
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2005

Factory: A n Object-Oriented Parallel Programming Substrate for Factory: A n Object-Oriented Parallel Programming Substrate for

Deep Multiprocessors Deep Multiprocessors

Scott Arthur Schneider
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Schneider, Scott Arthur, "Factory: A n Object-Oriented Parallel Programming Substrate for Deep
Multiprocessors" (2005). Dissertations, Theses, and Masters Projects. Paper 1539626845.
https://dx.doi.org/doi:10.21220/s2-2nvh-8p27

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235410884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626845&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-2nvh-8p27
mailto:scholarworks@wm.edu

FACTORY: AN OBJECT-ORIENTED PARALLEL

PROGRAMMING SUBSTRATE FOR DEEP MULTIPROCESSORS

A Thesis

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by

Scott Arthur Schneider

2005

APPROVAL SHEET

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

Scott Schneider

Approved by the Committee^ Juhe 2005

rios S. Nikolopoulos
Thesis Advisor . /

Phil Kearns

Bruce Lowekamp

ii

Yes, Dad, it’s done.

iii

Table of Contents

A cknow ledgm ents vi

List o f Tables vii

List o f F igures ix

A bstract x

1 In troduction 2

2 R elated W ork 6

3 D esign 10

3.1 Enabling Multiparadigm Parallelism with C ++ . . 11

3.1.1 Work as O b je c ts 12

3.1.2 Work Inheritance Hierarchy . . 13

3.1.3 Work Execution . 14

3.2 Scheduling...................... 15

3.3 Memory Management . 17

iv

3.4 Synchronization . . 20

4 Program m ing Exam ples 23

4.1 Task Parallelism: F ibonacci.................................. 23

4.2 Loop Parallelism: Naive Matrix Multiplication 27

4.3 Multiparadigm Parallelism: Strassen Matrix Multiplication . 28

4.4 Programmability Comparisons . . 30

5 Perform ance Evaluation 33

5.1 Minimum Granularity of Exploitable Parallelism . 35

5.2 Managed vs. Unmanaged Memory Allocation . . 39

5.3 Memory Management .. 41

5.4 Factory vs. POSIX Threads: Splash-2 Radiosity . 43

5.5 Factory vs. OpenMP : NAS I S ... 45

5.6 Factory vs. Cilk and OpenMP: Single-level Parallel Strassen Matrix Multi­

plication 46

5.7 Factory vs. OpenMP: Multilevel Parallel Strassen Matrix Multiplication . 48

5.8 Thread Binding . . 50

6 C onclusions and Future W ork 52

B ibliography 55

V ita 59

v

ACKNOWLEDGMENTS

This thesis wouldn’t be possible without the guidance of my advisor, Dr. Dimitrios
S. Nikolopoulos. While Dr. Christos Antonopoulos was not ofhcialy my advisor, in many
ways he served as one, and this project would have taken far longer to complete without
his assitance.

This material is based in part upon work supported by the National Science Founda­
tion under Grant Numbers CAREER:CCF-0346867, and ITR:ACI-0312980. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation.

List of Tables

3.1 work-unit member functions . . 12

3.2 fac to ry member functions . 15

4.1 Factory lines of code comparison . . 31

5.1 Hardware and software Experimental environment . . 34

5.2 Granularity comparisons . . 37

5.3 Managed and unmanaged execution times . . 40

vii

List of Figures

3.1 Work inheritance hierarchy . 13

3.2 Slab allocator internal organization . . 18

3.3 Unmanaged work example . . 20

3.4 Work unit dependence tree . 21

4.1 Fibonacci declaration . . 24

4.2 Fibonacci execution . . 25

4.3 Fibonacci definition . . 26

4.4 Naive_Matmul execution . . 27

4.5 Naive_Matmul definition . . 27

4.6 S trassen declaration . . 28

4.7 S trassen definition . 29

4.8 Before_Matrix_Add definition . . 30

viii

5.1 Slab allocator vs. new /delete . . 42

5.2 Radiosity evaluation . . 44

5.3 NAS Integer Sort evaluation . . . 46

5.4 Single-level Strassen evaluation . . 47

5.5 Multiple-level Strassen evaluation . . 49

5.6 Comparison of binding schemes . . 50

ix

ABSTRACT

Recent advancements in processor technology such as Symmetric Multithreading
(SMT) and Chip Multiprocessors (CMP) enable parallel processing on a single chip. These
processors are used as building blocks of shared-memory UMA and NUMA multiproces­
sor systems, or even clusters of multiprocessors. New programming languages and tools
are necessary to help programmers manage the complexities introduced by systems with
multigrain and multilevel execution capabilities. This paper introduces Factory, an object-
oriented parallel programming substrate which allows programmers to express parallelism,
but alleviates them from having to manage it. Factory is written in C ++ without intro­
ducing any extensions to the language. Instead, it leverages existing constructs from C ++
to express parallel computations. As a result, it is highly portable and does not require
compiler support. Moreover, Factory offers programmability and performance comparable
with already established multithreading substrates.

FACTORY: AN OBJECT-ORIENTED PARALLEL

PROGRAMMING SUBSTRATE FOR DEEP MULTIPROCESSORS

Chapter 1

Introduction

Conventional processor technologies capitalized on increasing clock frequencies and on using

the full transistor budget to exploit ILP. The diminishing returns of such approaches have

shifted the focus of computer systems designers to clustering and parallelism. Current

mainstream processors such as SMTs, CMPs and hybrid CMP/SMTs exploit coarse-grain

thread-level parallelism at the microarchitectural level [23,37]. Thread-level parallelism is

pervasive in high-end microprocessor designs as well. The Cray XI main processing node

allows the simultaneous execution of four streams, each of which can exploit a dedicated

vector processing unit [34]. Sun’s early efforts in the Hero project resulted in research

prototypes of chip multithreading processors which allow simultaneous execution of 32 to

64 threads [28,35]. IBM’s Cyclops processor allows the execution of up to 128 threads over

a non-cache-coherent DSM substrate on a single chip [13].

Alongside large degrees of parallelism on a single chip, there is a clear trend towards

designing parallel systems with nested clustered organizations, (e.g., a large array of boards,

2

CHAPTER 1. INTRODUCTION 3

where a single board may contain tens of compute nodes and each compute node may be able

to run tens of threads). Due to the extreme disparity in memory access latencies and the

multiple levels of parallelism offered in hardware, such computer organizations necessitate

programming languages, libraries and tools that enable users to express both multiple forms

and multiple levels of parallelism. Furthermore, programmers need the means to control the

granularity of parallelism at different levels and match it to the capabilities of parallel and/or

multithreaded execution mechanisms at different layers of the hardware. Current industry

standards for expressing parallelism are not suited for these architectures, because they are

designed and implemented with optimized support for a flat parallel execution model and

provide little to no additional support for multilevel execution models. MPI [19], a message

passing standard for parallel programs, is optimized for a single level of parallel execution

and incorporates hardware heterogeneity only in its internal communication mechanisms.

Although multilevel parallel programs can be constructed using MPI at all levels [16], or

MPI plus OpenMP [29], the MPI implementation itself does not include special features

to manage multilevel parallelism efficiently. OpenMP, a standard for parallel programming

on shared-memory machines, supports loop-level and task-level parallel execution well at a

single level, but its support for nested parallel execution is limited, inflexible and largely

implementation-dependent.

This thesis presents Factory1, an object-oriented parallel programming substrate writ­

ten entirely in C ++. Factory was designed as a substrate for implementing next-generation

parallel programming models that naturally incorporate multiple levels and types of par­

1The name Factory is inspired by the fact that a factory is the place where workers (threads) perform
work.

CHAPTER 1. INTRODUCTION 4

allelism, while delegating the task of orchestrating parallelism at different levels to an in­

telligent runtime environment. Factory is functional as a standalone parallel programming

library without requiring additional compiler or preprocessor support. However, its design

does not prevent its use as the runtime environment of a compiler for explicitly parallel

programs. The main goals of Factory are to:

• Provide a clean object-oriented interface for writing parallel programs and preserving

the advantages of object-orientation, particularly with respect to programmer pro­

ductivity.

• Provide a type-safe parallel programming environment.

• Define a unified interface to multiple types of parallelism.

• Allow effective exploitation and granularity control for multilevel and multi-tier par­

allelism within the same binary.

• Provide a pure C + + runtime library which can be easily integrated into existing

languages and parallel programming models without the need for extra interpreters

or compilers.

We outline the design, implementation and performance evaluation of Factory, using a

multi-SMT compute node as a target testbed. Factory is complementary to concurrent ef­

forts for developing object-oriented parallel languages for deep supercomputers [17], the foci

of which are to increase expressiveness, enable performance optimizations for data access

locality and improve overall productivity via language extensions. Its primary contribution

CHAPTER 1. INTRODUCTION 5

in this domain is a concrete set of object-oriented capabilities for expressing multiple forms

of parallelism in a unified manner, along with generic runtime mechanisms that enable the

exploitation of such parallelism in a single program. As such, Factory can serve as a runtime

library for next-generation, object-oriented parallel programming systems that target deep,

parallel architectures. Factory also makes contributions in the direction of implementing

more efficient object-oriented substrates for parallel programming. Its features include an

efficient multithreaded memory management mechanism, the means to merge application-

embedded memory management with library memory management, lock-free synchroniza­

tion, flexible scheduling algorithms that are aware of SMT/CMP processors and hierarchical

parallel execution, and localized barriers for independent sets of work units.

The rest of this thesis is organized as follows: Chapter 2 discusses prior work in the

area of object-oriented parallel systems, languages and libraries which relate to Factory. In

Chapter 3 we present the design of Factory. Chapter 4 provides detailed programming ex­

amples to illustrate its use. Chapter 5 compares Factory’s performance with other methods

of writing multithreaded programs and shows that Factory can exploit the most commonly

used forms of parallelism without compromising performance. We discuss future work and

conclude in Chapter 6.

Chapter 2

R elated Work

C ++ libraries for parallel programming are as old as C + + itself; the first library imple­

mented in the language was a means to manage tasks at user-level [33]. Before then, there

was already a considerable body of work in the areas of object-oriented frameworks for

parallel programming and user-level multithreading languages and libraries. Instead of de­

tailing all such projects, we focus on active work and categorize other related work by their

similarities.

Cilk [7] is an extension to C with explicit support for multithreaded programming. A

more recent version of Cilk, named Hood [30], is written entirely in C ++ and shares similar

algorithmic properties with the original version, albeit with a more efficient implementation.

Cilk is designed to execute strict multithreaded computations and provides firm algorithmic

bounds for the execution time and space requirements of these computations. Although

Factory shares some functionality with Cilk (such as the use of work queues as a parallel

execution mechanism), it has a different and broader objective, since its focal point is the

6

CHAPTER 2. RELATED WORK 7

exploitation of multilevel and multiparadigm parallelism, including task-level, loop-level and

divide-and-conquer parallelism. Cilk focuses on the optimal execution of specific classes of

task-level multithreaded computations on single-level parallel systems. Unlike Cilk, Factory

does not require language extensions. Factory can be easily used to implement Cilk’s

scheduling and memory management algorithms. We evaluate the performance of Factory

against Cilk using representative applications in Section 5.

Charm++ [25] is a parallel extension to C-t—1- that uses various kinds of objects to rep­

resent computations and communication mechanisms in a distributed system. The focus of

the Charm-|—I- runtime system has been on providing dynamic load balancing strategies for

clusters and multicomputers. Charm++ does not provide specific functionality for exploit­

ing multigrain parallelism in architectures with nested parallel execution contexts. Factory’s

current implementation is focused on the improvement of parallel execution capabilities of

tightly coupled shared memory multiprocessors. It is however, by design, extensible to

distributed memory architectures without changes in its core functionality.

There are many other languages and libraries which use an object-oriented approach

to express parallelism. Most are for distributed parallel programming, such as pC ++ [8],

CCTT [14], Orca [5], Amber [15], and Mentat [22]. PRESTO [6] is a predecessor to Amber

which is for shared-memory machines, and ^C + + [11] takes a similar approach. Like

Charm-|—1-, these projects leverage an object-oriented design to express parallelism. Of these

projects, most chose to extend C ++ to create a new parallel programming language (CC++,

pC ++, Mentat, //C++). Orca, however, is not an extension of a sequential language, but

a new language designed explicity for parallel programming. Factory differs from these

CHAPTER 2. RELATED WORK 8

languages and libraries in that it targets deep multiprocessors and has a unified interface

to the two kinds of parallelism most commonly used on shared memory machines.

OpenMP [29] is an industry standard for programming on shared memory multiproces­

sors. OpenMP is particularly suitable for expressing loop based parallelism in multithreaded

programs. Instead of explicitly extending the language, programmers use compiler direc­

tives that adhere to the OpenMP standard to express parallelism. The standard currently

supports C, C + + and Fortran. Despite the convenience of the programming interface, the

OpenMP standard has limitations and inflexibility, particularly with respect to the orches­

tration and scheduling of multiple levels of parallelism. A limited form of static task-level

parallelism can be supported in OpenMP via the use of parallel sections. Dynamic task-level

parallelism is not currently supported in a standardized manner in OpenMP, although some

vendors, such as Intel, provide platform-specific implementations [31,41]. Factory differs

from OpenMP in that it provides a generic object-oriented programming environment for

expressing multiple forms of parallelism explicitly and in a unified manner, while providing

the necessary runtime support for effectively scheduling all forms of parallelism.

X10 [18] is an ongoing project at IBM to develop an object-oriented parallel language

for emerging architectures. Among other ongoing projects, X10 is closest to the Factory

in terms of design principles and objectives. The proposed language has a very rich set

of features, including C + + extensions to describe clustered data structures, extensions to

define activities (threads) for both communication and computation and associate these

activities with specific nodes, and other features. We view Factory as a complementary

effort to X10, which places more emphasis on the runtime issues that pertain to the man­

CHAPTER 2. RELATED WORK 9

agement of multigrain parallelism, without compromising expressiveness and functionality.

Furthermore, Factory can be used as a supportive runtime library for extended parallel

object-oriented languages such as X10.

The goal of the STAPL [2] project is to provide a parallel counterpart to the C+-f

Standard Template Library. Instead of providing explicit support for expressing parallelism,

the programmer uses parallel algorithms and data structures. Efforts such as STAPL are

also complementary to Factory. Factory could be used as a runtime library to support

parallel execution within the algorithms of STAPL.

Chapter 3

D esign

The design of Factory focuses on leveraging existing C ++ constructs to express multiple

types of parallelism at multiple levels. C ++, being an efficient object-oriented programming

language with extensive support for generic programming [21], is uniquely qualified for this

task. We find the mechanisms provided by C ++ expressive enough that we do not have to

resort to defining a new language or language extensions which require a separate interpreter

or compiler. Inheritance facilitates the generalized expression of work. The sophisticated

type system allows the library to adapt to different types of work at compile time. The

combination of the two provides programmers with a clean, well defined, high-level interface

which offers scheduling, synchronization and memory management functionality and can be

exploited for the efficient development of parallel code.

The implementation of Factory solely in C + + and exclusively at user level makes it

a multithreading substrate portable across different architectures and operating systems.

Factory requires only a limited machine-dependent component for interfacing with the na-

10

CHAPTER 3. DESIGN 11

tive kernel threads and implementing synchronization constructs with architecture-specific

instructions. Even this component though, can be generalized, at least on UNIX-class

systems, via an implementation on top of POSIX threads [24]. Our current prototype uti­

lizes machine dependent synchronization primitives for efficiency reasons. These primitives,

however, are implemented on most multiprocessor architectures, and re-targeting them to

a different architecture is trivial.

3.1 Enabling M ultiparadigm Parallelism with C + +

C + + enables the programmer to define class hierarchies. Factory exploits this feature to

define all types of parallel work as classes which inherit from a general work class. However,

deeper in the hierarchy, classes are dissociated according to the type of work they represent.

In the context of this paper we focus on task- and loop-parallel codes, however the Factory

hierarchy is easily extensible to other forms of parallelism as well.

Inheritance allows the expression of different kinds of parallelism, with different prop­

erties, via a common interface. Factory exploits the C ++ templates mechanism in order

to adapt the functionality and the behavior of the multithreading runtime according to the

requirements of the different forms of parallel work. As a result, Factory allows program­

mers to easily express different kinds of parallel work, with different properties, through

a common interface. At the same time, they can efficiently execute the parallel work,

transparently using the appropriate algorithms and mechanisms to manage parallelism.

CHAPTER 3. DESIGN

3 .1 .1 W ork as O b jec ts

12

Objects are the natural way to represent chunks of parallel work in an object-oriented pro­

gramming paradigm. Parallel work can be abstracted as an implementation of an algorithm

and a set of parameters, which in turn can be directly mapped to a generic C ++ object. In

Factory, this abstraction is implemented with the work_unit class, and specific chunks of

a computation are consequently represented as objects of the class. Table 3.1 outlines the

user-defined member functions of the work_unit class.

M e m b er
F u n c tio n

P a r a m e te r s

w ork_in it() purpose Initialize a newly created work_unit.
m em ber function
param eters

Variables to initialize all members of the work unit class. The last
parameter must be a pointer to the parent work_unit.

workO purpose Definition of work that work.unit will perform.
m em ber function
param eters

None.

Table 3.1: Member functions defined by the programmer in a work_unit class.

The member function workO defines the computation for the specific work unit, and

its member fields serve as the computation’s parameters. For each type of computation the

programmer defines a new class. Objects instantiated from this class represent different

chunks of the computation. At runtime, Factory executes the workO member function of

each work.unit object.

The work_init () member function serves as the initializer of a newly created work

unit. It can be used by the programmer as a means of providing the parameters required

by the computation routine. This approach facilitates implicit type checking of work unit

parameters at compile-time.

CHAPTER 3. DESIGN

3 .1 .2 W ork In h e r ita n ce H ierarch y

13

All different kinds of Factory work units export a common API to the programmer as a way

to enhance programmability. However, in order to differentiate internally between different

kinds of work units and provide the required functionality in each case, Factory work units

are organized in an inheritance hierarchy. This hierarchy is depicted in Figure 3.1.

work unit

plain_unittree unit

loop_unit task unit

Figure 3.1: The work inheritance hierarchy.

The work_unit base class is the root of the work inheritance hierarchy. It defines the

minimal interface that a work unit must provide. Programmer defined work units do not

inherit directly from w ork.unit, but rather from classes at the leaves of the inheritance

tree, which correspond to particular types of work.

The tree_ u n it class, which is also not directly available to programmers, is used to

express parallel codes that follow a dependence driven programming model. Work units

which derive from tree_ u n it are organized as a dependence tree at run-time, which is

used by Factory to enforce the correct order of work unit execution. Both task_unit and

loop_unit derive from tre e .u n i t and they are used by programmers to define task- and

CHAPTER 3. DESIGN 14

loop-parallel work chunks respectively. These classes provide internally the required support

and functionality for the efficient execution of the specific type of parallel computation, in

a way transparent to the programmer.

A p la in .u n it can, in turn, be used for codes that are not dependence-driven and directly

manage the execution of work chunks at the application level. In this case, the functionality

offered by t r e e .u n i t and its subclasses is not necessary.

The hierarchy structure facilitates the addition of new types of work, or the refinement

of existing types, without interfering with unrelated types. Moreover, programmers may

use the multiple inheritance features of C ++ in order to define classes that combine the

characteristics of application-internal classes and classes of the Factory work unit hierarchy.

3 .1 .3 W ork E x e c u tio n

All the interaction of applications with the Factory runtime occurs through an object of

the fac to ry class1. While work.unit classes are used to express the parallel algorithms,

the fa c to ry class provides the necessary functionality for their creation, management and

execution. Table 3.2 summarizes the member functions of the fac to ry class exported to

the programmer.

The class defines member functions for starting and stopping kernel threads (which are

used as execution vehicles), creating and scheduling work units, and synchronizing work

th ro u g h o u t the paper we use the notation Factory to refer to the multithreading substrate and fa cto ry
to refer to the class.

CHAPTER 3. DESIGN 15

M e m b e r
Function

Parameters

object
construction

purpose Construct a new fa c to ry object.
m em ber function
param eters

n t hr : Number of execution contexts to use. May be omitted.
LOGICAL, PHYSICAL: Use one execution context per execution context
or per physical processor respectively.
LIFO.STEAL, LIFOXOCAL, FIFO.STEAL, FIFO-LOCAL, LIFO_STEAL_SMT,
FIFO.STEAL.SMT: Choose between different scheduling algorithms; ex­
ecute work units in LIFO /FIFO order; activate work stealing or ex­
clusively check local queue; apply SMT-conscious work stealing.

tem plate param eter mixed_work in the case of heterogenous work, or the user-defined
name of the work unit class in the case of homogenous work.

spawn() purpose Spawn a new ta sk .u n it.
m em ber function
param eters

Parameters the task unit expects, as defined in the w ork_init()
member function for the specific task unit class.

tem plate param eter The name of the task unit class being spawned if the ta sk .u n it is
to execute heterogenous work; none for homogenous work.

spawn_f orO purpose Spawn a new loop .u n it .
m em ber function
param eters

The first two parameters specify the bounds of the loop, the rest are
the parameters the loop unit expects, as defined in the w ork_init()
member function for the specific loop unit class.

tem plate param eter The name of the loop unit class being spawned if the lo o p .u n it is
to execute heterogenous work, none for homogenous work

sta rt.w o rk in g () purpose Start the execution vehicles (kernel threads).
m em ber function
param eters

None.

tem plate param eter None.
s t op.working() purpose Stop the execution vehicles (kernel threads).

m em ber function
param eters

None.

tem plate param eter None.
r o o t .b a r r ie r () purpose Wait until the root work.unit and all its children have completed

execution.
m em ber function
param eters

The work.unit that is the root of the computation.

tem plate param e­
ters

None.

ch ild _ b a rr ier () purpose Wait until all children of this work.unit have completed execution.
m em ber function
param eters

The work.unit to wait upon.

tem plate param e­
ters

None.

Table 3.2: Member functions of the fa c to ry class.

units. In Section 4 we describe the member functions in further detail and we demonstrate

their proper use through a programming example.

3.2 Scheduling

Factory incorporates a generic, queue-based runtime system which can be used as the basis

for the implementation of a multitude of scheduling algorithms. The current implemen­

CHAPTER 3. DESIGN 16

tation is based on local, per execution context work queues. The queue hierarchy can be

easily extended in order to map more accurately to the target parallel architecture. We have

implemented several kinds of scheduling algorithms based on LIFO and FIFO execution or­

der of work units, but programmers can also define their own, according to the specific

needs of their applications. Our performance evaluation section demonstrates that Fac­

tory schedulers achieve identical or better performance than both generic and customized,

application-embedded user-level schedulers.

The internal queue hierarchy of Factory is implemented using non-blocking, lock-free

FIFO and LIFO queue management algorithms [27]. Non-blocking, lock-free algorithms

have been shown to outperform lock-based ones whenever there is high contention on a

shared resource or the multiprogramming degree is higher than one. Our experimental

results, presented in Section 5, indicate that non-blocking, lock-free implementations can

also be beneficial under moderate contention, when the contending threads are executed on

the execution contexts of the same physical processor.

Factory uses kernel threads as execution vehicles. Each execution vehicle is bound to

a specific execution context and has its own local work queue, from which it receives work

through the active scheduling algorithm. As a measure for the implicit preservation of

locality, newly generated work is added to the local queue of the thread that spawned

it. Load balancing is achieved via work stealing from remote queues. Factory provides

hierarchy-conscious work stealing algorithms, which favor work stealing between execution

contexts close in the architecture hierarchy. For SMT- and CMP-based multiprocessors this

translates to favoring work stealing between threads that run on the execution contexts of

CHAPTER 3. DESIGN 17

the same physical processor, rather than across threads running on different physical CPUs.

3.3 M em ory M anagement

The use of objects to represent work units necessitates the frequent creation and destruction

of many small objects over the execution of an application. These objects have a relatively

short average lifespan and the frequent allocation and deallocation of such objects can

become a severe bottleneck. In order to alleviate this problem and enhance its scalability,

Factory integrates a customized memory manager. User-defined work unit objects are

allocated through a slab allocator [9] which is capable of managing objects of varying sizes.

The allocator can satisfy simultaneous requests for multiple types of objects, by multiple

threads. The architecture of the slab allocator is depicted in Figure 3.2.

The main focus during the design of the slab allocator has been the support of simul­

taneous memory allocations and deallocations, by multiple threads, and the elimination of

memory management-related contention. For each object type the slab allocator handles,

there is a private, per thread list of slabs. Upon an allocation request, the slab allocator

identifies the appropriate group of slabs and accesses the slab list associated with the re­

questing thread. Slabs can be in one of the following three states: all free, partially free or

full. Whenever a slab becomes full, it is moved to the end of the slab list. This practice

results in the first slab in the list having a free slot in the vast majority of the cases. Each

slab with free slots maintains a pointer to one. This slot is used to satisfy the memory

request. Afterwards, the slab is searched linearly to determine the position of the next free

CHAPTER 3. DESIGN 18

th read 0 |siat>|---Hsiab I— Hslab I— *islab |

object type A
th read 1 |siabh--Hsiab I— H slab I— “Islab I

/ th read N |siab|---Hsiab I— Hslab I— *islab |

/ th read 0 I slab I---H slab I— Hslab I— “Islab |

Allocator v ' object type B
th read 1 | slab |- - - j slab I— Hslab I— *islab |

\ ' '
th read N I slab h--H slab I--- Hslab 1— "islab I

X

thread 0 |siab|---Hsiab I— Hslab I— "islab |

\ th read 1 fsiibf-Hsiab I--- Hslab I— Mslab |
object type Z

th read N |siab|---Hsiab I--- Hslab I— "Islab |

Figure 3.2: Slab allocator internal organization.

slot. If, however, the slab becomes full, its status is set to full and, on the next access, it

will be moved to the end of the list.

If all slabs corresponding to the specific object type and thread are full, then a new

slab is allocated. We progressively grow slab sizes, in order to reduce the number of slab

allocations for applications with high memory requirements and low memory recycling.

However, a high slab growth rate would soon cause requests of very large memory segments,

increasing unnecessarily the virtual memory footprint of the application. On the other hand,

a low slab growth rate might result in too many memory requests, which would be satisfied

sequentially by the operating system, causing the bottleneck the slab allocator tries to

eliminate. We have heuristically identified a growth rate of 1.25 to be a sweet-spot in this

CHAPTER 3. DESIGN 19

tradeoff.

Currently, the slab allocator has no mechanisms for balancing or migrating slabs across

processors because none of the applications we used to test Factory needed such function­

ality. All of the applications had uniform memory requirements across all threads for the

duration of the program.

We refer to the mechanisms that Factory uses internally to handle all work unit allo­

cations and deallocations through the slab allocator as the managed approach to memory

management.

Although Factory uses an optimized internal memory allocator, it is possible to further

enhance the efficiency of memory management by taking into account application-specific

characteristics. Some applications have a particular property that can be used to entirely

circumvent the need for Factory to allocate and manage work units. In general, a work unit

is an abstraction of some sort of computation. The formal representation of this abstraction

is the class definition itself. It is often the case that there is a 1-to-l correspondence between

work units and application data structures they operate on. Formally, this property holds

if each work unit instance represents a computation applied on one and only one instance of

a data structure of the application. The allocation and deallocation of such data structures

is already explicitly managed by the application, thus nullifying the memory management

overhead in Factory, should data structures be directly associated with work units.

Merging work units and application-specific data structures is possible through multiple

inheritance, which is necessary if the target application data structure is already a part of an

application-internal inheritance hierarchy. This approach combines the computation with

CHAPTER 3. DESIGN 20

class Triangle: public TriangleQuality, public task_unit {
private:

// Not shown: Triangle related private data members and functions

public:
// Not shown: Triangle related public member functions
void work_init(Cavity* _cavity, double* _xy, double _area, double _angle, Triangle* parent);
void workO ;

h __

Figure 3.3: An example of unmanaged work using the T riangle data structure from PCDM.

the data structure itself; there is no longer a separate class that represents just the com­

putation abstraction. An example from the PCDM [3] application evaluated in Section 5.2

is presented in Figure 3.3. We refer to this alternative method of memory management as

the unmanaged approach and we exploit it in Factory to improve performance in fine-grain

parallel codes with very large numbers of work units. In the unmanaged approach, the

application programmer is responsible for initializing the work unit, managing its alloca­

tion and deallocation, and merging work unit code with application data structure code.

Although the unmanaged approach is certainly more intrusive than the managed one, the

significant performance benefits it offers in some applications outweigh its complexity.

3.4 Synchronization

Factory provides support for the efficient execution of dependence-driven parallel codes.

Each work unit employs a children counter to keep track of the number of in-flight work

units, i.e., work units it has spawned and have not yet finished their execution. When the

work chunk associated with a work unit is executed, the parent of the work unit is notified,

by updating its children counter. As a result, a dependence tree is dynamically formed and

maintained at run-time. The leaves of the tree are work units without dependencies, which

CHAPTER 3. DESIGN 21

are either currently executing, or are ready to execute in the future. The internal nodes

represent work units that are currently executing or have executed in the past, but have

to wait for the termination of their children before terminating themselves. Task-parallel

programs tend to form deep dependence trees, while data-parallel, loop-based codes form

shallow trees, as shown in Figure 3.4. In the diagram, work units are represented as nodes

in a tree. Work units are dependent on their children and all subtrees. Sibling work units,

however, are independent and can execute in parallel. Hence, the parallelism in task based

work is limited by how wide the tree is at any given level, which is the same as how many

tasks are spawned by each task. Loop based work is as parallelizable as the number of

execution vehicles, but the profitability of parallelizing loop based work depends on the size

of the loop.

task loop
Level 0

Level 1

Level 2

Level N

Figure 3.4: Example work unit dependence tree.

Correct order of execution is enforced through Factory barriers, which operate on a

particular work unit. Barriers come in two versions: the execution is either blocked until

all children work units in the dependence subtree of the calling work unit have terminated

(c h ild .b a r r ie r () member function of the fa c to ry class), or until both the children and the

work unit at the root of the subtree have terminated (ro o t_ b arrie r () member function).

CHAPTER 3. DESIGN 22

Whenever a not-yet-achieved barrier prevents further execution of a work unit, the cor­

responding execution vehicle is not blocked. Factory code implementing the barrier invokes

the user-level scheduling algorithm instead, and the execution vehicle starts executing other

work units. When the dependencies of the blocked work unit are satisfied, then the barrier

is achieved and the work unit resumes execution.

Chapter 4

Program m ing Exam ples

This chapter illustrates, through detailed programming examples, how to code parallel

programs using Factory. The first example uses task-based parallelism to introduce how

parallelism is defined and how the programmer interacts with the Factory runtime. The

second example introduces how loop parallelism is achieved with Factory. The third and

final example uses concepts from the two previous examples to code a multiparadigm and

multilevel parallel algorithm. Finally, we compare programming with Factory to other

multithreaded programming models.

4.1 Task Parallelism: Fibonacci

This section uses the Fibonacci sequence to demonstrate how task parallelism is achieved

using Factory.

The fa c to ry object f ib b e r is the programmer’s handle to interact with the Factory

23

CHAPTER 4. PROGRAMMING EXAMPLES 24

factory<Fibonacci> fibber(8, LOGICAL, FIFO_STEAL);

F igure 4.1: Declaration of a Factory object for the Fibonacci sequence.

runtime system, as illustrated in Figure 4.1. The template parameter to the factory object

is the class Fibonacci, which is the name of Fibonacci work unit. The constructor parame­

ters specify how many execution contexts to use, Factory’s view of the processors and what

scheduling algorithm to apply. If the number of execution contexts is not provided as a

parameter, Factory automatically detects the number of execution contexts available in the

system and uses all of them. The second parameter controls how Factory views processors.

The constant LOGICAL means that all hardware execution contexts of the system should be

viewed as independent processors. For example, if the system is a 4-way SMP with SMT

processors and each SMT processor has two hardware execution contexts, then LOGICAL

implies that Factory should view the system as 8 identical processors, each with its own

scheduling queue. If the constant PHYSICAL is used instead, Factory will view the system as

4 physical processors, each with its own local scheduling queue. This distinction is neces­

sary because some codes that were not designed to run on multiple execution contexts per

physical CPU may experience slowdown due to shared resource contention. The scheduling

algorithm specified, namely, LIFO_STEAL, enforces a LIFO execution order. Each processor

first queries its local queue for work and idle processors perform work stealing from remote

queues. Factory also provides algorithms in which processors execute work in FIFO order,

with or without work stealing, as well as SMT/CMP aware work stealing algorithms which

were discussed in Section 3.2. The scheduling algorithm can be changed at runtime, how­

ever all work units managed by the same Factory object use the same scheduling algorithm,

which is a reasonable choice for most practical purposes.

CHAPTER 4. PROGRAMMING EXAMPLES 25

fibber.start.working();
Fibonacci* root = fibber.spawn(N, ftresult (Fibonacci*)NULL);
fibber.root.barrier(root);
f ibber.st op.working();

Figure 4.2: Starting the Fibonacci sequence.

Figure 4.2 shows how the parallel computation is started. The start .working () mem­

ber function forks the kernel threads that will be used as execution vehicles to run work

units. The spawn () member function initiates the computation by creating the root task junit

of the program. Factory handles the creation and allocation of work units, and passes the

parameters of spawn () on to the newly created work unit objects. The last parameter to

spawn() is a pointer to the parent work unit, i.e., the work unit that spawned the newly cre­

ated one. Since the last parameter is NULL in this case, this spawned work unit has no parent

and becomes the root of a new dependence tree. The spawn () member function returns a

handle to the newly created work unit which is used as a parameter to the root .barrier ()

member function. Upon the call to root.barrier(), the main thread of control for the

program is blocked until the spawned computation has completed. The underlying kernel

thread, however, is not blocked. It can still participate in the execution of other work units.

Finally, stop.workingC) is invoked to join and destroy all kernel threads of the program

that Factory spawned and used as execution vehicles, as they are no longer needed.

The Fibonacci work unit class, Fibonacci, is defined in Figure 4.3. Since the work

unit is task based, it inherits from the task.unit class. The algorithm itself is defined in

the workO function. Inside workO, the calls to spawnO create new Fibonacci work units

which complete the recursion. Each of these work units is passed the this pointer to indicate

that the spawned work units are children of the current work unit. This information is used

CHAPTER 4. PROGRAMMING EXAMPLES 26

class Fibonacci: public task.unit {
private:

int n;
int* result;

public:
void work.init(int _n, int* .result, Fibonacci* parent) {
task.unit::work_init(parent);
n = _n;
result = .result;

>

void workO {
if (n < 2) ■(
♦result = n;

> else {
int parti, part2;

fibber.spawn(n - 1, fcpartl, this);
fibber.spawn(n - 2, &part2, this);
fibber.child.barrier(this);

♦result = parti + part2;
>

>
};

F igure 4.3: Definition of a Fibonacci work unit.

internally in Factory for the construction and maintenance of the work unit dependence

tree. The call to ch ild _ b a rrie r () ensures the correct order of execution; when it is passed

the th is pointer, as in this case, it waits until all of this work unit’s children have finished

execution.

The w ork_init() member function is used by the Factory runtime to initialize each

newly constructed work unit. The final parameter must be a pointer to the parent work

unit, and a call must be made to the base class’ w ork_init() member function. Note

that the parameters passed to spawn () match the type signature of the work J .n it member

function. This signature match allows the compiler to enforce type safety with each call to

spawn().

CHAPTER 4. PROGRAMMING EXAMPLES

4.2 Loop Parallelism: Naive M atrix M ultiplication

27

To demonstrate loop based parallelism, we present a naive matrix multiplication. Instead of

presenting a complete example as we did in the previous section, we highlight the differences

between loop and

Figure 4.4 shows how loop parallel work is started. The spawn_for() member function

is used for loop work, and it expects three parameters that spawn() does not. The first

two parameters are the boundaries of the whole iteration space of the loop. The third

parameter identifies the algorithm to be used for scheduling loop iterations to execution

vehicles. Factory currently offers only a STATIC scheduling policy, however the extension

with other policies, such as those offered by OpenMP, is straightforward. Factory uses this

scheduling algorithm to divide the iteration space in chunks of work and assign chunks to

execution vehicles.

class Naive_Matmul: public loop_unit {
private:
double* one, two, result;

public:
// Not shown: work unit initialization
void workO {

for (int i = loop_start; i < loop_stop; i += loop_step)
for (int j =0; j < N; ++j)

for (int k = 0; k < N; ++k)
result[i * N + j] += one[i * N + k] * two[k * N + j];

>
>;

F igure 4.5: Definition of a naive matrix multiplication work unit.

The naive matrix multiplication work unit, Naive-Matmul, is defined in Figure 4.5.

task parallelism.

naive_matmul root;
multiplier.spawn_for(0, N, STATIC, one, two, result, ftroot);
multiplier.root_barrier(&root);

F igure 4.4: Starting the naive matrix multiplication.

CHAPTER 4. PROGRAMMING EXAM PLES 28

Because it is loop based work, it derives from loop_unit. This class provides three constants

for parallelizing the loop: lo op_sta rt, loop .stop, and loop_step. These values are set by

the Factory runtime and depend on the loop scheduling policy.

4.3 M ultiparadigm Parallelism: Strassen M atrix M ultiplica­

tion

This section presents a multiparadigm and multilevel parallel algorithm. We are specifi­

cally using Strassen’s matrix multiplication [32] as an example algorithm. Strassen matrix

multiplication exposes two levels of parallelism: task-level parallelism, via recursive calls

for the calculation of intermediate matrix products, and loop-level parallelism within the

calculation of each matrix product.

factory<mixed_work> matmul(8, LOGICAL, LIFO_STEAL);

Figure 4.6: Declaration of a Factory object for heterogenous work.

The declaration of the fa c to ry object is slightly different in the case of heterogenous

work, as shown in Figure 4.6. The template parameter to the fa c to ry object is now the

predefined class mixed_work, which indicates that Factory will manage multiple types of

work units. Before, the presence of a programmer defined work unit told the Factory

runtime system to manage only one kind of work unit.

The definition of the S trassen work unit is depicted in Figure 4.7. The algorithm has

been parallelized at two levels: each recursive call is executed in parallel, and the matrix

additions and subtractions at each level of recursion are also parallelized. The parallel work

CHAPTER 4. PROGRAMMING EXAMPLES 29

class Strassen: public task_unit {
private:

double* a, b, c;
int matrix.size, a.width, b_width, c_width;

public:
// Not shown: work unit initialization ...
void workO {

if (matrix_size <= BASE_CASE_SIZE)
sequential_matmul(a, b, c, matrix_size, a_width, b_width, c_width);

else {
const int size = matrix_size » 1;
// Not shown: quadrant declarations and allocations ...
matmul.spawn_for<Before_Matrix.Add>(0, size, STATIC,

all, al2, a21, a22,
bll, bl2, b21, b22,
si, s2, s3, s4,
tl, t2, t3, t4,
size, a_width, b_width, c_width, this)

matmul.child_barrier(this);

matmul.spawn<Strassen>(all, bll, pi, size, a_width, b_width, size, this);
matmul.spawn<Strassen>(al2, b21, p2, size, a_width, b_width, size, this);
matmul.spawn<Strassen>(si, tl, p3, size, size, size, size, this);
matmul.spawn<Strassen>(s2, t2, p4, size, size, size, size, this);
matmul.spawn<Strassen>(s3, t3, p5, size, size, size, size, this);
matmul.spawn<Strassen>(s4, b22, p6, size, size, b_width, size, this);
matmul.spawn<Strassen>(a22, t4, p7, size, a_width, size, size, this);
matmul.child_barrier(this);

matmul.spawn_for<After_Matrix_Add>(0, size, STATIC,
ell, cl2, c21, c22,
pi, p2, p3, p4, p5, p6, p7,
u2, u3, u6,
size, c_width, this);

matmul.child_barrier(this);
// Not shown: quadrant deallocations . . .

>;

Figure 4.7: Definition of a S trassen work unit.

units of the recursive calls inherit from the ta sk .u n it class. The computation itself is

defined in the workO function. To synchronize nested and recursive parallel work, the calls

to spawn() within a work unit are passed the th i s pointer to indicate that spawned work

units are children of the current work unit.

The fa c to ry member function spawn J io rO is called to spawn loop-parallel work. The

template parameters to spawnO and spawn J io rO specify the exact type of work unit to

be spawned (S trassen, BeforeJ4atrix_Add, After_Matrix_Add). To guarantee the correct

CHAPTER 4. PROGRAMMING EXAMPLES 30

execution order, work units are synchronized in three cases with calls to c h ild J b a rr ie r ().

Whenever c h i ld .b a r r ie r () is invoked, the parent work unit waits for the termination of

all its children.

class Before_Matrix_Add: public loop_imit {
private:

double* all, al2, a21, a22,
bll, bl2, b21, b22,
si, s2, s3, s4,
tl, t2, t3, t4;

int matrix_size, a_width, b_width, c_width;

public:
// Not shown: work unit initialization...
void workO -[

for (int i = loop_start; i < loop_stop; i += loop_step)
for (int j = 0; j < matrix_size; ++j) {

sl[i * matrix_size + j] = a21[i * a_width + j] + a22[i * a_width + j]
tl[i * matrix_size + j] = bl2[i * b_width + j] - bll[i * b_width + j]
s3[i * matrix_size + j] = all[i * a_width + j] - a21[i * a_width + j]
t3[i * matrix_size + j] = b22[i * b_width + j] - bl2[i * b_width + j]
s2[i * matrix_size + j] = sl[i * matrix_size + j] - all[i * a_width + j];
t2[i * matrix_size + j] = b22[i * b_width + j] - tl[i * matrix_size + j];
s4[i * matrix_size + j] = al2[i * a_width + j] - s2[i * matrix_size + j];
t4[i * matrix_size + j] = b21[i * b_width +

>
>

>;

j] - t2[i * matrix_size + j b

F igure 4.8: Definition of the Bef ore_Matrix_Add class.

Figure 4.8 depicts the implementation of the class Bef ore_MatrixJhid, which is a work

unit that derives from loop_unit. The programmer defines the matrix arithmetic that is

part of the Strassen algorithm in the workO member function. The bounds loop_start

and loop.end of the parallelized loop, i.e. the outermost one, as well as the loop stepping

loop .step , are transparently set by the effective loop scheduling policy.

4.4 Program m ability Comparisons

Our programming examples showed how to use Factory to define task-based parallelism,

loop-based parallelism, and multiparadigm parallelism which uses both task and loop paral-

CHAPTER 4. PROGRAMMING EXAMPLES 31

lelism. Our examples demonstrate that Factory can express potentially complicated forms

of parallelism in a clean and concise manner. In this section we compare the complexity

of the Factory implementations of these algorithms with the Cilk and OpenMP versions.

For each implementation, porting the code to use Cilk involves the definition of c i lk pro­

cedures which have an 1-to-l correspondence with work unit classes. However, since Cilk

does not offer explicit looping mechanisms, the programmer has to undertake the task of

the management and distribution of the loop iteration space to threads. The corresponding

OpenMP implementation expresses task work units as a recursive function. Each recursive

call is preceded by a work distribution directive for task-parallel work. Loop-parallel work is

expressed inline, and is once again preceded by the appropriate work distribution directives.

Factory Cilk O penM P
task loop

F ibonacci 55 lines 32 lines 49 lines -
N aive M atrix M u ltip lication 57 lines - - 29 lines

S in gle-level S trassen 634 lines 601 lines 612 lines -
M u lti-leve l S trassen 733 lines - 614 lines

Table 4.1: A comparison of the number of lines of code in the example programs using Factory,
Cilk, and OpenMP.

Table 4.1 summarizes the lines of code required for programming four different parallel

programs using the same programming style conventions in Factory, Cilk and OpenMP.

Fibonacci, Naive Matrix Multiplication and Multi-level Strassen are presented earlier in

this chapter. Single-level Strassen is an implementation of the Strassen algorithm that only

parallelizes the recursive calls. In general, Cilk has the most concise expression of task

parallelism, and OpenMP has the most concise expression of loop parallelism. However,

directly using Factory as a multithreading substrate involves, in general, comparable pro­

CHAPTER 4. PROGRAMMING EXAMPLES 32

gramming effort as programming with Cilk or OpenMP. At the same time, Factory does

not require algorithmic modifications as Cilk often does. Moreover, Factory does not need

compiler support and is thus independent of particular compiler implementations. As a

result, it is significantly more portable and can be easily integrated into existing projects.
f

Implementing these programs using only POSIX threads requires programmers to design

and implement their own system for expressing and executing task- and loop-parallelism.

Consequently, such programs would be significantly longer and the expression of parallelism

would likely be problem specific.

Chapter 5

Performance Evaluation

We have experimentally evaluated the performance of Factory on an SMT-based multi­

processor. The use of such a multilevel parallel architecture allows us to experiment with

different options for exploiting nested parallelism with Factory. It also facilitates the assess­

ment of the efficiency of alternative scheduling policies offered by Factory, which take into

account the characteristics of the two disjoint levels of available parallelism, namely within

the execution contexts of each physical processor and within the different physical proces­

sors of the same SMP. We compare Factory against other popular parallel programming

models, namely OpenMP, Cilk, and manual parallelization using POSIX threads.

Table 5.1 outlines the hardware and software configuration of our experimental platform.

The Intel Hyper-Threaded architecture follows the SMT organization [37]: a relatively wide

superscalar processor core executes mixes of instructions originating from two threads of

control. The Hyper-Threaded architecture shares most of the resources of the processor

between the threads. In particular, the caches, the data TLB, and all execution units are

33

CHAPTER 5. PERFORMANCE EVALUATION 34

Processor Intel Xeon with Hyper-Threaded Technology
Frequency 2 GHz
Cache 8KB, 4-way associative DL1, 12KB instruction IL1

512KB, 8-way associative unified L2
1MB, 8-way associative unified L3

TLB 64-entry fully associative DTLB
2x64-entry fully associative ITLB

Memory 2GB DRAM
Operating System SUSE Linux 9.2, 2.6.8-24.13-smp kernel
Compiler Intel Compiler for 32-bit applications, Version 8.1

T able 5.1: Hardware and software configuration of the experimental platform used to evaluate
Factory.

shared and are made available—on demand—to any thread. The processor maintains a

private set of per thread architectural registers, as well as a private instruction TLB for

each thread.

We experimented using both microbenchmarks and parallel applications. The evalua­

tion with microbenchmarks assesses the overhead for managing parallelism, or equivalently,

identifies the minimum granularity of exploitable parallelism by each of the target parallel

programming models. We also used microbenchmarks in order to evaluate the performance

of the slab allocator integrated with Factory.

Experiments with real applications also compare Factory against the aforementioned

parallel programming models. We focus on both task- and loop-parallel applications. Fac­

tory and OpenMP natively support task- and loop-level parallelism through their respective

APIs1. Cilk and POSIX threads do not offer explicit support for both forms of parallelism,

however it is always possible to express task- and loop-level parallel algorithms at the cost

xIn fact the support for task-parallel codes by the official OpenMP standard (i.e. through SECTIONS
directives) is still immature. However, Intel has introduced OpenMP extensions for the support of task
queues [41].

CHAPTER 5. PERFORMANCE EVALUATION 35

of additional—and often significant—overhead for the programmer.

We have also used PCDM [3], a parallel mesh generation application, to assess the

effectiveness of the unmanaged approach to memory allocation offered by Factory. PCDM

is particularly demanding in terms of efficient memory management.

The final experiment compares the effectiveness of thread binding schemes using one of

the Factory implementations of an application. Our results indicate that Factory’s perfor­

mance does not depend on thread placement.

All experiments throughout our evaluation have been executed 20 times. We report the

average timings across all 20 repetitions. The 95% confidence interval for each data point

has always been lower than 1.7% of the average, so it is not plotted on the graphs. The only

exception is the experiment evaluating the performance of the memory management. In

this case, the 95% confidence interval boundaries are reported on the corresponding graph.

5.1 M inimum Granularity of Exploitable Parallelism

The minimum granularity of parallelism that can be effectively exploited by any multi­

threaded substrate is directly related to the degree of overhead associated with the cre­

ation and management of parallel jobs. The minimum exploitable granularity is partially

dependent on architecture-specific parameters, such as the context-switch overhead. Multi­

threading substrates introduce additional overheads for the creation and destruction of the

data structures used to represent chunks of parallel work, for the execution of scheduling

algorithms, and for the synchronization between jobs. Thus, it is important to investigate

CHAPTER 5. PERFORMANCE EVALUATION 36

whether the implementation of a multithreading library maintains such overheads as close

as possible to the limits imposed by the architecture.

More formally stated, the parallel execution time (T//) of a fully parallelizable job can

be expressed as:

Til — + Overhead(nthr) > (5.1)
nthr

where Tseq stands for the sequential execution time of the job, n thr for the number of threads

used for the parallel execution and Overhead{nthr) for the overheads associated with the

exploitation of parallelism (as a function of nthr)- The minimum granularity of exploitable

parallelism ('Tgran{nthr)) is the Tseq for which:

T
Tseq — —— + Overhead(nthr)• (5.2)

Hthr

Tasks with sequential execution time less than Tgran(nthr) can not be executed efficiently in

parallel with nthr threads, since the overheads outweigh the benefits of parallel execution.

It is obvious that as the overhead introduced by the multithreading substrate increases, the

minimum granularity of exploitable parallelism also increases accordingly.

The experiment for the evaluation of Tgran(nthr) is organized as follows. The paral­

lelized job consists of a variable number of pause machine instructions. The number of the

instructions is reduced until a break-even point is identified, at which point the sequential

execution is as fast as the parallel one with n thr threads. The sequential execution time of

the number of instructions corresponding to the break-even point is the minimum granular­

ity. We represent work with pause instructions because they incur as minimal interference

as possible when executed simultaneously on the different execution contexts of a single

CHAPTER 5. PERFORMANCE EVALUATION 37

Hyper-Threaded processor. The minimum granularity may be coarser for realistic codes2,

however this does not affect the comparison of Factory against the other multithreading

substrates. In general, it is reasonable to expect that the minimum exploitable granularity

when threads are running on the same processor is different than when threads are running

on different processors, because of the implications of resource sharing inside the processor.

As discussed earlier, the minimum granularity is also a factor of the number of threads

used for the parallel execution. We thus evaluate the minimum granularity for the parallel

execution with 2, 4 and 8 threads. In the 2 threads experiments, threads are bound to

either 2 different physical CPUs, or to the 2 execution contexts of a single CPU. Similarly,

4 threads can be executed on either 2 or 4 physical CPUs. Finally, the experiments using

8 threads are executed on 4 physical processors, with 2 execution contexts active on each

processor. The different binding schemes allow the evaluation of both intra- and inter­

processor parallelism overheads.

2 T hreads 4 T hreads 8 Threads
1 C P U 2 C P U s 2 C P U s 4 C P U s 4 C P U s

Factory
Cilk

O penM P task
O penM P loop

6.2/xsec
121/isec
20/isec
10/isec

6.2/xsec
81/xsec
20yusec

6.2/isec

10/isec
153/usec
26/isec

6.2^sec

10//sec
153/isec
24yusec

4.2/zsec

26yusec
222yusec
202/isec
68/isec

Table 5.2: Comparison of the minimum granularity of effectively exploitable parallelism.

Table 5.2 summarizes the measured minimum exploitable granularity of Factory and the

other multithreading systems. We compare Factory against Cilk, which supports only strict

2The minimum granularity in this case will also depend on the instruction mix executed by the different
threads on the same physical processor. The two execution contexts on a Hyper-Threaded processor share
functional units. If the instruction mix between the two contexts causes conflicts in the shared functional
units, then thread execution is effectively serialized.

CHAPTER 5. PERFORMANCE EVALUATION 38

multithreaded computations with recursive task parallelism, and OpenMP. For the latter,

we distinguish between the minimum granularity that can be exploited by the loop execution

mechanism and the one exploitable by the task execution mechanism. OpenMP runtime

libraries use different mechanisms for the two types of parallelism. We have evaluated

the minimum granularity of task parallelism using Intel compiler’s workqueue extensions

to OpenMP [29,41]. Factory uses the same mechanisms for creating parallel work units,

regardless of whether these work units are used for task- or loop-parallelism. As a result,

it is represented by only one entry in the table. Table 5.2 does not include experimental

results for the minimum exploitable granularity of applications parallelized directly with

POSIX threads. POSIX threads are implemented on Linux directly on top of kernel threads,

with an 1-to-l correspondence between each POSIX and kernel thread. Thus, they incur

excessive overhead if used directly for the parallelization of fine-grain computations. As a

consequence, POSIX threads are typically used only as execution vehicles, combined with a

user-level threads package or an application-specific work representation and management

mechanism, such as application-level work queues.

Factory’s minimum task granularity is finer than Intel’s task queue implementation in

OpenMP. Factory’s granularity remains competitive with OpenMP’s loop granularity as

well. At the same time, Factory proves able to exploit significantly finer granularity than

Cilk. Although the point where Cilk starts achieving speedup is relatively high, the break­

even point is significantly lower, close to the performance of OpenMP tasks. This behavior

can be attributed to the fact that for very fine-grain parallel work, the Cilk run time actually

schedules multiple tasks to the same execution vehicle (kernel thread). Hence, Cilk requires

a relatively large work load before multiple threads are used to execute it.

CHAPTER 5. PERFORMANCE EVALUATION 39

It should be pointed out that Intel’s implementation of loop- and task-level parallel

execution is heavily optimized. Sophisticated compile-time techniques, such as multi-entry

threading [36] are used. Multi-entry threading avoids generating separate modules and func­

tions for loop and task bodies. The benefits of these compile-time optimizations are evident

in the minimum granularities measured: the minimum exploitable granularity is actually

reduced for the parallel execution with 2 and 4 threads. The fact that Factory performs

comparably to this implementation without being supported by compile-time optimizations

is indicative of its efficiency.

Both Cilk and OpenMP generally perform better when threads are spread to as many

physical CPUs as possible. Factory overheads, on the other hand, are uncorrelated with

thread placement. This property makes Factory a much more predictable multithreading

substrate for deep, multilevel parallel systems.

5.2 M anaged vs. Unm anaged M emory Allocation

The distinction between managed and unmanaged work allocation has been discussed in

Section 3.3. In this section, we evaluate the performance gains unmanaged work allocation

can offer.

PCDM (Parallel Constrained Delaunay Mesh Generation) [3] is a method for creating

unstructured meshes in parallel, while guaranteeing the quality of the resulting mesh under

geometric, qualitative criteria. The method is based on the Bowyer-Watson kernel [10,39].

The algorithm first identifies an offending triangle which does not satisfy the qualitative

CHAPTER 5. PERFORMANCE EVALUATION 40

criteria. The triangle is deleted and a new point is inserted at the circumcenter of the

offending triangle. The kernel then performs a cavity expansion; it detects the immediate

or higher order neighbors of the offending triangle, whose circumcircles include the newly

inserted point (incircle test). The triangles in the cavity of the offending triangle are also

deleted. Finally, the area is retriangulated by connecting points at the boundary of the

cavity with the newly inserted point. The cavity expansion accounts for almost 60% of the

total execution time of PCDM and is similar to a breadth-first search of a graph. It can

be executed in parallel, however it offers limited concurrency (2 on average). Each cavity

expansion has an average duration of 4 to 6 /isec on our experimental platform.

The main data structure of the algorithm is a graph of the triangles comprising the

mesh. Nodes of this graph, which are triangles, are deleted during cavity expansions and

new nodes are inserted during the retriangulations. Each Factory work unit corresponds to

an incircle test for a specific triangle. Due to its extremely fine granularity, and due to the

strict 1-to-l relation between work units and triangles, PCDM is a good candidate for the

evaluation of the benefits of unmanaged work in Factory. In the Factory implementation of

PCDM, the triangle data structure inherits directly from a Factory task_unit class. Since

the allocation and deallocation of triangles is already handled natively by PCDM, work unit

creation and memory management inside Factory is no longer necessary.

1 th r e a d 2 th r e a d s
M a n a g e d

U n m a n a g e d
61.7sec
57.7sec

98.8sec
89.9sec

Table 5.3: Comparing execution times of PCDM with managed and unmanaged work unit alloca­
tion.

CHAPTER 5. PERFORMANCE EVALUATION 41

Table 5.3 outlines the performance gains from merging the management of work units

with that of application triangles in PCDM. The reported execution times were obtained by

executing PCDM for an output problem size of 10 million triangles. We used either one or

two Hyper-Threads on a single processor on our experimental platform. In this context the

unmanaged approach provides a measurable performance benefit (a reduction in execution

time ranging between 6.4% and 9.0%).

PCDM does not scale because of excessive scheduling and synchronization overheads.

These problems become even more pronounced when the threads are executed on differ­

ent physical processors. Hyper-Threading actually reduces overhead, by allowing synchro­

nization operations to take advantage of the shared cache. The scalability problems of

PCDM are endemic and can not be solved without better hardware mechanisms for creat­

ing, scheduling and synchronizing threads [3]. The experimental results reported here simply

illustrate the potential of the unmanaged approach to work unit allocation in Factory.

5.3 M em ory M anagem ent

The performance of any multithreading library is sensitive to the efficient management of

its own data structures. Since work in Factory is represented by small objects and these

objects are the dominant unit of memory allocations, we opted to implement an efficient

user-level, small object, multithreaded allocator as discussed in Section 3. Each execution

vehicle has its own list of slabs from which it allocates objects. Maintaining lists for each

thread allows the allocator to satisfy simultaneous memory requests from multiple threads

CHAPTER 5. PERFORMANCE EVALUATION 42

and also implicitly promotes locality. The performance of our allocator versus the C ++

new / d e le te operators is depicted in the diagram of Figure 5.1.

Slab Allocator vs. C++ new/delete
30 -r

25

a> 20M 4,w

new /delete■“ 15
slab

100000 1000000100 1000
Recycling Rate

10000

Figure 5.1: Comparison of the slab allocator with new/delete.

Each of the 8 threads participating in the experiment allocates 107 work units. The

horizontal axis represents the period of work unit recycling, i.e., the number of consecutive

work unit allocations before the first deallocation takes place. For example, an x-axis

value of 10 indicates 10 work unit allocations followed by 10 deallocations. By varying this

frequency, we can simulate different recycling rates that Factory might encounter in a real

application. The results indicate that our allocator is consistently better suited for small

object allocations among multiple threads when the recycling rate is between 10 and 104.

This range corresponds to task based codes with deep levels of recursion.

The improvement, in this range, over native memory allocation can be attributed to the

fact that our memory allocator is designed to avoid contention during memory management

CHAPTER 5. PERFORMANCE EVALUATION 43

in the common case. Since each thread has access to its private list of slabs, it does not

have to compete with other threads to satisfy a memory request. When objects, however,

are recycled with a period higher than 104, the average slab size tends to become relatively

large. As a result, a significant amount of time may be spent identifying free objects inside

the slab.

This experiment realistically simulates the pressure experienced by the memory man­

ager during a Factory execution. Work units are, in most cases, deallocated by the same

execution vehicle that initially allocated them. The only exception is when work units are

migrated to different execution vehicles as a result of work stealing. However, the percent­

age of migrated work units is typically negligible compared with the total number of work

units created by a program.

5.4 Factory vs. PO SIX Threads: Splash-2 Radiosity

Radiosity is an application from the Splash-2 [40] benchmark suite. It computes the equi­

librium distribution of light in a scene. It uses several pointer-based data structures and an

irregular memory access pattern. The code uses application-level task queues and applies

work stealing for load balancing. Radiosity tests Factory’s ability to handle fine grain syn­

chronization. As Radavic and Hagersten have already demonstrated [12], its performance

is sensitive to the efficiency of synchronization mechanisms. Radiosity also allows a direct

comparison of Factory with POSIX Threads as underlying substrates for the implementa­

tion of hand crafted parallel codes. Porting the original code to Factory required just the

CHAPTER 5. PERFORMANCE EVALUATION 44

conversion of the task concept to a work unit object. Both implementations were executed

with the options -ba tch -largeroom . The performance results are depicted in Figure 5.2.

Radiosity (Splash-2)
18 1

® 12 M 1
POSIX
Threads

Factory
FIFO LF

- - Factory
LIFO LF

Number of Threads

Figure 5.2: Comparison of the performance of Factory and POSIX Threads Radiosity implemen­
tations.

Factory consistently performs at least 13% faster than the POSIX Threads implemen­

tation, mainly due to its efficient, localized, fine-grain synchronization mechanisms. There

is almost no performance improvement if more than 4 threads are used. This can be at­

tributed to the fact that one Radiosity thread per physical CPU manages to effectively use

almost all shared execution resources. However, the additional SMT contexts provide only

marginal performance benefits.

We tested Factory using both LIFO and FIFO scheduling policies. In all cases, the

internal queues have been implemented using lock-free algorithms. LIFO execution ordering

yielded better performance due to temporal locality. Data shared between the parent and

children work units are likely to be found in the processor cache if a LIFO ordering is

CHAPTER 5. PERFORMANCE EVALUATION 45

applied. The same trend has also been observed for the experiments presented in the

following sections. As a result, in these sections we report only experimental results that

have been attained using a LIFO execution ordering.

5.5 Factory vs. OpenM P : NA S IS

Integer Sort (IS) is part of the NAS [4] benchmark suite. We are using the OpenMP

version of the 3.1 release of the benchmarks. The sorting method IS implements is often

used in particle simulation codes. The application stresses integer execution units and data

communication paths. The conversion of the application to the Factory programming model

is straightforward. Each omp p a r a l le l fo r OpenMP work sharing construct is substituted

by the definition of a loop .un it class and called with spawnfforO.

All experiments have been performed using the Class C problem size, which sorts 227

keys. The results are depicted in Figure 5.3.

Neither the OpenMP nor the Factory implementation of IS scales well on our platform.

In fact, the use of more than three threads results in slowdown. Dell has already identified

the performance problem of IS on Xeon-based PowerEdge servers [1, 26]. The source of the

problem has been pinpointed to the saturation of the system bus. As mentioned previously,

IS has high memory bandwidth requirements. Two IS threads are enough to saturate the

bus that connects processors to the main memory. The addition of more threads has adverse

effects for two reasons. First, it results to more conflicts on the system bus. Second, more

than one thread shares the cache hierarchy on each processor, thus reducing the effective

CHAPTER 5. PERFORMANCE EVALUATION 46

Integer Sort (NAS-IS, Class C)
135 - t

130

« 125

Factory

- - * - - OpenMP

v 115

110

105

Number of Threads

F igure 5.3: Comparison of OpenMP and Factory implementations of the NAS IS (Class C) appli­
cation.

cache size and resulting in more memory references being satisfied by main memory, through

the system bus.

In any case, the Factory implementation always performs within 1% of the OpenMP

version, despite the fact that Intel OpenMP compilers take advantage of OpenMP semantics

to guide aggressive, compile-time optimizations.

5.6 Factory vs. Cilk and OpenMP: Single-level Parallel Strassen

M atrix M ultiplication

We have used an optimized, single-level parallel implementation of the Strassen algorithm

from the Cilk distribution. The algorithm is applied on 2048x2048 double precision floating

point matrices. The OpenMP version of the application is based on Intel’s OpenMP ex-

CHAPTER 5. PERFORMANCE EVALUATION 47

tensions for the support of task queues, which facilitate the implementation of task-parallel

codes in OpenMP.

Once again, the conversion to the Factory programming model was straightforward.

We replaced recursive Cilk functions by work unit classes (specifically, work units of type

ta sk .u n it) . The conversion to OpenMP was also simple: recursive calls to Cilk functions

have just been preceded by OpenMP ta sk directives.

Optimized Strassen Matrix Multiplication

20

o> 15 Cilk

-■— OpenMP

Factory LF

Factory Lock

Number of Threads

F igure 5.4: Performance of Factory, Cilk, and OpenMP taskq for a single-level, parallel, Strassen
matrix multiplication.

As shown in Figure 5.4, we also experimented with lock-free and lock-based queue im­

plementations in Factory. All four implementations attain good scalability until 4 threads.

After that point, at least one processor is forced to execute threads on both SMT contexts.

When more than 4 threads are used, the OpenMP implementation suffers erratic perfor­

mance. Cilk is not affected by intra-processor parallelism. It should be noted that Cilk’s

work stealing algorithm avoids locking the queues in the common execution scenario [20].

CHAPTER 5. PERFORMANCE EVALUATION 48

The Factory implementation that uses a lock-based queue implementation also suffers a

performance degradation at 5 and 6 threads. However, the problem is solved if lock-free

queues are used. In fact, the lock-free Factory implementation outperforms all others in all

but 2 cases: OpenMP is more efficient than Factory when 7 or 8 threads are used.

Our experiments suggest that the performance degradation at 5 and 6 threads is related

to synchronization. Previous studies indicate that lock-free algorithms are more efficient

than lock-based ones under high contention or multiprogramming, i.e., when the runnable

threads are more than the available processors [27]. The execution of more than one thread

on the execution contexts of SMT processors often has similarities to multiprogrammed

execution on a conventional SMP. If the shared processor resources can not satisfy the

simultaneous requirements of all threads, the threads will eventually have to time-share

the resources. As a result, SMT-based multiprocessors may prove more sensitive to the

efficiency of synchronization mechanisms than conventional SMPs.

5.7 Factory vs. OpenM P: M ultilevel Parallel Strassen Ma­

trix M ultiplication

In Chapter 4 we presented a multilevel parallel implementation of the Strassen algorithm

with Factory. In this section we evaluate the performance of that implementation and we

compare it to the corresponding OpenMP multilevel code. The experimental results are

depicted in Figure 5.5.

The Factory implementation scales consistently up to 4 threads. When 5 or more threads

CHAPTER 5. PERFORMANCE EVALUATION 49

Multilevel Strassen Matrix Multiplication

------------ Factory

- - * - - OpenMP
■5 10

Number of Threads

Figure 5.5: Performance of a Factory and an OpenMP implementation of multilevel parallel
Strassen matrix multiplication.

are used, resource sharing inside each SMT processor limits execution time improvement.

Using 8 threads activates all 8 executions context on the 4 SMT processors of the system.

However, the exploitation of all execution contexts offers performance improvement of only

0.5 seconds over the execution with 4 threads. The multilevel Factory implementation is

slightly slower than the single-level one. This is expected, since the scalability of the single-

level code is not limited by the lack of parallelism, but rather by intra-processor resource

sharing. As a result, the exploitation of the second level of parallelism in Strassen simply

adds additional parallelism management overhead.

The performance of the OpenMP implementation is comparable to that of Factory. It

still, however, experiences the same performance degradation as the single-level code when

5 or 6 threads are used, due to the SMT-unfriendly task queue implementation in the

OpenMP compiler backend.

CHAPTER 5. PERFORMANCE EVALUATION

5.8 Thread Binding

50

A common optimization for multithreaded programs running on multiprocessors is to bind

each thread to run on a particular processor. The rationale behind this optimization is

that if a thread has already been running on a particular processor, that processor’s cache

is warm with that thread’s data. Migrating the thread to a different processor will cause

many unnecessary cache misses and likely increase the thread’s execution time. An optimal

binding of threads on a deep multiprocessor requires prior knowledge of how the multipro­

cessor is structured. We tested the single-level Strassen application from Section 5.6 with

different binding schemes, as shown in Figure 5.6.

Binding Scheme Comparison

 n o b in d

 v ir tu a l

p h y s ic a l
3 10

Threads

F igure 5.6: A comparison of different binding schemes using the single-level implementation of
Strassen. nobind represents letting the Linux scheduler decide thread placement, virtual represents
binding each thread to one execution context (one virtual processor), and physical represents binding
each thread to two execution contexts (one physical processor).

CHAPTER 5. PERFORMANCE EVALUATION 51

We evaluated three different binding schemes: nobind, which performs no binding and

left thread placement up to the Linux 2.6 scheduler; virtual, which binds each thread to

one virtual processor (or execution context) just as is done on a standard multiprocessor;

and physical, which binds each thread to a physical processor (each physical processor has

two execution contexts). Our results show that the performance improvement with binding

threads is negligible when compared to letting the Linux scheduler manage their placement.

After four threads, where a second execution context is active on at least one processor, the

binding schemes show a marginal improvement. As expected, the physical binding scheme

outperforms the virtual binding scheme. This improvement is expected because each thread

can run on two execution contexts (as opposed to one), and on both it is guaranteed to have

a warm cache. However, the marginal difference between binding and not binding shows

that in the case of the Linux 2.6 scheduler, letting the operating system handle thread

placement is appropriate.

These results indicate that Factory’s performance is independent of thread placement

schemes. While binding threads to one physical processor only marginally improved per­

formance, such binding schemes can expose the underlying processor architecture to the

scheduling algorithm. When the scheduling algorithm is aware of the parallelism offered by

the processor, then it can schedule work in such a manner to fully exploit the processor’s

capabilities.

Chapter 6

Conclusions and Future Work

We have presented Factory, an object-oriented parallel programming framework, which al­

lows the exploitation of multiple types of parallelism on deep parallel architectures. Factory

uses a clean, unified interface to express different, and potentially nested, forms of paral­

lelism. Its design preserves the C + + type system and its implementation allows its use

both as a standalone parallel programming library and as a runtime system for high-level

object-oriented parallel programming languages. Factory includes a number of performance

optimizations, all of which make the runtime system aware of the hierarchical structure of

execution resources and memories on modern parallel architectures. The performance op­

timizations of Factory include efficient multithreaded memory allocation mechanisms that

minimize contention and exploit locality; lock-free synchronization for internal concurrent

data structures; integration of the management of the parallel work units with the mem­

ory management of native application data structures; and scheduling policies which are

aware of the topology of execution contexts in multi-SMT or multi-CMP systems. We have

52

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 53

presented performance results that illustrate the efficiency of the central mechanisms for

managing parallelism in Factory and justify our design choices for these mechanisms. We

have also presented results obtained from the implementation of several parallel applications

with Factory and we have shown that Factory performs competitively and often better than

OpenMP and Cilk, two widely used and well optimized parallel programming models for

shared-memory systems. Moreover, we have shown that Factory can outperform manually

tuned implementations of parallel applications with hand-coded mechanisms for managing

parallelism.

We regard Factory as a viable means for programming emerging parallel architectures

and for preserving both productivity and efficiency. We plan to extend Factory in several

directions. First, we plan to investigate hierarchical scheduling algorithms, in which the

scheduling policies are localized to groups of work units, according to the type of parallel

work performed in each group. In the same context, we plan to investigate algorithms for

dynamically selecting the scheduling strategy, using both compile-time and runtime infor­

mation. Second, we plan to investigate dynamic concurrency control using Factory. Con­

currency control is important for fine-grain parallel work running within SMTs or CMPs,

because the interactions between threads may prevent parallel speedup within the proces­

sor, and the additional execution contexts in the processor may be used for purposes other

than parallel execution, such as the overlapping of computation with I/O, or for assisted

execution via precomputation of long-latency events [38]. Third, we shall consider the im­

plications of hierarchical parallel architectures on the Factory synchronization mechanisms

and investigate how the lock-free synchronization mechanisms can exploit resource sharing

within SMTs and CMPs. Finally, we plan to extend Factory to incorporate transparent data

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 54

distribution and data movement facilities in order to provide runtime support for emerging

chip multiprocessors with non-uniform cache architectures.

Bibliography

[1] R. A l i , J. H s i e h , a n d O. C e l e b i o g l u . Performance Characteristics of Intel
Architecture-based Servers. Dell Power Solutions, November 2003.

[2] P. A n , A. J u l a , S. Rus, S. S a u n d e r s , T. S m i t h , G. T a n a s e , N. T h o m a s ,

N. A m a t o , a n d L. R a u c h w e r g e r . STAPL: An Adaptive, Generic Parallel C ++
Library. In Workshop on Languages and Compilers for Parallel Computing (LCPC'),
pages 193-208, Cumberland Falls, Kentucky, USA, August 2001.

[3] C. D. A n t o n o p o u l o s , X. D i n g , A. C h e r n i k o v , F. B l a g o j e v i c , D. S.
N i k o l o p o u l o s , a n d N . C h r i s o c h o i d e s . Multigrain Parallel Delaunay Mesh Gener­
ation: Challenges and Opportunities for Multithreaded Architectures. In Proceedings
of the 19th ACM International Conference on Supercomputing (ICS05), Cambridge,
MA, U.S.A., Jun 2005.

[4] D. H. B a i l e y , E. B a r s z c z , J . T. B a r t o n , D. S. B r o w n i n g , R. L . C a r t e r ,

L . D a g u m , R. A. F a t o o h i , P. O. F r e d e r i c k s o n , T. A. L a s i n s k i , R. S.
S c h r e i b e r , H. D. S im o n , V. V e n k a t a k r i s h n a n , a n d S. K. W e e r a t u n g a . The
NAS Parallel Benchmarks - Summary and Preliminary Results. In Supercomputing
’91: Proceedings of the 1991 ACM /IEEE conference on Supercomputing, pages 158-
165, New York, NY, USA, 1991. ACM Press.

[5] H. E. B a l , M . F. K a a s h o e k , a n d A. S. T a n e n b a u m . Orca: A Language for Parallel
Programming of Distributed Systems. IEEE Transactions on Software Engineering,
18(3):190-205, 1992.

[6] B . N . B e r s h a d , E. D . L a z o w s k a , a n d H . M . L e v y . PRESTO: A System for
Object-oriented Parallel Programming. Software: Practice and Experience, pages 713-
732, August 1988.

[7] R. B l u m o f e , C. J o e r g , B. K u s z m a u l , C. L e i s e r s o n , K. R a n d a l l , a n d

Y. ZHOU. Cilk: An Efficient Multithreaded Runtime System. In Proceedings of the
5th Symposium on Principles and Practice of Parallel Programming, 1995.

[8] F. B o d i n , P. B e c k m a n , D. G a n n o n , S. N a r a y a n a , a n d S. X. Y a n g . Distributed
pC ++: Basic Ideas for an Object Parallel Language. Scientific Programming, 2(3), 93.

[9] J . B o n w i c k . The Slab Allocator: An Object-Caching Kernel Memory Allocator. In
USENIX Summer, pages 87-98, 1994.

55

BIBLIOGRAPHY 56

[10] A. B o w y e r . Computing Dirichlet Tesselations. Computer Journal, 24:162-166, 1981.

[11] P e t e r A. B u h r , G l e n D i t c h f i e l d , R i c h a r d A. S t r o o b o s s c h e r , B . M .

Y o u n g e r , a n d C. R o b e r t Z a r n k e . Concurrency in the object-oriented language
C + -K Software - Practice and Experience, 22(2):137-172, 1992.

[12] Z. R a d o v i c ; a n d E. H a g e r s t e n . Efficient Synchronization for Non-Uniform Com­
munication Architectures. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1-13, Los Alamitos, CA, USA, 2002. IEEE Com­
puter Society Press.

[13] C. C a s c a v a l , J. C a s t a n o s , L. C e z e , M. D e n n e a , M. G u p t a , D. L i e b e r ,

J. M o r e i r a , K. S t r a u s s , a n d J r . H. S. W a r r e n . Evaluation of a Multi­
threaded Architecture for Cellular Computing. In 8th International Symposium on
High-Performance Computer Architecture (HPCA-8), pages 311-321, Cambridge, MA,
U.S.A., February 2002.

[14] K. M a n i C h a n d y a n d C. K e s s e l m a n . CC++: A Declarative Concurrent Object
Oriented Programming Notation. Technical report, California Institute of Technology,
September 1992.

[15] J. C h a s e , F. A m a d o r , E. L a z o w s k a , H. L e v y , a n d R. L i t t l e f i e l d . The amber
system: parallel programming on a network of multiprocessors. In SOSP ’89: Proceed­
ings of the twelfth ACM symposium on Operating systems principles, pages 147-158,
New York, NY, USA, 1989. ACM Press.

[16] S. D o n g , D. L u c o r , a n d G. E m . K a r n i a d a k i s . Flow Past a Stationary and Moving
Cylinder: DNS at Re=10,000. In Proceedings of the IEEE 2004 Users Group Confer­
ence (DOD-UGC’04), pages 88-95, Williamsburg, VA, U.S.A., Jun 2004. IEEE.

[17] K. E b c i o g l u , V. S a r a s w a t , a n d V. S a r k a r . The IBM PERCS Project and
New Opportunities for Compiler-Driven Performance via a New Programming Model.
Compiler-Driven Performance Workshop (CASCON’2004), October 2004.

[18] K . E b c i o g l u , V . S a r a s w a t , a n d V . S a r k a r . X 1 0 : Programming for Hierarchical
Parallelism and Non-Uniform Data Access. In 3rd International Workshop on Language
Runtimes, 2 0 0 4 .

[19] M e s s a g e P a s s i n g I n t e r f a c e F o r u m . MPI: A Message-Passing Interface Standard.
Technical Report UT-CS-94-230, 1994.

[20] M. F r i g o , C. E. L e i s e r s o n , a n d K. H. R a n d a l l . The Implementation of the
Cilk-5 Multithreaded Language. In PLDI ’98: Proceedings of the ACM SIGPLAN
1998 conference on Programming language design and implementation, pages 212-223,
New York, NY, USA, 1998. ACM Press.

[21] R. G a r c i a , J. J a r v i , A. L u m s d a i n e , J. S i e k , a n d J. W i l l c o c k . A Comparative
Study of Language Support for Generic Programming. SIGPLAN Not, 38(11):115—
134, 2003.

BIBLIOGRAPHY 57

[22] A n d r e w S. G r i m s h a w . Easy-to-use object-oriented parallel processing with mentat.
Computer, 26(5) :39—51, 1993.

[23] L. H a m m o n d , B. A. H u b b e r t , M. S i u , M. K. P r a b h u , M. C h e n , a n d K. O l u k o -

T U N . The Stanford Hydra CMP. IEEE Micro, 20(2):71—84, March-April 2000.

[24] I n s t i t u t e o f E l e c t r i c a l a n d E l e c t r o n i c E n g i n e e r s . Portable Operating Sys­
tem Interface (POSIX) - Part 1: System Application Program Interface (API) -
Amendement 2: Thread Extensions (C Language), IEEE Standard 1003.1c. Standards
Database, 1995.

[25] L. V. K a l e a n d S. K r i s h n a n . CHARM-t—I-: A Portable Concurrent Object-Oriented
System Based on C++- In Proceedings of the Conference on Object Oriented Pro­
gramming Systems, Languages and Applications (OOPSLA), A. Paepcke, editor, pages
91-108. ACM Press, September 1993.

[26] T. L e n g i , R. A l i , J. H s i e h , a n d C. S t a n t o n . A Study of Hyper-Threading in
High-Performance Computing Clusters. Dell Power Solutions, November 2002.

[27] M. M. M i c h a e l a n d M. L. S c o t t . Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms. In Proceedings of the 15th annual ACM Sym­
posium on Principles of Distributed Computing (PODC’96), pages 267-275, Philadel­
phia, Pennsylvania, U.S.A., 1996.

[28] J. M i t c h e l l . Sun’s Vision for Secure Solutions for the Government. National Labo­
ratories Information Technology Summit, June 2004.

[29] OpenMP Architecture Review Board. OpenMP Application Program Interface, Version
2.5 Public Draft edition, November 2004.

[30] B. R o b e r t A N D D. D i o n i s i o s . Hood: A User-Level Threads Library for Multipro­
grammed Multiprocessors. Technical report, University of Texas at Austin, 1999.

[31] S. S h a h , G. H a a b , P. P e t e r s e n , a n d J. T h r o o p . Flexible Control Structures
for Parallelism in OpenMP. Concurrency: Practice and Experience, 12(12):1219—1239,
2000 .

[32] V. S t r a s s e n . Gaussian Elimination is not Optimal. Numer. Math., 23:354-356, 1969.

[33] B j a r n e S t r o u s t r u p . The design and evolution of C++. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1994.

[34] J r . T. H. D u n i g a n , M. R. F a h e y , J. B. W h i t e III, a n d P. H. W o r l e y . Early
Evaluation of the Cray XI. In Proceedings of the 15th annual ACM Symposium on
Principles of Distributed Computing (PODC’96j, Phoenix, AZ, U.S.A., nov 2003.

[35] T. T a k a y a n a g i , J. S h i n , B. P e t r i c k , J. Su, a n d A. L e o n . A Dual-Core 64b
UltraSPARC Microprocessor for Dense Server Applications. In Proc. of the J^lst Con­
ference on Design Automation (DAC’04)-, pages 673-677, San Diego, CA, U.S.A., June
2004.

BIBLIOGRAPHY 58

[36] X . T i a n , A . B i k , M. G i r k a r , P. G r a y , H. S a i t o , a n d E . S u . Intel OpenMP
C ++/Fortran Compiler for Hyper-Threading Technology: Implementation and Per­
formance. Intel Technology Journal, 6 (1) , Feb 2002.

[37] D. M. T u l l s e n , S. E g g e r s , a n d H. M. L e v y . Simultaneous Multithreading: Max­
imizing On-Chip Parallelism. In Proceedings of the 22th Annual International Sympo­
sium on Computer Architecture, 1995.

[38] T. W a n g , C. A n t o n o p o u l o s , a n d D. N i k o l o p o u l o s . smt-SPRINTS: Software
Precomputation with Intelligent Streaming for Resource-Constrained SMTs. In Proc.
of EuroPar 2005, Lisbon, Portugal, August 2005.

[39] D. F . W a t s o n . Computing the n-Dimensional Delaunay Tesselation with Application
to Voronoi Polytopes. Computer Journal, 24:167-172, 1981.

[40] S. C. W oo, M. O h a r a , E. T o r r i e , J. P. S i n g h , a n d A. G u p t a . The SPLASH-
2 Programs: Characterization and Methodological Considerations. In Proceedings
of the 22th International Symposium on Computer Architecture, pages 24-36, Santa
Margherita Ligure, Italy, 1995.

[41] T . X in m in , M . G i r k a r , S . S h a h , D . A r m s t r o n g , E . S u , a n d P . P e t e r s e n .

Compiler and Runtime Support for Running OpenMP Programs on Pentium and Ita­
nium architectures. In Proceedings of the Eighth International Workshop on HighLevel
Parallel Programming Models and Supportive Environments, pages 4 7 - 5 5 , Nice, France,
Apr 2003.

59

V I T A

S c o t t A r t h u r S c h n e i d e r

Scott Schneider was born on June 18, 1981 in Fairfax County, Virginia. He graduated

from Virginia Tech in 2003 with a Bachelor’s degree in Computer Science and minors in

Math and Physics. He entered The College of William and Mary as a Computer Science

graduate student the same year and is continuing his studies to earn his Ph.D.

	Factory: A n Object-Oriented Parallel Programming Substrate for Deep Multiprocessors
	Recommended Citation

	tmp.1539892610.pdf.X7fnY

