
Computing and Informatics, Vol. 31, 2012, 1255–1278

CYCLIC: A LOCALITY-PRESERVING
LOAD-BALANCING ALGORITHM FOR PDES
ON SHARED MEMORY MULTIPROCESSORS

Antonio Garćıa-Dopico, Antonio Pérez
Santiago Rodŕıguez, Maŕıa Isabel Garćıa

Department of Computer System Architecture and Technology (DATSI)
Technical University of Madrid
Facultad de Informatica
Campus de Montegancedo s/n, 28660 Madrid, Spain
e-mail: {dopico, aperez, srodri, mgarcia}@fi.upm.es

Communicated by J. C. Cunha

Abstract. This paper presents a new load-balancing algorithm for shared memory
multiprocessors that is currently being applied to the parallel simulation of logic
circuits, specifically VHDL simulations. The main idea of this load-balancing algo-
rithm is based on the exploitation of the usual characteristics of these simulations,
that is, cyclicity and predictability, to obtain a good load balance while preserving
the locality of references. This algorithm is useful not only in the area of logic
circuit simulation but also in systems presenting a cyclic execution pattern, that is,
repetition over time, making the future behavior of the tasks predictable. An ex-
ample of this is Parallel Discrete Event Simulation (PDES), where several tasks are
repeatedly executed in response to certain events. A comparison between the pro-
posed algorithm and other load-balancing algorithms found in the literature reveals
consistently better execution times with improvements in both load-balancing and
locality of references that can be of help on current multicore desktop computers.

Keywords: Parallel algorithms, shared memory systems, load balancing, locality
of references, multicore, VHDL, PDES



1256 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

1 INTRODUCTION

Digital design needs to describe the functionality of the implemented system. Several
approaches are used to ensure that algorithms meet specifications, from the register
transfer level (RTL) to the circuit logic level. Hardware Description Languages,
such as VHDL (VHSIC Hardware Description Language), are used to describe and
test the circuits prior to their actual implementation. Given the growing complexity
of current designs, simulation has proven to be a useful tool for checking design
functionality. This may involve testing a circuit with a wide range of input data
or even subjecting it to stress, the latter often being difficult to perform on a real
circuit.

Simulations have to execute as quickly as possible to improve productivity and
to allow the designer to put the final product on the market as soon as possible.
Current circuit designs are so complex that simulating them in uniprocessor systems
is a very time consuming task. Current workstations are multicore processor-based
parallel systems that allow the designer to run the VHDL simulator on desktop
computers. Simulator parallelization is therefore required if the designer wants to use
these architectures efficiently. The most used parallelization techniques in Parallel
Discrete Event Simulation (PDES) are shown in [1]:

• Synchronous simulations. There is a global clock for time-measuring and all
logical processes tagged with the same time stamp are executed in parallel, but
cannot proceed with the next simulation step until all logical processes have
completed the previous one. This synchronous behavior requires all processors
to synchronize at a barrier before carrying on with the simulation [2].

• Asynchronous simulations. They differ from synchronous approaches in that
they remove the barrier synchronizations between time steps in order to allow
more parallelism in the simulator, allowing each logical process to execute the
simulation by using a local time [3]. Thus a logical process executes events
in chronological order until the events queue is empty. This approach allows
different parts of the simulation to progress independently. However, it may
introduce errors by executing events with time tags previous to already executed
events, thereby violating the local causal constraint.

On the other hand, when parallel simulations are executed on shared memory
multiprocessors, load balancing and data locality are two of the most important
issues to obtain an efficient use of computer resources as well as to minimize execu-
tion times. Load balancing avoids idle processors alongside busy processors, whereas
preserving data locality avoids moving the same data again and again through the
memory hierarchy.

Traditional load balancing techniques do not exploit the main characteristic of
PDES applications. The execution of these applications is cyclic and repetitive, i.e.,
they execute the same code with different data sets in every iteration thus making
future behavior predictable.



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1257

A new load balancing algorithm for parallel synchronous simulations is proposed
in this paper that exploits these features so as to efficiently distribute the workload
among the available processors and to try to locate tasks close to their data to
improve data locality. This is an important issue in current multicore systems as
it helps avoid conflicts in the shared cache and reduces the simulation time on
synchronous PDES.

The rest of the paper is organized as follows: Section 2 offers an overview of
several load balancing techniques found in the literature. In Section 3, the proposed
load balancing algorithm is described in detail, including considerations about data
locality. Section 4 contains an example of applying the new algorithm to an un-
balanced system. The results that have been obtained are described in Section 5,
comparing the proposed algorithm with other well-known load balancing algorithms.
Finally, the conclusions of this work are presented in Section 6.

2 LOAD BALANCING AND DATA LOCALITY

After selecting one of the PDES parallelization schemes mentioned in the introduc-
tion, processes have to be allocated to processors. This task is extremely important
for system performance because if the load of the processors is not balanced, there
will be processors with a lot of work pending while others remain idle waiting for
the former to finish. However, this task must be accomplished without neglecting
the locality of references, which has a major influence on execution time.

Load balancing has also been discussed in the context of scheduling for dis-
tributed systems. In centralized scheduling, the scheduling task resides in one pro-
cessor of the system. In distributed scheduling, the task of allocating processes to
processors is physically distributed among the processors. In both approaches pro-
cess migration is a complex task, except in shared memory multiprocessors, where
the cost is negligible.

Static load balancing is the simplest algorithm and has been used for loop pa-
rallelization. In this case, the loop is distributed among the available processors
assuming that the load of every iteration is similar. This algorithm is easy to
implement and there is no contention to obtain more work.

Static scheduling has many disadvantages as stated in [4]. Usually the amount
of computation of every iteration is not the same and the load of the processors
may vary with time. Data references are irregular and dynamic and, in centra-
lized scheduling, data locality does not take into account data movement among
processors. The overall system load may vary and is not predictable.

Dynamic scheduling offers an alternative avoiding load imbalances, but it has to
be implemented taking into account the computation involved in scheduling. This
has even led some authors to suggest using a processor fully dedicated to schedul-
ing [5]. In dynamic scheduling, work is assigned to every processor in the system.
When the work is completed the processor requests more work. In centralized ap-
proaches, a processor is dedicated to executing a scheduling function and the tasks



1258 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

are assigned to processors by overloading a processor in the system which in many
cases is completely dedicated to executing the load balance function.

Distributed scheduling is an alternative option to avoid synchronization with
the centralized scheduler: the processors monitor and update the whole system
load information. The least loaded processor steals work from the most loaded
ones. In [6] a toolkit for dynamic load balancing is presented that implements
a well-known algorithm for distributed scheduling. In [7, 8] the adaptive factoring
algorithm dynamically estimates the means and variances of loop iteration execution
times and uses a probabilistic model to dynamically allocate chunks of loop iterations
to a processor.

When a process is migrated, data have to be maintained as close as possible to
the processes that use the data [9]. If data locality is not preserved, communication
overheads are added when accessing data, and the benefits obtained by load ba-
lancing are lost. In [4] data chunks are assigned to tasks which are in turn assigned
to processors. When a processor needs to steal work a task within that processor’s
boundary is selected (i.e. close to its data).

Symmetric multiprocessors (SMPs) are nowadays very popular in the area of
high performance computing in stand-alone systems. Commodity hardware is im-
proving based on deeper memory hierarchies and chip parallelism, turning current
personal computers into symmetric multiprocessors. In the last years, each processor
has itself become a multiprocessor by introducing several cores into the processor.
The main difference with respect to previous SMPs is that the cores usually share
the cache levels above L1, changing the behavior of the memory hierarchy. All these
improvements allow high performance applications to be executed on a desktop com-
puter; however, several changes have to be made in these applications and in the
operating systems [10, 11]. Parallel simulators can also make use of these improve-
ments, but they have to be modified. SimK [12, 13] is a parallel simulation engine
that uses high efficiency synchronization techniques and dynamic task migration. It
implements work stealing, and processor affinity is considered for task migration by
using CPU affinity system calls.

Traditionally, scheduling in SMPs was done using a single, globally accessible
task queue and every process could be executed in every processor in the system.
As this scheduling ignores data locality, a collection of local task queues with a sim-
ple load balancing scheme was already proposed in [14]. Task migrations in these
systems are cheaper than in distributed systems, but their cost in terms of data
locality is known [15]. However, always executing the same tasks on the same pro-
cessors does not in itself guarantee good performance and data distribution must
be considered to improve the use of the memory hierarchy. Effective use of memory
hierarchy is important and some schedulers use processor-cache affinity information
to avoid cache-reloads and to improve the performance of local task queues as in [16].
[17] uses a combination of a global queue and several local queues, known as hybrid
queues, to exploit the advantages of each scheme, where the “n” first tasks associated
to each processor are located in its local queue, and the rest of the tasks are located
in a global queue. These hybrid queues can be combined with a dynamic threshold,



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1259

where the threshold changes according to the amount of pending work [17], as it
is impossible to estimate a unique and optimum value for “n”. In SimK [12, 13]
two separate lists per processor are used; the run list and the mig list where tasks
are moved when the length of the run list reaches a certain threshold. If there are
tasks in the run list they are dispatched, otherwise the mig list is consulted for can-
didates. If the mig list is empty, work stealing occurs from remote mig lists. Some
scheduling systems consider the negative effect of the memory hierarchy negligible,
e.g. in real-time system schedulers, as the main objective is for the tasks to meet
their deadlines while system performance is secondary [18]. Also several attempts
have been made at data partitioning in order to increase data locality [19], e.g.
by minimizing data region sharing among processors or by modifying the schedu-
ler of the operating system to obtain better performance through reduced memory
contention [20, 21, 22].

Load balancing and locality of references have a major impact on the execution
time of PDES in SMPs, however improving the one tends to worsen the other [23].
Vee and Hsu [24] study a similar problem to the one exposed in this paper: load
balancing in synchronous simulations on SMPs. Their approach is to solve load im-
balance by applying work stealing between processors. However, this results in high
contention in the bus due to the fine grain of parallelism. Another implementation
for general simulations is proposed in Cilk [25]. This runtime system is designed
to exploit dynamic, highly asynchronous parallelism, focusing on load balancing,
communication protocols and data locality.

When loop scheduling is considered different algorithms are also used. [26] com-
pares five different loop scheduling algorithms: static scheduling, self scheduling,
uniform-size chunking, guided self-scheduling, and affinity scheduling. The latter
considers the loop scheduling problem to have three dimensions: load imbalance,
synchronization overhead, and communication overhead due to nonlocal memory
accesses.

All these scheduling policies have to be combined with a second level of schedul-
ing when jobs share a computer, i.e. when several jobs run simultaneously and
the scheduler must distribute the jobs among the processors, each job with several
threads [27].

3 CYCLIC: A NEW LOAD BALANCING ALGORITHM

In this section, a new load balancing algorithm aimed at synchronous PDES is pre-
sented which obtains very promising results in terms of load balancing and enforces
the locality of references.

To measure the improvement this algorithm will be compared in Section 5 with
the four algorithms referred in the previous section: the global queue, the local
queues, the hybrid queues, and the hybrid queues with a dynamic threshold.

As this algorithm was initially designed to be applied to logic circuit simulations,
the main characteristics of these simulations were exploited. Logic circuit simula-



1260 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

tion involves components (gates, multiplexors, registers, etc.) and input-output
logic signals. The components are sensitive to the changes produced in the values
of their input signals, that is, when their input signals change they react by execut-
ing and recalculating the values of their output signals. VHDL has been chosen as
an extended, well-known and standard hardware description language widely used
in industrial and academic environments. In VHDL the components are simulated
using VHDL processes and the signals are implemented using VHDL signals, VHDL
processes and signals being the only tasks of the simulation. The simulation algo-
rithm consists of two phases. In the first phase, the components are executed to
obtain a new value for their output signals taking into account the values of their
input signals. In the second phase, the values of the changed signals are updated
and propagated. This fact introduces new changes at the input of other components,
causing the simulation cycle to start again.

This cyclic feature, which allows for the prediction of future behavior, and the
fact that the time employed in updating a VHDL signal or executing a compo-
nent (VHDL process) is usually the same for every iteration, allow estimating the
workload of each phase in advance. This time is constant for two reasons:

1. the steps followed by the simulation kernel to update a signal are always the
same and

2. the steps to compute the output signals from the input signals in a VHDL
process are usually the same and do not involve a lot of user code per VHDL
process, even in the case of behavioral models.

These features help better distribute the load among the available processors.
The workload of each phase can be determined because all active tasks (VHDL

signals and processes) are known at the beginning of each cycle. All that is left to
do is to assess the granularity of each task, that is, measuring the time employed by
each component or by each signal. Thus, before starting each phase, the active tasks
are known, as well as their previous execution times. In this way, the total amount
of work for each phase can be estimated allowing the workload to be balanced
between the different processors before starting the execution of the phase. This
effectively results in an adaptive algorithm that balances the current workload in
every phase.

Moreover, the proposed workload distribution algorithm takes into account the
locality of references and seeks a reasonable trade-off between both factors: good
workload distribution and good locality of references.

To obtain the above-mentioned trade-off, each processor has its own queue with
pending work, employing a system which only steals from those queues with un-
balanced work. To determine the amount of pending work, each local queue has
a counter showing the total estimated work present in the queue.

Every time a task is activated, it is incorporated into the queue of the processor
that executed it previously to obtain a good locality of references. Before starting
each phase, once the total workload and the workload assigned to each processor



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1261

are known, only the minimum necessary tasks are migrated to obtain a good load
balance.

Moreover, by using only local queues for each processor, the contention that
could arise by accessing a global queue is totally suppressed, because each processor
inserts and removes tasks from its local queue without any need for mutual exclusion
to manage the global queue, since load balancing and task stealing are done at the
end of each phase at the synchronization barrier.

At the beginning all the tasks are placed in a global queue and the processors
obtain the work to do from this global queue. Later, each task is placed in the local
queue of the processor that executed it previously. This ensures a good initial load
distribution using local queues, to improve the locality of references. As the cache
memories do not initially contain any footprints, the penalty of using a global queue
in the first iteration is minimal.

In Section 3.1 the load balancing algorithm, based on the cyclicity and pre-
dictability of every simulation iteration, is explained. Later in Section 3.2, some
changes are included in the tasks, i.e. VHDL processes and VHDL signals, to make
better use of the memory hierarchy and improve data locality.

3.1 Description of the Algorithm

To balance the whole system the scheduling algorithm is executed for every VHDL
simulation phase by the last task that arrives at the synchronization barrier.

During the first iterations of the algorithm (initialization), the execution time of
each task is measured several times. To avoid taking more measures than necessary,
this measure is only taken the first “n” times the task is activated, and the average
time is computed. The first two measures taken during initialization are discarded,
since they do not follow the same pattern as the following executions. Spurious
measures, i.e. measures that are at a variance with the average values, are also
discarded; this variance is usually due to CPU preemption during execution. After
the initialization the amount of work assigned to each processor can be estimated
as the granularity of each task is known.

Once the initialization has been completed, the workload is balanced every time
the last task reaches the synchronization barrier. The main objective of the load
balancing algorithm is to balance the workload with minimal migration to improve
data locality. The algorithm steps are as follows:

1. The least busy CPU is determined.

2. The busiest CPU is determined.

3. unbalanced_work is determined by:

n cpus∑
i=1

(work of CPUi − work of least busy CPU) (1)



1262 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

that is, the sum of all the pending work to do once the least busy processor has
finished.

4. The amount of work to migrate is computed as

work to steal = unbalanced work/number of CPUs

The idea behind this division is that the least busy CPU should do its fair share
of the unbalanced work.

5. The algorithm avoids migrating more tasks than necessary in order to preserve
the locality of references, i.e. to reuse the data present in the cache memory of
the processor where the task was previously executed. To do so, the algorithm
ensures that the least busy CPU does not end up with more work than the
busiest one, i.e., the workload of the least busy CPU plus the workload of the
migrated tasks does not exceed the final workload of the busiest one. If this is
the case, the amount of work to migrate is recomputed as maximum workload
minus the sum of the minimum workload plus the previous amount of work to
migrate.

if ((least_busy_CPU+work_to_steal) > (busiest_CPU-work_to_steal))

work_to_steal = busiest_CPU - (least_busy_CPU+work_to_steal);

Figure 1 shows a situation where the above-mentioned problem appears. The
amount of migrated work is too big and the least busy CPU could end up with
more work than the busiest one.

Busiest CPU

Least busy CPU

Work_to_steal

Before migration

Busiest CPU

Least busy CPU
Work_to_steal

After migration (Unwanted situation)

Fig. 1. Incorrect task migration

6. Tasks are migrated from the busiest CPU to the least busy CPU while the
amount of work migrated is less than or equal to work_to_steal.

7. If all the tasks in the queue of the busiest CPU have an execution time greater
than work_to_steal, the smallest one is migrated, as long as this migration



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1263

does not increase the imbalance, that is, the workload of the least busy CPU
plus the workload of migrated tasks does not exceed the previous workload of
the busiest CPU.

8. The previous steps are repeated in the following iterations distributing any un-
balanced work between the other CPUs until the system is totally balanced, i.e.,
as long as any task has been migrated the system reverts to step 1. The load
balancing algorithm ends only when no further task can be migrated because
the imbalance would increase, i.e., the system is balanced.

Each iteration reduces the load imbalance as the least busy CPU will always
have a lower workload than the busiest CPU at the end of each iteration. Thus, the
algorithm converges until there are no tasks left to move and the load distribution
cannot be improved any further.

This algorithm introduces little overhead, because the time taken to update the
component or the signal is only measured the first “n” times. It also spends time on
the balancing process, but as the simulation advances the initial imbalance decreases,
because each task is assigned to the queue of the processor where it was previously
executed, which also decreases the time needed to balance the system. Thus, the
number of tasks that have to be migrated to obtain a good balance decrease over
time. As the algorithm quickly converges to a load-balanced state, and the VHDL
simulations usually take thousands or even millions of iterations to simulate the
digital circuit, this minor overhead is negligible.

3.2 Data Locality

As opposed to other load balancing algorithms, such as those used by SimK or other
VHDL simulators, data locality has been improved in the code generation phase,
when translating the VHDL code to C code. This has been achieved by introducing
additional changes, most of which are easy to implement and make far better use
of the memory hierarchy. These changes pursue two objectives: the first is to avoid
false sharing of internal data between different tasks and the second is to increase
proximity between dependent internal data of a task.

False sharing occurs when two independent tasks without any shared data
have some of their data located in the same cache block, which causes constant
invalidations and unnecessary reloads every time one of these tasks updates its
data.

Regarding data locality, the objective is to group related data as closely as
possible to increase proximity in such a way that when a cache miss or a page fault
is triggered, any additional data needed in the close future are obtained together
with the required data.

Internal data are not the only problem, shared data between different tasks also
need to be considered. VHDL signals have been grouped by their dependencies, as
will be explained in Section 3.2.2, and therefore there are no shared data between



1264 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

these signals groups. VHDL processes do not share data because the language defi-
nition does not allow direct communication between processes, and communication
must always be through the VHDL signals.

Thus, the only shared data are the signals read and written by each VHDL
process. The read signals do not present any problem because the other copies
present in the memory hierarchy do not have to be invalidated. The written signals
have been modified to reduce the penalties caused by the memory hierarchy. Details
are explained in Section 3.2.2.

The parallel VHDL simulator has been written in C language, with each VHDL
process supported by a thread of the simulator, and several threads – one for each
processor of the machine – supporting the simulation kernel which updates the
VHDL signals.

Each VHDL process has its own source code, provided by the user, and it can
call procedures and functions to describe the behavior of the component being simu-
lated. This fact implies that each VHDL process needs its own stack and therefore
a different thread has been used to implement each VHDL process. The size of the
components being simulated depends on the abstraction level used by the designer
and can vary from gates, multiplexors or registers to a whole CPU.

VHDL signals are a different case because unlike VHDL processes they do not
have any associated user code, as they represent input-output logic signals. This
means that VHDL signals do not need to have an individual thread with its own
stack to execute the user code as VHDL processes do. In fact, VHDL signals are
updated by the simulation kernel threads. Thus, a kernel thread can update several
VHDL signals.

The simulator therefore has two different types of tasks, VHDL processes and
VHDL signals. All the tasks are executed by threads. The next section describes
the changes introduced, both in the VHDL processes and in the signals, to improve
data locality.

3.2.1 VHDL Processes

Each VHDL process has its own source code with its own variables, local to the
process. These variables have been grouped as closely as possible and separated
from the rest of the variables owned by other processes. For this purpose, they have
been generated as variables local to the thread of the simulator executing the code
of the mentioned VHDL process.

To ensure space locality, during the generation phase, i.e., when the VHDL code
is translated to C, the variables are grouped close together in the stack of the thread,
and clearly separated from the local variables of other VHDL processes, which are
located in the stack of their threads, thereby avoiding false sharing as the variables
will not be located in the same cache line.

Together with these variables there are frequently used dynamic data, used to
dynamically implement the VHDL data structures in the C simulator that require
a different treatment. In this case, a heap has been assigned to each thread, thus



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1265

differentiating the proposed simulator from other simulators. Again, a similar effect
has been obtained, increasing the locality of references and avoiding false sharing.
All the dynamic variables of a VHDL process are close together in the heap of
the thread, and separated from the dynamic variables of other VHDL processes
which are located in the heap of their threads. As the dynamic data are used to
implement the VHDL data structures that are built at the beginning, during the
first two iterations (where measures are not taken), the memory allocation does not
introduce time unpredictability in the task execution time.

An added advantage is that the contention due to the dynamic memory ma-
nagement is avoided because all the requests for assigning or freeing memory are
made local to the heap of each thread. This contention can be significant in parallel
applications because current operating systems usually use a single list per process
to manage dynamic memory and access to that list could give rise to contention,
converting the dynamic memory management into a bottleneck.

Thus, the variables of each VHDL process are located in the stack of their
thread, while the data structures are located in the heap of their thread, increasing
the locality of references and avoiding false sharing.

3.2.2 VHDL Signals

VHDL signals are a different case because they do not have any associated user
code and they are updated by the simulation kernel threads instead of having their
own thread. Moreover, VHDL signals display mutual dependencies and they usu-
ally share data. However, this is not a problem as it does not constitute false
sharing.

The first approach to data locality is to treat dependent signals together to
avoid several threads updating them simultaneously, which would require accessing
the shared data in mutual exclusion. This has to be avoided as it increases the
contention and invalidations among the different cache blocks that share the same
data.

The signals have been grouped according to their dependencies into so-called
signal or activity groups. These groups are defined by the fact that any change in
any signal of a group forces to recompute all the signal values of the group, activating
all the signals of the group and the group as a whole, i.e., the signals of a group are
always activated in the same time-step. Activating all the signals in a group does
not mean that they all change but that all of them have to be recomputed.

Activity groups represent the minimum working unit for the kernel threads.
Not considering the signal as the minimum working unit is another feature that sets
CYCLIC apart from other VHDL simulators. To update the VHDL signals affected
by changes, each kernel thread selects an activity group, updates all its signals (all
of which are active) and moves on to the next activity group once finished.

VHDL signals can present the following dependencies that have to be considered
when grouping them. Their dependencies are important to avoid synchronizations
between threads, to avoid false sharing and to increase spatial locality.



1266 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

• Composed signals. There are no dependencies between their elements. A change
in the value of one of its elements does not imply a change in the value of
the others. Thus, recomputing is not required and the subelements are not
grouped.

• Connected signals. If several signals are connected through ports they are de-
pendent, thus they should be together in the same group in order to propagate
their values correctly.

• Implicit signals. If the value of a signal varies, all the implicit signals that use
it as a reference (stable, quiet, transaction, delayed) should be recomputed be-
cause their value may change. Therefore, they should be in the same group as
their reference signal.

• Solved signals. Those are signals which several processes write to. VHDL in-
troduces a data structure called driver for each VHDL process that writes to
a VHDL signal. The final driving value of the signal is obtained using a resolu-
tion function. Solved signals can be of two types:

– scalar, that is, they are not composed. There are no dependencies between
signals but there are several processes writing to one signal (each process in
a different driver). Thus, there are several drivers but a single signal. The
solution here is to group the drivers with their signal. The activity search
is done using the signal groups that include all the interrelated signals and
their drivers.

– composed. If the signal is solved at element level, the case is similar to an un-
solved composed signal, as there are no dependencies between subelements
of the signal. If it is solved at composed signal level, the resolution function
will return a new value for the “n” bits, requiring all the elements of the
signal to be computed again. Since all of them are mutually dependent they
should be together in the same group.

• Signals connected through type conversion functions. This case is similar to
the above-mentioned solved signals that use resolution functions, but in this
case type conversion functions are used to obtain the driving value of the sig-
nal.

– The signal is scalar: it is equivalent to the connected signals.

– The signal is composed: the situation is the same as with the composed
solved signals. Modification of the input value forces calling of the conver-
sion function, which will return a new input value for the “n” bits, forcing
to compute all the subelements of the composed signal again. As all the
subelements are affected, they should be together in the same group.

These activity groups are built during the code generation phase, that is, when
the dependencies between signals in the elaborated model are analyzed. To improve
the spatial locality of references, signals belonging to the same group are generated



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1267

contiguously, to take into account the fact that when one is updated, the rest also
have to be updated. To avoid false sharing, the groups are generated aligned to the
cache memory block size. In this way, although some memory is wasted, independent
data cannot share the same cache block.

To improve memory hierarchy behavior the authors took a closer look at the
data shared between the signals and the processes that write to these signals. It
should be noted that a process does not modify the signal, but the driver that is
associated to both. The driver of each group is generated in its own memory block
and all the drivers are linked with their group by means of pointers. In this way,
when several VHDL processes write new signal values into a group concurrently,
the whole group does not move across the memory hierarchy and only few memory
blocks are updated or invalidated. This considerably reduces the overall traffic as
the signals group is not moved at all. Instead only the drivers move across the cache
memories.

3.3 Input/Output Monitor

An input/output monitor has been included to decouple the input/output opera-
tions from the rest of the simulation and avoid having all the tasks waiting in the
synchronization barrier for a task that is performing a read or write operation. This
is to prevent the simulation tasks from accessing the disk for read or write opera-
tions. As with all synchronous simulators with synchronization barriers at the end
of each phase, if a task has to read from or write to the disk, the rest of the tasks
have to wait in the synchronization barrier for it to finish the I/O operation before
continuing with the simulation, introducing an unbalanced situation in a previously
balanced simulator. The scheduling algorithm cannot predict the task input/output
operations, the only way to maintain the whole system balanced is preventing the
tasks from accessing the disk.

The I/O monitor takes care of both tasks: prefetching to store the data required
for the tasks in memory and data dumping to write to the disk. The I/O monitor
implementation takes into account that all the file descriptors have an associated
data buffer, so buffered I/O is used. The tasks read or write data directly to the
buffer. They access the file descriptor in mutual exclusion and they read or write
the data directly to the buffer associated to the descriptor. It is a quick and simple
operation, leaving disk access to the monitor.

The I/O monitor is suspended until a request is received, whereupon it wakes
up and takes care of the request. Once all the pending requests have been dealt
with, it examines all the file descriptors, looking for buffers that are near their limit
(the limit value is 75 % of the buffer size, that is, if 75 % of the buffer has already
been read or written, a monitor request is generated). If one of the buffers is being
used above 50 % it is considered near the limit and the monitor reads or writes its
data before suspending.



1268 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

4 EXAMPLE

The best way to show how the CYCLIC algorithm works is applying it to an example
with an initially unbalanced workload. The example is based on a computer with
four processors, two of them heavily loaded and the other two with a very light
workload.

For every task to execute, the time spent on executing is estimated. The initial
situation is shown in Figure 2.

• CPU1: 1 977µs; CPU2: 579µs; CPU3: 1 591µs; CPU4: 330µs.

1977 85 320 1151 374 47

579 179 132 229 39

1591 902 175 98 116 254 46

330 135 105 90

CPU 1

CPU 2

CPU 3

CPU 4

Thr10

Thr1

Thr21

Thr10

Thr14

Thr12

Thr7

Thr14

Thr15

Thr16

Thr3

Thr15

Thr18

Thr8

Thr11

Thr20

Thr4 Thr22

Total

Total

Total

Total

1
3

2

Fig. 2. Migrating tasks to balance the workload

The busiest processor is CPU1, with 1 977µs, and the least busy processor is
CPU4, with 330µs. The amount of work to balance is:

unbalanced work = (1 977−330)+(579−330)+(1 591−330)+(330−330) = 3 157.

Hence, the amount of work to migrate from CPU1 to CPU4 is 3 157/4 = 789µs.
The local queue of CPU1 is searched to migrate tasks to the queue of CPU4

without exceeding 789µs of migrated work.
The first task in the queue, Thr10, has an execution time of 85µs, therefore

it can be migrated. The next one, Thr14 (320µs), is also migrated. The third
one (1 151µs) cannot be migrated because the above mentioned 789µs would be
exceeded. The fourth one, Thr18 (374µs), is also migrated. The last task, Thr20
(47µs) is not migrated as it exceeds the limit of 789µs. Thus, a total workload of
779µs has been migrated from CPU1 to CPU4. This is shown by the arrow labeled
“1” in Figure 2.



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1269

The new situation after migrating is:

• CPU1: 1 198µs; CPU2: 579µs; CPU3: 1 591µs; CPU4: 1 109µs.

Now, the busiest processor is CPU3, with 1 591µs, and the least busy processor
is CPU2, with 579µs. The amount of work to balance is:

unbalanced work = (1 198−579)+(579−579)+(1 591−579)+(1 109−579) = 2 161.

Hence, the amount of work to migrate from CPU3 to CPU2 is 2 161/4 = 540µs.
If this amount of work were migrated, CPU3 would be less busy than CPU2 (579 +
540 > 1 591− 540). As avoiding the migration of tasks (if possible) is preferable for
the sake of preserving the locality of references, the amount of work to migrate is
the maximum workload minus the sum of the minimum workload and the amount
of work to migrate: 1 591− (579 + 540) = 472µs.

The queue of CPU3 is searched, migrating tasks to the queue of CPU2 without
exceeding 472µs of migrated work. The first task in the queue, Thr1 (902µs) cannot
be migrated because it would exceed the limit. Thr12 (175µs), Thr16 (98µs) and
Thr8 (116µs) are migrated because their execution times fit the limit. Thr4 (254µs)
cannot be migrated without exceeding the limit, whereas Thr22 (46µs) can. The
four tasks with a total workload of 435µs are migrated as shown by the arrow labeled
“2” in Figure 2. The new situation is as follows:

• CPU1: 1 198µs; CPU2: 1 014µs; CPU3: 1 156µs; CPU4: 1 109µs.

Again the busiest processor is CPU1 with 1 198µs, and the least busy processor
is CPU2 with 1 014µs. The amount of work to balance is 421µs.

The amount of work to migrate is now 421/4 = 105µs. Again this would leave
CPU1 less busy than CPU2 (1 014 + 105 > 1 198− 105). To avoid this, the work to
migrate is recomputed (1 198− 1 014)− 105 = 79.

The queue of CPU1 is searched and Thr20 (47µs) is migrated as shown by the
arrow labeled “3” in Figure 2. Now the situation is:

• CPU1: 1 151µs; CPU2: 1 061µs; CPU3: 1 156µs; CPU4: 1 109µs.

At this stage, the busiest processor is CPU3 with 1 156µs, and the least busy
processor is CPU2, with 1 061µs. The amount of work to balance now is 233µs,
therefore the amount of work to migrate is 58µs. Again, this would leave CPU3 less
busy than CPU2. Hence, the recomputed work to migrate is 37µs.

Searching the queue of CPU3, Thr1 (902µs) and Thr4 (254µs) are found. Both
exceed the limit, leaving the smaller of the two, Thr4, as a possible candidate for
migration. If Thr4 were migrated, the load imbalance would rise because
max_work (1156) < min_work(1061)+min_to_steal(254).

The algorithm ends as it cannot move any further tasks without increasing the
imbalance, i.e., the system is fully balanced. The final result can be seen in Figure 3.
The speedup is computed as the total amount of work to do divided by the busiest
processor.



1270 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

1151

1061

1156 902 254

1109

CPU 1

CPU 2

CPU 3

CPU 4

Thr1

179

Thr21

132

Thr7

229

Thr3

135 105 90

Thr19 Thr5 Thr9

85 320 374

Thr10 Thr14 Thr18

1151

Thr15

98

Thr16

116

Thr8

175

Thr12

39

Thr11

Thr4

47

Thr20

46

Thr22Total

Total

Total

Speedup = 4477 / 1156 = 3.87

Total

Fig. 3. Load distribution obtained with the CYCLIC algorithm

5 RESULTS

The CYCLIC load-balancing algorithm was performance-tested without task steal-
ing or ordered queues and was compared with four other well-known existing load-
balancing algorithms to estimate the benefits obtained. The following algorithms
were compared:

Global queue. A single central queue is used which all the processors access to
obtain work. This algorithm provides a quasi-optimal load balance, but it ig-
nores the affinity or locality of references. Moreover, it presents contention in
accessing the queue, and it is the most used algorithm in thread-based systems.

Local queues. Here, the opposite is true: each processor has its own local queue
and the tasks always execute on the same processor, that is, they never migrate.
This ensures a very good locality of references but poor load balance.

Hybrid queues. This is a trade-off between the two previous algorithms, with
both local queues and a global queue. There is one local queue per processor,
where the “n” first tasks associated to each processor are located, and a global
queue that contains the rest of the tasks. If a processor completes its local tasks
it checks the global queue for further tasks. This algorithm reduces contention
when accessing the global queue, increases the locality of references (because
a lot of tasks are executed on the same processor as before), and balances the
workload with the tasks present in the global queue, avoiding idle processors
once they have finished their local work. The problem of this algorithm is to
estimate the optimum value for “n”.



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1271

Hybrid queues with dynamic threshold. In this algorithm, the threshold “n”
is variable; it changes according to the amount of pending work.

CYCLIC. As mentioned before, this algorithm is based on one local queue per pro-
cessor, locating each task in the queue of the processor where it was previously
executed. Mainly, this guarantees a good locality of references. To balance the
workload, threads are migrated between queues. To determine the amount of
work to migrate, the processing time of each component is estimated. Moreover,
there is no contention due to the absence of a global queue.

In order to compare the performance of the above-mentioned algorithms, the fol-
lowing commercial register transfer level (RTL) type designs were selected: cpu_rtl,
fpa, lsi1, lsi2, and cfg_pid. The following is a description of the designs used:

• Cpu_rtl implements a processor at RTL with a floating point unit and a memory
bank. The processor is used for multiplying two matrices. This design consists
of 8 processes and 179 signals that generate 452 signal groups.

• Fpa implements a floating point adder, which adds double precision floating
point numbers represented according to the IEEE754 standard, normalizing the
result. It detects and manages the various situations that can arise: overflow,
infinities, etc. This design, described at RTL level, has 91 processes and 115
signals that generate 1 735 groups.

• Lsi1 generates files with input stimuli from a file and a logic vector. It has 61
processes and 191 signals that generate 749 groups.

• Lsi2 generates files with input stimuli, similar to the previous one, from a file
and a logic vector, but it is a larger version. It has 317 processes and 537 signals
that generate 5 424 groups.

• Cfg_pid implements a proportional-integral-derivative (PID) controller at RTL
level. For this purpose it uses 321 processes and 3 116 signals, generating 2 290
groups.

Multiple simulations of these designs were run changing only the load-balancing
algorithm. Measuring was performed by executing the simulations on a personal
computer using an Intel Core 2 Quad Q8200 processor (i.e. with four cores), with
4 096 MB of shared memory, a clock frequency of 2.33 GHz and Linux Ubuntu 10.04

Lucid Lynx operating system. For every design and load-balancing algorithm, sev-
eral simulations were performed discarding spurious data and computing the average
value. As the measures were taken without other processes executing in the com-
puter, all the measures were quite similar, with very low variation. All simulations
were carried out with several thousands of iterations, as can be seen in Figures 4
and 5, as VHDL simulations usually take thousands or even millions of iterations to
simulate the digital circuit. Thus, the overhead of the initialization cycles is negli-
gible, as the simulation quickly converges to a load-balanced state and the number
of times the task execution time is measured is small (“n′′ = 5), discarding spurious
data.



1272 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

Table 1 shows the simulation times in seconds of the sequential and parallel
versions, obtained with CYCLIC as well as the speedup.

Design Sequential version Parallel version Speed up

lsi2 42.1 22.6 1.86

lsi1 13.8 11.1 1.24

cpu rtl 33.4 28.8 1.16

fpa 21.7 14.65 1.48

cfg pid 94.2 42.3 2.21

Table 1. Simulation times of the sequential and parallel version

Table 2 shows the simulation times of the different designs in seconds and Tab-
le 3 shows the improvement of CYCLIC. The traces resulting from the executed
simulations with CYCLIC algorithm show very effective load-balancing, except for
the first simulation phases in which, due to the low number of measurements, the
estimated granularity is not very accurate. In fact, as the simulation progresses,
the workload distribution becomes more and more balanced and the number of
tasks that need to be moved is reduced to a minimum. Figure 4 shows that a bal-
anced status is quickly reached after which the number of migrated tasks is very
small.

Design Global Local Hybrid Dynamic CYCLIC
queue queues queues threshold

lsi2 23.8 24.5 24.0 24.3 22.6

lsi1 11.6 11.8 11.6 11.2 11.1

cpu rtl 29.8 29.4 29.1 29.9 28.8

fpa 15.75 15.35 15.5 15.55 14.65

cfg pid 47.25 45.6 45.6 43.6 42.3

Table 2. Simulation time of VHDL designs with different load balancing algorithms

Design Global Local Hybrid Dynamic
queue queues queues threshold

lsi2 5.3 % 8.4 % 6.2 % 7.5 %

lsi1 4.5 % 6.3 % 4.5 % 0.9 %

cpu rtl 3.5 % 2.1 % 1.0 % 3.8 %

fpa 7.5 % 4.8 % 5.8 % 6.1 %

cfg pid 11.7 % 7.8 % 7.8 % 3.1 %

average 6.5 % 5.9 % 5.1 % 4.3 %

Table 3. Improvement obtained with the CYCLIC algorithm



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1273

Analyzing the results of Table 3, some conclusions can be drawn:

• Both the global and the local queue algorithms show poor performance. This is
because the former ignores the affinity between tasks and processors (locality of
references) and the latter provides a poor load balance [28].

• The behavior of the two hybrid algorithms is slightly better than that of the
global and local queues. Although at the beginning the algorithm with the
dynamic threshold seemed to show better performance, it does not clearly outdo
the algorithm with the static threshold.

• The proposed algorithm behaves much better than the others. This is because
it takes advantage of the digital circuit simulation characteristics: cyclicity and
predictability.

• There are two designs where the improvement of CYCLIC is rather small, lsi1
and cpu_rtl. This is due to the implementation of both designs. Neither
has exploited the concurrency that VHDL language offers and they are pseudo-
sequential implementations with a resulting lack of parallelism. The poor results
are not due to a poor load balance but to a low degree of parallelism in the circuit,
i.e. to the lack of workload to balance.

Even though the results of the proposed algorithm are better than the results
of the other algorithms, a greater improvement was initially expected. In a deeper
analysis, the commercial RTL designs used in the tests turned out to have a low
degree of activity, with a significant number of cycles with insufficient parallelism
to exploit the benefits of the CYCLIC algorithm.

0

20

40

60

80

100

120

140

1 200 399 598 797

Simulation cycle

N
u

m
b

e
r

o
f

m
ig

ra
te

d
ta

s
k
s

Fig. 4. Task migration without task stealing



1274 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

5.1 Alternatives That Have Been Analyzed

Two modifications have been considered to improve the CYCLIC algorithm. The
first one is to order the tasks by time to complete. The second one is to introduce
task stealing to improve unexpected imbalance.

5.1.1 Ordered Queues

An interesting addition to the CYCLIC algorithm was to order the tasks by time
to complete. This simplifies the search for candidate tasks for migration and allows
easy implementation of the best fit algorithm, thus moving the minimum num-
ber of tasks to balance the load and improving the locality of references. Then,
new traces were collected and analyzed using the CYCLIC algorithm with ordered
queues.

Though a lower number of tasks are migrated and therefore the locality of re-
ferences is improved, execution times increase because the overhead of inserting all
the tasks in their respective queues in the appropriate order is not compensated. To
explain this behavior Figure 4 shows the task migration without task stealing when
simulating the Cpu rtl design. This figure shows that the system quickly reaches
a balanced status. From that moment on, only a very reduced number of tasks
have to be migrated, making the benefit of ordering the queues so negligible that it
cannot offset the overheads introduced by ordered insertion. Therefore the option
of ordering queues has been discarded.

0

20

40

60

80

100

120

140

1 200 399 598 797

Simulation cycle

N
u

m
b

e
r

o
f

m
ig

ra
te

d
ta

s
k
s

Fig. 5. Task migration with task stealing



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1275

5.1.2 Task Stealing

A second addition to the algorithm was explored because there were sporadic situa-
tions where a task could be preempted from the processor by the operating system
to execute another activity with higher priority. This fact implies introducing un-
expected imbalances in a previously balanced system. Moreover, as the balancing
operations are only performed at the beginning of each simulation phase, this im-
balance is not corrected.

To counter this, task stealing was introduced at the end of each phase. Thus,
when a processor completes its assigned work it starts stealing tasks, one at a time,
from processors with a higher pending workload.

New traces were then collected and analyzed but this time using the CYCLIC
algorithm with task stealing. The results for simulating the Cpu rtl design can be
seen in Figure 5.

As can be seen in Figure 4, the system without task stealing quickly falls back
into a balanced status, with very few tasks migrating from processor to processor.
Task stealing, although improving some sporadic situations of imbalance, breaks up
the distribution previously established, increasing the number of tasks that have to
be migrated to recover a balanced status, as can be seen in Figure 5. In view of this
poor performance, task stealing has also been discarded.

6 CONCLUSIONS

The proposed algorithm behaves better than the rest of the algorithms studied
because it enforces the locality of references and provides good load balance. It
guarantees good locality of references because usually each task is executed on the
same processor where it was previously executed, reusing the data stored in the
cache memory and migrating tasks only if there is load imbalance. It obtains very
good workload distribution because the workload is balanced correcting possible
imbalances while keeping the number of tasks migrated to a minimum in order to
maintain a good locality of references. Moreover, as the time employed to execute
each task is known, it provides a much more accurate load balance than if the
number of tasks per processor were employed as the balance factor.

The algorithm introduces very low overheads. The measurements to estimate
the workload produced by each task are performed few times and, as the simulation
progresses, the workload distribution becomes more and more balanced and the
number of tasks that need to be moved at the beginning of each phase is reduced
to a minimum.

Considering the results obtained, it can be concluded that CYCLIC is an ef-
fective load-balancing algorithm, providing good workload distribution and good
locality of references. This leads to an improvement of execution times with respect
to conventional scheduling algorithms.

This algorithm can be used in other environments with similar performance
characteristics to those of PDES, i.e., cyclic and predictable execution.



1276 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

REFERENCES

[1] Peterson, G. D.—Willis, J. C.: A Taxonomy of Parallel VHDL Simulation Tech-
niques. In VHDL International Users’ Forum, Boston, October 1995, pp. 7.11–7.18.

[2] Krishnaswamy, V.—Hasteer, G.—Banerjee, P.: Automatic Parallelization of
Compiled Event Driven VHDL Simulation. IEEE Transactions on Computers, Vol. 51,
2002, No. 4, pp. 380–394.

[3] Fujimoto, R.: Parallel and Distributed Simulation Systems. In Proceedings of the
21st Winter Simulation Conference, Arlington, December 2001, pp. 147–157.

[4] Liu, P.—Wu, J. J.—Yang, C.: Locality-Preserving Dynamic Load Balancing for
Data-Parallel Applications on Distributed-Memory Multiprocessors. Journal of Infor-
mation Science and Engineering, Vol. 18, 2002, No. 6, pp. 1037–1048.

[5] Hamidzadeh, B.—Kit, L. Y.—Lilja, D. J.: Dynamic Task Scheduling Using On-
line Optimization. IEEE Transactions on Parallel and Distributed Systems, Vol. 11,
2000, No. 11, pp. 1151–1163.

[6] Banicescu, I.—Cariño, R.—Pabico, J.—Balasubramaniam, M.: Design and
Implementation of a Novel Dynamic Load Balancing Library for Cluster Computing.
Parallel Computing, Vol. 31, 2005, No. 7, pp. 736–756.

[7] Banicescu, I.—Velusamy, V.: Load Balancing Highly Irregular Computations
with the Adaptive Factoring. In Proceedings of the 16th International Parallel and
Distributed Processing Symposium (IPDPS’02), Washington DC, April 2002, pp. 195.

[8] Banicescu, I.—Velusamy, V.: Performance of Scheduling Scientific Applications
with Adaptive Weighted Factoring. In Proceedings of the 15th International Paral-
lel and Distributed Processing Symposium (IPDPS ’01), San Francisco, April 2001,
pp. 791–801.

[9] Milojičić, D. J—Douglis, F.—Paindaveine, Y.—Wheeler, R.—Zhou, S.:
Process migration. ACM Computer Surveys, Vol. 32, 2000, No. 3, pp. 241–299.

[10] Frachtenberg, E.: Process Scheduling for the Parallel Desktop. In Proceedings of
the 8th International Symposium on Parallel Architectures, Algorithms, and Networks
ISPAN’05, Las Vegas, December 2005, pp. 132–139.

[11] Antonopoulos, C. D.—Nikolopoulos, D. S.—Papatheodorou, T. S.: Sche-
duling Algorithms With Bus Bandwidth Considerations for SMPs. In Proceedings
of the 2003 International Conference on Parallel Processing (ICPP ’03), Kaohsiung,
October 2003, pp. 547–554.

[12] Xu, J.—Chen, M.—Zheng, G.—Cao, Z.—Lv, H.—Sun, N.: SimK: A Parallel
Simulation Engine Towards Shared-Memory Multiprocessor. Technical report, ICT,
2008.

[13] Xu, J.—Chen, M.—Zheng, G.—Cao, Z.—Lv, H—Sun, N.: SimK: A Large-
Scale Parallel Simulation Engine. Journal of Computer Science and Technology,
Vol. 24, 2009, No. 6, pp. 1048–1060.

[14] Rudolph, L.—Slivkin-Allalouf, M.—Upfal, E.: A Simple Load Balancing
Scheme for Task Allocation in Parallel Machines. In Proceedings of the Third An-
nual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’91), South
Carolina, July 1991, pp. 237–245.



CYCLIC: A Locality-Preserving Load-Balancing Algorithm 1277

[15] Torrellas, J.—Lam, M. S.—Hennessy, J. L.: False Sharing and Spatial Locality
in Multiprocessor Caches. IEEE Transactions on Computers, Vol. 43, 1994, No. 6,
pp. 651–663.

[16] Squillante, E. D.—Lazowska, M. S.: Using Processor-Cache Affinity Informa-
tion in Shared-Memory Multiprocessor Scheduling. IEEE Transactions on Parallel
and Distributed Systems, Vol. 4, 1993, No. 2, pp. 131–143.

[17] Konas, P.—Yew, P.: Parallel Discrete Event Simulation on Shared-Memory Multi-
processor. In Proceedings of 24th Annual Simulation Symposium, New Orleans, April
1991, pp. 134–148.

[18] Bertogna, M.—Cirinei, M.—Lipari, G.: Schedulability Analysis of Global
Scheduling Algorithms on Multiprocessor Platforms. IEEE Transactions on Paral-
lel and Distributed Systems, Vol. 20, 2009, No. 4, pp. 553–566.

[19] Yan, Y.—Zhang, X.: Cacheminer: A Runtime Approach to Exploit Cache Locality
on SMP. IEEE Transactions on Parallel and Distributed Systems, Vol. 11, 2000, No. 4,
pp. 357–374.

[20] Suh, G. E.—Rudolph, L.—Devadas, S.: Effects of Memory Performance on
Parallel Job Scheduling. In Proceedings of the 7th International Workshop on Job
Scheduling Strategies for Parallel Processing (in LNCS 2221), London, July 2001,
pp. 116–132.

[21] Suh, G. E.—Devadas, S.—Rudolph, L.: Analytical Cache Models with Applica-
tions to Cache Partitioning. In Proceedings of the 15th international conference on
Supercomputing (ICS ’01), Sorrento, June 2001, pp. 1–12.

[22] Chandra, A.—Shenoy, P.: Hierarchical Scheduling for Symmetric Multiproces-
sors. IEEE Transactions on Parallel and Distributed Systems, Vol. 19, 2008, No. 3,
pp. 418–431.

[23] Gan, B. P.—Low, Y. H.—Jain, S.—Turner, S. J.—Cai, W.—Hsu, W. J.—
Huang, S. Y.: Load Balancing for Conservative Simulation on Shared Memory Mul-
tiprocessor Systems. In Proceedings of the 14th Workshop on Parallel and Distributed
Simulation (PADS ’00), Bologne, May 2000, pp. 139–146.

[24] Vee, V. Y.—Hsu, W. J.: Cache-Aware Load-Balancing Mechanisms for Syn-
chronous Computations on Shared-Memory Multiprocessors. In Proceedings of the
TENCON 2000, Kuala Lumpur, September 2000, pp. 4–9, Vol. 2.

[25] Blumofe, R. D.—Joerg, C. F.—Kuszmaul, B. C.—Leiserson, C. E.—Ran-
dall, K. H.—Zhou, Y.: Cilk: An Efficient Multithreaded Runtime System. In Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’95), Santa Barbara, July 1995, pp. 207–216.

[26] Markatos, E. P.—LeBlanc, T. J.: Using Processor Affinity in Loop Scheduling
on Shared Memory Multiprocessors. IEEE Transactions on Parallel and Distributed
Systems, Vol. 5, 1994, No. 4, pp. 379–400.

[27] Feitelson, D. G.—Rudolph, L.: Parallel Job Scheduling: Issues and Approaches.
In Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing,
Santa Barbara, April 1995, pp. 1–18.

[28] Markatos, E. P.: Scheduling for Locality in Shared-Memory Multiprocessors.
Ph. D. Thesis, Department of Computer Science, University of Rochester, 1993.



1278 A. G. Dopico, A. Pérez, S. Rodŕıguez, M. I. Garćıa

Antonio Garc��a-Dopico received the M. Sc. degree in com-
puter engineering and the Ph. D. degree in computer science from
the Technical University of Madrid (UPM), Spain, in 1993 and
2001, respectively. He is currently an Associate Professor in the
Department of Computer Systems Architecture and Technology
at UPM. His research interests include computer architecture
and parallel and distributed computer systems.

Antonio P�erez received the M. Sc. degree in telecommunica-
tion engineering and the Ph. D. in computer science from the
Technical University of Madrid (UPM), Spain, in 1979 and 1982,
respectively. He is currently a Full Professor in the Department
of Computer Systems Architecture and Technology at UPM. His
research interests include computer architecture, fault tolerant
computers, and microprocessor systems design.

Santiago Rodr��guez received the M. Sc. degree in computer
engineering and the Ph. D. degree in computer science from the
Technical University of Madrid (UPM), Spain, in 1990 and 1996,
respectively. He is currently an Associate Professor in the De-
partment of Computer Systems Architecture and Technology at
UPM. His research interests include real time systems and fault
tolerant computers.

Maŕıa Isabel Garc��a received the M. Sc. degree in computer
engineering and the Ph. D. degree in computer science from the
Technical University of Madrid (UPM), Spain, in 1982 and 1985,
respectively. She is currently an Associate Professor in the De-
partment of Computer Systems Architecture and Technology at
UPM. Her research interests include computer architecture and
instruction level parallelism architectures.


