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palavras-chave 
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sinal, protocolo, sistema de localização. 

 

Resumo 

 

 

O presente trabalho investiga sistemas de localização (SL) de baixo custo 

baseados na intensidade do sinal (RSS) e integrados com diferentes tipos de 

antenas com principal destaque para antenas sectoriais. Os últimos anos 

testemunharam um crescimento surpreendente de redes de sensores sem fios 

(RSSF), onde entre diversas aplicações possíveis, a localização tornou-se uma 

das principais áreas de pesquisa. Técnicas baseadas na intensidade do sinal 

caracterizam-se pela simplicidade e baixo custo de integração. A integração de 

SL baseados na intensidade do sinal recebido e antenas sectoriais (AS) 

oferecem uma solução eficaz para reduzir o número de nós necessários e para 

combinar diversas técnicas de localização. 

Esta tese de doutoramento foca-se no estudado de técnicas, antenas e 

protocolos de acordo com os requisitos de cada sistema localização com 

especial atenção para sistemas de baixo custo baseados na intensidade do 

sinal e no ângulo de chegada. 

Inicialmente são estudadas técnicas e SL de acordo com as necessidades do 

utilizador e as antenas que melhor se enquadram de acordo com a natureza 

do sinal. Esta etapa tem como objectivo proporcionar a compreensão 

fundamental do trabalho desenvolvido. 

Em seguida são apresentadas as antenas desenvolvidas divididas em: 

antenas sectorias e antenas impressas de baixo custo. Duas antenas 

sectoriais são apresentadas: uma de banda estreita a operar a 2,4-2,5GHz e 

outro de banda larga 800MHz-2.4GHz. As antenas impressas foram 

desenvolvidas para operar a 5 GHz, pelo que podem ser utilizadas para 

comunicação veicular. 

Após apresentação das diversas antenas vários protótipos de SL 

interiores/exteriores são implementados e analisados. 

Protocolos de localização são também propostos, um baseado na simplicidade 

e baixo consumo, outro na interoperabilidade com diferentes tipos de antenas 

e requisitos do sistema. 
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abstract 

 

This work investigates low cost localization systems (LS) based on received 

signal strength (RSS) and integrated with different types of antennas with main 

emphasis on sectorial antennas. The last few years have witnessed an 

outstanding growth in wireless sensor networks (WSN). Among its various 

possible applications, the localization field became a major area of research. 

The localization techniques based on RSS are characterized by simplicity and 

low cost of integration. The integration of LS based on RSS and sectorial 

antennas (SA) was proven to provide an effective solution for reducing the 

number of required nodes of the networks and allows the combination of 

several techniques, such as RSS and angle of arrival (AoA). 

This PhD thesis focuses on studying techniques, antennas and protocols that 

best meet the needs of each LS with main focus on low cost systems based on 

RSS and AoA. 

Firstly there are studied localization techniques and system that best suit the 

requirements of the user and the antennas that are most appropriate according 

to the nature of the signal. In this step it is intended to provide a fundamental 

understanding of the undertaken work. 

Then the developed antennas are presented according to the following 

categories: sectorial and microstrip antennas. Two sectorial antennas are 

presented: a narrowband antenna operating at 2.4 to 2.5 GHz and a broadband 

antenna operating at 800MHz-2.4GHz. The low cost printed antennas were 

designed to operate at 5 GHz, which may be used for vehicular communication. 

After presenting the various antennas, several prototypes of indoor/outdoor LS 

are implemented and analyzed. 

Localization protocols are also proposed, one based on simplicity and low 

power, and the other on interoperability with different types of antennas and 

system requirements. 
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Chapter 1 – Introduction 

The ambition and curiosity of engineers often lead to technology leaps. This was the 

case on wireless sensor networks (WSN) when in 80s R. Kahn (co-inventor of TCP/IP and 

a key person for internet developing) desired to know if Arpanet communication 

(Advanced Research Projects Agency NETworking) could be extended to sensor networks. 

It was the origin of Distributed Sensor Networks (DSN) concept, idealized to be a large 

amount of spatially distributed, small size, low-cost sensing nodes, operating 

autonomously. These nodes could then collaborate with each other being the information 

routed to a desired terminal [1]. However, it was needed to wait until last 90s, around 

1998, for a new research wave, initiated with the SensIT project. This research induced a 

considerable progress on highly dynamic ad hoc environments and resource constrained 

sensor nodes. It was the shift to WSN research. Its importance gained so much attention 

that in September 1999, on Business Week, it was referred as one of the key technologies 

of the 21
st
 century [2]. 

Almost 15 years passed since the Business Week prediction and looking to nowadays 

technology we can affirm that the prediction could not be more correct. The replacement of 

wired connections among electronic devices with wireless networks completely 

revolutionized the way we organize our industrial, office and even home environments. 

These WSN are currently found in different fields like medical, industrial, transport 

systems, public safety and consumer electronics. 

Among the possible applications, positioning or localization become one of the main 

research areas in WSN. Localization Systems (LS) have been developed through several 

technologies (e.g. infrared, Bluetooth, ZigBee, Radio Frequency Identification (RFID), 

Ultra Wideband (UWB), ultra-sounds), based on diverse techniques (e.g. lateration, 

angulation, scene analysis and proximity) and supported by innumerable algorithms (e.g. 

neural networks, k-nearest neighbors) [3]. Each of these categories has unique advantages 

and drawbacks making its choice dependent to the desired performance benchmarks. A 

short resume of some of these LS according with resolution and range is presented in Fig. 

1.1. 
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Fig. 1.1 Localization systems 

Despite of the large panoply of existing Radio Frequency (RF) LS, they are highly 

influenced by one common factor, the antenna’s performance. Reference unit antennas are 

commonly designed to be robust, inexpensive, impedance matched over the entire 

operational bandwidth, small, and highly efficient. These characteristics are important for 

the correct performance of the antenna, which inherently have impact on the LS 

performance. Nevertheless, other antenna’s characteristics such as directivity, radiation 

pattern and polarization should be carefully chosen according to the LS approach. 

LS based on WSN have been mostly integrated with omnidirectional and vertical 

polarized antennas [4]-[6], as presented in Fig. 1.2 A). Nevertheless, diversity of radiation 

pattern and polarization can significantly improves localization as well as the 

communication systems’ performance. These benefits can be achieved using independent 

directive antennas such as mechanical rotated and sectorised antennas (SA) [7], as 

presented in Fig. 1.2. B). 
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Fig. 1.2 LS models: based on WSN A) and based on SA B) 

In this context, this PhD thesis studies, investigates and proposes LSs integrated with 

different types of antennas, with main emphasis on sectorial antennas. Presented a short 

introduction of this thesis, it will be now presented the motivation, objectives, thesis 

outline and main contributions achieved with this work. 

1.1 Motivation 

This thesis presents the continuation of the developed work by the same author on his 

master thesis “Desenvolvimento de sistema de localização indoor de baixo consumo” 

(“Development of indoor localization system of low power consumption”) presented on 

2010. In this work, it was developed an indoor localization system, based on ZigBee with 

the following characteristics: reduced power consumption, two modes of localization 

available (proximity and fingerprinting based), and development of a friendly user 

management application [8].The user interface is presented in Fig. 1.3 and the achieved 

mobile node expected life time duration in Table 1.1. 
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Fig. 1.3 User Interface for proximity (left) and fingerprinting (right) 

One battery of 650 mAH Life time (days) 

Sleep Cycle (seconds) 1 Blast 5 Blasts 8 Blasts 

3 469,2 107,4 72,4 

5 776,4 177,8 119,4 

10 1529,2 353,2 237,3 

20 2972,9 700,5 471,1 

60 8034,1 2045,9 1386,4 

Table 1.1 Mobile node expected life time duration 

The low power consumption was achieved due to a simple protocol development, 

significantly reducing the mobile nodes communication time within the WSN [C1]. 

Considering the SoC CC2430/31, this was a good improvement on batteries life time 

comparing with other systems up to date. This system provided low power consumption 

and a satisfactory resolution (< 2 meters) based in Received Signal Strength (RSS) 

techniques. In order to improve the overall system performance it was proposed the 

implementation of hybrid techniques (RSS and AoA) supported by proper sectorial 

antennas. 

 



Chapter 1 –Introduction 5 

 

1.2 Objectives 

The presented PhD work led to new research areas, sectorial antenna design, hybrid 

localization techniques and compliant protocols. In this sense, important goals have been 

accomplished during this doctoral study as follows:  

 Development of low cost and low power consumption LS; 

 Implementation of a system based on hybrid localization techniques; 

 Development of firmware and localization algorithms for LS; 

 Development of antenna and RF circuits for the reference nodes to increase 

systems localization and communication performance; 

 Proposal of a protocol compliant with different types of antennas. 

1.3 Thesis Outline 

After this introductory chapter this thesis in divided in more 6 chapters organized as 

follows. Chapter 2 presents a brief background of antenna analysis. In this chapter are 

described the fundamental antenna parameters, the electromagnetic simulator used and the 

measurement systems and procedures explaining how the presented results were achieved. 

In Chapter 3 it is presented a background of LS: techniques and the antennas that best 

meet the needs of each LS with particular attention to systems based on RSS and AoA. 

This step is intended to provide a fundamental understanding of the presented work. 

Then, in Chapter 4 it is presented the developed antennas divided as: sectorial antennas, 

(the Hive5 and the 6-SB Log Periodic Antenna) and planar antennas for diverse 

communication application at 5GHz (planar linear array, loop and planar elliptical array).  

In chapter 5 the developed LS are presented with special attention for the systems 

integrated with the developed sectorial antennas and the indoor/outdoor LS combining 

several technologies. 

In chapter 6 localization protocols are proposed, one based on simplicity and low 

power, another on the interoperability with different types of antennas (omnidirectional, 

sectorial and arrays) and system requirements (power consumption, user privacy and 
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accuracy). The last chapter presents the final conclusions and contributions originated from 

the work done for this thesis and some ideas for future work. 

The work performed during this PhD led to the papers publishing/submission to 

prestigious scientific journals [J1]-[J5] or presented in some relevant international 

conferences [C1]–[C8]. 

1.4 Main Contributions 

For the purpose of this thesis it was taken into consideration the contents of most 

relevant publications. The document is mainly supported on the following papers:  

[J1] Bras, L.; Carvalho, N. B.; Pinho, P., Kulas L. and Nyka K.; “A Review of 

Antennas for Indoor Positioning Systems”, International Journal of Antennas 

and Propagation, ID 953269, 2012; 

[J2] Bras, L.; Carvalho, N.B.; Pinho, P.; "Pentagonal Patch-Excited Sectorized 

Antenna for Localization Systems," Antennas and Propagation, IEEE 

Transactions on , vol. 60, nº. 3, pp.1634-1638, March 2012; 

[J3] Bras, L.; Carvalho, N. B.; Pinho, P.; “Evaluation of a Sectorised Antenna in 

an Indoor Localization System” IET Microwaves, Antennas & Propagation, 

vol. 7, nº. 8, pp. 679 – 685, June 2013; 

[J4] Bras, L.; Carvalho, N. B.; Pinho, P.; “Evaluation of planar elliptical antenna 

array with inner counter-elliptical slot” submitted in IEEE Transactions on 

Antennas and Propagation; 

[J5] Bras, L.; Carvalho, N. B.; Pinho, P.; “Location Protocol for WSNs compliant 

with Omnidirectional, Arrays and Sectorial Antennas” submitted in Elsevier 

Journal, Computer Communications; 

[C1] Bras, L.; Oliveira, M.; Carvalho, N. B.; Pinho, P.; “Low Power Location 

Protocol based on ZigBee Wireless Sensor Networks”, 2010 International 

Conference on Indoor Positioning and Indoor Navigation (IPIN), September 

15-17, 2010, Zurich, Switzerland; 

[C2] Guenda, L.; Bras, L.; Oliveira, M.; Carvalho, N. B.; “Indoor/Outdoor 

Management System Compliant with Google Maps and Android® OS”, 

EUROCON 2011 and CONFTELE 2011, April 27-29, 2011, Lisbon – 

Portugal; 



Chapter 1 –Introduction 7 

 

[C3] Bras, L.; Oliveira, M.; Guenda, L.; Carvalho, N. B.; Pinho, P.; “Localization 

System Improvement using a Special Designed Sectorised Antenna,” IEEE 

AP-S International Symposium on Antennas and Propagation and 2011 

USNC/URSI, July 2011, Washington, USA; 

[C4] Bras, L.; Oliveira, M.; Guenda, L.; Carvalho, N. B.; Pinho, P.; “Location 

System applied in Management of Emergency Scenarios”, 2011 International 

Conference on Indoor Positioning and Indoor Navigation (IPIN), 21-23 

September 2011, Guimarães, Portugal; 

[C5] Bras, L.; Oliveira, M.; Guenda, L.; Carvalho, N. B.; Pinho, P.; “Improved 

Sectorised Antenna for Indoor Localization Systems”, European Microwave 

Conference, October 9-14, 2011, Manchester, England; 

[C6] Bras, L.; Carvalho, N.B.; Pinho, P., "Circular polarized planar elliptical 

antenna array," Antennas and Propagation (EuCAP), 2013 7th European 

Conference on., pp.891,893, 8-12 April 2013 Gothenburg, Sweden. 

[C7] Bras, L.; Carvalho, N. B.; Pinho, P.; “Planar Omnidirectional Microstrip 

Antenna Array for 5 GHz ISM and UNII band” 2013 IEEE International 

Symposium on Antennas and Propagation, July 7-13, 2013, Orlando, Florida, 

USA; 

[C8]  Bras, L.; Carvalho, N. B.; Pinho, P.; “Omnidirectional Printed Loop Antenna 

for Taxi Communications” 2013 IEEE International Symposium on Antennas 

and Propagation, July 7-13, 2013, Orlando, Florida, USA. 
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Chapter 2 –Antenna Analysis 

This chapter provides the background on antenna analysis. In order to understand the 

antenna simulations and measurements presented in this thesis several concepts and 

procedures need to be well understood. For this reason it is presented in this chapter the 

antenna fundamental parameters, the electromagnetic simulator used in this thesis, Ansys 

High Frequency Simulation Software (HFSS), and a brief introduction to antenna 

measurement equipment’s and procedures. 

2.1 Fundamental Antenna Parameters 

The main fundamental antenna parameters can be resumed as: 

1) Radiation pattern; 

2) Radiation intensity; 

3) Directivity; 

4) Efficiency; 

5) Gain; 

6) Bandwidth; 

7) Polarization. 

All the parameters mentioned are commonly used to characterize an antenna, and will 

be described in detail in this chapter by the introduced order. 

2.1.1 Radiation Pattern 

The radiation pattern (RP) of an antenna (also called antenna pattern) is defined in the 

IEEE Standard Definitions of Terms for Antennas as: 

“A mathematical function or graphical representation of the radiation properties of the 

antenna as a function of space coordinates. In most cases, the radiation pattern is 

determined in the far field region and is represented as a function of the directional 

coordinates” [9]. 

 



10  Sectorial Antennas for WSN Localization Systems 

 

The RP property represents the two (or three dimensional) spatial distribution of the 

radiated energy at a constant distance along a path (2D) or surface (3D) of constant radius 

and is usually measured using spherical coordinates as shown in Fig. 2.1. 

According with the measured parameters the radiation pattern can be specified with 

different nomenclatures as: 

Power pattern – spatial variation of received power along a constant radius; 

Field amplitude pattern – spatial variation of received electric (or magnetic) field along 

a constant radius. 

 

Field and power patterns are usually normalized with respect to their maximum value 

and commonly plotted on a logarithmic scale, in decibels (dB). This scale has the 

advantage of accentuate in more detail those parts that have very low values, commonly 

referred as minor lobes. 

In practice 3D patterns are recorded in a series of two dimensional patterns (pattern 

cuts). These patterns are obtained by fixing one of the spherical coordinates ( θ or φ) while 

varying the other. 

Planes where we fix φ value (0≤φ≤2π) and vary θ are referred as elevation patterns. 

Planes where we fix a θ value (0≤θ≤π) and vary φ are referred as azimuthal patterns. 

The elevation plane of φ=0º (XoZ plan), and the azimuthal plane of θ = 90º (XoY plane) 

are shown in Fig. 2.1. 

  

Fig. 2.1 Coordinate system for antenna analysis [10] 
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For linear polarized antenna, it is also common to refer to the E and H planes, defined as 

the planes containing the direction of maximum radiation and the electric and magnetic 

field vectors. 

2.1.2 Radiation Intensity 

The Radiation intensity in a given direction is defined in the IEEE Standard Definitions 

of Terms for Antennas as “the power radiated from an antenna per unit solid angle” [9]. 

The radiation intensity is a far field parameter which can be related with the electric 

field of an antenna as: 

 (   )   
  

  
| (     )|

 
 (2.1) 

 

Where,  (     ) = electric-field intensity 

   = intrinsic impedance of the medium 

 = distance from the antenna to the analyzed point 

 

The integration of the radiation intensity over the entire solid angle of    gives the total 

power or radiation power which can be defined as presented in (2.2). 

      ∯     ∫ ∫           
 

 

  

  

 (2.2) 

  = element of solid angle =          

For the case of an isotropic source,   will be independent of the angle   or  , thus (2.2) 

can be written as: 

      ∯        
 

   (2.3) 

This equation leads to the direct relation of the radiation power with the radiation 

intensity given as: 

   
    

  
 (2.4) 
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2.1.3 Directivity 

Directivity is defined in the IEEE Standard Definitions of Terms for Antennas as:  

“The ratio of the radiation intensity in a given direction from the antenna to the 

radiation intensity averaged over all directions. The average radiation intensity is equal to 

the total power radiated by the antenna divided by 4π. If the direction is not specified, the 

direction of the maximum radiation intensity is implied.” [9]. 

The directivity of a nonisotropic source can be seen as the ratio of its radiation intensity 

in a given direction over that of an isotopic source. It can also be seen as ratio of the 

antenna radiated power density at a distant point to the total antenna radiated power (    ) 

radiated isotropically written as: 

 (   )   
 (   )

  
 (2.5) 

or 

 (   )   
   (   )

    
 (2.6) 

 

Where,  (   ) = radiation intensity (W/unit solid angle) 

    = radiation intensity of an isotropic source (W/unit solid angle) 

      = total radiated power (W)  

When direction is not specified, it is implicitly considered the direction of maximum 

directivity. For antennas with orthogonal polarization components, it is defined the partial 

directivity of an antenna for a given polarization as “that part of the radiation intensity 

corresponding to a given polarization divided by the total radiation intensity averaged over 

all directions”. For spherical coordinates the total directivity is given by the sum of the 

partial directivities for any two orthogonal polarizations   and   components expressed as 

in (2.7). 

        (2.7a) 

 

   
    

(    )  (    ) 
 (2.7b) 

 

   
    

(    )  (    ) 
 (2.7c) 
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2.1.4 Efficiency 

The overall antenna efficiency (  ) takes into account the losses at the input terminals 

and within the structure of the antenna itself (conduction and dielectric losses), which can 

be translated into two characteristics: reflection and radiation efficiency. 

The mismatch or reflection efficiency (  ) is directly related to the return loss (Γ), 

defined as:  

   (  | | ) (2.8) 

 

The antenna radiation efficiency (   ) is a measure of how much power is lost in the 

antenna due only to conductor and dielectric losses. These losses reduce the radiation in 

any and can be expressed as: 

    
    

   
 (2.9) 

 

The overall antenna efficiency (  ) is then given as: 

         (2.10) 

2.1.5 Gain 

Gain is defined in the IEEE Standard Definitions of Terms for Antennas as: 

“The ratio of the intensity, in a given direction, to the radiation intensity that would be 

obtained if the power accepted by the antenna were radiated isotropically. The radiation 

intensity corresponding to the isotropically radiated power is equal to the power accepted 

by the antenna divided by 4π” [9]. 

 

When the direction of radiation is not stated, the power gain is always calculated in the 

direction of maximum radiation and by definition defined as the ratio of the antenna 

radiated power density at a distant point to the total antenna input power (   ) radiated 

isotropically: 

  
   (   )

   
 

(2.11) 

 

Or expressed by the product of the radiating efficiency by the directivity given as: 

         (2.12) 

 



14  Sectorial Antennas for WSN Localization Systems 

 

It is important to refer that the IEEE standards state that “gain does not include losses 

arising from impedance and polarization mismatches”. Some authors prefer to refer the 

gain as absolute gain (    ) which takes into consideration the reflection losses and is 

given as: 

               (  | | )      (2.13) 

2.1.6 Bandwidth 

The bandwidth (BW) of an antenna is defined in the IEEE Standard Definitions of 

Terms for Antennas as “the range of frequencies within which the performance of the 

antenna, with respect to some characteristic, conforms to a standard” [9]. 

 

The bandwidth (BW) of an antenna can be considered as the range of frequencies, on 

either side of a central frequency where the antenna characteristics (such as input 

impedance, radiation pattern, beam width, polarization, side lobe level, gain) are within an 

acceptable value of those of the central frequency  

The antenna bandwidth is commonly referenced simply as “impedance bandwidth”, 

describing the bandwidth where the antenna presents acceptable losses due to mismatch or 

by both “impedance bandwidth” and acceptable radiation pattern characteristics. 

The impedance bandwidth can be measured directly by a Vector Network Analyzer 

(VNA) as it will be later explained in this chapter. Analyzing the Voltage Standing Wave 

Ratio (    ) or by the Return Loss (  ) over the frequency band it is possible to defined 

the antenna impedance bandwidth. Both VSWR and RL are dependent on the reflection 

coefficient ( ) (“ratio of the amplitude of the reflected voltage wave (  
 ) normalized to 

the amplitude of the incident voltage wave (  
 ) at a load”) given as: 

  
  

 

  
  (2.14) 

 

     is defined as “the ratio between the maximum and minimum voltage of the 

standing wave created by the mismatch at the load on a transmission line” and is given by: 

     
  | |

  | |
 (2.15) 
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The    is defined as “the magnitude of the ratio of the reflected wave to that of the 

incident wave”, and is defined in a logarithmic scale as: 

  (  )          | | (2.16) 

 

In RF we commonly analyze the antenna bandwidth by the scattering parameter S11 

directly provided by the VNA, related to   as:  

   (  )
        | | (2.17) 

 

Based on previous parameters the maximum acceptable mismatch for an antenna is 

normally referred as 10% of the incident signal. This threshold is achieved when | | < 

0.3162 which can be translated according with the measuring parameter as (2.18) 

equations.  

 

         (2.18a) 

 

   (  )
     (2.18b) 

 

  (  )      (2.18c) 

 

The antenna impedance bandwidth can then be expressed as absolute bandwidth, the 

interval between the highest (  ) and lowest frequency (  ) where the antenna 

performance is acceptable given by: 

  (  )         (2.19) 

 

According with the bandwidth the antennas can be considered narrowband or 

broadband. Commonly broadband antennas are defined as antennas that have a ratio of 

  

  
  . For narrowband antennas, the bandwidth is often expressed by percentage related 

to the central frequency (  ) defined as: 

  ( )  
     

  
          

     

 
 

(2.20) 

 

For broadband antennas the bandwidth is typically expressed as the ratio of the highest 

to the lowest frequency (e.g 40:1) where the antenna performance is acceptable: 

         (2.21) 
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2.1.7 Polarization 

The polarization of an antenna refers to the orientation of the electric field vector of its 

radiated wave and is defined in the IEEE Standard Definitions of Terms for Antennas as: 

“The property of an electromagnetic wave describing the time varying direction and 

relative magnitude of the electric-field vector; specifically, the figure traced as a function 

of time by the extremity of the vector at a fixed location in space, and the sense in which it 

is traced, as observed along the direction of propagation” [9]. 

 

Antenna polarization can then be seen as the curve traced by the tips of the arrows 

representing the instantaneous electric field and observed along the direction of 

propagation, describing a polarization ellipse as presented in Fig. 2.2 . The polarization of 

an antenna is often characterized by electric field direction of rotation and its polarization 

ellipse (maximum magnitudes of E components and tilt angle,  ). 

Antenna polarization can be divided as: linear, circular and elliptical, however linear 

and circular polarization can be seen as special cases of elliptical polarized antennas. 

Linear when the ellipse collapses into a line and circular when the polarization ellipse 

varies minimally becoming a circle. 

The figure of the electric field is traced in clockwise (CW) or counterclockwise (CCW) 

sense. CW is also designed right-hand (RH) and CCW left-hand (LH) polarization. 

The instantaneous electric field of a plane wave travelling in the negative z direction 

may be written as:  

 (   )    (   ) ̂    (   ) ̂ (2.22) 

Where the instantaneous components are defined as: 

  (   )        (        ) (2.23a) 

          and                     (   )        (        ) (2.23b) 

    and     represent the electric field maximum magnitudes,    and    are the phase 

angles of the x and y components,   is the angular frequency, and   is the propagation 

constant. 

The polarization ellipse parameters (OA major axis and OB minor axis) can be 

calculated by equations (2.24). 
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Fig. 2.2 Rotation of a plane EM wave and its pol. ellipse at z = 0 [11] 
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Where 

         (2.24d) 
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The performance of antenna polarization can also be characterized by its axial ratio 

(AR), defined as the ratio of the major axis to the minor axis of the polarization ellipse 

described as: 

   
          

          
 

  

  
 

(2.25) 

 

For circular polarization OA = OB (AR = 1), whereas for linear polarization AR tends 

for infinite. 

 2.2 Electromagnetic simulators 

Nowadays there are several software packages available on the market for antenna 

simulation (e. g. IE3D, CST Microwave Studio, FEKO, XFDTD and HFSS) implemented 

with different time and frequency domain methods (e.g. Method of Moments (MoM), 

Finite Element Method (FEM), Finite-difference time-domain (FDTD) and Transmission 

Line Matrix (TLM)), each with their own advantages and disadvantages. The comparisons 

of the simulators performance it is out of the scope of this thesis, however for a better 

understand of the methods a short resume is presented in Table 2.1. 

 

 Frequency domain methods Time domain methods 

 MoM FEM FDTD TLM 

Advantages 
Fast as single frequency; 

Easily combined with other methods to 

deal with large problems 

Broadband results is one simulation; 

Good for pulse-type problems; 

Disadvantages Difficult to deal with pulse-type problems Not suitable for electrically large systems 

Notes Most suitable for 

wire-type antennas 

Be careful with 

very thin wires 

Be careful with the 

boundary conditions 

Be careful with 

thin wires 

Table 2.1 Comparison of the time and frequency domain methods 

The knowledge of the simulation process and methods is of high importance in order to 

optimize the simulation time and evaluate its accuracy. In this thesis we will refer only to 

the used simulator for design and simulation, High Frequency Structural Simulator (HFSS) 

from Ansys [12]. 



Chapter 2 –Antenna Analysis 19 

 

2.2.1 High Frequency Structural Simulator (HFSS) 

Ansys HFSS utilizes a 3D full-wave FEM to compute the electrical behavior of high-

frequency and high-speed components [12]. A rigorous mathematical foundation of FEM 

was provided by Strang in 1973 [13]. 

FEM is a numerical method based on solving partial differential equations. It subdivides 

the full problem into large number of smaller regions and represents the field in each sub-

region (element) expressed in terms of a number of basic functions. As simplified analysis 

FEM may be implemented in EM simulators in the following steps [14]: 

1) Discretization of the solution region into elements; 

2) Assign a basis function to each element, representing the fields on it; 

3) Generation of a matrix equation that represents the interaction between each 

segment and every other; 

4) Solve the interaction-matrix to get the coefficient of basis functions; 

5) Calculate the far-field patterns and other parameters using the fields on each 

segment. 

 

In HFSS the geometrical model is automatically divided into large number of tethaedra, 

where a single tethaedron is a four-sided pyramid and the collection of tethaedra is referred 

as the finite element mesh as shown in Fig. 2.3. 

 

 

Fig. 2.3 HFSS design mesh 

 

The simulation process of HFSS can be resumed by flow chart of Fig. 2.4 [15]. 
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The first step starts by the parametric model where the geometry, boundaries and 

excitations are defined. After the analysis setup is defined, the solution setup and 

frequency sweeps are settled. The analysis is performed by a solve loop, and finally the 

results and the reports are presented. 

 

 

Fig. 2.4 HFSS operation flow chart 

 

The solved loop process starts with the initial definition of this mesh. Then it is 

necessary to determine the excitation field pattern at each port. The field patterns of a 

traveling wave inside waveguide for each frequency can be solved by equation (2.26), 

derived by Maxwell’s equations: 

  (
 

  
   (   ))    

    (   )    
(2.26) 

Where: 

 (   ) is a phasor representing an oscillating electric field; 

   is the free space wave number; 

   is the complex relative permeability; 

   is the complex relative permittivity. 
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After solving this equation it is obtained the field pattern in the form of phasor solution 

 (   ). It also performed an independent calculation for   (   ) with the corresponding 

wave equation in  . 

After field computation it is performed a refinement procedure based on Maxwell 

equations, more specifically Ampere and Faraday equation and the derivative property of 

Fourier transforms which result in (2.27) equations. 

            (2.27a) 

          (2.27b) 

 

After   and   are calculated, it is computed     and compared with the solved  . 

Then     is computed and compared with solved  . If the result falls within an 

acceptable tolerance, the solution is accepted, if not the mesh network is refined. 

Achieved the accepted field solution at defined port (or ports) it is computed the field 

solution inside the simulation structure where a similar refinement procedure is performed. 

Finalized this process all desired reports can be provided. 

2.3 Antenna Measuring System 

Once an antenna is designed and constructed, it is essential to validate the design with 

proper measurements. In this thesis the antennas were validated by measuring the 

impedance bandwidth, radiation pattern, antenna gain and polarization. 

The antenna measurement system used in this thesis is shown in Fig. 2.5 and includes 

the following equipments:  

1) Tapered far field anechoic chamber with proper absorber materials to reduce 

unwanted reflected energy; 

2) Test positioner (3 axis) to provide elevation and azimuthal rotation of the 

antenna under test (AUT); 

3) Polarization positioner (2 axis) to provide polarization rotation; 

4) Positioner controller for rotation control; 

5) VNA for transmitting and receiving signals; 

6) Antennas with standardized gain for correct gain reference (used a linear 

polarized horn antenna); 

7) Computer with proper application for data processing. 
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Not all antennas can be measured in this system which is limited mainly by VNA 

bandwidth, sensitivity; dynamic range and anechoic chamber size, defining a minimum 

valid testing frequency defined by far field conditions. For a better understanding of this 

limitation, far field condition, anechoic chambers and radio absorbers are next briefly 

described. 

 

Fig. 2.5 Antenna measuring system 

 

 

Fig. 2.6 Tapered (left) and Rectangular (right) Anechoic Chambers [19] 

 

There are two main kind of anechoic chambers, rectangular and tapered chambers. 
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Tapered anechoic chambers have a form of pyramidal horn, starting with a tapered 

chamber leading to a rectangular configuration at the test zone. Rectangular chamber, as 

the name suggests, has a rectangular shape as shown in Fig. 2.6. 

In the tapered chambers we can move the source near the apex in order to provide a 

nearly constructive interference with the direct rays at the test location. The direct and 

reflected waves near the test antenna region are vector added (due to in phase waves) 

providing a relatively smooth amplitude variation [18]. This smoother variation makes 

these chambers more suitable for radiation pattern measurements using low-gain antennas. 

For higher frequency, it becomes harder to place the source antenna sufficiently close to 

the apex that the phase difference between the direct and specular reflected waves can be 

maintained below an acceptable level. For these cases, it is common to use a high gain 

antenna whose radiation towards the walls is minimal, suppressing the reflections from the 

walls of the chamber. Also the source antenna is usually moved from the apex to a place 

closer to the end of the tapering section, simulating a rectangular chamber. This is the case 

of the used anechoic chamber in Aveiro University. 

This kind of chamber exhibits better low frequency performance, and provides 

significant cost saving as a result of less surface area, and also use of less expensive 

absorbers. Despite all referred advantages, these chambers exhibit several disadvantages 

compared with rectangular anechoic chambers.  

In tapered chambers there is a multipath effect which implies a simulation of not exactly 

a free-space environment (Quasi-free space). Because of this, the power density in the 

chamber will deviate from the distance (R) dependence l/R
2
; being dependent of the path 

difference and the reflection coefficient at the walls [20]. 

Tapered anechoic chambers can’t be used for measurements involving absolute field 

strength since they provide different path loss comparing to the one of free space, although 

relative gain measurements can be performed. 

This kind of anechoic chamber is also not suitable for measurements involving several 

sources or moving sources, or bistatic radar cross section. This is because only one source 

can be placed at the apex and the multipath effect provides deviated measurements for 

absolute gain results [20]. 

When a dependency of l/R
2
 is demanded or a more uniform testing chamber is 

preferred, the use of rectangular chambers (although they demand more space) is needed, 
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obviously bigger costs are involved. According with the anechoic chamber type and its 

placement different type of radio absorbers can be more suitable. A resume of those 

absorbers are described in next section. 

2.3.1  Wave Absorbers 

Radio wave absorbers in anechoic chamber are the materials which provide the 

absorption of radio waves that try to enter or exit the anechoic chamber. There are several 

common types of absorbers such as pyramidal, wedge, walkway foam absorbers and ferrite 

tiles. The use of these materials is not new, being its origins related to the efforts to build 

aircraft which absorbed or scattered radar signals during the World War II which provided 

radar camouflage [21]. 

The performance of the selected absorber is determined by the reflection coefficient (Г), 

which is the relation between the magnitude of reflected (Er) and incident (Ei) electric-

fields of plane waves, or alternatively, the absorber performance can also be described by 

reflectivity (R) in decibels, given by: 

         (| |)     (2.28) 

 

The smaller the value of R (dB), better the absorber performance. 

The reflections from absorbing material represent constructive or destructive 

interference at the receiving antenna of anechoic chamber, being the reason they should be 

minimized. 

 

2.3.3.1 Urethane Pyramidal Absorber 

Pyramidal absorbers are one of the most common materials used for absorption in 

anechoic chambers, being constitute in majority of urethane foam and loaded with carbon. 

These pyramids exhibit dimensions typically higher than λ/2.  

The effective impedance presented in this kind of absorbers is essentially 377Ω at the 

tip, changing gradually over the height h till impedance in the base of typically: 

  
   

√    
                 

(2.29) 
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This happens because the pyramidal have μr=1 being a non magnetic material and εr=2-

j1, low permittivity with losses. Like this it becomes electrically lossier with deepness. Due 

to this long taper, the signal will be progressively absorbed. For example, if we do not have 

the taper, the reflective coefficient would be of -12.4dB, where acceptable values are 

typically smaller than -30/-40dB. 

| |  |
     

     
|                 

(2.30) 

 

Fig. 2.7 Pyramidal absorber examples [19] 

The degree of carbon loading in the urethane foam is an important factor when 

producing these kinds of absorbers. Being the reflectivity greatly dependent on the quantity 

of carbon introduced in the foam. These variations of reflectivity versus thickness of 

carbon coating in the foam in relation with the frequency are described Fig. 2.8. 

 

Fig. 2.8 Normal-incident R for 1.22m urethane for diferent carbon loadings [22] 

It is seen that the better carbon loading for 1.22 meters pyramids is 34% and the better 

loading for the 2.44 meters pyramids is 26%. 

The pyramids act as impedance matching networks, being the amount of carbon loading 

determinant for the effective characteristic impedance of the pyramids. If the carbon 
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loading is too high, the impedance between free space and the absorber will be too abrupt, 

causing the incident wave to be reflected from the region near the pyramid tips. On the 

other hand, if the loading is too low, the incident wave that penetrates the pyramids will 

not be absorbed being reflected by the metallic chamber wall. By other words, it would be 

expected that a material of higher loss tangent and higher dielectric constant to provide 

adequate loss at reduced thickness, although, a material with these characteristics would 

lead to impedance different from free space, and consequently to higher front-face 

reflection. 

Usually pyramidal absorbers as standard, are painted with blue latex based paint 

because provides a good light reflectance from external lightning, reducing the 

requirements for lighting within the chamber. As a safety standard, this referred paint is 

treated with fire-retardant chemicals. Although, typically for bigger dimension pyramidal 

absorbers, the tips are not painted, providing a bigger absorption. It is important to 

consider that the paint provide some degradation of absorber reflectivity [22]. 

The performances of pyramidal absorbers are commonly specified as the reflectivity at 

normal incidence. A typical table describing its performance relating thickness versus 

frequency is shown Fig. 2.9. 

 

Fig. 2.9 General Pyramidal Absorber Performances [22] 

2.3.3.2 Twisted urethane pyramids 

This kind of pyramid is similar to standard pyramid, with the change of being rotated 

45º, presented in Fig. 2.10. These absorbers have the advantage of being constructed using 

less material exhibiting tips that droop less with age comparing with standard pyramids. 
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Fig. 2.10 Twisted urethane pyramid [22] 

This kind of absorber does not perform as well as standard urethane pyramids referred 

before, although, using different geometries and carbon loadings, these materials can be 

optimized to achieve reflectivity low as those archive with standard pyramids. 

2.3.3.3 Wedge Absorber 

Wedge absorbers have a shape of triangular prisms, they provide lower reflectivity at 

normal incident angle than typical pyramidal absorbers, but in counterpart they provide 

better backscattering absorption. 

 

Fig. 2.11 Wedge Absorber example [19] 

When an incident wave strikes the absorber wall by an oblique angle to normal vector, 

two erroneous signals are generated: a forward going reflected signal and a back-scattered 

signal. As referred in [23], the backscattering strength of wedge absorber is lower than 

pyramid absorber. So, to prevent back-scattered signal wedge absorbers are preferred. 

When the inclined angle of incidence is large, the relevance of back-scattered signal 

become also larger, so the focus in these situations should be more turned to prevent 
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electromagnetic wave from entering into quiet zone (receiver antenna position) by 

backscattering instead of the absorbing capabilities of material reducing reflected signal. 

 

Fig. 2.12 Pyramidal and Wedge reflection comparison [24] 

2.3.3.4 Ferrite Tiles and Grids 

Ferrite tiles absorbers have much smaller thickness (in order of mm) than pyramidal 

absorbers and are mainly used due to its flat shape. They provide a very attractive 

alternative to typical bulkier walky-way tiles which are low-density rigid polystyrene foam 

used to encapsulate a standard pyramidal or wedge absorber. Normally is also incorporated 

with a thin sheet of semi-rigid polyvinyl chloride foam adhered to the top to provide a 

walking surface [25]. 

From Maxwell’s equations is shown that a medium with complex permeability equal to 

its complex dielectric constant would have no reflection for radiation at normal incidence 

angle, because this medium would have impedance equal to free-space (377Ω). Ferrite 

shown to have these desired characteristics although for a narrow frequency range. 

With a big research in this area, ferrite based absorbers can provide nowadays 

reflectivity of 10 to 25dB in 30 to 1000MHz. 

 

 

Fig. 2.13 Ferrite tiles [25] 
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It is also common used ferrite grid (or waffle) instead of typical ferrite tiles. This kind 

of tile is constituted by a grid of square air sections cut into a ferrite tile. 

 

Fig. 2.14 Grid or waffle ferrite tile geometry [22] 

The reflectivity of the ferrite grid is very dependent of the filling factor (g=a
2
/p

2
), being 

a, the periodic ferrite length in the grid and p the periodic ferrite plus the air section length 

in the grid. The advantage of the implementation of ferrite grid geometry over the standard 

solid tile is the addition of a new parameter (the filling factor) that can be varied in order to 

minimize the reflectivity at a desired frequency. So, ferrite grid can be designed to have a 

reduced reflectivity in a desired frequency band providing better performance over that of 

the standard solid tiles by appropriately choosing the tile thickness and filling factor. 

Ferrite tiles perform well from 30 to 600 MHz [22] being a useful material for low 

frequencies, where the use of pyramidal tiles are size and cost inadequate. 

 

2.3.3.5 Hybrid Absorber 

As previous mentioned urethane pyramids provide low reflectivity above few hundreds 

of MHz, and ferrite tiles provide good reflectivity below several hundred MHz. Due to 

these materials characteristics they are usually combined to achieve a compact wideband 

absorber that performs well from 30MHz until dozens of GHz frequency range. 

 

Fig. 2.15 urethane-pyramid and ferrite-tile hybrid [22] 
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2.3.3.6 Improvement with dielectric layer 

The responsive bandwidth performance of ferrite can be improved dramatically by 

adding a dielectric layer (spacer) between the ferrite tiles and the metal wall, as describe in 

Fig. 2.16. This is also applied for urethane pyramid absorbers or hybrid absorbers. One of 

the most typical spacers used is wood. 

 

Fig. 2.16 Dielectric spacer between ferrite tile and metal wall [26] 

Like this, the absorber can be tuned to a desired frequency by varying the ferrite tile 

and/or dielectric layer thickness. This ability of being able to tune the absorber can be 

important when we are trying to eliminate undesirable resonances that may occur in certain 

room sizes. Although, we need to take in attention that to improve some certain frequency 

range zones with ferrite/dielectric, we will degrade the reflectivity in other frequency 

range. This is evident analyzing Fig. 2.17. 

 

Fig. 2.17 Reflectivity of varying dielectric spacer length [26] 
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2.4 Antenna Measurements Procedures 

Having understood the antenna measuring system it is now possible to correctly 

measure the antenna. In this section the procedures for impedance bandwidth, radiation 

pattern, gain, directivity, efficiency and polarization are described. 

All measurements assume the use of the previous equipments, a VNA and a far field 

anechoic chamber. 

2.4.1 Impedance bandwidth 

As previous described the antenna impedance bandwidth refers to the frequency band 

that presents a mismatch lower than 10% of the incident signal. 

This mismatch can be measured by the VSWR, RL or by the forward reflection 

coefficient (S11) having the threshold values resumed as in (2.18), here again referred: 

 

        (2.31a) 

 

   (  )
     (2.31b) 

 

  (  )      (2.31c) 

 

These measurements are commonly performed by a VNA but can also be performed by 

a SNA. The standard measurement procedure can be resumed as: 

1. Select a suitable cable (low loss and phase stable) for the measurement and 

properly connect it to the VNA; 

2. Select the measurement frequency range and suitable number of measurement 

points; 

3. Perform the one-port calibration and ensure that the cable is not moved; 

4. Conduct the measurements in an environment with little reflection 

(recommended in an anechoic chamber); 

5. Perform the measurements according with the desired parameter, VSWR, RL or 

S11 and analyze the frequency band below the threshold. 
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2.4.2 Radiation Pattern 

Radiation pattern measurements always refers to electric field or the power (which is 

proportional to the electric field squared) analysis. When in a linear scale, the field and 

power pattern may look very different, however, when the patterns are plotted on a 

logarithmic scale (dB plot), both the normalized field and power patterns are the same 

since         (      ) is equivalent to         (      ). Thus, in practice, we often 

plot the patterns in dB scale. 

The RP can be measured by the transmission coefficient (S21) between the source and 

testing antennas. The S21 measures the voltage gain which has the same value of power 

gain and can be analogue to E gain given as: 

   (  )         |
  

  
| (2.32a) 

 

        |
  

  
|  (2.32b)  

 

        |
  

  
| (2.32c) 

The field pattern is then given by the normalization of the total field pattern described 

by the vector sum of the two orthogonally polarized radiated field components: 

 (   )  √|  (   )|
 

 |  (   )
|
 

 (   ) (2.33) 

For a practical explanation let’s consider for instance the Fig. 2.18 where two planes are 

desired to be measured:  (     ), the elevation plane of φ =0º, and  (      ), the azimuthal 

plane of θ = 90º. 

 

Fig. 2.18 Antenna system reference 
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To measure the field radiation pattern with the antenna range measurement system 

previously described, the measuring procedure in a VNA can be defined as: 

1. Measure the S21, 
  

  
 between AUT and source antenna in φ for θ = 90º (azimuthal 

plane of θ = 90º). Perform the measurements with source antenna in vertical 

polarization   (      )and then with horizontal polarization   (      )
. 

2. Measure the S21, 
  

  
 between AUT and source antenna in θ for φ = 0º (elevation 

plane of φ = 0º). Perform the measurements with source antenna in vertical 

polarization   (     )and then with horizontal polarization   (     )
. 

3. a) Calculate the non-normalized RP for azimuthal plane of θ = 90º based on     

magnitude given as 

     (      )
 √|    (      )

|
 

 |    (      )
|
 

 (linear) (2.34) 

3 b) Calculate the non-normalized RP for elevation plane of φ = 0º based on     

magnitude given as 

     (     )
 √|    (     )

|
 

 |    (     )
|
 

 (linear) (2.35) 

4 a) Pattern normalization of azimuthal plane of θ= 90º in logarithmic scale given 

as: 

  (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
(  )

        

     (      )

   (     (      )
)
 (2.36) 

4  b) Pattern normalization of elevation plane of φ = 0º in logarithmic scale given 

as: 

  (     )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(  )
         

     (     )

   (     (     )
)
 (2.37) 

2.4.3 Gain Measurements 

There are several techniques that can be employed to make gain measurements. These 

techniques are described in detail in [20]. 
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A brief overview of each method will be described in this section. There are two main 

methods of gain measurements: absolute-gain and gain comparison (gain-tranfer). 

The absolute gain measurements are based on Friis transmission formula and can be 

performed by the two-antenna method and three-antenna method. 

Absolute measurements are not very accurate into a tapered anechoic chamber. For 

accurate measurements a rectangular anechoic chamber need to be used and the following 

criterions need to be fulfilled: 

 The antennas need to be well matched in terms of impedance and polarization; 

 Far field condition need to be verified; 

 The antennas are aligned for boresight radiation; 

 The system needs to be stable. 

 

2.4.3.1 Two-antenna method 

Two-antenna method is used when we have two identical test antennas whose gain is 

unknown, one as transmitter and the other as receiver. 

 

The measuring steps can be resumed as follows: 

1) Calibration of the system loss; 

2) Correct positioning in terms of polarization matching; 

3) Measurement of     between antennas,             (
  

  
); 

4) Calculation of path loss (PL),           (
   

 
); 

5) Calculation of antennas gain by the: 

( )   
 

 
[       (

   

 
)         (

  

  
)] (2.38) 

 

2.4.3.2 Three-antenna method 

Three antenna method is used when the antennas we want to measure are not identical. 

For this method three antennas must be employed and three measurements must be made. 

The measuring steps can be resumed as follows: 

1) Calibration of the system loss; 

2) Correct positioning of antennas in terms of polarization matching; 

3) Calculation of path loss (PL),           (
   

 
); 



Chapter 2 –Antenna Analysis 35 

 

4) Perform following set of measurements with a VNA: 

a) Antenna 1 as transmiter and antenna 2 as receiver 

(  )   (  )          (
   

 
)         (

   

   
) (2.39) 

b) Antenna 1 as transmiter and antenna 3 as receiver 

(  )   (  )          (
   

 
)         (

   

   
) (2.40) 

c) Antenna 2 as transmiter and antenna 3 as receiver 

(  )   (  )          (
   

 
)         (

   

   
) (2.41) 

5) Calculate the gain of each antenna by solving the following equations. 

(  )   (  )     (2.42a) 

 

(  )   (  )      (2.42b) 

 

(  )   (  )      (2.42c) 

 

(  )   
      

 
 (2.42d) 

 

(  )   
     

 
 (2.42e) 

 

(  )   
      

 
 (2.42f) 

 

2.4.3.3 Gain-Comparison 

Gain comparison method is used when we have a gain standard (with a known gain) 

match on measuring frequency. This is the techniques used for antenna gain measurement 

in this thesis which can be performed into a tapered anechoic chamber. 

The measuring steps can be resumed as follows: 

1) Place the AUT in receiving mode, and measure its received power (     ) 

2) Replace AUT by a standard antenna and measure received power (    )   

(The geometrical arrangement need to be kept intact)  

3) The two measures lead to following system of equations: 
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        (
   

 
)          (

    

  
) (2.43) 

 

     
     

        (
   

 
)          (

   

  
) (2.44) 

Where, 

      
 is the gain of the test antenna; 

     
 is the gain of the gain standard; and 

    
 is the gain of the transmitting antenna. 

 

4) Resolving the equations results in (2.45). 

      
      

         (
    

  

)         (
   

  

) (2.45a) 

 

      
         (

    

   

) (2.45b) 

 

If the test antenna is elliptically polarized (also circular polarized) its gain is measured 

by analyzing its partial gains at two orthogonal orientations, for example the horizontal and 

vertical orientation. First we measure (use comparison method) the gain in the vertical 

orientation GTV. Then rotate the antenna about its axis through 90º and measure its gain in 

the horizontal orientation GTH. The total gain of the antenna GT related to an isotropic 

antenna with same polarization given by: 

(  )          (       )  (2.46) 

2.4.4 Directivity 

The directivity is directly related to the pattern measurements. Once the pattern is found 

over the sphere, the directivity can be determined. 

Directivity is defined as the ration of antenna radiation intensity ( (   )) in a given 

direction over the radiation intensity of an isotropic source which is often expressed in     

given as: 

   
 

  
 (2.47a) 

 

  
 

       
 (2.47b) 
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Where, U = radiation intensity (W/unit solid angle) 

 U0 = radiation intensity of an isotropic source (W/unit solid angle) 

      = total radiated power (W)  

The radiation power can be found by integrating the radiation power pattern  (   ) over 

a full sphere. Substituting this integrated expression for      in (2.47a)) it results in: 

   
    

 
  ∫ ∫  (   )    ( )      

 

 

  

 
 

 (2.48) 

 

The numerical equivalent is given as: 

 (   )   
    

 
  

∑ *∑  (     )
    (  )      

   +  
   

 (2.49) 

 

Or in terms of relative radiation intensity as in (2.50): 

    
 

 
  

∑ *∑  (     )
    (  )      

   +  
   

 (2.50) 

Where N and M are the number of points in the   and   plane respectively. 

With gain and directivity measured it is then possible to calculate the antenna efficiency 

as       . 

2.4.5 Circular Polarization Measurements 

To characterize the circular or elliptical polarization properties of an antenna it is often 

analyzed in terms of circular polarization purity which can be discriminated by the 

polarization ellipse, tilt angle and its sense of rotation. 

In order to measure the purity of LH and RH components it is performed a field 

transformation of magnitude of vertical and horizontal E components (   and   ) to 

magnitude of right and left hand CP E components (      and      ). 

      
 

√ 
(      ) (2.51) 

 

      
 

√ 
(      ) (2.52) 

And the calculation of the phase angle is given by         (  )       (  ) , 

where    and    are the E field components in complex form. If 
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     ⇒                   

     ⇒                  

We can now represent the radiation pattern in LHCP and RHCP components. 

To perform the calculation of the polarization ellipse (major component, minor 

component and tilt angle) we just need to perform the following calculations. 
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 (2.53) 
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 (2.54) 

 

  
 

 
 

 

 
      [

     

  
    

     (   )] (2.55) 

 

The AR can now be easily calculated given by    
  

  
. An antenna is considered with 

circular polarization with         , the relation between polarization ellipse 

components can be smaller than √ . 

2.5 Summary of this chapter 

This chapter provides the background of antenna analysis, a short explanation of EM 

simulators and the description of antenna measuring equipments and procedures. 

The knowledge of simulator and measuring system limitations are of high importance. It 

can provide an optimization of simulation time and the knowledge of the measuring system 

and equipments is essential to correctly perform the desired measurements and to know its 

level of accuracy. This chapter intends to guide antenna engineers in fundamentals, 

simulators and measuring systems. 
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Chapter 3  – Indoor LS techniques and requirements 

Indoor positioning systems have attracted researchers’ interest over the last decade. 

These systems can provide navigation, tracking or monitoring services where Global 

Navigation Satellite Systems (GNSS), such as Global Positioning System (GPS) [27], 

Global Orbiting Navigation Satellite System (GLONASS) [28], and Galileo [29] are 

unfeasible solutions. 

Indoor localization systems can be categorized as token or token-less according to 

whether or not the mobile unit carries any device used for the localization process [30]. 

Token localization presents a wider variety of technologies and systems that have been 

developed by different companies, research centers and universities. These systems have 

been implemented based on several technologies: infrared (IR) [31],[32], Bluetooth [33] 

radio-frequency identification (RFID) [34], wireless local area networks (WLAN) [35]-

[38], Ultra-wideband (UWB) [39]-[43], ultra-sound [44]-[47], magnetic positioning [48] 

and audible sounds [49],[50]. 

On indoor localization systems, devices have been categorized by their role in the 

system, although, according to different technologies, applications or authors, several 

nomenclatures have been presented in the literature. For a coherent reading of this thesis, 

localization system devices are categorized into two groups: reference and mobile units. 

Reference units refer to the devices in known positions relative to the system, behaving as 

a reference and localization support for tracked units. Mobile units refer to the devices in 

unknown positions and desired to be estimated. 

Nowadays a wide variety of antennas has been applied for wireless communications 

although not all are suitable for localization systems. 

This chapter explains the main localization techniques used in indoor localization 

systems and intends to guide antenna designers toward developing reference unit antennas 

suitable for indoor localization. 
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3.1 LS Techniques 

In this section, each of the main localization techniques applied for token systems can 

be divided in: triangulation (lateration and angulation), received signal strength (RSS) 

scene analysis (fingerprinting) and proximity based [3]. 

3.1.1 Triangulation 

Triangulation is a technique that uses the geometric properties of triangles to estimate 

the target localization and can be divided into two derivations: lateration and angulation. 

Lateration or range measurement technique, estimates the position of a mobile unit 

according to its distances from multiple reference units. The distance is mainly derived by 

computing the measured RSS, or derived by the signal propagation time of flight, ToF, 

typically divided as time of arrival (ToA), time difference of arrival (TDoA) and round-trip 

time of flight (RToF). The other derivation of this technique is the angulation, commonly 

called angle of arrival (AoA) or even direction of arrival (DoA). The sub-categories of 

triangulation will be now described. 

3.1.1.1 Time of Arrival (ToA) 

ToA technique derives the distance between two devices by measuring the one-way 

propagation time between them, knowing a priori the signal propagation speed. The 

distance between these device d, is given by d = s (t2 – t1), where t1 is the transmitting time 

of the signal, t2 the time needed for the signal to arrive at the receiver and s is the signal 

propagation speed. The calculated relative distance between the devices together with the 

knowledge of the reference units absolute positioning provides the chance to calculate the 

localization of mobile units. 

The estimation of the localization can ideally be seen as the interception point of 

circumferences (or spheres on 3D plane) centered on reference units and radius (Rx) of 

estimated distance to the mobile unit as shown in Fig. 3.1. 

For the correct position estimation based on ToA techniques, a precise synchronization 

of all networks devices (mobile and reference units) is required, also as the timestamp 

information (sent on the transmitted packet). ToA techniques provide high accuracy 

although at a cost of higher hardware complexity. 
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R1 R2

R3

 

Fig. 3.1 Representation of ToA localization technique 

3.1.1.2 Time Difference of Arrival (TDoA): 

TDoA technique determines the relative position of the units based on two different 

approaches: difference in the propagation time of a transmitted signal between a single unit 

and three or more reference units; Difference in the propagation time of multiple signals 

from a single source unit and three or more reference units. 

The first described approach requires precise synchronization of reference units. TDoA 

can after be estimated performing the correlation between received signals for each pair of 

measuring units. The TDoA refers to the time value which maximizes the cross-correlation 

function. By this reason only reference units (rather than all units for ToA methods) need 

to be synchronized. The distance estimated to the mobile unit by the TDoA between two 

reference units is given by a hyperboloid function [8]. Based on the chosen TDoA pairs, 

the interception of two hyperboloids gives the position of the mobile unit, as in Fig. 3.2  

These relative coordinates, along with the knowledge of reference units’ position, 

provides a base to estimate the localization of mobile units. 

RA

RB

RC

RB-RA

RC-RA

 

Fig. 3.2 TDoA localization technique representation 
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In the second case the mobile units need to be equipped with extra hardware capable of 

sending two types of signals simultaneously. These signals must have different propagation 

speeds, like radio/ultrasound [44] or radio/acoustic [50]. Knowing at priori the position of 

three reference units and the TDoA between the two signals, the localization of the mobile 

units can be estimated. This approach does not require synchronization of the 

infrastructure, although they need extra hardware to send the second signal, which 

typically has limited range. TDoA localization systems also provide high accuracy. 

3.1.1.3 Round Trip Time of Flight (RToF): 

RToF technique or ToA two-ways ranging, measures the complete trip ToF of the 

signal between the transmitter and the receiver units. These systems do not demand precise 

clock synchronization as systems based on ToA, nevertheless it is crucial to know the 

exact processing time of the “responder”, typically measured in a calibration phase. Errors 

on this measurement have significant impact for the system localization resolution, critical 

for small range systems. The representation of this technique is presented in Fig. 3.1 

although the measured RToF represents the propagation time of the signal to cross distance 

Rx twice with the incremental time processing delay. 

3.1.1.4 Received Signal Strength Indication (RSSI): 

RSSI represents the receiver measured RSS and can be used to estimate the distance 

between devices based on signal attenuation models, typically log-normal [51]. This 

technique has the advantage of simplicity of implementation and low cost mainly because 

wireless system receivers are commonly integrated with RSS measurement capabilities, 

which were initially used for other purposes such as automatic gain control or even 

transmit power control. 

In real environments such as indoor environments where it is difficult to find the LoS 

(Line of Sight) between units, the RSSI is highly affected by multipath fading, shadowing 

and even antenna type, making it challenging to develop a mathematical model of the 

channel that matches with the real propagation, resulting in inaccurate distance 

estimations. Other parameters such as Link Quality Indicator (LQI), Packet Reception 

Ratio (PRR), Signal-to-Noise Ratio (SNR) and Response Rate (RR) can be used to support 

the localization process. When low cost is in priority over accuracy, these systems provide 

a suitable solution. Converting the RSSI into distance, the estimation of mobile unit 
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localization can be performed by the interception of three circumferences centered on the 

reference units. 

3.1.1.5 Angle of Arrival (AoA) 

Angulation is other derivation of the triangulation technique, commonly called angle of 

arrival (AoA) or even direction of arrival (DoA). It estimates the unit localization 

computing angles relative to multiple reference points. This angle can be related to its own 

unit, to an electronic compass or even to a second signal received by the unit. The 

estimation of the AoA is done by the use of several directive or antenna arrays described in 

Fig. 3.3. 

The main advantage of this technique it that if the mobile unit orientation is known, 

only two measurements of non collinear reference nodes are needed for 2-D localization 

(three for 3-D localization) and there is no need for time synchronization between units, 

[52]. The disadvantages of this technique rely on the need or large and complex hardware 

requirements. 

The localization based on these systems relies on accurate angle measurements which 

becomes less precise as the unit moves further away from the measuring unit and are, 

highly affected by multipath or even by directivity of the measuring aperture. 

Δθ 

θ1 

θ2 

North

θ3 
θ1 

θ2 

 

Fig. 3.3 AoA with known orientation A) and without known orientation B) 

3.1.2 RSS Scene Analysis 

RSS scene analysis is a localization technique that estimates the mobile unit position 

matching the online scene collected features (fingerprints) with the closest fingerprints 

saved a priori on a database, as presented in Fig. 3.4 
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Fig. 3.4 RSS fingerprinting representation 

 

This technique is performed in two phases: offline and online. During the offline phase, 

the position coordinates and respective RSS collection from nearby reference units is 

gathered. During the online phase, localization fingerprinting algorithms uses the observed 

RSS collection to estimate the mobile units’ position. 

Positioning with signal strength fingerprinting algorithms is usually based on 

deterministic and probabilistic approaches, neural networks and decision trees. A 

comparative survey of WLAN location fingerprinting can be found in [53]. 

The main drawbacks to this technique are the consuming time calibration, which needs 

to be updated in case of localization environment changes, and the need of high 

computational cost and space to store network information. 

3.1.3 Proximity 

The proximity method simply provides symbolic relative localization information. If a 

mobile unit is detected by a single reference unit, the mobile position is associated to it. In 

case of more reference units’ detection, the mobile unit position is related to the unit that 

detects the strongest signal. This technique is commonly applied to localization systems 

based on infrared, RFID or even cell identification, where positioning is related to the 

cellular network cell that the device is using at a given time. 

3.2 Antennas for Localization requirements 

According to the technology, technique and nature of the signals being processed, 

different antennas have been applied for radio frequency (RF) localization systems. The 

infrastructure of the localization system, formed by reference units, has been mainly 

integrated with omnidirectional radiation pattern antennas. Nevertheless, diversity of 

radiation pattern starts to become a desired feature for performance enhancement of these 
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systems, which is possible due to sectorised antenna arrays (SAA), multiple directive 

antennas with different discrimination zones, phased arrays or even adaptive arrays, also 

called Smart Antennas [54]. 

The use of omnidirectional, directive, SAA, phased arrays and Smart Antennas can be 

applied to localization systems reference units based on different models of localization as 

presented in Fig. 3.5. One common model is based on a set of omnidirectional antennas 

distributed over the localization scenario, as presented in Fig. 3.5-A. This model is 

typically implemented for lateration and fingerprinting techniques and it is widely 

implemented in WSNs. Another model passes by the use of directive antennas for a more 

confined localization based on proximity, widely implemented on RFID systems. This 

localization model is presented in Fig. 3.5-B as an access control system with directive 

antennas over the room doors. SAA/Phased/Smart Antennas can also be used for the 

localization process, which when well implemented, can provide higher coverage, higher 

accuracy, increased system capacity, signal-to-noise ratio improvement, multipath 

rejection and the reduction of needed reference units leading to reduced system cost.  

However, these antennas inherently imply a larger and more complex implementation 

comparing with previously described antennas. The localization process of systems 

integrated with these antennas can be performed based on: analysis of the signal received 

by the elements of one or more antenna arrays with appropriate signal processing 

algorithms support; or even performing a sweep of the radiation beam for the DoA 

estimation. SAA can be used to analyze the signal received by multiple directive elements 

or even by the sweep of fixed number of radiation beams, six in the case presented in Fig. 

3.5-C. Phased arrays or smart antennas can provide higher directivity and higher number of 

radiation beams making it suitable for single tracking and sweep of the radiation beam, as 

shown in Fig. 3.5-D. Notice that Fig. 3.5-C and D are only presented with one single 

antenna array although several arrays can be applied. Despite of its benefits, the paradigm 

of localization based on these antennas demand proper modifications of the medium access 

control layer and routing techniques [55]. 
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Besides the radiation pattern, antenna bandwidth and polarization are two important 

characteristics to consider when designing antennas for localization systems.

Phased Arrays/
Smart Antenna

SAA

Directive antennas

Omni antennas

A

B

C

D

 

Fig. 3.5 LS models: based on omni antennas A); single directive antenna B); with SAA 

C) and with phased/smart antenna D) 

 

Different localization techniques demand antennas with different bandwidth 

requirements and a proper polarization which can improve the quality of measurement 

signals. These antenna requirements will be discussed further in this chapter. 

Indoor localization systems have been widely implemented with a large variety of 

antennas. In this section an overview of antennas for localization system will be presented 

focusing on the ones integrated on reference units. This section is divided according to the 

nature of the measurements for the localization process as: RSS; ToF and DoA. 
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3.2.1 Antennas applied for RSS 

RSS localization systems can be divided based on: RSS lateration, fingerprinting and 

proximity techniques. The performance of these systems is related to RSS measurements 

which in indoor environments are highly affected by several factors such as [6]: 

 Multipath fading and shadowing; 

 Interference of other electrical field sources; 

 Transceiver hardware inaccuracies on RSS measurements; 

 Low probability of LoS path availability;  

 User mobility. 

 

Besides previously referred factors, the used antennas have a significant impact of 

localization system performance that demands careful implementation according to several 

factors such as: radiation pattern, polarization, gain, bandwidth and efficiency. 

As it is standard for all antennas integrated with reference units, they are designed to be 

robust, inexpensive, impedance matched over the entire operational bandwidth, small and 

highly efficient. These characteristics are important for the correct performance of the 

antenna which inherently affects the system localization errors. Nevertheless, other antenna 

characteristics such as radiation pattern and polarization should be carefully chosen 

according to different localization systems, as will be discussed next. 

 

Antennas applied for RSS lateration: antennas used as reference units for RSS 

lateration technique are desired with a perfect isotropic radiation pattern providing a 

homogeneous signal transmission over 3-D dimensions. Unfortunately, these antennas do 

not exist. Due to this limitation, a simple and common solution passes by the 

implementation of antennas with omnidirectional pattern over the azimuthal plane. 

The mobile units, are widely carried by users for its localization, move and rotate 

according to the human motion profile, mainly over azimuthal plane with reduced rotation 

over elevation. Considering that this human movement and rotation profile is known a 

priori, the vertical polarized omnidirectional antennas on clear LoS are desired. To achieve 

these characteristics, antennas of mobile units should be applied on human heads providing 

a clear LoS or even on the shoulders, although this would provide impractical solutions for 

the user and specifically regarding human specific absorption rate (SAR). A possible 
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solution to achieve these desired characteristics can be achieved by the use of wearable 

antennas [56],[57]. Considering a case where polarization orientation of the antenna on the 

user is guaranteed, co-polar linear vertical polarized antennas on reference and mobile 

units are preferred. 

Omnidirectional pattern with vertical polarization can be achieved with a correct design 

of a wide variety of antennas, although simplicity and cost make half-wavelength dipole or 

quarter-wavelength monopoles (in case of ground plane availability) the most used antenna 

types. For applications with higher azimuthal range needs, omnidirectional antennas with a 

higher gain and vertical polarization antennas can be implemented by the use of slot arrays 

or collinear arrays of half-wavelength dipoles can also be used [54]. 

In case of the mobile units that do not provide guaranteed polarization orientation, such 

as the use of localization devices as bracelets where the natural body movement cause 

change over time, reference units are desired with circular polarization (CP). The use of 

these antennas as reference units provide a solution less dependent on mobile unit 

orientation, although at the cost of localization range considering the typical linear 

polarized tracker antennas.  

Several systems based on simple RSS lateration have been presented in literature, 

mainly with commercial linear omnidirectional antennas [4],[6], [58]. 

 

Antennas applied for RSS fingerprinting: localization systems based on RSS 

fingerprinting rely on an offline calibration phase which should be as similar as possible to 

the online phase conditions. These conditions refer not to the localization scenario and 

environmental conditions, but also to the network units’ characteristics during the 

calibration phase. Considering that calibration conditions are maintained, the system 

performance ideally does not depend on the antenna characteristics. However, the exact 

calibration conditions are not always guaranteed, but the less variance of the measurements 

when compared with the calibration results is of primordial importance. This variance in 

measurements can result from several interference sources or even by user movement and 

rotation. 

Antennas with omnidirectional radiation pattern lead to smaller RSS variances than 

directional antennas over the entire radiation pattern making its use preferable for 

fingerprinting. Another point of interest is its polarization orientation, depending on 
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whether or not the polarization of antenna mobile units is guaranteed with vertical 

polarization, vertical polarized or circular polarized antennas should be preferred. The last 

approach provides less RSS variance with the tracker rotation, leading to smaller errors 

based on fingerprinting techniques. 

Localization systems based on fingerprinting have been widely applied for WLAN, 

WSN and RFID, commonly integrated with commercial monopole and dipole antennas 

[34]-[37]. These characteristics are mainly justified once again by the omnidirectional 

radiation pattern, robustness, size and cost. A wider quantity of fingerprinting based 

localization systems have been presented in literature, nevertheless, antenna characteristics 

during calibration and online phase is often omitted. For a correct analysis and validation 

of results this information should be mentioned regarding radiation pattern and 

polarization. 

 

Antennas applied for proximity: localization systems based on proximity cannot be 

considered real time localization systems (RTLS), in the sense that the mobile node 

localization is only performed if the mobile unit passes near reading zones and not 

constantly tracked over the localization scenario. Due to this different approach the 

antenna requirements also change in order to optimize the performance of these systems. 

This localization technique is mainly applied for Ultra High Frequency (UHF) and 

microwave passive RFID widely used in security/access control, asset management, 

transportation and animal tracking. 

These systems are generally implemented for localization of large quantities of RFID 

tags (RFID mobile units) under diverse localization scenarios where size, cost, efficiency 

and reliability are the main restrictions. Being an antenna a main component of a tag it is 

crucial to be inexpensive, with reduced dimensions and high efficiency [59]. The huge 

variety of RFID applications commonly without availability of ground plane makes dipole 

or dual dipoles for reduced orientation dependency, the most used tag antennas [60]. On 

these localization systems, due to cost and size, the located tag is typically a device with 

linear polarization and no uniformity of orientation. Impedance matching over operation 

bandwidth and mechanical robustness requirements are a key point. The antennas for the 

passive UHF RFID readers (RFID reference units) are mainly designed with high quality 

circular polarization to mitigate the problem of tags orientation sensitivity, high gain and 
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low side lobes for high directive range applications. Wide bandwidth is also desired for 

universal UHF RFID compatibility (840−960 MHz). Although, if tags orientation is 

guaranteed, linear readers can be more suitable for creating a focused and oriented 

electromagnetic field used for greater range and deeper penetration. According to the 

localization scenario and desired application, omnidirectional radiation pattern antennas 

could be more suitable. A representation of a RFID system implemented with directive 

antenna is presented in Fig. 3.6. 

 

Fig. 3.6 RFID System working with proximity technique 

 

Several studies also have been performed on multi band RFID reader’s antennas, 

although, antenna characteristics uniformity over the bands are harder to guarantee which 

can affect the performance of the localization system. 

Several reader antennas useful for RFID proximity systems have been implemented 

such as: microstrip patch, dipole, slots, spiral and helical antennas. A wide study has been 

presented for RFID reader antennas [61]-[68]. A comparison of handheld UHF RFID 

reader planar antennas and the reading range has been performed, [61], where fractal 

implementations were also analyzed. Unidirectional dual band antennas, with advantage of 

RFID operation over two bands, UHF and microwave RFID also have been presented [62]. 

UHF RFID reader antenna with CP and high Tx/Rx isolation is discussed in [63] or even 

with different exciting techniques suitable for compact CP antennas [64]. Reader antennas 

covering the entire UHF RFID band (860-960MHz) and a suitable CP have been reported, 

with helical, spiral shapes and two corners truncated patches respectively [65]-[67]. A 
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discussion of the propagation aspects of passive RFID systems and suitable tag antennas 

has also been presented [68]. 

3.2.2 Antennas applied for ToF 

As previously mentioned, ToF system can rely on the measurements of DToA between 

two different speed propagation signals or even based on the ToA of ultra-short 

electromagnetic pulses. RF ToF localization systems can be efficiently implemented using 

UWB technology, mainly because of a high time resolution. UWB technology occupies a 

minimum bandwidth of 500 MHz or at least 20% of the cental frequency, demanding for a 

wide spectrum allocation for these applications (3.1-10.6 GHz) [69]. 

Indoor localization systems based on Impulse Radio UWB are commonly characterized 

by low power consumption and transmission of low data rate using very short-pulses 

spread over a wide bandwidth [70]. The high data spreading rate, due to low data over a 

large bandwidth allows not only the transmission over reasonable distances for indoor 

localization, but also improves the robustness to interference from narrowband interferers 

(jammers) and/or other UWB devices. Furthermore, a large absolute bandwidth allows 

very precise ranging, since the ranging accuracy is proportional to the bandwidth of the 

emitted signal [71]. 

UWB have been proven to be useful for indoor localization which made IEEE 

802.15.4a Working Group regard UWB as the first choice for high accuracy indoor 

localization [72],[73]. 

The availability of synchronization in UWB systems combined with short transmitted 

pulses provides a chance to avoid multipath fading by reducing the overlap on the original 

signal. Nevertheless, there is always a chance of false-alarms (identification of LoS as Non 

LoS (NLoS)) which degrade the localization accuracy [74]. 

Mainly due to the strong research over UWB transmission techniques over the last 

years, UWB, in general, is now considered better than conventional narrowband 

modulation and multiple access techniques at meeting the WSN requirements (low cost, 

low power consumption, robustness, localization accuracy) [75]. 

Once again, the antennas play a crucial role in the performance of these localization 

systems however, the design of UWB antennas are much more challenging than narrow 
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band antennas [76]. The main desired characteristics of the reference unit antennas for 

localization systems based on RF ToA can be described as: 

 

 Bandwidth coverage of the operational channel (minimum 500MHz for 

802.15.4a) and ideally covering the entire UWB band; 

 Omnidirectional radiation pattern (for uniform coverage); 

 Antenna uniformity over entire operational bandwidth (radiation pattern, gain, 

polarization and impedance matching); 

 Reduced dimensions and cost requirements (for integration with several 

equipments or printed circuit boards); 

 High radiation efficiency due to the extreme low power transmitted signal, 

typically >70%; 

 Linear phase in the time domain (constant group delay is desired to prevent 

pulse distortion); 

 Physically compact with low profile (preferably planar due to easier 

manufacture and implementation). 

 

Conventional UWB localization systems based in ToF (more than three reference units) 

are commonly used as unidirectional TDoA systems needing only precise synchronization 

of the infrastructure reference units [39]. Unidirectional ToA or bidirectional RToF 

techniques can also be applied. On ToA technique the transmission time of the mobile unit 

need to be known, demanding synchronization of the entire network; for the RToF less 

demands of synchronization are required but an additional calibration phase should be 

performed [41],[77]. 

Several interesting UWB antenna approaches have been presented in literature with 

different planar formats (e.g. rectangular, triangular, elliptical, spiral, fractal geometries) 

for high bandwidth, omnidirectional patterns and/or polarization concerns [78]-[80]; 

different feeding techniques (e.g. simple, two-branch, trident strip) that can improve 

polarization purity [81]; different geometries (step-shaped, cross-square, U-shaped, rolled, 

cross-plate) for stability of radiation pattern across the UWB band [82]; and integrated 

with suitable band-notches to reduce interference over specific bands [83]-[85]. 
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Another desired characteristic for UWB reference unit antennas is its implementation 

with CP over the entire band, making it suitable to detect targets for which polarization is 

unknown [86]. A good example of UWB CP antenna is presented in [86], a spiral antenna 

with axial ratio below 3dB from 3 to 14.5 GHz and return loss better than 10 dB from 3.75 

to 18.6 GHz. This antenna also provides reduced pulse distortion and the feeding structure 

is performed by the integration of a tapered microstrip balun making its construction 

completely planar.  

3.2.3 Antennas applied for DoA 

Localization based on DoA technique relies on accurate angle measurements, although, 

the accuracy of these systems is highly influenced by multipath reflections, shadowing or 

even the directivity of the measuring aperture. 

The estimation of the DoA can be achieved by the use of antenna arrays or directional 

antennas that improve the system in terms of capacity, connectivity and spectrum 

efficiency. Different approaches have been proposed and applied to localization systems 

based on DoA, usually integrated with RSSI and ToF measurements. 

Several different antenna implementations as reference units have been reported for 

positioning integrated with DoA approaches, some of them can be described as follows: 

 

 Narrowband SAA estimates the localization based on DoA algorithms 

considering RSSI and/or phase measurements of antenna elements [87]; 

 UWB SAA estimates DoA based on amplitude difference of the received UWB 

pulse between each antenna elements [88],[89]; 

 UWB mono-pulse radar systems estimates localization based on DoA 

(difference of signal phase and amplitude at receivers) and RToF to measure the 

distance [90],[91]; 

 Switch beam, phase antenna array or mechanical rotation of a directive antenna 

performing a sweep of the beam over the localization area (typically at a 

constant angular speed) to estimate DoA and the distance based on RSSI and/or 

phase measurements [92]-[96]; 

 UWB uniform linear array estimates localization based on DoA algorithms [97]. 



54  Sectorial Antennas for WSN Localization Systems 

 

According to the previously mentioned approaches, one or several reference units are 

required and appropriate MAC protocols need to be developed in order to potentiate the 

correct localization environment coverage and localization resolution [55]. 

Antennas suitable for localization based on DoA are required with different 

requirements according to previous approaches for DoA estimation. For narrow band 

systems, reference units are typically desired with narrow beam width to provide higher 

accuracy and higher range, CP to mitigate polarization diversity problems and reduced 

coupling between neighbor antennas to avoid radiation pattern distortions; for DoA based 

on UWB systems, the requirements are similar to UWB ToF systems with the addition of 

shorter beam width and reduced coupling between the neighbor antennas. Both approaches 

are desired to be applied as printed circuit boards providing manufacture and 

implementation cost advantages. 

Antennas suitable for DoA with possibility of independent localization zones have been 

presented. SAA over a semi dodecahedron shape with CP and designed for ISM 2.4 GHz 

systems are presented in [87], although [J2] presents higher gain by the use of patch 

excited horn antenna array. 

In [88],[89] and [98] SAA for UWB applications are presented. Antennas implemented 

for azimuthal coverage by the use of six directive antennas into prismatic structures are 

presented in [88],[89] and in [98] with seven multilayer microstrip antennas integrated into 

a semi-spherical polyhedral antenna array configuration. DoA also can be obtained by 

other switch beam UWB antennas such as double square loop antennas [99] and linear 

arrays implemented with beam forming networks [100]. UWB radar systems based on 

DoA and RToF have been presented in [90][91]. Similar implementations have been 

presented for narrowband WSN based on sectorial sweeper or tracking systems. The 

distance of these systems is not based on RToF but instead on RSSI measurements. In 

[92],[94] the systems are based on linear antenna arrays and in [95] in a rotating directive 

antenna.  

Circular monopole antennas have also been applied to DoA finding based on sector 

switching, obtained by two main topologies [101],[102]: 

 

 One central monopole operating as main antenna for emitter/receiver connection 

while surrounding peripheral circular array may be switched connected as 
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different reactive loads, usually called electronically steerable parasitic array 

radiator (ESPAR). 

 No central monopole is present and the circular symmetry is broken by 

connecting specific antenna elements to the emitter/receiver, where the others 

are connected to some reactance or short-circuited to the ground plane. 

 

Several ESPAR antennas based on monopoles have been presented, mainly for 2.4 GHz 

ISM band with different number of parasitic elements [103]-[106] or even for UWB [107]. 

This previous topology of switch beam based on parasitic elements also has been 

reported with other antenna types such as slot and planar microstrip antennas [108]-[113]. 

For a more clear description of the antennas implemented for DoA we divided the 

antenna arrays into three main blocks, ESPAR antennas, Linear/Planar Arrays and SAA. 

Each of the previous antenna arrays can be connected to different beam control networks 

according to the DoA estimation approach, as presented in Fig. 3.7 afterwards. 

The first antennas block provides the beam control by the integration and control of the 

reactance of parasitic elements, being here defined as ESPAR antennas. Different antenna 

types can be used as radiating and parasitic elements such as monopoles, microstrip or 

even slot antennas. Each of these approaches can even be integrated with or without a 

central radiating element. 

The second antenna block is described as linear and planar arrays, where the gain/phase 

control of each element provides the chance to manipulate the array radiating beam. These 

arrays can be performed with different antenna types and format, linear or circular arrays 

or even diverse planar forms. 

The last antennas group described in this paper for DoA calculation is referred as 

Sectorised or Sectorial Antenna Array (SAA) and represent the antenna group based on a 

set of directive antennas in different directions. These solutions are typically designed with 

prismatic implementations providing azimuthal coverage or with polyhedral 

implementation for a semi-spherical coverage. These antennas can be implemented with 

any directive antenna elements, although, they are typically implemented with planar 

formats due to size and cost constrains. 
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Fig. 3.7 Antennas and beam control networks for DoA 

According to the implemented DoA localization approach, previous referred antennas 

can require a radiation beam control which can be performed by several possible 

techniques, such as: switched beam forming networks (i.g. Butler and Blass Matrix), 

switch control of radiating antenna elements or even by a phase/gain control for each 

antenna element. Although, localization based on DoA can also be performed without 

beam control, using the antenna arrays received signals and appropriate signal processing 

algorithms (i.g. MUSIC, ESPRIT [114]-[116]). 

Mechanical rotation of a directive antenna can also be performed to control the radiation 

beam, and like this, be used for DoA estimation. 
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3.3 Concluding Remarks 

This chapter presents the main types and requirements of reference unit antennas for 

indoor LS are present based on three different measurements: RSSI, ToF and DoA. 

The RSSI approach typically relies on narrow band omnidirectional with linear or 

circular polarized antennas according to polarization orientation on mobile units. ToF 

approaches are mainly designed with similar needs, although with larger bandwidth 

requirements which lead to new design constrains such as: uniformity of antenna 

characteristics over the entire operational bandwidth and linear phase in the time domain. 

DoA provided a much complex and wider arrangement of antennas that can be used as 

an arrangement of sectorised antennas elements or by a rotative or switch beam over the 

space. Several antenna approaches for localization such as: linear and planar antenna 

arrays, SAA, ESPAR antennas have been presented. 

Based on the signal nature for the localization estimation, different reference unit 

antennas can be more suitable than others, as previously explained. For demonstration 

purposes consider a localization system based on fingerprinting. The choice of several 

omnidirectional antennas with CP would be preferred over a single or few SAA 

considering the same number of antenna elements. Due to the reduced distribution of SAA 

elements over the localization system, they also would become more susceptive to 

variations on localization system environment. However, if we consider a conference 

amphitheater, typically with a high ceiling, providing a good probability of LoS with the 

mobile units, the use of a central or few SAA would be preferable reducing mounting 

efforts of the LS to fewer devices, with expected similar results. 

Non continuous low power localization systems could also benefit from high efficient 

SAA/Smart antennas compared with omnidirectional antennas, being more suitable for 

energy harvesting capabilities during the non-localization intervals [117]. 

LS performance can highly benefit from the use of appropriate reference unit antennas 

according to the localization technique. The antennas not only have a direct impact on 

system accuracy but also on: availability, number of reference units, portability, size, cost 

and power consumption. Based on these principles two sectorial antennas were developed 

described in next chapter. Other antennas were also developed, mainly for communication 

purposes at 5 GHz. These antennas present cheap solution based on FR4 with different 

characteristics in impedance bandwidth, polarization and gain. 



58  Sectorial Antennas for WSN Localization Systems 

 

3.4 Summary of this Chapter 

This chapter explains the main localization techniques used in indoor localization 

systems and intends to guide antenna designers toward developing reference unit antennas 

suitable for indoor localization. 

According with the signal nature for the localization estimation different antennas can 

be more suitable. This chapter explains the difference of LS requirements according with 

the signal measurements and their suitable antennas. 

The study presented in this chapter was published in the International Journal of 

Antennas and Propagation [J1]. 
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Chapter 4 –Developed Antennas 

A possible solution to increase WSN Localization Systems (WSN-LS) resolution can be 

achieved integrating RSS and AoA measurements, similarly to the solution in [118]. 

In WSN-LS mobile nodes typically correspond to a high number of elements where 

size, cost and omnidirectional radiation pattern are the three main concerns. By these 

reasons they are commonly integrated with monopoles, dipoles, ceramic chip antenna and 

recently with wearable antennas [119]. 

On the other hand few fixed or reference nodes are usually integrated with higher 

complexity level which is typically inversely proportional to the required number of nodes 

for the localization process. For systems based on angle measurements, the correct 

discrimination of the AoA demands a carefully control of a directive beam. A cost 

effective solution to control the radiation pattern can be achieved with the use of switch 

beam antennas or sectorial (or sectorised) antennas (SA). 

In this chapter it is analyzed and measured the developed sectorial antennas, a 

narrowband antenna for 2.45 GHz and UWB covering the 800– 2500 MHz band. Then it is 

presented three antenna approaches for communication purposes operating at 5.8 GHz. 
Fig. 4 .1 Wasp hive and H ive5 antenna structure 

4.1 Sectorial Antennas 

The sectorial antennas are described in this section, divided as Hive5 a narrowband 

antenna with CP and a UWB antenna, the 6-SB Log Periodic Antenna. 

4.1.1 Hive5 Antenna 

In this thesis one of the objectives is to study a low-cost high effective antenna for LSs 

which could be used for implementing Angle of Arrival (AoA) techniques combined with 

RF fingerprinting techniques, defining the antenna requirements for the system as: 

 

 Optimized radiation pattern for AoA discrimination; 

 Possibility of integration of the two localization methods: RSS and AoA 

techniques; 
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 Circular polarization solution; 

 Practical and low cost; 

 Reduced required number of reference nodes; 

 Small complexity of the RF control circuit. 

 

The CP provides advantages on mitigating multipath effects on reflective environments 

[120] and improving significantly the performance of RSS algorithms. 

From the antennas solutions available in the literature, none were suitable for our 

system requirements. This led us to the development of the Hive5, a SA integrated with 

patch-excited structures presented in [C3] and analyzed in [C5]. This section presents a 

resume of the publish paper in IEEE Transactions on Antennas and Propagation, [J2]. 

To guarantee the uniform characteristics of all antennas on the Hive5 a semi-platonic 

structure was developed, in this case, based on a semi-dodecahedron. 

The proposed solution is designed to reduce the coupling between neighbor antennas 

and increase antennas directivity, guarantying at the same time a maximum of 3dB 

variation over the entire semispherical radiation pattern. The result is an improved SA with 

approximately semispherical radiation pattern which can discriminate six independent 

areas. 

The design of this antenna structure was inspired on a wasp hive as presented in Fig 4.1. 

The internal structure of the hive is formed by a dense matrix of hexagonal prismatic cells, 

as resemblance, our developed support is also formed by cells, although, with a pyramidal 

pentagonal (PP) shape. These cells arrangement similarity and the pentagonal shape are the 

reasons why we called our antenna, the Hive5 antenna. 

 

Fig. 4.1 Wasp hive and Hive5 antenna structure 
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In LSs exclusively based on RSS measurements the number of reference nodes 

increases very fast for a satisfactory accuracy, this can lead to costly systems due to the 

high number of reference nodes. The Hive5 antenna when strategically placed provides a 

solution to reduce the overall number of reference nodes and high coverage due to 

improved antenna gain. Having the PP cells fixed angles and coverage areas, a simple RSS 

comparison of each cell can discriminate an approximate AoA between the Hive5 and the 

mobile node. 

To control the radiation beams of the Hive5, a RF switch circuit can be integrated 

allowing a sequentially discrimination of six areas, resulting in an omnidirectional 

coverage with maximum variation of 3dB as illustrated in Fig. 4.2 . 

 

 

 

Fig. 4.2 Hive5 azimuthal (upper) and elevation (lower) planes coverage 

The Hive5 radiation pattern, polarization and gain are significantly dependent on the 

flare angle and size of the hollow structure. Platonic solids present fixed flare angle 

depending of the structure dihedral angle. The dodecahedron structure has a dihedral angle 

of 116º 34’ leading to a fix flare angle of approximately 32º. The fix flare angle constrains 

make the Hive5 optimization parameters based on the patch dimensions and the hollow 

structure tap length. 

The main objectives for the implementation of the Hive5 antenna can be resumed as: 
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 SA with semispherical radiation pattern and maximum variation of 3dB beam 

width over the radiation pattern; 

 Reduced coupling between neighbor antennas; 

 Increased multipath rejection; 

 Resulting CP for patches inside the Hive5 structure; 

 Low bandwidth (2.4-2.5 GHz); 

 Practical and low cost design with small tap length. 

 

4.1.1.1 Hive5 Simulations 

Following the requirements and main objectives suitable for RSS and AoA localization 

several simulations were performed using the HFSS [12]. The simulations were divided 

into three main groups: patch antenna, PP patch-excited cell and Hive5 antenna. 

 

Patch antenna design 

Our system demands were low bandwidth and CP, thus a patch antenna is a suitable 

choice due to its versatility, and simplicity of construction. The presented patch antenna 

was optimized for implementation on the final Hive5 antenna. 

Our antenna design result in simple cut corners patch with ellipsoidal polarization, as 

presented in Fig. 4.3. It was designed for 2.45 GHz with Left Hand Elliptical Polarization 

using FR4 with εr = 4.3, tan δ = 0.02 of 3.2mm. Elliptic polarization was chosen in order to 

guarantee that it will become circular when inserted into the Hive5 structure. 

 

 

Fig. 4.3 Patch antenna design 

The simulated patch antenna presented a gain of 4.54dBi, with bandwidth confined to 

150 MHz (from 2.38 to 2.53 GHz)and a minimum AR of 3.57dB as can be seen in Fig. 4.4. 
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Fig. 4.4 Simulated Patch antenna S11 and AR 

Pentagonal Pyramidal Patch-excited cell 

 

Before designing the Hive5 structure the impact of several parameters were analyzed 

based on the PP patch-excited cell presented in Fig. 4.5.  

Simulations confirmed an expected gain variation related to the tap length (T) from the 

patch antenna, flare angle (θ) and consequently aperture size (A) as shown in Fig. 4.6. The 

gain increases with the tap length and the optimal flare angle decreases with the increase of 

the tap length. 

One of the main objectives of our implementation is to increase antenna gain to provide 

a maximum variation of 3dB beam width over the entire radiation pattern. Table 4.1 

presents the PP patch-excited antenna tap length relation with the gain and beam width 

over XoZ and YoZ planes for 2.45 GHz.  

 

Fig. 4.5 PP Patch-excited antenna design on YoZ (left) and XoY (right) planes 
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Fig. 4.6 PP Patch-excited gain relation with flare angle for several tap lengths 

Tap Length (T) 
Aperture 

Size (A) 

beam width below 3dB 

(XoZ & YoZ planes) 

Max 

Gain(dBi) 

No Tap - 93º,95º 4.54 

λ/4 0.78λ 68º, 69º 5.40 

λ/2 1.07λ 54º, 55º 7.57 

λ 1.67λ 38º, 40º 10.49 

2 λ 2.85λ 26º, 28º 13.08 

Table 4.1 PP Patch-excited cell Beam Width & Gain relation with Tap Length 

Hive5 Antenna 

 

After the study of the PP patch-excited cell, the entire Hive5 antenna presented in Fig. 

4.7 (made by six PP patch-excited cells) with tap length of λ/4 was analyzed. For the 

simulations we considered that all but one patch antenna are inactive and are terminated 

with 50Ω matched loads. 

A comparative analysis of return loss (S11) and AR on patch, PP patch-excited cell and 

Hive5 main antenna are presented in Fig. 4.8 and Fig. 4.9. 

Analyzing Fig. 4.8 we can verify a significant but similar impact of the PP structure and 

the Hive5 main cell on the S11 of the patch antenna. All the three analyzed cases present 

return loss greater than 10dB over the band of interest, however PP and Hive5 structures 

provide optimized matching. 

The AR of the patch antenna also suffered significant impact with the integration of the 

two analyzed structures as presented in Fig. 4.9. With the integration of patch antennas on 
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the PP and Hive5 structures we can verify an AR variation greater than 3dB. Although, 

between both it is verified a negligent variation of 0.15dB on minimum AR. 

 

Fig. 4.7 Hive5 antenna design 

The next step on our analysis was to perform a comparison between S11, AR and gain of 

all the elements of the Hive5 antenna as presented in Fig. 4.10 and Fig. 4.11. We can 

notice similar return loss of all the lateral antennas and a maximum AR variation of 1.25dB 

between the most deviant lateral cell and the main Hive5 cell. 

 

 

Fig. 4.8 S11 comparison for patch, Hive5 main and PP patch-excited cell 

 

Fig. 4.9 AR comparison for patch, Hive5 main and pentagonal horn cells 
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Fig. 4.10 S11 comparison between Hive5 Elements 

 

Fig. 4.11 AR comparison between Hive5 Elements 

The Hive5 simulation results were very promising, with a gain of 5.31dBi, beam width 

below 3dB of 68º and 70º over XoZ and YoZ planes, bandwidth of 140 MHz from 2.4 

GHz to 2.54 GHz and an AR below 3dB from 2.435 GHz to 2.468 GHz. 

The gain of lateral cells of the Hive5 antenna for 2.45 GHz varied between 4.89 and 

5.12dBi with a beam width of few degrees larger than the Hive5 main cell. 

 

Hive5 Measurements 

The first implementation of the Hive5 antenna is shown in Fig. 4.12. For its correct 

analysis we measured S parameters of each antenna element of the Hive5, between main 

and lateral elements, two consecutive and two non-consecutive lateral elements. All other 

antennas were terminated with 50Ω matched loads. The measured S parameters are 

presented in Fig. 4.13 and Fig. 4.14. 

As can be seen by measurements Hive5 elements presented a bandwidth around 140 

MHz, from 2.43 to 2.57 GHz. All measured elements presented similar results with a shift 

of around 30 MHz related to the simulated results which can be justified by some errors in 

the considered permittivity of FR4 or by mechanical implementation deviation. 
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Fig. 4.12 Implemented Hive5 antenna 

The isolation between Hive5 elements is well noticed, main and lateral elements 

isolation is presented in 4.13, two consecutive lateral and non-consecutive lateral elements 

are presented in Fig. 4.14. 

 

 Fig. 4.13  S parameters between Hive5 main and lateral elements 

Then we measured the Hive5 elements AR and radiation pattern where similar behavior 

with small deviance between elements was achieved. Fig. 4.15 presents the AR measured 

in three situations, patch antenna without any mechanical structure, PP patch-excited 

element and Hive5 main cell. 

The best obtained result was achieved with the Hive5 main cell with a measured AR of 

0.43dB. This is predictable since the simulation and optimization was related to the Hive5. 
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Fig. 4.14 Isolation between Hive5 consecutive and non-consecutive lateral elements 

It can be seen that the Hive5 antenna presents good results and has CP for 2.485 GHz. 

The measured gain of the Hive5 was of 5.52dBi with a beam width below 3 dB of 69º 

and 72º for XoZ and YoZ planes. The radiation pattern of the Hive5 main element was also 

measured and can be seen in Fig. 4.16. 

Some deviations between measurement and simulation were observed which are mainly 

justified by manual construction of the Hive5. Nevertheless they are within the expected 

results. 

 

Fig. 4.15. AR measurements with different structures 
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Fig. 4.16 Hive5 main element radiation pattern for LHCP and RHCP 

4.1.2 SB-6 Log Periodic Antenna 

The 6-SB Antenna is UWB switch beam antenna based on commercial log-Periodic 

dipole arrays (LPDA), model HG824-11LP-NF [122]. This antenna is designed to operate 

from 800 MHz to 2500 MHz being suitable for GSM/CDMA/PCS/3G/4G/WLAN 

applications. This antenna is presented in Fig. 4.17. 

 

 

Fig. 4.17 Log-Periodic Antenna (HG824-11LP-NF) 

This antenna has dimensions 330x215x62mm, linear polarization and is matched for 50 

Ω. By the datasheet provided the antenna parameters can be resumed as: 
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At 800-960 MHz is it characterized by: 

 Gain, 9.5 dBi; 

 Horizontal Beam Width, 80º; 

 Vertical Beam Width, 60º; 

 Front to Back Ratio >= 20 dB. 

 

And at 1710-2500 MHz by: 

 Gain, 11 dBi; 

 Horizontal Beam Width, 60º; 

 Vertical Beam Width, 50º; 

 Front to Back Ratio >= 20 dB; 

 

To design the switch beam antenna we need to consider the entire azimuthal coverage, 

the 360º. Looking to the worse case of analysis, (highest frequency 2500 MHz) the 

horizontal beam width is 60º. In order to guarantee the 360º coverage easily we can 

conclude the requirement of 6 antennas for a circular switch beam approach as presented in 

Fig 4.18. 

 

Fig. 4.18 SB-6 Log Periodic Antenna 
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SB-6 Log Periodic Measurements 

 

Will the help of a VNA the S11 was measured as shown in Fig. 4.19. 

 

Fig. 4.19 S11 Measurement 

The radiation pattern of a single Log Periodic antenna was also measured in an anechoic 

chamber. Considering the coordinates presented in Fig. 2.1, propagation in z with E align 

with the XoZ plane, the radiation pattern of the Log-Periodic Antenna and the SB-6 Log 

Periodic was measured. They were analyzed for 900 MHz and 1800 MHz. 

The plots of the radiation patterns for several frequencies around 900 MHz for E plane, 

(XoZ plane) and H plane (YoZ plane) are shown in Fig. 4.20, A) and B) presented the Log 

Periodic Antenna and C) and D) a single element of the SB-6 Log Periodic Antenna. As 

shown the H plane plane is wider, and the E plane is narrower. 

The same analysis was performed after for the GSM upper band, 1800 MHz, shown in 

Fig. 4.21. At this frequency side lobs are more evident. As expected, the H plane is wider, 

and the plane E plane narrower. Identical effect is presented of the antenna in the switch 

beam approach, as presented in C) and D) graphs of same figure. The impact of the 

surround structure is evident. 

Developed and measured the SB-6 Log Periodic with commercial antennas, a lower cost 

solution may be in future needed to be developed. However not yet required, the full 

simulation of a planar LPDA was performed in case of future implementation, presented in 

next section. 
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A)        B) 

  

C)        D) 

Fig. 4.20 RP at for 900 MHz for LPDA E-Plane A), and H-Plane B) and for SB-6Log 

Periodic E-Plane C), and H-Plane D) 
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A)        B) 

   

C)        D) 

Fig. 4.21 RP at for 1800 MHz for LPDA E-Plane A), and H-Plane B) and for SB-6Log 

Periodic E-Plane C), and H-Plane D)  

 

SB-6 Log Periodic Alternative 

 

The SB-6 Log show good results, however it is based on a commercial solution. In 

order to reduce the system cost it was performed the simulation of a planar LPDA based on 

FR4. The design of the antenna is presented in Fig. 4.22. The 3D radiation patterns of the 

main frequencies of interest ( 900 MHz and 1800) are present in Fig. 4.23 and Fig. 4.24. 



74  Sectorial Antennas for WSN Localization Systems 

 

 

Fig. 4.22 Simulated UWB LPDA Fig. 4.22 

This antenna presents a low cost with very good impedance matching, however with 

reduced gain compared with commercial LPDA. This is justified by the use of low cost 

subtract, FR4 which present significant losses. 

 

Fig. 4.23 Simulated UWB LPDA radiation pattern at 900 MHz 

 

Fig. 4.24 Simulated UWB LPDA radiation pattern at 1800 MHz 
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The half power beam width (HPBW) of this antenna is 116º for 1800 MHz and 118º for 

900 MHz which is near the 120º needed for the entire azimuthal coverage with only three 

antennas. Using lower loss subtracts higher gain can be achieved providing a system with 

higher coverage. Obviously the HPBW would be smaller being required more antennas for 

the entire azimuthal coverage with a maximum variation of 3 dBs. 

4.2 Communication Antennas for 5 GHz 

In the period of this thesis several antennas for communication purposes were also 

implemented. These antennas were developed to operate at 5.8 GHz or with wider band to 

cover the 5GHz UNII and ISM bands mainly for vehicular communications purposes. Thee 

planar implementations were analyzed and are presented in this section: a omnidirectional 

microstrip antenna array, a loop antenna and an elliptical antenna array with inner counter-

elliptical slots. 

4.2.1 Planar Omnidirectional Microstrip Array 

WSN communication systems often require omnidirectional radiation pattern in the 

azimuthal plane and narrow beam width radiation in the elevation plane. One of their 

purposes is vehicular communications where it is desired to perform Vehicle to Vehicle 

(V2V) and Vehicle to Infrastructure (V2I) communications. For this purpose microstrip 

antenna arrays have received special attention mainly due to their low profile, light weight, 

and easy fabrication characteristics. Several approaches have been presented in literature 

such as: Hsiao [123] that proposed an omnidirectional planar antenna based on two back-

to-back folded dipoles; Soliman [124] designed a dual polarized omnidirectional antenna 

using planar slot structures; Bancroft [125] proposed an omnidirectional antenna using 

planar microstrip elements; Li [126] presented another approach of omnidirectional 

microstrip antenna for Wimax applications; Chen [127] presented a planar slot array with 

the same radiation pattern. In this paper we proposed and implemented an omnidirectional 

microstrip antenna based on Bancroft approach. The antenna was dimensioned for higher 

frequency operation. The new driving point implied a new antenna design  
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Antenna Design  

In order to implement a cheap and practical solution it was implemented an antenna 

with 1.6 mm-thick FR4 (εr = 4.1, tan δ = 0.02) subtract. The replacement of the driving 

point to the edge led to an optimization of the antenna design in order to guarantee the in 

phase current of all radiating elements. The design of the presented antenna, OMAA, is 

presented in Fig. 4.25 and parameterized in Table 4.2. The work perform in the analysis of 

this antenna was presented in Antennas and Propagation Symposium of 2013 [C7]. 

The left side of the figure presents the top layer and the right the bottom one. The 

radiation elements are formed as cascading impedance converters. The radiating elements 

have length of L1 and W1 width. The transmission line has as dimensions length L2 and 

width W2. In order to guarantee the in phase current of all radiating elements (top and 

bottom) of the OMAA, the layers are connected by a metallic via (short circuit). 

Considering the proposed design and an infinitesimal height antenna, the short circuit 

should be placed exactly in the middle of the radiating element, point of impedance 0Ω. 

For our antenna height (1.6 mm) and operation frequency, via size can’t be neglected. By 

this reason the short circuit is not placed on the center of a radiation element, but instead at 

an offset of size L3, as shown in Fig. 4.25. The antenna driven point is placed on an 

antenna edge (placed at distance L5 from the first radiating element) due to practical 

reasons and in order to facilitate its connection with the SMA connector. 
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Fig. 4.25 OMAA design 

Variable Dimension Description 

L1 12mm Radiating Element Length 

L2 12mm Transmission Line Length 

L3 9mm Upper Transmission Line Length 

L4 77mm Antenna Length 

L5 6mm Lower Transmission Line Length 

W1 6mm Radiating Element Width 

W2 1.5mm Transmission Line Width 

W3 10mm Antenna Width 

Table 4.2 OMAA characterization 

Measurements 

The proposed antenna was simulated using ansys HFSS software package, fabricated 

and measured. To analyze the antenna we measured the S11 parameters and radiation 

pattern over azimuth and elevation planes. S11 analysis is presented in Fig. 4.26, azimuth 

plane in Fig. 4.27 and elevation plane in Fig. 4.28. A small deviation is present between 

simulations and measurements but the desired operation bandwidth is not compromised. 

This deviation can be mainly justified due to the FR4 characterization at this frequency. 

 

Fig. 4.26 S11 analysis 
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Fig. 4.27 Azimuthal plane radiation pattern 

 

Fig. 4.28 Elevation plane radiation pattern 

4.2.2 Omnidirectional Printed Loop Antenna for Taxi Communications 

Inter Vehicular Communications (IVC) appears as a feasible solution to reduce road 

accidents, robberies and provide an auxiliary assistance for car drivers. For IVC two main 

communications need to be considered, vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) based on the IEEE 802.11p standard. These systems have been 

analyzed in several fields of research since protocols, system architecture, and interference 

analysis [128]–[129]. Considering a roadside unit (RSU) antenna linear polarized in 45º, 

commonly implemented in GSM networks, onboard unit (OBU) integrated with vertical or 

horizontal polarized antennas can be valid solution. 

For the special case of the Taxi, the integration of an antenna on the roof would imply a 

shadow area in the direction of the bonnet metallic components. A solution could pass by 
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its insertion above the bonnet, however, robustness and aesthetics constrains would be 

present. Nevertheless, if the antenna would be small enough and well placed inside the 

bonnet metal components effect could be reduced. 

Taking in consideration previous considerations it is proposed a low profile planar loop 

antenna. This work was presented in Antennas and Propagation Symposium 2013 [C8] and 

the simulated antenna is shown in Fig. 4.29. Loop antennas can provide omnidirectional 

radiation pattern, with horizontal polarization at the same time that provide a planar 

solution. This antenna is based on [127], tested and re-dimensioned for 5.8 GHz, with a 

balun insertion. One proposal for the antenna placement is shown in Fig. 4.30, however not 

analyzed and discussed in this thesis. 

 

Fig. 4.29 Antenna design 

Antenna Design 

The basic geometry of the proposed horizontally polarized omnidirectional loop antenna 

is shown in Fig. 4.29 and its geometry described in Table 4.3. The antenna consists on a 

loop with periodical capacitive loading connected to a balun in order to allow direct 

unbalanced feed by a SMA connector. It was considered as subtract a 0.787 mm-thick 

Arlon CuClad217    2.17, tan δ 0.0009). 
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Fig. 4.30 Taxi antenna placement proposal 

Variable Dimension Description 

Foffset 2mm Feed offset to the loop center 

R1 9mm Loop inner radius 

R2 10.5mm Loop outer radius 

Rgnd 8.5mm Loop gnd radius 

Rout 11.5mm Dielectric radius 

Gp 0.5mm Gap between feed lines 

Gs 0.2mm Gap between interlaced lines 

Wp 0.65mm Width of feed lines 

Ws 0.4mm Width of center interlaced line 

α1 360/7º Angle per section 

α2 9.3º Angle for coupling lines 

Table 4.3 Antenna Design characterization 

Periodical capacitive loading is realized by inserting interlaced coupling lines along the 

loop. These interlaced coupling lines periodically introduce series capacitance to the loop, 

providing a small phase correction between the adjacent sections in order that the current 

along the loop is kept uniform and in phase, even with size comparable to the operating 

wavelength. Therefore, the antenna can be considered close to a magnetic dipole to achieve 

a horizontally polarized omnidirectional radiation pattern. 

 

Simulations 
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The antenna was simulated, being S11 analysis presented in Fig. 4.31. Radiation pattern 

over azimuth and elevation planes are presented in Fig 4.33. The antenna shows gains 

around 2.5 dBi, omnidirectional radiation pattern over the azimuthal plane and horizontal 

polarization. 

 

Fig. 4.31 S11 analysis 

 

   

Fig. 4.32 Radiation pattern over azimuth plane(Left) and elevation (Right) 

4.2.3 Planar elliptical antenna array with inner counter-elliptical slot 

Nowadays with the "everywhere" availability of wireless technologies and wide 

electromagnetic spectrum use, it is fundamental to use single wide band antennas that 

accommodate different communication systems. According to the application, front-back 
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radiation patterns can be preferred to simple omnidirectional or single beam directivity 

antennas. This can be easily understood for scenarios where wireless communication is 

mainly in a single direction, such as in: communication inside tunnels, corridors, or even 

inter-vehicular communications. 

Wide band antennas with CP are highly desired. Wide band antennas can accommodate 

different communication systems and CP presents several advantages in reflective 

environments  since it allows signal transmission/reception in all planes; it overcomes out 

of phase problem, which can cause dead-spots; and it is more resistant to signal 

degradation due to adverse weather conditions [130]. 

Single feed antennas CP has been induced by several approaches such as: different 

radiating structures (e.g. fractal, spiral, dielectric resonator) [131]; and/or modification of 

radiation elements geometry (e.g. slots insertion, trimming opposite corners) [132]-[137]; 

and/or ground plane modifications (e.g. stub insertion) [138]-[139]. 

When high gain is desired, arrays can be considered, however, a correct feeding 

network needs to be designed. A good analysis of these feeds is presented in [140]. 

As previously described, high gain antennas with CP over a wide bandwidth are highly 

desired. With the emerging technologies for vehicular communication and wide spreading 

of infra-structure for high data rates WiFi, we intended to design a low-profile front-back 

directive antenna with CP over the entire 5GHz UNII/ISM bands (5.2-5.8 GHz). 

We verified that a planar elliptical monopole (PEM) with an inner elliptical slot can 

provide relatively wide CP covering our band of interest. 

In this section it is studied a Planar Elliptical Antenna (PEM) applied into an array of 

three elements, leading to the development of the CP Planar Elliptical Antenna Array (CP-

PEAA) here presented. This work was p presented in [C6] and deeply analyzed in [J4]. 

Fig. 4.33 PEM structures: A) Circular; B) Elliptical; C) Elliptical with inner slot 

Planar Elliptical Monopole (PEM) 

Planar monopoles are characterized by their wide bandwidth and can have different 

geometries such as: triangular, rectangular, pentagonal, circular and elliptical, as presented 

in [141]. However the polarization is in majority linear and the radiation pattern 

omnidirectional. To impose the two orthogonal current components for CP in single feed 

monopoles, ground plane modification (i.e. insertion of stubs) and/or changes in the 

feeding position are common used techniques. 
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In planar elliptical monopole (PEM) CP can be induced without changing the feeding 

position, by rotating the radiating element. For a single element both approaches (changing 

feeding position or rotating the radiating element) are valid, however, if we consider a 

series array, where ground perturbation is not available in all radiating elements for current 

phase correction, the first approach can't be applied. On the other hand, the second 

approach (rotation of the radiating element) proved to be insufficient for array 

implementation with CP over the entire 5 GHz bands. The solution for this problem can be 

overcame with the insertion of an inner slot in each radiating element providing an 

individual current correction factor. 

Based on previous information, PEMs can be divided into three main groups of 

monopoles: planar circular, planar elliptical and planar elliptical with inner slot, as 

suggested in Fig. 4.34 A, B and C respectively. 

 

 

Fig. 4.34 PEM structures: A) Circular; B) Elliptical; C) Elliptical with inner slot 

 

All the presented shapes provide wide impedance matching. The first design, a circular 

monopole, provides linear polarization and quasi-toroidal radiation pattern with a single 

optimization parameter, circular radius. Varying the circular to elliptical shape, two 

degrees of freedom are added, the elliptical ratio and rotation. This provides the chance to 

slightly change the radiation pattern and polarization. More degrees of freedom can be 

added with the insertion of an inner slot. For our design the slot was implemented with 

counter-elliptical shape. This design avoids sharp transitions and the addition of three 

optimization parameters (3Rs), inner major Radius, elliptical Ratio, and Rotation. All 

together six optimization parameters are available, three for the outer ellipse plus three for 
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the inner elliptical slot. This inner slot provides a way to tune CP over the desired 

bandwidth. The characterization of each PEM group is presented in Table 4.4. 

 

Variable A B C 

RP Q-Toroidal Q-Toroidal Q-Toroidal 

Polarization Linear Linear/CP Linear/CP 

Wide Wide Wide Wide 

Parameters 1 3 6 

Table 4.4 PEM characterization 

The analyzed PEM is dimensioned according to the lower radiating element of the CP-

PEAA are described in Table 4.5. 

To design the CP-PEM with the inner counter-elliptical slot, it is important to know the 

influence of its three design parameters: major radius, elliptical ratio and rotation (3Rs). 

The dependency of S11 and AR with the 3Rs in presented in Fig. 4.34, Fig. 4.36 and Fig. 

4.37 . It is clearly verified that while inner elliptical ratio and rotation slightly shift the AR, 

the radius variation has a main impact on polarization matching. 

 

 

Fig. 4.34 S11 and AR dependency with IE Major Radius 
Fig. 4.35. S11 and AR dependency with IE Ratio 
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Fig. 4.36 S11 and AR dependency with IE Ratio 

Fig. 4.36 dependency with IE Rotation 

 

Fig. 4.37 S11 and AR dependency with IE Rotation 

 

For the analyzed variation, it can be seen that the three parameters significantly 

influence the impedance and polarization matching. Controlling these 3Rs parameters a 

well matched PEM can be designed, providing the base for the CP-PEAA presented in the 

next section. The PEM approach presented CP over the band of interest, however with a 

gain of ~2 dBi which does not satisfy our requirements. In order to improve the gain the 

PEM approach was analyzed into an series array. 

 

CP-Elliptical Antenna Array (CP-EAA) 

To improve and achieve the desired gain a series array of three elements is analyzed, as 

shown in Fig. 4.38. The antenna dimensioning after optimization is presented in Table 4.5. 
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Variable Dimension Description 

CLL 17.25mm Connecting Line Length 

E3L 100mm Antenna Length 

FLL 12mm Feed Line Length 

FLW 1.7mm Feed Line Width 

GndL 5.5mm Ground Length 

GndW 28mm Ground Width 

IENRad 8.3,8.3,8.3mm Inner Ellipse N Major Radius 

IENRatio 0.5,0.5,0.5 Inner Ellipse N Ratio 

αN 35º,5º,20º Inner Elipse N Rotation 

OENRad 8.5,8.5,8.5mm Outer Ellipse N Major Radius 

OENRatio 1.25,1.25,1.25 Outer Ellipse N Ratio 

βN 60º,60º,60º Outer Elipse N Rotation 

Table 4.5 CP-PEAA Dimensioning 

The antenna is printed on 0.787 mm-thick FR4, εr=4.1, tan δ = 0.002) substrate with 

100x28mm
2
. 

 

Fig. 4.38 CP-PEAA antenna design 
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As a starting point for comparison there were considered all the array elements with the 

parameters (major radius, elliptical ratio and rotation) identical to the CP-PEM presented 

before. With these characteristics a good impedance matching was achieved, although with 

poor CP over the band of interest, 5.2-5.8 GHz. 

In order to improve the AR, a rotation of the inner elliptical elements 2 and 3 was 

performed for optimization. The impact of these parameters on S11 and AR is presented in 

Fig. 4.39 and Fig. 4.40. For this analysis all the other parameters (ground, feed and 

connecting lines) are described in Table 4.5. 

 

Fig. 4.39 S11 and AR dependency with IE2 Slot Rotation 

 

 

Fig. 4.40 S11 and AR dependency with IE3 Slot Rotation 
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After a careful analysis of the simulation an antenna for testing was developed, 

presented in next section. 

Measurements 

This section presents a comparison of simulated and measured results. 

Fig. 4.41 presents the antenna S11 comparison analysis. Next we analyze the XoY plane 

left and right hand circular polarization (LHCP and RHCP) radiation pattern for 5.2 and 

5.8 GHz, presented in Fig. 4.42 and Fig. 4.43. The 180º presents the front side of the 

antenna, radiating RHCP and de 0º the back side. 

 

Fig. 4.41 S11 Comparison 

 

The YoZ plane is presented in Fig. 4.44 and Fig. 4.45, where 90º represents the upper 

side of the antenna. 

 

Fig. 4.42 XoY Plane, LHCP/RHCP radiation pattern for 5.2 GHz 
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Fig. 4.43 XoY Plane, LHCP/RHCP radiation pattern for 5.8 GHz 

 

The measured gain for XoY plane was 7.1 dBi and for upper side of YoZ plane was 6 

dBi with vertical polarization. 

 

Fig. 4.44 YoZ Plane, LHCP/RHCP radiation pattern for 5.2 GHz 

 

 

Fig. 4.45 YoZ Plane, LHCP/RHCP radiation pattern for 5.8 GHz 

Fig. 4.45 YoZ Plane, LHCP/RHCP radiation pattern for 5.8 GHz 
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The AR over the operation band for the front and back sides is also analyzed, shown in 

Fig. 4.46. The similarities between simulation and measured results are obvious, although, 

some deviation can be seen, which can be partially justified by the FR4 characterization. 

 

Fig. 4.46 AR over the operation bandwidth 

4.3 Concluding Remarks 

Two sectorial antennas are presented in this chapter. 

The Hive5, a new SA constituted by PP patch-excited antennas, provides a solution for 

2.4-2.5 GHz LSs with approximately semispherical radiation pattern and a maximum 

variation of 3dB beam width over the radiation pattern; reduced coupling between 

neighbor antennas; increased multipath rejection; CP of all Hive5 cells and finally a 

practical and low cost design suitable for LSs based on RSS and AoA. The simulations are 

concordant with the measurements which validates the presented proposal. 

The SB-6 Log Periodic, a UWB SA provides a wide bandwidth covering the GSM-

900/1800 bands and gain around 10 dBi for long distance communication purposes. 

Measurements prove the concept of operation can be applied. The preparation for future 

development of planar LPDA is also presented. 

Three antennas operating at 5 GHz for communication purposes are presented in this 

chapter. 

A new approach for OMAA antennas is presented. Based on Bancroft antenna, an 

OMAA optimized for 5 GHz ISM and UNII band with an edge feed was redesigned. 

Considering the edge driven point implies a new position for the metallic via which is here 
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presented. The simulations and measurements present a small deviation, however 

impedance matching for the desired bandwidth is not compromise. 

An Omnidirectional Printed Loop Antenna for Taxi communications is proposed. The 

in phase and uniform current over the loop allows omnidirectional radiation pattern even 

with loop dimensions comparable to the operating wavelength. 

A new printed planar microstrip antenna with elliptical elements is lastly presented. The 

operating bandwidth of the antenna with usable radiation pattern is about 20%. A new way 

to match PEM with CP is proposed by the insertion of an inner counter-elliptical slot. This 

technique provides wide band in polarization for single feed monopoles and can be easily 

integrated into arrays named here PEAA. 

To compensate the mismatch of polarization inherent to the array implementation, 

rotation of the inner counter-elliptical slot can be used as an easy way of optimization. 

The proposed antenna provides two main directive radiation components (front and 

back) with gain higher than 7dBi, and CP over the 5 GHz bands with three radiating 

elements. Higher gain is possible with the integration of more radiating elements. 

This antenna can be suitable for performing both inter-vehicular and proximity WiFi 

communication. 

4.4 Summary of this Chapter 

This chapter presents the developed antennas during this PhD work. 

A cost effective solution to control the radiation pattern can be achieved with the use of 

switch beam antennas. For this purpose two SA were developed, the Hive5 for 2.45 GHz 

and the SB-6 Log Periodic Antenna for UWB sectoring. 

Low cost antenna for communication at 5.8 GHz are highly desired which can be used 

for example, for vehicular communications. Several antennas were studied and 

implemented for this frequency. It was developed a planar omnidirectional microstrip array 

based on Bancroft approach, a printed Loop for Taxi communications and a planar 

elliptical antenna array with inner counter-elliptical slot. 

This work led to the publication of several articles, [J4], [C6], [C7] and [C8]. 
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Chapter 5 – Developed Systems 

After the development of the antennas it was performed their integration into LS or 

simple testing prototypes. The description of the LS developed during this PhD period is 

presented in this chapter. Firstly it is presented the LS with the Hive5 for indoor 

localization. Next it is described the developments performed for NaPis LS, a full 

management localization system integrated with several technologies. Finally it is 

presented the prototype of the SB-6 Log Periodic Antenna and its control application. This 

antenna is intended to operate for maritime communications in order to increase the 

cellular network range and provide data communication on board. The system for future 

implementation is also described. 

5.1 LS with Hive5 

In this section it is presented the developed firmware and management application of an 

LS integrated with the Hive5 previous described. This work was previous published in 

[J3]. This LS performance is then compared to a typical Wireless Sensor Network (WSN) 

LS based on four nodes. Both solutions are analyzed within the same localization 

environment and compared to the same supporting fingerprinting algorithm, an Artificial 

Neural Network (ANN). Results show that LSs integrated with the Hive5 present clear 

benefits when compared to the WSN of four nodes in terms of resolution and obvious 

reduction of required reference units. This work was published in the international journal 

IET Microwaves, Antennas & Propagation, [J3]. 

5.1.1 The system 

The Hive5 can be used either as a switch beam antenna, or as an SAA with appropriate 

signal processing algorithms, although, in this way, at the cost of a more complex system. 

The switched beam antenna approach provides a simpler and cheaper solution making it 

more suitable for low cost LSs. Besides the Hive5 antenna, this approach also requires the 

following components: a measuring RSS module, an SP6T RF switch, and low loss RF 

cables as presented in Fig. 5.1. 
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Fig. 5.1 Implementation of Hive5 in a LS 

For the presented test a commercial System on Chip (SoC) was considered on the 

reference unit [142] a SP6T as the RF Switch [143] and semi-rigid cables of 18 and 23 cm 

with a measured transmission loss below 0.32 dB for considered lengths. These cables are 

used for the Hive5, RF-Switch, and reference unit interconnections. 

5.1.2 The protocol 

The Hive5 is an antenna suitable for LSs that requires a single reference unit. 

Nonetheless it needs to be integrated into a high and central position on the localization 

scenario for the system to achieve efficient performance. 

The developed protocol consists of a simple network of three elements: a mobile unit 

(MU) or node (MN), which is the element to be located; a reference unit (RU) or node 

(RN), which is the controller of the Hive5; and a coordinator, which is the gateway to the 

PC running the LS application. 
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5.1.2.1 The Mobile Node (MN) 

 

After registering into the network, the MN sends a localization request 

(MN_LOC_REQ) to the WSN waiting for acknowledgement from the RN 

(RN_LOC_ACK). This message may include configuration data as a payload. Then, the 

MN listens to the channel for Hive5 blasts (RN_LOC_BLAST) and subsequently, the end 

process message (RN_LOC_BLAST_END). Each of the previous messages sends the 

identification of the transmitter Hive5 element (PN0 to PN5) as a payload. The MN 

measures the RSS of each message and associates it to the Hive5's transmitter element. 

After the collection of RN_LOC_BLASTs and subsequent RN_LOC_BLAST_END the 

RSSs and correspondent Hive5 elements' identification are sent as unicast to the 

coordinator (MN_RSS_COLLECT). 

After the RSS collection is sent, the MN enters into a low power consumption mode 

(Sleep Mode) where the transceiver and MCU are turned off. The MN wakes up after a 

pre-defined interval and this process is cyclically repeated. The expired intervals and sleep 

time are configured within the reception of the RN_LOC_ACK message. 

 

5.1.2.2 The Reference Node (RN) 

The RN permanently stays into a polling mode listening for WSN messages. It can 

receive messages from the coordinator (RN_CONFIG and MN_CONFIG) to configure the 

RN number of blasts and/or transmission interval and the MN expiration or sleep intervals. 

For localization processes the RN initially receives a localization request from the MN 

(MN_LOC_RQT). After receiving this message, the RN replies with an acknowledgement 

(RN_LOC_ACK) which may contain configuration data. After this handshake, the RN 

sequentially activates each antenna element of the Hive5 to send blasts 

(RN_LOC_BLAST). When this process finishes, the main antenna element (PN0) is 

activated to send a confirmation of the transmission process ending 

(RN_LOC_BLAST_END). 

 

5.1.2.3 The Coordinator 

The WSN coordinator acts as a simple gateway with a PC running the LS application. 

The coordinator receives WSN messages and forwards them to the serial port and vice-
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versa. All of the commands, selected on the application that will be described in next 

section, can be sent to the WSN by the intermediation of the coordinator. 

A simplified representation of the localization protocol is shown in Fig. 5.2. 

 

 

Fig. 5.2 Localization protocol description 

5.1.3 The application 

The management application that controls the LS was developed to perform four main 

operation options: detection, calibration, testing, and configuration as shown in Fig. 5.3. 

 

 

Fig. 5.3 Control Application 
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This application was developed using Java language due to its interoperability 

capabilities simplifying its implementation in different operating systems. 

The first option (detection) provides an online localization based on different algorithms 

that can be selected by the user, such as those based on propagation models or 

fingerprinting, in this case, ANNs based. 

Detection provides the visualization of collected RSSs and corresponding estimated 

localization; calibration provides the chance to record the collected RSSs for further offline 

calibration; testing provides the chance to analyze the response of different WSN devices; 

the configuration option allows for the configuration of WSN devices and an optional 

forwarding of the MNs position to a remote database, which is similar to the work 

developed in [C2]. 

All of the previously described options provide the basis for a correct operation and 

control of the Hive5 antenna according to the different localization scenarios to which it 

can be applied. 

5.1.4 Results 

In order to test the two LS solutions (using Hive5 and a typical WSN of four nodes) a 

testing scenario (TS) with 7m x 4m x 2.5 m was chosen, as suggested in Fig. 5.4. 

 

 

Fig. 5.4 Testing scenario (TS) representation 



98 Sectorial Antennas for WSN Localization Systems  

 

The Hive5 was inserted at a height of 2.3 m nearly at the center of the room and the four 

WSN nodes were placed on the ceiling, between 1.5 m and 1 m distant from the sidewalls. 

With the infra-structure settled, a MN integrated with a faced up circular polarized patch 

antenna was used as measuring unit. Ten RSSs measurements were made from a height of 

75cm over the entire testing area. Each of the measurement points is presented by the lines 

intersection in Fig. 5.4. 

After all the measurements were collected by the MN, an average RSS mapping of each 

Hive5 element was obtained, as shown in Fig. 5.5. 

 

 

Fig. 5.5 RSS measurements with Hive5 Antenna 

PN0 represents the main element (faced down) of the Hive5. This element presents 

cross-polarization with the MN antenna, making its sectorial identification difficult. In all 

of the other elements, five clear areas are identified, as seen in Fig. 5.5. 

Based on an identical process shown but recurring to WSNs instead of SAs, an average 

of the RSS mapping for each position was also obtained. For these mappings all four RNs 

were considered with linear polarized patch antennas. The achieved RSS collection is 

presented in Fig. 5.6. 
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Fig. 5.6 RSS measurements with WSN of four RNs 

The calibration of the ANN was performed with the RSS collection acquired. 

This specific test considered a supervised learning ANN with a group of training sets 

(pairs of inputs and known outputs, targets). After the network's training period (made 

during an offline phase), the system became ready to respond to diverse input collections 

(online phase). 

The inputs for this system were a collection of RSSs, six for the Hive5 and four for the 

WSN, defining the ANN input layer dimension as six and four neurons respectively. Even 

of considering a larger input layer for the Hive5, only three to four RSS measurements 

provide effective information to the ANN. For this reason, this test is considered a fair 

comparison with an ANN applied to the WSN of four nodes. This RSS input vector is 

described as: 

     (             ) (5.1) 

 

Where aij corresponds to the RSS collection from point i, and RN identifier j. Like this, 

the complete RF fingerprinting matrix (M) of m elements is given by combining spatial 

information with the respective collected RSS vector given as: 

 

                       (5.2) 
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The outputs of the systems were collected from the position of the tested MN, being 

represented as X and Y coordinates. In this way, the ANN output layer was defined by two 

outputs. The number of hidden layers was defined as one because the increase of layers did 

not demonstrate relevant improvements in this test. 

To train the ANN, the odd columns were considered for calibration whereas the even 

columns were considered for testing, as shown in Fig. 5.4. 

To test the performance of the ANN, its dependency to two of the most influential 

parameters was analyzed, namely the training algorithm and the number of neurons of the 

hidden layer. One single layer was considered because relevant improvements, consequent 

from the increase of hidden layers, were not clearly presented in this test. 

Although nine training algorithms were analyzed, in this analysis only the three which 

achieved the best results are presented, namely the gradient descent with adaptive learning-

rate back-propagation (GD_ALR_BP), gradient descent with momentum back-propagation 

(GD_M_BP) and Levenberg-Marquardt back-propagation (LM_BP). 

The other parameter considered, which highly influenced the ANN performance, was 

the number of neurons per hidden layer. In order to avoid over fitting the ANN, an analysis 

of the optimum number of neurons was performed. As shown in Fig. 5.7, the best 

compromise between calibration and testing error for the Hive5 was achieved with seven 

neurons, which being the best performance achieved with the GD_ALR_BP algorithm. 

 

 

Fig. 5.7 Hive5 ANN Error dependency with number of neurons 

For standard gradient descent algorithms the learning rate is held constant throughout 

training. The performance of the algorithm is very sensitive to the setting of the learning 
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rate being not practical to determine the optimal learning rate setting before the training. 

GD_ALR_BP algorithm overpasses this problem because it updates the neurons weight 

and bias values according to the adaptive learning rate. A detailed description of measured 

errors is shown in Table 5.1 and presented in Fig. 5.8. 

 

Calibration Error Testing Error 

Mean Std Min Max Mean Std Min Max 

0.699 0.50 0.11 2.02 0.99 0.55 0.09 2.61 

Table 5.1 Hive5 ANN error with GD_ALR_BP and 7 neurons 

 

Fig. 5.8 Hive5 ANN Error for GD_ALR_BP, 7 Neurons 

In the implementation of the WSN with four nodes the best compromise achieved was 

with five neurons that also achieved the best performance with GD_ALR_BP algorithm as 

shown in Fig. 5.9. A detailed description of measured errors for this case is shown in  

Table 5.2 and presented in Fig. 5.10. 

 

Fig. 5.9 WSN Error dependency with number of neurons 
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Calibration Error Testing Error 

Mean Std Min Max Mean Std Min Max 

1.121 0.47 0.44 2.58 1.12 0.55 0.03 2.54 

Table 5.2 WSN ANN error with GD_ALR_BP,5 neurons 

 

Fig. 5.10 WSN ANN Error for GD_ALR_BP, 5 neurons 

As demonstrated by previous results, the ANN performance using the Hive5 Antenna 

presented better results when compared to a WSN of four nodes under the same 

localization scenario. The best performance was achieved with seven neurons for the 

Hive5 and with five neurons for the WSN of four nodes, both with the GD_ALR_BP 

algorithm. The Hive5 also showed performance advantages, specifically the number of 

needed nodes, which are significantly reduced with the need of one single node. 

One other test was performed considering other sets of calibration and testing points. In 

this case, two crossing groups of alternate points were considered, instead of alternate 

columns. Nonetheless, better results were achieved by using the first approach. 

5.2 LS NaPis 

One of the localization system developed in IT with cooperation with the national navy 

was the Navy Positioning and Identification Systems (Napis), a full management 

localization system integrated with several technologies which can support the action 

forces leaders to perform optimized decisions due to entire system positioning information. 

The first version of this work was presented in [C2] and the final version in [C4]. 
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One of these scenes is emergency scenarios or military actions. On emergency scenes or 

military actions, the location and description of events is typically performed by radio and 

visual contact. According with different scenarios, visual contact and radio communication 

can become a difficult problem to deal with, or in some cases totally unavailable. We could 

for instance refer to smoke or foggy scenarios, which can obstruct the visual contact; or 

civil panic and environmental disturbs which can lead to noisy scenarios, interfering with 

radio communications and proper description of the running events. 

In order to compensate the previous described problems an emergency support system 

was developed. This system provides location and events description capabilities, 

integrated with a management system locally accessed or by intermediate of a web service. 

The final support system architecture is presented in Fig. 5.12 and can be briefly 

described into four main blocks, ZigBee location network integrated with panic alerts; 

Mobile Unite (MU) integrated with a GPS module, ZigBee coordinator, event detection 

keypad and UHF module; Data Server; and a user interface which provides a web service 

to location and events management. These four blocks will be detailed described in the 

next sections. 

5.2.1 The system architecture 

The first working version of this LS is presented in Fig. 5.11. This system presents an 

indoor/outdoor localization system divided into 4 main blocks:  

 

 ZigBee location system, responsible for ZigBee modules positioning estimation; 

 GPS location system, where GPS modules or typical mobile phones integrated with 

GPS send their position to the Data Server over TCP/IP or Global Packet Radio 

Service (GPRS); 

 The Data Server is responsible for collecting all position information and sending it 

to the user interface; 

 The User Interface & Service provides a user friendly management application with 

web service. Like this, management of the system can be processed with a simple 

remote control since we are connected into the web network. 
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Fig. 5.11 Emergency support system architecture (version 1) 

 

This first version, however, was proven to be unsuitable for emergency scenarios because 

it is dependent of cellular network for GPRS communication and of internet access which 

in a catastrophe scenario can be not available. Due to these reasons two new requirements 

were added to the system: system independent of cellular network and local accessibility. 

In order to compensate the previous described problems an emergency support system 

was developed. This system provides location and events description capabilities, 

integrated with a management system locally accessed or by intermediate of a web service. 

This led to the development of the support system architecture presented in Fig. 5.12 

and can be briefly described into four main blocks: 

 ZigBee location network integrated with panic alerts; 

 Mobile Unite (MU) integrated with a GPS module, ZigBee coordinator, event 

detection keypad and UHF module; 

 Data Server for data management; 

  User interface which provides a web service to location and events management. 

These four blocks will be detailed described in the next sections. 
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Fig. 5.12 Emergency support system architecture (version 2) 

5.2.2 Mobile Unit (MU) 

The Mobile Unit represents the main element of the support system, being carried by 

each intervention group leader. This mobile unit is constituted by a small Personal 

Computer (PC) integrated with a GPS module providing its absolute position; a ZigBee 

coordinator to detect panic alerts and relative positioning of ZigBee mobile nodes; a 

keypad to discriminate events without radio communication needs; and a UHF module for 

range distance data transfer with the server. 

The mobile unit, presented in Fig. 5.13, runs a java application on startup which 

automatically activates all the system. Like this, the user just needs to turn on the PC to 

initiate all the correspondent localization process. 

Starting the localization process and in case of satellites coverage, the GPS module 

cyclically sends the absolute location to the main PC by a serial port. 

The information of the ZigBee network is converged on the network coordinator and 

resent to the main PC by a pre-defined serial port. The running java application collects all 

the data and sends it to the location module which estimates the relative position of the 

nodes according with a specific algorithm. In this case, the location is based on a Received 

Signal Strength Indication (RSSI) propagation model. The system will then calculate each 

GPS position, for each person based on the GPS value of the main PC and the distance to 
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each ZigBee sensor, this way even if the person that contains the ZigBee node has not a 

clear view to receive GPS values, it can be located using this method.  

 

Fig. 5.13 Mobile Unit (MU) 

For a global integration, these relative positions of end devices are converted into 

absolute coordinates with the association of GPS module received data. 

As previous shown, referring to a correct management intervention action groups and a 

correct description of the events is of crucial importance. To reduce the chance of 

information mislead events, discrimination is not performed by voice description but 

instead, by the use of an event keypad. The group leader can select different events simply 

pressing the correspondent button with a need of confirmation to avoid mistaken 

selections. The referred event keypad is presented on Fig. 5.14. 

 

Fig. 5.14 System Events Keypad 

All GPS, ZigBee network and event keypad data is converged into the mobile unit 

running application which cyclically merge all the received data into a XML file as 

presented in Fig. 5.15. 
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Fig. 5.15 System XML file example 

Finally, the created file is sent to the data server by a UHF link. UHF links provide high 

coverage suitable for emergency scenarios, although, they provide low bandwidth and 

consequently low data rates. For our system this is not dramatic because only a small size 

XML file is sent periodically. 

5.2.3 ZigBee Localization System 

The WSN localization system is based on ZigBee providing like this, low power 

consumption and a cost effective hardware solution. On this system, the network 

infrastructure is constituted by a single coordinator for each action group being the WSN 

managed by a star network topology. 

 

Fig. 5.16 ZigBee module prototype 

The mobile node, presented in Fig. 5.17, periodically send blasts to the coordinator, 

providing the support for localization based in RSSI. The nodes provide alert 

functionalities with the integration of a panic button and a magnetic sensor.  
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Fig. 5.17 Mobile Node flowchart 

5.2.4 Data Server 

The Data Server receives the XML sent by the UHF link. The server is composed by a 

Web access and a MySQL database where geo referenced position of different located 

devices and events are stored.  

This server runs an application which listens to a pre-defined TCP/IP port. It is also 

responsible for establishing a TCP connection with the UHF module, working as a 

TCP/UHF gateway, providing the link between the mobile unit and the Data Server. 

On the special case of ZigBee modules location, each PC associated to each ZigBee 

coordinator creates and sends an XML file to a FTP server. With this process 

accomplished, a message is sent by TCP/IP to data base server referring the uploaded file 

name. The reception of this message implies the data base server to read referred XML 

files and corresponding geo-referenced location information. 

5.2.5 User interface & Service 

The location of different modules can be performed on pre-defined maps or above 

Google Maps. Its access can be performed locally or by a web page, for this purpose a 

friendly user website as shown in Fig. 5.18 was developed. After authentication, a multi-

user platform for devices management is also provided.  
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Fig. 5.18 Localization System Interface 

By this interface the user can monitor the location of his action group devices as well as 

events location. 

Maps for the different location must be prepared in advance. Maps are geo-referenced 

images in KML format; this file is loaded and used as the map. This way, the user has the 

capability to create maps that offers the level of detail he needs for a certain indoor or 

outdoor location. This feature can be seen in the previous figure, where a map image was 

integrated on the application, so it is easier to identify modules and events geo-referred. 

This interface was integrated with some more options, turning this application very easy 

to use. These options are presented in Fig. 5.19 and can be described as: 

 Set refresh rate (rate of database access); 

 Real Time Data (Location data in “real time”); 

 See Data Historic (Show location between two dates); 

 Define Alerts (Alert the user when a device enter or leaves a defined area); 

 Add new Device (Add new device to defined group); 

 Edit Existing Device (Edit icon and device permissions). 
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Fig. 5.19 Web Server Options 

5.3 SB-6Log-Periodic System 

The Log-Periodic antennas were integrated into a switch-beam structure of six elements 

as presented in Fig. 5.20. 

The switched beam antenna approach provides a simpler and cheaper solution when 

comparing with an antenna array, making it more suitable for low cost communication 

systems. Besides the SB-6Log-Periodic antenna this approach also requires the following 

components: a module capable of measuring RSS, a SP6T RF switch and low loss RF 

cables as presented in Fig. 5.21 . 

 

 

Fig. 5.20 Prototype System architecture 
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For the presented test a commercial System on Chip (SoC) was considered [144]; a 

SP6T as the RF Switch [143] and semi-rigid cables of 18 and 23 cm with measured 

transmission loss below 0.32 dB for considered lengths. These cables are used for antenna 

array, RF-Switch, and control unit interconnections. 

Better figures of the antenna prototype is presented in Fig. 5.21 . 

 

Fig. 5.21 SB-6 Log-Periodic Prototype 

5.3.1 Control Application 

Here is presented the application to control the antenna. 

For the operation of the prototype as a SB-Antenna it is needed to guarantee the correct 

reception of bursts for each sectorial element. To simulate this purpose it was programmed 

a device that cyclically sends bursts. The receiver, connected to the SB-Antenna, listen in 

each sector for 100 ms and changes for the next sector. The received data is sent to the 

serial port and processed into an application developed in MatLab, Fig. 5.22. 

The application shows the received signal strength (RSS) of each antenna defining the 

angle where the transmitter device is. 

As an analogy to the GSM infrastructure that periodically send bursts to all the nodes, 

the antenna can listen the bursts in all directions, measure the RSS and define the 

transmitter antenna for the following transmission. 

 



112 Sectorial Antennas for WSN Localization Systems  

 

 

Fig. 5.22 Application Control 

5.4 Concluding Remarks 

In this chapter it was compared the performance of the Hive5 with a WSN of four nodes 

under the same fingerprinting algorithm, an ANN. As shown by RSS measurements, the 

Hive5 provides a better solution when compared to the WSN concerning the resolution and 

number of required RNs, which can provide a cheaper localization solution. It was verified 

that a gradient descendent with adaptive learning-rate back-propagation GD_ALR_BP 

algorithm provided the best localization performance for both approaches, under the 

considered conditions. Based on these RSS measurements analysis, GD_ALR_BP can be 

identified and considered as a proper ANN learning algorithm for LSs in indoor 

environments. 

NaPis is a management and location system integrated with several technologies which 

can support the actions groups’ activity under emergency scenarios. This system presents a 

plug and play solution, crucial for emergency situations. A system integrated with a 

ZigBee, GPS, keyboard for events description, UHF (Ultra High Frequency) 

communication link which can be locally managed or with web access if available. 

Lastly a SB system based on logarithmic antennas was developed, the SB-6Log-

Periodic system. 
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5.5 Summary of this Chapter 

This chapter presents the developed systems during this PhD work. 

After the development of several antennas three complete systems were implemented. 

One based with the Hive5 antenna and based in neural networks. Another, the NaPis, 

presented a management and LS integrated with several technologies which can support 

the actions groups’ activity under emergency scenarios. And lastly, the SB-6Log-Periodic 

system, which can be later used for maritime communications. 

This work led to the publication of several articles,[J3],[C2] and [C4]. 
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Chapter 6 – Proposed protocol for SA 

Communication protocols applied to wireless location systems (WLS) are of crucial 

importance providing the base for several features namely related to: power 

consumption[C1], privacy [145], scalability [146] and temporal optimization [147], 

although they are generally not compliant with each other. Another usual characteristic of 

WLS protocols is that they do not consider individually the WLS nodes, but instead, as a 

network where all nodes are assumed to have the same configurations. 

Moreover, different antenna approaches (i.e. omnidirectional, antenna arrays, switch 

beam (SB) antennas), start to be widely implemented in reference nodes (RF, also 

commonly called anchors) of WLS. These systems have been analyzed as independent 

networks, with different communication protocols that are not compliant. 

Several protocols have been developed for directive antennas operation, hence: different 

proposals for ready to send (RTS) and clear to send (CTS) transmission [148]; addition of 

new fields to RTS/CTS [149]; implementation of directional RTS/CTS (DRTS/DCTS) 

schemes [150]; addition of messages to inform neighbouring nodes about outgoing 

communications  [151]; directional virtual carrier sensing (DVCS) approach  [152]; 

directional MAC protocols (DMAC) - [153]; synchronized MAC protocols based on time 

division multiple access (TDMA) [154] [155]; and even dealing with multihop techniques 

[156]. 

Nevertheless, these systems and protocols have been analyzed as independent networks, 

with their own communication protocols that are not compliant with each other. Having 

identified this problem we focused our research on the developed of a generic centralized 

WLS protocol compliant with RNs integrated with different antenna approaches, namely, 

omnidirectional, antenna arrays and SB antennas. Another capability of this protocol is that 

it provides the possibility of individual configuration of mobile nodes (MN, also 

commonly called tag units) and simultaneous operation of different modes divided as: 

power consumption, user privacy and precision. The proposed protocol is suitable for low 

cost WLS mainly based on received signal strength (RSS) and angle of arrival (AoA). 
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6.1 Proposed Protocol 

Different antennas led to different location approaches, implying different 

communication protocols and consequently protocol incompatibilities. To solve this 

problem a communication protocol compatible with different type of antennas was 

proposed. Besides the compatibility there are also available several communication options 

according to the user main requirements related to power consumption, privacy and 

precision. This work is deeply analyzed in [J5]. 

For this proposal the WLS is constituted by three node types: coordinator (the sink of 

the network) RN (node with fix position) and MN (the element to be located). 

The proposed protocol is based on a cyclic configurable beacon transmitted by the 

coordinator to the entire network. The beacon interval is divided into three main intervals: 

the beacon transmission, reporting the network configuration parameters; the active period 

where the network messages are exchanged and an inactive period where devices are 

mainly in sleeping mode, joining or performing offline configurations. This mode is 

similar to the beacon-enable mode applied in ZigBee [157]. 

The beacon description is presented in Fig. 6.1. The beacon informs the network of the 

time interval until the next beacon transmission, and location configurations. 

 

 

Fig. 6.1 Beacon interval description 

 

Its first field, synchronization data, with the fix size of two bytes informs the network 

when will be sent the next beacon and the duration of the active interval. The two bytes are 
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divided in a set of two bits defining the temporal scale and two groups of seven bits 

defining the beacon and active intervals as seen in Fig. 6.2. 

 

Fig. 6.2 Synchronization Beacon Field Details 

 

The temporal scale was defined as micro, hundred micro, ten milliseconds and one 

second, although, according with the system requirements other temporal scales can be 

defined. For an easier interpretation of field’s size, figures are described with three 

different size types: fix obligatory (FO), fix dependent (FD) and variable dependent (VD). 

The next beacon field is the global configurations presented in Fig. 6.3 which 

configures a set of devices to operate on the desired location mode. This field informs the 

group of nodes to configure the communication mode, the number and interval between 

blasts and the size of configuration masks according with active flags as shown in Fig. 6.3. 

 

 

Fig. 6.3 Global Configurations Beacon Field Details 

 

The configuration flags are divided as OMNI-RNs, ARRAY-RNs, SB-RNs and 

controlled by three bits. Bit one enables the group configurations and bit zero disables it. 

There are available three bits to define the availability of time offsets, essential for 

simultaneous modes of operation. 
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The next two bits are used to define the configuration mode of this beacon. 

Several characteristics are desired according with the application such as low power 

mode (LPM), client privacy mode (CPM) and precision mode (PM). 

All these characteristics have the possibility to operate simultaneously with this 

protocol, by defining the location protocol mode as shown in Fig. 6.4. 

 

Fig. 6.4 Location Modes 

 

The location mode characteristics are described in detail in Fig. 6.5 

 

Fig. 6.5 Localization Modes description 

 

Then there is available a flag for beacon enable mode, which configures the MNs to 

work in a non-beacon enable mode in order to avoid the need to listen to all coordinator 

beacons. The next global configuration fields are the number of blasts and delay between 
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them. These fields allow the four possible numbers of message transmissions (which can 

be configurable) and a maximum delay of fifteen times the defined temporal scale. 

After, there is provided a byte to define the size of MN configuration mask, Omni-RNs, 

Array-RNs and SB-RNs according with the previous active configuration flags. For 

optimization purposes this byte is divided into three parts: broadcast flag (one bit) used to 

avoid a large MN bit Mask field in case we want to configure the entire network, then there 

is available a changed index flag (one bit), defines the existence or not of a new MN index 

for configuration, which can be very useful when only last registered MNs are desired to 

be configured; and lately, six bits to define the size of the mask, measured in bytes. 

According to the active transmission time offset flags state, a new field will be added, 

namely the transmission time offset. This field will give information about the 

transmission duration of which group of devices is needed for simultaneous operation 

modes. MN configurations come next with the format shown in Fig. 6.6. 

 

Fig. 6.6 MN configuration details 

 

The first field refers to the interval in which the MN will be listening for messages or 

start transmitting according to the selected location mode. 

Then it is provided a FD field which informs the initial index of the bit mask in case the 

Changed Index Flag is enabled. Another FD field is available, the non-beacon enable 

cycles, enabled only when Non Beacon enable flag is active. It informs about the number 

of transmission cycles without listening to the beacon. The last field refers to the MN Bit 

Mask defining the list of MN to be configured, previously defined in Size of Configuration 

Mask field. The next two fields are the Omni-RNs and the Array-RNs configurations. 

These fields are identical being referenced as a single figure as shown in Fig. 6.7. 
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Some fields are equal to the ones presented in MN configurations, namely initial index 

and bit masks. The pause interval is related to location modes where the RNs waits a pause 

interval before sending the received signal strength (RSS) data collection packet, reducing 

the number of packets transmitted. 

 

Fig. 6.7 Reference nodes for WSN or antenna arrays integration 

 

The last field of the beacon is the switch-beam (SB-RNs) configurations where the 

number, interval and bit mask of each different sweep is defined, as shown in Fig. 6.8. 

 

Fig. 6.8 RN Data Details 

Fig. 6.9 Inactive Period 

 

Fig. 6.9  Inactive Period 



Chapter 6 – Proposed protocol for SA  121 

 

 

 

 

All described operation modes are performed in active period although several other 

operations can be performed in non-active period, as shown Fig. 6.9 . This period, 

identified as Inactive, join or configuration period allows several network operations 

modes to reduce the impact on the active period. In this interval, the node joining is 

performed also as offline configurations. 

6.2 Localization Processes (LP) 

In this section are described the main localization modes available for WLS according 

to the integrated antennas on RNs. It presents the localization processes for Omni-RNs, 

Arrays-RNs, SB-RNs, all simultaneous modes and non-beacon enable mode. 

6.2.1 LP with Omni-RNs 

Typical WLS RNs are integrated with omnidirectional antennas being the nodes 

position estimated mainly by lateration and fingerprinting techniques. 

This protocol allows the operation of three main modes depending on the system 

requirements and can be divided as low power mode (LPM), client privacy mode (CPM) 

and precision mode (PM). 

The LPM on beacon mode relies on a cyclic transmission of the MNs to the WSN 

without exchanging messages with it. The MNs listen to the beacon and transmit in their 

reserved time slot to the RNs according to the index in the Omni-RN bit mask. After this 

step they enter into a sleep mode. The RNs after a defined pause interval and respective 

mask index delay, send the RSS data collections to the coordinator. 

The second main mode, CPM, relies on a cyclic transmission of the RNs, where the 

MNs listen to the messages and estimate their own position without exchanging 

information with the networking, not interfering this way with its privacy. 

The last mode, PM relies on the estimation of the MN position in relation to the 

coordinator, which can implement more complex positioning algorithms, and resend after 

its position to the corresponding MN. These modes are presented in Fig. 6.10. 
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Fig. 6.10 LM available with RNs integrated with Omni, Array and SB antennas 
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6.2.2 LP with Array-RNs 

Another used antennas implementation for WLS is based on antenna arrays. These 

systems rely mainly on the processing of signal phase and RSS differences on several 

elements of an antenna array. The communication protocol related to the LPM and PM is 

similar to the one previously presented for Omni-RN modes, although, it is does not allow 

CPM since the reception is always performed in the RNs side. A better representation of 

this process is present in Fig. 6.10. 

6.2.3 LP with SB-RNs 

This protocol also allows the use of SAs on RNs, more specifically, switch-beam (SB) 

antennas. The use of SB antennas implies the consecutive sending of bursts in order to 

measure the RSS on the different beam directions. This burst transmissions can be 

performed by the MN or by the RN side. Not knowing a priori the number of beams per 

antenna, the burst transmission is more efficient on the RNs side. This way, the MN has to 

listen for messages for a pre-defined time interval in which the SB will consecutively 

transmit bursts per each antenna element. For this reason, this mode is not very suitable for 

the case in which low power consumption is desired, therefor not available on this type of 

antennas. 

Having RNs with the SB antennas and knowing their direction, they can belong to the 

same or different synchronized groups in order to reduce transmission intervals that start at 

the same time and avoid packets collision. This process is shown in Fig. 6.10. 

6.2.4 Complete LP 

Having described individually the use of the three location processes it is possible to 

operate with any combination of the three antenna types and any combination of the three 

main localization modes. In this subsection is described the integration of the three antenna 

types. The integration of SB on RNs demands the synchronism of the network for listening 

the SB-RN bursts. 

This way, the LPM implies a consequent increase in power consumption. The operation 

of WSN and array modes for CPM, LPM and PM are identical to the previously described 
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modes with the difference in the initial listening interval for SB-RNs. These modes are 

described in Fig. 6.11. In the same figure it is described the LS operation with all antenna 

types having simultaneous operation of the three referred modes. 

 

Fig. 6.11 Localization available with RNs integrated with all antenna types modes 

6.2.5 LP for Non-Beacon Mode 

When long periods without mobile nodes configuration are expected, non-beacon mode 

can provide lower power consumption than when the beacon enables LPM. This mode 

allows the MN to transmit without listening for the beacon for long periods. This mode is 
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typically defined for transmission in inactive periods to avoid packet collisions. In Fig. 

6.12 it is described a MN that stays into a non-beacon mode for ten cycles of five seconds. 

 

Fig. 6.12 Non Beacon Mode 

6.3 Summary of this Chapter 

This chapter describes a configurable and compliant communication protocol suitable 

for WLSs integrated with omnidirectional, arrays and SB antennas. This protocol deals 

with three essential characteristics for WLS which can operate simultaneously divided as: 

power consumption, user privacy and precision. 

The proposed protocol is suitable for low cost WLS mainly based on received signal 

strength (RSS) and angle of arrival (AoA). 

The work developed in this chapter let to the submission of a paper, mentioned as [J5]. 
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Chapter 7 – Conclusions and Future Work 

In this thesis several systems, antennas designs and ideas have been proposed to solve 

current open issues in the localization system for WSN.  

Localization techniques and the most suitable antennas for each system are initially 

introduced. This study is presented and discussed in [J1]. Based on this study the sectorial 

antennas proven to be cost effective solutions for WSN where we can easily reduce the 

number of required RNs. This cost effectiveness is even more evident when switch beam 

approach is present. 

Regarding this study it was proposed a switch-beam antenna for WSN operating at 2.45 

GHz. This antenna, named Hive5 was initially presented in [C3] and detailed analyzed in 

[J2]. The integration of this antenna into an indoor localization system was presented in 

[J3]. This paper proved good accuracy of the system with the use of a single sectorial 

antenna and presented similar results comparing with a typical WSN of four nodes. It was 

also identified that the training algorithm highly influences the accuracy of LS. 

Several other localization systems have been presented for several application which 

have been presented in [C2] and [C4]. 

Verifying the performance of the two developed systems and the advantages of the use 

of sectorial antennas it was proposed a communication protocol to integrate different type 

of antennas and system requirements. For this is was idealized and proposed a configurable 

and compliant communication protocol suitable for WLSs integrated with omnidirectional, 

arrays and SB antennas. This protocol deals with three essential characteristics divided as: 

power consumption, user privacy and precision. This work is presented in [J5]. 

Based on the same principle of the work presented in [C3] it was developed a switch-

beam antenna based on commercial log-periodic antennas for maritime communications. 

Other systems were also addressed on this work, which passed by antennas for 

vehicular communications. This study led to the development of two interesting antennas 

for 5 GHz, an omnidirectional printed loop antenna for Taxi communications where the in 

phase and uniform current over the loop allows omnidirectional radiation pattern (even 

with loop dimensions comparable to the operating wavelength) presented in [C8].  
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Another antenna was presented, a new printed planar microstrip antenna with elliptical 

elements. The operating bandwidth of the antenna with usable radiation pattern is about 

20%. A new way to match PEM with CP is proposed by the insertion of an inner counter-

elliptical slot. This technique provides wide band in polarization for single feed monopoles 

and can be easily integrated into arrays presented in [J4]. 

 

The continuation of the work developed during this PhD is seen by the author in four 

areas of research: antenna, system, protocol and algorithm. 

In the point of view of the antenna, sectorial multi band approaches with polarization 

diversity could be an interesting area of research. The multi band could allow a wider 

range of applications and the polarization diversity more information which could be 

translated in better LS performance. 

With the antenna implemented a proper front end would be required in order to 

guarantee the multi band and polarization diversity discrimination. 

The LS could also have a wide range for improvement. The first step should be 

performed testing the proposed protocol verifying its versatility with different antennas and 

systems requirements. Analyzed this step an optimized protocol could be required for multi 

band compatibility. 

The last proposed area of research passes by the used algorithm. With new system data 

achieved new algorithm need to be developed. Considering the multi band, the polarization 

versatility and the reception of several signals with the use of a SA the correlation of all 

this information could be used for new algorithms for localization estimation or for data 

communication. 
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