563 research outputs found

    CYCLIC: A Locality-Preserving Load-Balancing Algorithm for PDES on Shared Memory Multiprocessors

    Get PDF
    This paper presents a new load-balancing algorithm for shared memory multiprocessors that is currently being applied to the parallel simulation of logic circuits, specifically VHDL simulations. The main idea of this load-balancing algorithm is based on the exploitation of the usual characteristics of these simulations, that is, cyclicity and predictability, to obtain a good load balance while preserving the locality of references. This algorithm is useful not only in the area of logic circuit simulation but also in systems presenting a cyclic execution pattern, that is, repetition over time, making the future behavior of the tasks predictable. An example of this is Parallel Discrete Event Simulation (PDES), where several tasks are repeatedly executed in response to certain events. A comparison between the proposed algorithm and other load-balancing algorithms found in the literature reveals consistently better execution times with improvements in both load-balancing and locality of references that can be of help on current multicore desktop computers

    Locality-Aware Dynamic Task Graph Scheduling

    Get PDF
    Dynamic task graph schedulers automatically balance work across processor cores by scheduling tasks among available threads while preserving dependences. In this paper, we design NabbitC, a provably efficient dynamic task graph scheduler that accounts for data locality on NUMA systems. NabbitC allows users to assign a color to each task representing the location (e.g., a processor core) that has the most efficient access to data needed during that node’s execution. NabbitC then automatically adjusts the scheduling so as to preferentially execute each node at the location that matches its color—leading to better locality because the node is likely to make local rather than remote accesses. At the same time, NabbitC tries to optimize load balance and not add too much overhead compared to the vanilla Nabbit scheduler that does not consider locality. We provide a theoretical analysis that shows that NabbitC does not asymptotically impact the scalability of Nabbit . We evaluated the performance of NabbitC on a suite of memory intensive benchmarks. Our experiments indicates that adding locality awareness has a considerable performance advantage compared to the vanilla Nabbit scheduler. In addition, we also compared NabbitC to OpenMP programs for both regular and irregular applications. For regular applications, OpenMP achieves perfect locality and perfect load balance statically. For these benchmarks, NabbitC has a small performance penalty compared to OpenMP due to its dynamic scheduling strategy. For irregular applications, where OpenMP can not achieve locality and load balance simultaneously, we find that NabbitC performs better. Therefore, NabbitC combines the benefits of locality- aware scheduling for regular applications (the forte of static schedulers such as those in OpenMP) and dynamically adapting to load imbalance (the forte of dynamic schedulers such as Cilk Plus, TBB, and Nabbit)

    Integrating Algorithmic and Systemic Load Balancing Strategies in Parallel Scientific Applications

    Get PDF
    Load imbalance is a major source of performance degradation in parallel scientific applications. Load balancing increases the efficient use of existing resources and improves performance of parallel applications running in distributed environments. At a coarse level of granularity, advances in runtime systems for parallel programs have been proposed in order to control available resources as efficiently as possible by utilizing idle resources and using task migration. At a finer granularity level, advances in algorithmic strategies for dynamically balancing computational loads by data redistribution have been proposed in order to respond to variations in processor performance during the execution of a given parallel application. Algorithmic and systemic load balancing strategies have complementary set of advantages. An integration of these two techniques is possible and it should result in a system, which delivers advantages over each technique used in isolation. This thesis presents a design and implementation of a system that combines an algorithmic fine-grained data parallel load balancing strategy called Fractiling with a systemic coarse-grained task-parallel load balancing system called Hector. It also reports on experimental results of running N-body simulations under this integrated system. The experimental results indicate that a distributed runtime environment, which combines both algorithmic and systemic load balancing strategies, can provide performance advantages with little overhead, underscoring the importance of this approach in large complex scientific applications

    Locality-Aware Concurrency Platforms

    Get PDF
    Modern computing systems from all domains are becoming increasingly more parallel. Manufacturers are taking advantage of the increasing number of available transistors by packaging more and more computing resources together on a single chip or within a single system. These platforms generally contain many levels of private and shared caches in addition to physically distributed main memory. Therefore, some memory is more expensive to access than other and high-performance software must consider memory locality as one of the first level considerations. Memory locality is often difficult for application developers to consider directly, however, since many of these NUMA affects are invisible to the application programmer and only show up in low performance. Moreover, on parallel platforms, the performance depends on both locality and load balance and these two metrics are often at odds with each other. Therefore, directly considering locality and load balance at the application level may make the application much more complex to program. In this work, we develop locality-conscious concurrency platforms for multiple different structured parallel programming models, including streaming applications, task-graphs and parallel for loops. In all of this work, the idea is to minimally disrupt the application programming model so that the application developer is either unimpacted or must only provide high-level hints to the runtime system. The runtime system then schedules the application to provide good locality of access while, at the same time also providing good load balance. In particular, we address cache locality for streaming applications through static partitioning and developed an extensible platform to execute partitioned streaming applications. For task-graphs, we extend a task-graph scheduling library to guide scheduling decisions towards better NUMA locality with the help of user-provided locality hints. CilkPlus parallel for loops utilize a randomized dynamic scheduler to distribute work which, in many loop based applications, results in poor locality at all levels of the memory hierarchy. We address this issue with a novel parallel for loop implementation that can get good cache and NUMA locality while providing support to maintain good load balance dynamically

    Scalability of microkernel-based systems

    Get PDF
    • …
    corecore