapped first. Task 3, which is mapped to node 159, is the

immediate predecessor of task 7. Therefore, node 159 will have the smallest fitness

function defined and in turn, task 7 will be mapped to node 159. Like task 7 mapping

strategy, task 4 at level 1 will be mapped to node 318 and task 5 at level 2 will be

mapped to node 318.

At level 3, the fitness function of all nodes to map task 6 is calculated. Tasks 2, 3

and 5 are the immediate predecessors of task 6. Therefore, using Equation (4.24), the

start execution time of task 6 at each node is calculated. After, that the finish executing

time and the total energy consumption needed of task 6 at each node are calculated and

passed to compute the fitness function. As shown in Figure 117, the start execution time

of task 6 at node 318 is the smallest one and it will affect the calculation of the fitness

function. Therefore, task 6 is mapped to node 318. Finally, task 8 is mapped to node

318. As shown in Figure 117, based on the analytical analysis, the CET will be 185ms.

B.3.3 Simulation Results

Figure 118 shows the results of tasks generator. It shows the task ID, computational

clock cycles and immediate predecessors. The edge sized of the tasks dependencies are

shown in bits. The output of level-based DAG algorithm is also shown.

BTMS algorithm starts to map each task. For each node, it computes the total

energy consumption (i.e., computational and communication energy consumptions)

required time to execute the task, the start and finish time of task’s execution, and the

fitness function. Figure 119 shows a snapshot of this process.

 183

Figure 118 Task Generator Results

Figure 119 Decomposition Fitness Function Results

For each task, after calculating the fitness functions for all group nodes, the task will be

mapped to the group node that has the smallest fitness function as shown in Figure 120.

Figure 121 shows the final results of BTMS algorithm. It shows the nodes that each

task is mapped to and the start, execution and finish times of the task. The total energy

consumption to execute the task is also shown. Finally, it shows the total overall

communication and computing energy consumption to execute all the tasks. The

 184

collaborative execution time (CET) of the application is shown I the bottom of Figure

121.

Figure 120 Task Mapping

Figure 121 Summary of BTMS Results

 185

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor
networks: A survey”, Computer Networks: The International Journal of
Computer and Telecommunications Networking, ACM, Vol. 38, No. 4, pp. 393-
422, 2002.

[2] J. E. Wieselthier, G. D. Nguyen, A. Ephremides, “Resource management in
energy-limited, bandwidth-limited, transceiver-limited wireless networks for
session based multicasting”, Comput. Netw.: Int. J. Comput. Telecommun.
Netw., Vol. 39, No. 5, pp. 113-131, 2002.

[3] V. Potdar, A. Sharif, E. Chang, “Wireless Sensor Networks: A Survey”, 2009
IEEE International Conference on Advanced Information Networking and
Applications Workshops, pp. 636-641, 2009.

[4] Th. Arampatzis, J. Lygeros and S. Manesis, “A Survey of Applications of
Wireless Sensors and Wireless Sensor Networks”, Proceedings of the IEEE 13th
Mediterranean Conference on Control and Automation, pp. 719-724, 2005.

[5] J. Lin, W. Xiao, F.L. Lewis and L. Xie, “Energy-Efficient Distributed Adaptive
Multisensor Scheduling for Target Tracking in Wireless Sensor Networks”,
IEEE Trans. Instrum. Meas., Vol. 58, No. 6, pp. 1886-1896, 2009.

[6] B. Rinner and W. Wolf, “An Introduction to Distributed Smart Cameras”,
Proceedings of the IEEE , Vol. 96, No. 10, pp.1565-1575, 2008.

[7] D. Fernandez-Baca, “Allocating modules to processors in a distributed system”,
IEEE Trans. Softw. Eng. , Vol. 15, No. 11, pp. 1427-1436, 1989.

[8] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for
compile-time job scheduling in homogeneous computing environments”,
Proceedings of IEEE International Conference on Parallel Processing
Workshops (ICPPW’03), pp. 149–155, 2003.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks”, Proc. MobiCom,
ACM, pp. 263-270, 1999.

[10] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network Sensors”, Comm.
ACM, Vol. 43, No. 5, pp. 51-58, 2000.

 186

[11] F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang, “A Two-tier data dissemination
model for large-scale wireless sensor networks", Proceedings of the 8th annual
international conference on Mobile computing and networking, ACM, pp. 148-
159, 2002.

[12] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative Signal and
Information Processing: An Information Directed Approach”, Proceedings of
the IEEE, pp. 1199-1209, 2003.

[13] J.N. Al-Karaki and A.E. Kamal, “Routing techniques in wireless sensor
networks: a survey”, IEEE Wireless Communications, Vol. 11, No. 6, pp. 1536-
1284, 2004.

[14] C.P. Singh, O.P. Vyas and M.K. Tiwari , “A Profound Survey of Sensor
Networks & Related Routing Protocols”, 4th IEEE International Conference on
Wireless Communications, Networking and Mobile Computing 2008, pp. 1-5,
2008.

[15] W. Hu, T. Tan, L. Wang, and S. Maybank, “A Survey on Visual Surveillance of
Object Motion and Behaviors”, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
Vol. 34, No. 3, pp. 334-352, 2004.

[16] F. Zhao, J. Shin and J. Reich., "Information-driven dynamic sensor
collaboration for Tracking Applications", IEEE Signal Process. Mag. , Vol. 19,
No. 2, pp. 61-72, 2002.

[17] M. Ali, A. Bohm and M. Jonsson, “Wireless Sensor Networks for Surveillance

Applications? A Comparative Survey of MAC Protocols”, Proceedings of the
fourth IEEE international conference on wireless and mobile communications
(ICWMC 2008), pp. 399-403, 2008.

[18] W.R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient
Communication Protocol for Wireless Microsensor Networks", Proceedings of
the IEEE 33rd Annual Hawaii International Conference on System Sciences
(HICSS '00), pp. 1-10, 2000.

[19] W. Ye and J. Heidemann, “Medium Access Control in Wireless Sensor
Networks”, USC/OSO Technical Report ISI-TR-580, 2003.

[20] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC Protocols for Wireless Sensor
Networks: A Survey”, IEEE Commun. Mag., Vol. 44, No. 4, pp. 115-121, 2006.

 187

[21] Mark Stemm and Randy H Katz, “Measuring and reducing energy consumption
of network interfaces in hand-held devices”, IEICE Transactions on
Communications, Vol. E80-B, No. 8, pp. 1125-1131, 1997.

[22] T. S. Rappaport, “Wireless Communications, Principles and Practice”, Prentice
Hall, ISBN 0780311671,1996.

[23] W. Stallings, “Wireless Communications and Networks”, 2nd Edition, Prentice
Hall, ISBN 0131967908, 2005.

[24] N. Abramson, “Development of the ALOHANET”, IEEE Trans. Inf. Theory, Vol.
31, No. 2, pp. 119-123, 1985.

[25] L. Kleinrock and F. Tobagi, “Packet switching in radio channels: Part I-carrier
sense multiple-access modes and their throughput-delay characteristics”, IEEE
Trans. Commun., Vol. 23, No. 12, pp. 1400-1416, 1975.

[26] LAN MAN Standards Committee of the IEEE Computer Society, “Wireless
LAN medium access control (MAC) and physical layer (PHY) specification”,
IEEE, IEEE Std 802.11, 1999 edition, 1999.

[27] A. Woo and D. Culler, “A transmission control scheme for media access in
sensor networks”, International Conference on Mobile Computing and
Networking, Proceedings of the 7th annual international conference on Mobile
computing and networking, ACM, pp. 221-235, 2001.

[28] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part II - the

hidden terminal problem in carrier sense multiple access and the busy-tone
solution”, EEE Trans. Commun., Vol. 23, No. 12, pp. 1417-1433, 1975.

[29] M.S. Gast, “802.11 Wireless Networks: The Definition Guide”, O’Reilly &
Associates, ISBN 0596001835, 2002.

[30] P. Karn, “MACA: A new channel access method for packet radio”, In
Proceedings of the 9th ARRL Computer Networking Conference, pp. 134-140,
1990.

[31] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A media
access protocol for wireless lans”, In Proceedings of the ACM SIGCOMM
Conference, pp. 212-225, 1994.

 188

[32] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for
wireless sensor networks”, Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, pp. 1567-1576, 2002.

[33] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated,
adaptive sleeping for wireless sensor networks”, IEEE/ACM Trans. Netw., Vol.
12, No. 3, pp. 493-506, 2004.

[34] J.F. Kurose and K.W. Ross, “Computer Networking,”, second Edition, Addison
Wesley, ISBN 0321213939, 2003.

[35] C.K. Toh, “Ad Hoc Mobile Wireless Networks: Protocols and Systems”, Prentice
Hall, ISBN 0130078174, 2002.

[36] C.S.R. Murthy and B.S. Manoj, “Ad Hoc Wireless Networks: Architectures and
Protocols”, Prentice Hall, ISBN 013147023X, 2004.

[37] N. Bulusu, J. Heidemann and D. Estrin, “GPS-less low cost outdoor localization
for very small devices", Technical Report 00-729, Computer science department,
University of Southern California, 2000.

[38] T.C. Karalar, S. Yamashita, M. Sheets and J. Rabaey, "A low power localization
architecture and system for wireless sensor networks", IEEE Workshop on
Signal Processing Systems, pp. 89-94, 2004.

[39] W. Heinzelman, J. Kulik, and H. Balakrishnan, "Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks", 5th ACM/IEEE
Mobicom Conference (MobiCom '99), pp. 174-85, 1999.

[40] J. Kulik, W. R. Heinzelman and H. Balakrishnan, "Negotiation-based protocols
for disseminating information in wireless sensor networks", Wireless Networks,
Selected Papers from Mobicom 1999, ACM, Vol. 8, No. 2/3, pp. 169-185, 2002.

[41] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, "A
scalable and robust communication paradigm for sensor networks", Proceedings
of ACM MobiCom 2000, pp. 56-67, 2000.

[42] D. Braginsky and D. Estrin, “Rumor Routing Algorithm for Sensor Networks", in
the Proceedings of the First Workshop on Sensor Networks and Applications
(WSNA), ACM, pp. 22-31, 2002.

 189

[43] F. Ye, A. Chen, S. Liu and L. Zhang, “A scalable solution to minimum cost
forwarding in large sensor networks", Proceedings of the IEEE tenth
International Conference on Computer Communications and Networks
(ICCCN), pp. 304-309, 2001.

[44] M.X. Gong, S.F. Midkiff and R.M. Buehrer, “A Self-Organized Clustering
Algorithm for UWB Ad Hoc Networks”, IEEE Wireless Communications and
Networking Conference 2004 (WCNC 2004), pp. 1806-1811, 2004.

[45] S. Lindsey and C. Raghavendra, “PEGASIS: Power-Efficient Gathering in
Sensor Information Systems", IEEE Aerospace Conference Proceedings, pp.
1125-1130, 2002.

[46] A. Manjeshwar and D.P. Agarwal, "TEEN: a routing protocol for enhanced
efficiency in wireless sensor networks", Proceedings in IEEE 15th International
Symposium Parallel and Distributed Processing, pp. 2009-2015, 2001.

[47] A. Manjeshwar and D.P. Agarwal, "APTEEN: A hybrid protocol for efficient
routing and comprehensive information retrieval in wireless sensor networks",
Proceedings in IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2002), pp. 195-202, 2002.

[48] V. Rodoplu and T.H. Meng, “Minimum Energy Mobile Wireless Networks",
IEEE J. Sel. Areas Commun., Vol. 17, No. 8 , pp. 1333-1344, 1999.

[49] Y. Xu, J. Heidemann and D. Estrin, “Geography-informed Energy Conservation
for Ad-hoc Routing", In Proceedings of the Seventh Annual ACM/IEEE
International Conference on Mobile Computing and Networking, pp. 70-84,
2001.

[50] Y. Yu, D. Estrin, and R. Govindan, “Geographical and Energy-Aware Routing:
A Recursive Data Dissemination Protocol for Wireless Sensor Networks",
UCLA Computer Science Department Technical Report, Computer science
department, University of Southern California, 2001.

[51] F. Kuhn, R. Wattenhofer and A. Zollinger, “Worst-Case optimal and average-
case efficient geometric ad-hoc routing", Proceedings of the 4th ACM
International Conference on Mobile Computing and Networking, pp. 267-278,
2003.

 190

[52] C.E. Perkins and P. Bhagwat, “Highly Dynamic Destination Sequence-Vector
Routing (DSDV) for Mobile Computers”, ACM SIGCOMM Computer
Communication Review, Vol. 24, No. 4, pp. 234-244, 1994.

[53] M. Valera and S.A.Velastin, "Intelligent distributed surveillance systems: a
review", IEE Proceedings -Vision, Image and Signal Processing, Vol. 152, No.
2, pp. 192-204, 2005.

[54] T. Ko, “a survey on behavior analysis in video surveillance for homeland
security applications”, 37th IEEE Applied Imagery Pattern Recognition
Workshop, 2008 (AIPR 2008), pp. 1-8, 2008.

[55] A.C. Sankaranarayanan, A. Veeraraghavan and R. Chellappa, "Object Detection,
Tracking and Recognition for Multiple Smart Cameras", Proceedings of the
IEEE, Vol. 96, No.10, pp.1606-1624, 2008.

[56] X. Sheng and Y. Hu, “Energy Based Acoustic Source Localization”,
Proceedings of the 2nd international conference on Information processing in
sensor networks (IPSN), Springer-Verlag, pp. 285-300, 2003.

[57] Y.E.M. Hamouda and C. Phillips, “Biologically Inspired, Cooperative Target
Tracking Framework for Wireless Sensor Networks”, London Communication
Symposium 2009 (LCS 2009), University College London, 2009.

[58] T. Clouqueur, K.K. Saluja and P. Ramanathan, "Fault tolerance in collaborative
sensor networks for target detection", IEEE Trans. Comput., Vol. 53, No. 3, pp.
320-333, 2004.

[59] A. Discant, A. Rogozan, C. Rusu and A. Bensrhair, "Sensors for Obstacle
Detection - A Survey", IEEE 30th International Spring Seminar on Electronics
Technology, pp.100-105, 2007.

[60] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H.
Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, M. Arumugam,
M. Nesterenko and A. Vora, “A line in the sand: a wireless sensor network for
target detection, classification, and tracking”, ScienceDirect Computer
Networks
Vol. 46, No. 5, , pp. 605-634, 2004.

[61] H. Zhou, M. Taj and A. Cavallaro, "Target Detection and Tracking With
Heterogeneous Sensors", IEEE Trans. Sel. Topics in Signal Process., Vol. 2, No.
4, pp. 503-513, 2008.

 191

[62] E.D. Manley, H.A. Nahas and J.S. Deogun, “Localization and Tracking in
Sensor Systems Sensor Networks”, IEEE International Conference on
Ubiquitous, and Trustworthy Computing, pp. 237-242, 2006.

[63] R.R. Brooks, P. Ramanathan and A.M. Sayeed, "Distributed target
classification and tracking in sensor networks", Proceedings of the IEEE , Vol.
91, No. 8, pp. 1163-1171, 2003.

[64] C. Rohrig and S. Spieker, "Tracking of transport vehicles for warehouse
management using a wireless sensor network", IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008 (IROS 2008), pp. 3260-
3265, 2008.

[65] C. Schurgers, V. Tsiatsis and M.B. Srivastava, “STEM: Topology Management
for Energy-Efficient Sensor Networks”, Proceedings in IEEE Aerospace
Conference, pp. 135-145, 2002.

[66] J.C. Chen, R.E. Hudson and K. Yao, “Maximum-likelihood source localization
and unknown sensor location estimation for wideband signals in the near-field”,
IEEE Trans. Signal Process. , Vol. 50, No. 8 , pp. 1843 -1854, 2002.

[67] K.M. Kaplan, Q. Le and P. Molnar, “Maximum likelihood methods for bearings
only target localization”, Proceedings in IEEE International Conference on
Acoustics, Speech, and Signal Processing 2001 (ICASSP 2001), pp. 3001-3004,
2001.

[68] K.T. Soe, “Increasing Lifetime of Target Tracking Wireless Sensor Networks”,

Proceedings of World Academy of Science, Engineering and Technology, pp.
410-415, 2008.

[69] W.P. Chen, J.C. Hou and L. Sha, “Dynamic clustering for acoustic target
tracking in wireless sensor networks”, IEEE Trans. Mobile Comput., Vol. 3, No.
3, pp. 258-281, 2004.

[70] M. Di, E.M. Joo and L.H. Beng, “A Comprehensive Study of Kalman Filter and
Extended Kalman Filter for Target Tracking in Wireless Sensor Networks”,
2008 IEEE International Conference on Systems, Man and Cybernetics (SMC
2008), pp. 2792-2797, 2008.

[71] S. Maskell and N. Gordon, "A tutorial on particle filters for on-line
nonlinear/non-Gaussian Bayesian tracking", IEE Target Tracking: Algorithms
and Applications (Ref. No. 2001/174) Workshop, pp. 2/1-2/15, 2001.

 192

[72] B. Ristic, S. Arulampalam and N. Gordon, “Beyond the Kalman Filter: Particle
Filters for Tracking Applications”, Artech Print House, ISBN 158053631X,
2004.

[73] X.R. Li and V.P. Jilkov, "A Survey of Maneuvering Target Tracking-Part III:
Measurement Models", In Proceedings SPIE Conference on Signal and Data
Processing of Small Targets, 2001.

[74] Y. Bar-Shalom, X.R. Li, T. Kirubarajan, “Estimation With Applications to
Tracking and Navigation”, Wiley, ISBN 047141655X, 2001.

[75] F. L. Lewis, “Optimal Estimation”, Wiley, ISBN 0471837415, 1986.

[76] S. Arulampalam and B. Ristic, “Comparison of the particle filter with range
parameterized and modified polar EKF’s for angle-only tracking”, Proceedings
of SPIE, Vol. 4048, pp. 288-299, 2000.

[77] A. Doucet, N.D. Freitas and N.J. Gordon, “An introduction to sequential Monte
Carlo methods”, in Sequential Monte Carlo Methods in Practice, Springer-
Verlag, 2001.

[78] A. Doucet, S. Godsill and C. Andrieu, “On sequential Monte Carlo sampling
methods for Bayesian filtering”, Statist Dept. Eng., Univ. Cambridge, UK, Tech.
Rep., 1998.

[79] P.M. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.F. Bugallo, J.
Miguez, “Particle filtering”, IEEE Signal Process. Mag., Vol. 20 , No. 5, pp.
19- 38, 2003.

[80] D. Li, K.D. Wong, Y.H. Hu and A.M. Sayeed, “Detection, classification and
tracking of targets in distributed sensor networks”, IEEE Signal Process. Mag.,
Vol. 19, No. 2, pp. 17-29, 2002.

[81] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee and C.-F. Huang, “Location Tracking in a
Wireless Sensor Network by Mobile Agents and Its Data Fusion Strategies”,
The Computer Journal, Vol. 47, No. 4, pp. 448-460, 2004.

[82] M. Chu, H. Haussecker, and F. Zhao, “Scalable Information-Driven Sensor
Querying and Routing for ad hoc Heterogeneous Sensor Networks”, Int’l J. of
High-Performance Computing Applications, Vol. 16, No. 3, 2002.

 193

[83] M.R. Nami and K. Bertels, “A Survey of Autonomic Computing Systems”, Third
International Conference on Autonomic and Autonomous Systems, 2007
(ICAS07), pp. 26-26, 2007.

[84] X. Gu, J. Strassner, J. Xie, L.C. Wolf and T. Suda, “Autonomic Multimedia
Communications: Where Are We Now?”, Proceedings of the IEEE, Vol. 96, No.
1, pp.143-154, 2008.

[85] T. Nakano and T. Suda, “Self-organizing network services with evolutionary
adaptation”, IEEE Trans. Neural Netw., Vol. 16, No. 5, pp. 1269-1278, 2005.

[86] T. Nakano and T. Suda, “Adaptive and evolvable network services”, Proceedings
in Genetic and Evolutionary Computation Conference, pp. 151-162, 2004.

[87] T. Suda, T. Itao and M. Matsuo, “The bio-networking architecture: The
biologically inspired approach to the design of scalable, adaptive, and
survivable/available network applications”, Proceedings in 2001 Symposium on
Applications and the Internet, pp. 43-53, 2001.

[88] S. Balasubramaniam, D. Botvich, W. Donnelly, M.O. Foghlu and J. Strassner,
“Biologically inspired self-governance and self-organisation for autonomic
networks”, In ACM Proceedings of the 1st international Conference on Bio
inspired Models of Network, information and Computing Systems, Vol. 275,
2006.

[89] P. Champrasert and J. Suzuki, “Towards Self-Adaptive Networking with
Symbiotic Behaviours of Multi-Agents”, IEEE International Conference on
Integration of Knowledge Intensive Multi-Agent Systems 2007 (KIMAS 2007),
pp. 103-108, 2007.

[90] J. Moon and J. Nang, “Design and Implementation of a bio-inspired system
platform”, TENCON 2007 - 2007 IEEE Region 10 Conference, pp. 1-4, 2007.

[91] Y. Meng, O. Kazeem and J.C. Muller, “A Swarm Intelligence Based
Coordination Algorithm for Distributed Multi-Agent Systems”, Proceedings in
IEEE International Conference on Integration of Knowledge Intensive Multi-
Agent Systems, pp. 294-299, 2007.

[92] L. Song and D. Hatzinakos, “A Cross-Layer Architecture of Wireless Sensor
Networks for Target Tracking”, IEEE/ACM Trans. Netw., Vol. 15, No. 1, pp.
145-158, 2007.

 194

[93] H. Yang and B. Sikdar, "A protocol for tracking mobile targets using sensor
networks", Proceedings of the First IEEE International Workshop on Sensor
Networks Protocols and Applications, pp. 71-81, 2003

[94] H. Yang, B. Sikdar, “Lightweight target tracking protocol using ad-hoc sensor
network”, 2005 IEEE 61st Vehicular Technology Conference, pp. 2850-2854,
2005.

[95] V.P. Sadaphal and B.N. Jain,”Tracking mobile target using selected sensors”,
First International IEEE Communication Systems and Networks and Workshops
2009 (COMSNETS 2009), pp. 1-10, 2009.

[96] H. Wang, K. Yao, G. Pottie and D. Estrin, “Entropy-based sensor selection
heuristic for target localization”, In Proceedings Of 3rd International
Symposium on Information Processing in Sensor Networks, pp. 36-45, 2004.

[97] T. Onel, C. Ersoy and H. Delic, “Information Content-Based Sensor Selection
and Transmission Power Adjustment for Collaborative Target Tracking”, IEEE
Trans. Mobile Comput., Vol. 8, No. 8, pp. 1103-1116 , 2009.

[98] Y. Han and W. Zhao, "A Novel Node Selection Method of Bearings-only Sensors
for Target Tracking in Wireless Sensor Networks", IEEE International
Conference on Communications and Mobile Computing 2009 (CMC 2009),
pp.136-140, 2009.

[99] C. Hue, J-P.L. Cadre and P. Perez, “Posterior Cramer-Rao Bounds for Multi
Target Tracking”, IEEE Trans. Aerosp. Electron. Syst., Vol. 42, No. 1, pp. 37-
49., 2006.

[100] S. Oh, S. Russel and S. Sastry, “Markov Chain Carlo Data Association for
Multi-Target Tracking”, Trans, Autom. Control, Vol. 54, No. 3, pp. 481-497,
2009.

[101] J. Vermaak, S.J. Godsill and P. Perez, “Monte Carlo Filtering for Multi-Target
Tracking and Data Association”, IEEE Trans. Aerosp. Electron. Syst., Vol. 41,
No. 1, pp. 309-331, 2005.

[102] A. Oka and L. Lampe, “Distributed Scalable Multi-Target Tracking with a
Wireless Sensor Network”, Proceedings in IEEE International Conference on
Communication, pp. 1-6, 2009.

 195

[103] R. Tharmarasa, T. Kirubarajan and M. I. Hernandez, “Large-Scale Optimal
Sensor Array Management for Multitarget Tracking”, IEEE Trans. Syst., Vol.
37, No. 5, pp. 803-814, 2007.

[104] R. Tharmarasa, T. Kirubarajan, J. Peng and T. Lang “Optimization-Based
Dynamic Sensor Management for Distributed Multitarget Tracking”, IEEE
Trans. Syst., Vol. 39, No. 5, pp. 534-546, 2009.

[105] L. Liu, X. Zhang and H. Ma, “Dynamic Node Collaboration for Mobile Target
Tracking in Wireless Camera Sensor Networks”, IEEE INFOCOM 2009, pp.
1188-1196, 2009.

[106] H. Xue, B. Chen and J. Wan, "A Distributed Target Tracking Algorithm Based
on Asynchronous Wireless Sensor Networks", IEEE International Conference on
Electronic Computer Technology, pp.549-553, 2009.

[107] S. Pino-Povedano and F.-J. Gonzalez Serrano, "Distributed tracking and
classification of targets with sensor networks", 16th IEEE International
Conference on Software, Telecommunications and Computer Networks 2008
(SoftCOM 2008), pp.213-217, 2008.

[108] S. Aeron, V. Saligrama and D.A. Castaon, "Efficient Sensor Management
Policies for Distributed Target Tracking in Multihop Sensor Networks", IEEE
Trans. Signal Process., Vol. 56, No. 6, pp. 2562-2574, 2008.

[109] H.J. Rad, M. Azarafrooz, H.S. Shahhoseini, and B. Abolhassani, “A new
adaptive power optimization scheme for target tracking Wireless Sensor
Networks”, 2009 IEEE Symposium on Industrial Electronics and Applications
(ISIEA 2009), pp. 307-312, 2009.

[110] W.Xiao, W. Zhang, S., J. Lin and C.K. Tham, “Energy-efficient adaptive sensor
scheduling for target tracking in wireless sensor networks”, Journal of Control
Theory and Applications, Vol. 8, No. 1, pp. 86-927, 2010.

[111] T.D. Braun, H.J. Siegal, N. Beck, L.L. Boloni, M. Maheswaran, A.I. Reuther,
J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen and R.F. Freund , "A
comparison study of static mapping heuristics for a class of meta-tasks on
heterogeneous computing systems", Proceedings in eighth IEEE Heterogeneous
Computing Workshop 1999. (HCW 1999), pp. 15-29, 1999.

[112] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hensgen, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and B. Yao, “A

 196

comparison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems”, Journal of Parallel and
Distributed Computing, Vol. 61, No. 6, pp. 810-837, 2001.

[113] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent
tasks on non-identical processors”, Journal of the ACM, Vol. 24, No. 2, pp.
280-289, 1977.

[114] M. A. Iverson, F. Ozguner, and G. J. Follen, “Parallelizing existing applications
in a distributed heterogeneous environment”, 4th IEEE Heterogeneous
Computing Workshop (HCW 1995), pp. 93-100, 1995.

[115] J.A. Gonzalez, “A Hyper-heuristic for scheduling independent jobs in
Computational Grids”, Accessed in 22/08/2009, Available At URL: http://www-
sop.inria.fr/mascotte/WorkshopScheduling/Slides/Gonzalez.pdf.

[116] R. Armstrong, D. Hensgen and T. Kidd, “The relative performance of various
mapping algorithm is independent of sizable variance in run-time predictions”,
Proceedings of ACM 7th Heterogeneous Computing Workshop (HCW 1998),
pp. 79-87, 1998.

[117] R. Freund, T. kidd, D. Hensgen, L. Moore, “SmartNet: a scheduling framework
for heterogeneous computing”, Proceedings on The IEEE Second International
Symposium on Parallel Architectures, Algorithms, and Networks, pp. 514-521,
1996.

[118] A. Sudarsanam, M. Srinivasan and S. Panchanathan, “Resource estimation and

task scheduling for multithreaded reconfigurable architectures”, Proceedings of
the IEEE tenth international conference on parallel and distributed system, pp.
323-330, 2004.

[119] M. Maheswaran and H.J. Siegel, “A dynamic matching and scheduling
algorithm for heterogeneous computing systems”, Proceedings in IEEE Seventh
Heterogeneous Computing Workshop 1998. (HCW 1998), pp. 57-69, 1998.

[120] A.H. Alhusaini, V.K. Prasanna and C.S. Raghavendra “A unified resource
scheduling framework for heterogeneous computing environments”, Proceedings
in IEEE 8th Heterogeneous Computing Workshop 1999. (HCW 1999), pp. 156-
165, 1999.

 197

[121] S. Giannecchini, M. Caccamo and C.-S. Shih, "Collaborative resource
allocation in wireless sensor networks", Proceedings in IEEE 16th Euromicro
Conference on Real-Time Systems, pp. 35-44, 2004.

[122] S. Shivle, R. Castain, H. J. Siegel, A.A. Maciejewski, T. Banka, K. Chindam, S.
Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D. Sendek, J. Sousa, J.
Sridharan, P. Sugavanam and J. Velazco, “Static mapping of subtasks in a
heterogeneous ad hoc grid environment”, In Proceedings of IEEE eighteenth
International Parallel and Distributed Processing Symposium, pp. 110, 2004.

[123] M. Srinivas and L.M. Patnaik, “Genetic algorithms: A survey”, IEEE Computer,
Vol. 27, No. 6, pp. 17-26, 1994.

[124] Y. Yu and V.K. Prasanna, “Energy-balanced task allocation for collaborative
processing in wireless sensor networks”, ACM Mobile Networks and
Applications, Vol. 10, No. 1-2, pp. 115-131, 2005.

[125] S. Poslad, “Ubiquitous Computing: Smart Devices, Environments and
Interactions”, John Wiley & Sons Ltd., ISBN 0470035609, 2009.

[126] Y. Tian, E. Ekici, and F. Ozguner, “Energy-Constrained Task Mapping and
Scheduling in Wireless Sensor Networks”, Proceedings of IEEE International
Workshop on Resource Provisioning and Management in Sensor Networks 2005
(RPMSN 2005), pp. 211-218, 2005.

[127] Y. Tian, B. Jarupan, E. Ekici, and F. Ozguner, “Real Time Task Mapping and
Scheduling for Collaborative In Network Processing in DVS-Enabled Wireless
Sensor Networks”, Proceedings in IEEE International Parallel and Distributed
Processing Symposium 2006 (IPDPS 2006), pp. 1-10, 2006.

[128] Y. Tian and E. Ekici, “Cross-Layer Collaborative In Network Processing in
Multihop Wireless Sensor Networks”, IEEE Trans. Mobile Comput., Vol. 6, No.
3, pp. 297-310, 2007.

[129] Y. Zhai, M. Yeary and J.-C. Noyer, "Target Tracking In a Sensor Network
Based on Particle Filtering and Power-Aware Design", Proceedings of the IEEE
Instrumentation and Measurement Technology Conference 2006 (IMTC 2006),
pp. 1988-1992, 2006.

[130] O. Ozdemir, R. Niu and P.K. Varshney, “Tracking in Wireless Sensor Networks
Using Particle Filtering: Physical Layer Considerations”, IEEE Trans. Signal
Process., Vol. 57, No. 5, pp. 1987-1999, 2009.

 198

[131] C. Meesookho, U. Mitra and S. Narayanan, "On Energy-Based Acoustic Source
Localization for Sensor Networks", IEEE Trans. Signal Process., Vol. 56, No. 1,
pp. 365-377, 2008.

[132] W. B. Heinzelman, A. Chandrakasan and H. Balakrishnan, “An application-
specific protocol architecture for wireless microsensor networks”, IEEE Trans.
Wireless Commun., Vol. 1, No. 4, pp. 660-670, 2002.

[133] A. Wang and A. Chandrakasan, “Energy-efficient DSPs for wireless sensor
networks”, IEEE Trans. Signal Process. Mag., pp. 68-78, 2002.

[134] M.J. Miller and N.H. Vaidya, “AMAC protocol to reduce sensor network energy
consumption using a wakeup radio”, IEEE Trans. Mobile Comput., Vol. 4, No.
3, pp. 228-242, 2005.

[135] W. Xiao, L. Xie, J. Chen and L. Shue, “Multi-Step Adaptive Sensor Scheduling
for Target Tracking in Wireless Sensor Networks”, Processing in IEEE
International Conference on Acoustics, Speech and Signal Processing 2006, pp.
IV-IV, 2006.

[136] G.J. McLachlan1, “Mahalanobis distance”, Springer India, in co-publication
with Indian Academy of Sciences, General Article, Vol. 4, No. 6, pp. 20-26,
1999.

[137] W. Mendenhall, R.J. Beaver and B.M. Beaver, “Introduction to Probability and
Statistics”, 11th Edition, Brooks/Cole Publishing, ISBN: 0534395198, 2003.

[138] W. Wang, V. Srinivasan, B. Wang and K.C. Chua, “Coverage for target
localization in wireless sensor networks”, IEEE Trans. Wireless Commun., Vol.
7, No. 2, pp. 667-676, 2008.

[139] MM Student Projects, “Embryology Homepage”, Available at:
http://sprojects.mmi.mcgill.ca/embryology/ (URL accessible as of 27/04/2008).

[140] L. Haihao, L. Mei, S. Yi and Q. Deli, “Research on Task Allocation Technique
for Multi-Target Tracking in Wireless Sensor Network”, Proceedings of the
2007 IEEE International Conference on Mechatronics and Automation, 360-365,
2007.

 199

[141] Y.E.M. Hamouda and C. Phillips “Biological Task Mapping and Scheduling in
Wireless Sensor Networks”, IEEE International Conference on Communication
Technology and Applications 2009, pp. 914-919, 2009.

[142] C. H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization Algorithms
and Complexity”, Englewood Cliffs, NJ: Prentice-Hall, ISBN 0486402584,1988.

[143] K. L. Hoffman, “Combinatorial optimization: Current successes and directions
for the future”, J. Comput. Appl. Math., Vol. 124, No. 1-2, pp. 341–360, 2000.

[144] E. Aarts and J. K. Lenstra, “Local Search in Combinatorial Optimization”,
Princeton University Press, ISBN 0691115222, 2003.

[145] J. Hurink, “Solving complex optimization problems by local search”, University
of Twente, Department of Applied Mathematics, 1999.

[146] L. Wang, H.J. Siegel, V.P. Roychowdhury and A.A. Maciejewski, “Task
matching and scheduling in heterogeneous computing environments using a
genetic-algorithm-based approach”, Journal of Parallel and Distributed
Computing, Vol. 47, No. 1, pp. 8-22, 1997.

[147] J. Banks, J. Carson, B.L. Nelson and D. Nicol, “Discrete-Event System
Simulation”, Prentice Hall, Inc., ISBN 0130887021, 2001.

[148] A.M. Law, “Simulation Modeling and Analysis”, McGraw-Hill Higher
Education , ISBN 0071103368, 2007.

[149] H. Schildt, “C++: The Complete Reference”, Fourth edition, McGraw-Hill,
ISBN 0072226803, 2003.

[150] H.M. Deitel and P.J. Deitel,” C++ How to Program”, Prentice Hall, ISBN
0131426443, 2004.

[151] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator”, ACM
Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30,
1998.

 200

[152] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function”, IEEE IEEE J. Sel. Areas Commun., Vol. 18, No. 3,
2000.

[153] A. Munawar, M. Wahib, M. Munetomo and K. Akama , “A Survey: Genetic
Algorithms and the Fast Evolving World of Parallel Computing”, The 10th
IEEE International Conference on High Performance Computing and
Communications, pp. 897-902, 2008.

[154] A. Jayasuriya, S. Perreau, A. Dadej and S. Gordon, “Hidden vs. exposed
terminal problem in ad hoc networks”, Proceedings of the Australian
Telecommunication Networks and Applications Conference, Sydney, Australia,
2004.

[155] D. Baron and Y. Birk, “Coding schemes for multislot messages in multichannel
ALOHA with deadlines”, IEEE Transactions on Wireless Communications, Vol.
1, No. 2, pp. 292-301, 2002

