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ABSTRACT

Recent advancements in processor technology such as Symmetric Multithreading 
(SMT) and Chip Multiprocessors (CMP) enable parallel processing on a single chip. These 
processors are used as building blocks of shared-memory UMA and NUMA multiproces
sor systems, or even clusters of multiprocessors. New programming languages and tools 
are necessary to help programmers manage the complexities introduced by systems with 
multigrain and multilevel execution capabilities. This paper introduces Factory, an object- 
oriented parallel programming substrate which allows programmers to express parallelism, 
but alleviates them from having to manage it. Factory is written in C ++  without intro
ducing any extensions to the language. Instead, it leverages existing constructs from C ++ 
to express parallel computations. As a result, it is highly portable and does not require 
compiler support. Moreover, Factory offers programmability and performance comparable 
with already established multithreading substrates.
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Chapter 1

Introduction

Conventional processor technologies capitalized on increasing clock frequencies and on using 

the full transistor budget to exploit ILP. The diminishing returns of such approaches have 

shifted the focus of computer systems designers to clustering and parallelism. Current 

mainstream processors such as SMTs, CMPs and hybrid CMP/SMTs exploit coarse-grain 

thread-level parallelism at the microarchitectural level [23,37]. Thread-level parallelism is 

pervasive in high-end microprocessor designs as well. The Cray XI main processing node 

allows the simultaneous execution of four streams, each of which can exploit a dedicated 

vector processing unit [34]. Sun’s early efforts in the Hero project resulted in research 

prototypes of chip multithreading processors which allow simultaneous execution of 32 to 

64 threads [28,35]. IBM’s Cyclops processor allows the execution of up to 128 threads over 

a non-cache-coherent DSM substrate on a single chip [13].

Alongside large degrees of parallelism on a single chip, there is a clear trend towards 

designing parallel systems with nested clustered organizations, (e.g., a large array of boards,

2



CHAPTER 1. INTRODUCTION  3

where a single board may contain tens of compute nodes and each compute node may be able 

to run tens of threads). Due to the extreme disparity in memory access latencies and the 

multiple levels of parallelism offered in hardware, such computer organizations necessitate 

programming languages, libraries and tools that enable users to express both multiple forms 

and multiple levels of parallelism. Furthermore, programmers need the means to control the 

granularity of parallelism at different levels and match it to the capabilities of parallel and/or 

multithreaded execution mechanisms at different layers of the hardware. Current industry 

standards for expressing parallelism are not suited for these architectures, because they are 

designed and implemented with optimized support for a flat parallel execution model and 

provide little to no additional support for multilevel execution models. MPI [19], a message 

passing standard for parallel programs, is optimized for a single level of parallel execution 

and incorporates hardware heterogeneity only in its internal communication mechanisms. 

Although multilevel parallel programs can be constructed using MPI at all levels [16], or 

MPI plus OpenMP [29], the MPI implementation itself does not include special features 

to manage multilevel parallelism efficiently. OpenMP, a standard for parallel programming 

on shared-memory machines, supports loop-level and task-level parallel execution well at a 

single level, but its support for nested parallel execution is limited, inflexible and largely 

implementation-dependent.

This thesis presents Factory1, an object-oriented parallel programming substrate writ

ten entirely in C ++. Factory was designed as a substrate for implementing next-generation 

parallel programming models that naturally incorporate multiple levels and types of par

1The name Factory is inspired by the fact that a factory is the place where workers (threads) perform 
work.
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allelism, while delegating the task of orchestrating parallelism at different levels to an in

telligent runtime environment. Factory is functional as a standalone parallel programming 

library without requiring additional compiler or preprocessor support. However, its design 

does not prevent its use as the runtime environment of a compiler for explicitly parallel 

programs. The main goals of Factory are to:

• Provide a clean object-oriented interface for writing parallel programs and preserving 

the advantages of object-orientation, particularly with respect to programmer pro

ductivity.

• Provide a type-safe parallel programming environment.

• Define a unified interface to multiple types of parallelism.

• Allow effective exploitation and granularity control for multilevel and multi-tier par

allelism within the same binary.

• Provide a pure C + +  runtime library which can be easily integrated into existing 

languages and parallel programming models without the need for extra interpreters 

or compilers.

We outline the design, implementation and performance evaluation of Factory, using a 

multi-SMT compute node as a target testbed. Factory is complementary to concurrent ef

forts for developing object-oriented parallel languages for deep supercomputers [17], the foci 

of which are to increase expressiveness, enable performance optimizations for data access 

locality and improve overall productivity via language extensions. Its primary contribution



CHAPTER 1. INTRODUCTION  5

in this domain is a concrete set of object-oriented capabilities for expressing multiple forms 

of parallelism in a unified manner, along with generic runtime mechanisms that enable the 

exploitation of such parallelism in a single program. As such, Factory can serve as a runtime 

library for next-generation, object-oriented parallel programming systems that target deep, 

parallel architectures. Factory also makes contributions in the direction of implementing 

more efficient object-oriented substrates for parallel programming. Its features include an 

efficient multithreaded memory management mechanism, the means to merge application- 

embedded memory management with library memory management, lock-free synchroniza

tion, flexible scheduling algorithms that are aware of SMT/CMP processors and hierarchical 

parallel execution, and localized barriers for independent sets of work units.

The rest of this thesis is organized as follows: Chapter 2 discusses prior work in the 

area of object-oriented parallel systems, languages and libraries which relate to Factory. In 

Chapter 3 we present the design of Factory. Chapter 4 provides detailed programming ex

amples to illustrate its use. Chapter 5 compares Factory’s performance with other methods 

of writing multithreaded programs and shows that Factory can exploit the most commonly 

used forms of parallelism without compromising performance. We discuss future work and 

conclude in Chapter 6.



Chapter 2

R elated Work

C ++ libraries for parallel programming are as old as C + +  itself; the first library imple

mented in the language was a means to manage tasks at user-level [33]. Before then, there 

was already a considerable body of work in the areas of object-oriented frameworks for 

parallel programming and user-level multithreading languages and libraries. Instead of de

tailing all such projects, we focus on active work and categorize other related work by their 

similarities.

Cilk [7] is an extension to C with explicit support for multithreaded programming. A 

more recent version of Cilk, named Hood [30], is written entirely in C ++ and shares similar 

algorithmic properties with the original version, albeit with a more efficient implementation. 

Cilk is designed to execute strict multithreaded computations and provides firm algorithmic 

bounds for the execution time and space requirements of these computations. Although 

Factory shares some functionality with Cilk (such as the use of work queues as a parallel 

execution mechanism), it has a different and broader objective, since its focal point is the

6
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exploitation of multilevel and multiparadigm parallelism, including task-level, loop-level and 

divide-and-conquer parallelism. Cilk focuses on the optimal execution of specific classes of 

task-level multithreaded computations on single-level parallel systems. Unlike Cilk, Factory 

does not require language extensions. Factory can be easily used to implement Cilk’s 

scheduling and memory management algorithms. We evaluate the performance of Factory 

against Cilk using representative applications in Section 5.

Charm++ [25] is a parallel extension to C-t—1- that uses various kinds of objects to rep

resent computations and communication mechanisms in a distributed system. The focus of 

the Charm-|—I- runtime system has been on providing dynamic load balancing strategies for 

clusters and multicomputers. Charm++ does not provide specific functionality for exploit

ing multigrain parallelism in architectures with nested parallel execution contexts. Factory’s 

current implementation is focused on the improvement of parallel execution capabilities of 

tightly coupled shared memory multiprocessors. It is however, by design, extensible to 

distributed memory architectures without changes in its core functionality.

There are many other languages and libraries which use an object-oriented approach 

to express parallelism. Most are for distributed parallel programming, such as pC ++ [8], 

CCTT [14], Orca [5], Amber [15], and Mentat [22]. PRESTO [6] is a predecessor to Amber 

which is for shared-memory machines, and ^C + +  [11] takes a similar approach. Like 

Charm-|—1-, these projects leverage an object-oriented design to express parallelism. Of these 

projects, most chose to extend C ++ to create a new parallel programming language (CC++, 

pC ++, Mentat, //C++). Orca, however, is not an extension of a sequential language, but 

a new language designed explicity for parallel programming. Factory differs from these
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languages and libraries in that it targets deep multiprocessors and has a unified interface 

to the two kinds of parallelism most commonly used on shared memory machines.

OpenMP [29] is an industry standard for programming on shared memory multiproces

sors. OpenMP is particularly suitable for expressing loop based parallelism in multithreaded 

programs. Instead of explicitly extending the language, programmers use compiler direc

tives that adhere to the OpenMP standard to express parallelism. The standard currently 

supports C, C + +  and Fortran. Despite the convenience of the programming interface, the 

OpenMP standard has limitations and inflexibility, particularly with respect to the orches

tration and scheduling of multiple levels of parallelism. A limited form of static task-level 

parallelism can be supported in OpenMP via the use of parallel sections. Dynamic task-level 

parallelism is not currently supported in a standardized manner in OpenMP, although some 

vendors, such as Intel, provide platform-specific implementations [31,41]. Factory differs 

from OpenMP in that it provides a generic object-oriented programming environment for 

expressing multiple forms of parallelism explicitly and in a unified manner, while providing 

the necessary runtime support for effectively scheduling all forms of parallelism.

X10 [18] is an ongoing project at IBM to develop an object-oriented parallel language 

for emerging architectures. Among other ongoing projects, X10 is closest to the Factory 

in terms of design principles and objectives. The proposed language has a very rich set 

of features, including C + +  extensions to describe clustered data structures, extensions to 

define activities (threads) for both communication and computation and associate these 

activities with specific nodes, and other features. We view Factory as a complementary 

effort to X10, which places more emphasis on the runtime issues that pertain to the man
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agement of multigrain parallelism, without compromising expressiveness and functionality. 

Furthermore, Factory can be used as a supportive runtime library for extended parallel 

object-oriented languages such as X10.

The goal of the STAPL [2] project is to provide a parallel counterpart to the C+-f 

Standard Template Library. Instead of providing explicit support for expressing parallelism, 

the programmer uses parallel algorithms and data structures. Efforts such as STAPL are 

also complementary to Factory. Factory could be used as a runtime library to support 

parallel execution within the algorithms of STAPL.



Chapter 3

D esign

The design of Factory focuses on leveraging existing C ++  constructs to express multiple 

types of parallelism at multiple levels. C ++, being an efficient object-oriented programming 

language with extensive support for generic programming [21], is uniquely qualified for this 

task. We find the mechanisms provided by C ++ expressive enough that we do not have to 

resort to defining a new language or language extensions which require a separate interpreter 

or compiler. Inheritance facilitates the generalized expression of work. The sophisticated 

type system allows the library to adapt to different types of work at compile time. The 

combination of the two provides programmers with a clean, well defined, high-level interface 

which offers scheduling, synchronization and memory management functionality and can be 

exploited for the efficient development of parallel code.

The implementation of Factory solely in C + +  and exclusively at user level makes it 

a multithreading substrate portable across different architectures and operating systems. 

Factory requires only a limited machine-dependent component for interfacing with the na-

10
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tive kernel threads and implementing synchronization constructs with architecture-specific 

instructions. Even this component though, can be generalized, at least on UNIX-class 

systems, via an implementation on top of POSIX threads [24]. Our current prototype uti

lizes machine dependent synchronization primitives for efficiency reasons. These primitives, 

however, are implemented on most multiprocessor architectures, and re-targeting them to 

a different architecture is trivial.

3.1 Enabling M ultiparadigm  Parallelism with C + +

C + +  enables the programmer to define class hierarchies. Factory exploits this feature to 

define all types of parallel work as classes which inherit from a general work class. However, 

deeper in the hierarchy, classes are dissociated according to the type of work they represent. 

In the context of this paper we focus on task- and loop-parallel codes, however the Factory 

hierarchy is easily extensible to other forms of parallelism as well.

Inheritance allows the expression of different kinds of parallelism, with different prop

erties, via a common interface. Factory exploits the C ++ templates mechanism in order 

to adapt the functionality and the behavior of the multithreading runtime according to the 

requirements of the different forms of parallel work. As a result, Factory allows program

mers to easily express different kinds of parallel work, with different properties, through 

a common interface. At the same time, they can efficiently execute the parallel work, 

transparently using the appropriate algorithms and mechanisms to manage parallelism.
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3 .1 .1  W ork  as O b jec ts

12

Objects are the natural way to represent chunks of parallel work in an object-oriented pro

gramming paradigm. Parallel work can be abstracted as an implementation of an algorithm 

and a set of parameters, which in turn can be directly mapped to a generic C ++ object. In 

Factory, this abstraction is implemented with the work_unit class, and specific chunks of 

a computation are consequently represented as objects of the class. Table 3.1 outlines the 

user-defined member functions of the work_unit class.

M e m b er
F u n c tio n

P a r a m e te r s

w ork_in it() purpose Initialize a newly created work_unit.
m em ber function  
param eters

Variables to initialize all members of the work unit class. The last 
parameter must be a pointer to the parent work_unit.

workO purpose Definition of work that work.unit will perform.
m em ber function  
param eters

None.

Table 3.1: Member functions defined by the programmer in a work_unit class.

The member function workO defines the computation for the specific work unit, and 

its member fields serve as the computation’s parameters. For each type of computation the 

programmer defines a new class. Objects instantiated from this class represent different 

chunks of the computation. At runtime, Factory executes the workO member function of 

each work.unit object.

The work_init () member function serves as the initializer of a newly created work 

unit. It can be used by the programmer as a means of providing the parameters required 

by the computation routine. This approach facilitates implicit type checking of work unit 

parameters at compile-time.
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3 .1 .2  W ork  In h e r ita n ce  H ierarch y

13

All different kinds of Factory work units export a common API to the programmer as a way 

to enhance programmability. However, in order to differentiate internally between different 

kinds of work units and provide the required functionality in each case, Factory work units 

are organized in an inheritance hierarchy. This hierarchy is depicted in Figure 3.1.

work unit

plain_unittree unit

loop_unit task unit

Figure 3.1: The work inheritance hierarchy.

The work_unit base class is the root of the work inheritance hierarchy. It defines the 

minimal interface that a work unit must provide. Programmer defined work units do not 

inherit directly from w ork.unit, but rather from classes at the leaves of the inheritance 

tree, which correspond to particular types of work.

The tree_ u n it class, which is also not directly available to programmers, is used to 

express parallel codes that follow a dependence driven programming model. Work units 

which derive from tree_ u n it are organized as a dependence tree at run-time, which is 

used by Factory to enforce the correct order of work unit execution. Both task_unit and 

loop_unit derive from tre e .u n i t  and they are used by programmers to define task- and
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loop-parallel work chunks respectively. These classes provide internally the required support 

and functionality for the efficient execution of the specific type of parallel computation, in 

a way transparent to the programmer.

A p la in .u n it  can, in turn, be used for codes that are not dependence-driven and directly 

manage the execution of work chunks at the application level. In this case, the functionality 

offered by t r e e .u n i t  and its subclasses is not necessary.

The hierarchy structure facilitates the addition of new types of work, or the refinement 

of existing types, without interfering with unrelated types. Moreover, programmers may 

use the multiple inheritance features of C ++ in order to define classes that combine the 

characteristics of application-internal classes and classes of the Factory work unit hierarchy.

3 .1 .3  W ork  E x e c u tio n

All the interaction of applications with the Factory runtime occurs through an object of 

the fac to ry  class1. While work.unit classes are used to express the parallel algorithms, 

the fa c to ry  class provides the necessary functionality for their creation, management and 

execution. Table 3.2 summarizes the member functions of the fac to ry  class exported to 

the programmer.

The class defines member functions for starting and stopping kernel threads (which are 

used as execution vehicles), creating and scheduling work units, and synchronizing work

th ro u g h o u t the paper we use the notation Factory to refer to the multithreading substrate and fa cto ry  
to refer to the class.
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M e m b e r
Function

Parameters

object
construction

purpose Construct a new fa c to ry  object.
m em ber function  
param eters

n t hr : Number of execution contexts to use. May be omitted. 
LOGICAL, PHYSICAL: Use one execution context per execution context 
or per physical processor respectively.
LIFO.STEAL, LIFOXOCAL, FIFO.STEAL, FIFO-LOCAL, LIFO_STEAL_SMT, 
FIFO.STEAL.SMT: Choose between different scheduling algorithms; ex
ecute work units in LIFO /FIFO  order; activate work stealing or ex
clusively check local queue; apply SMT-conscious work stealing.

tem plate param eter mixed_work in the case of heterogenous work, or the user-defined 
name of the work unit class in the case of homogenous work.

spawn() purpose Spawn a new ta sk .u n it.
m em ber function  
param eters

Parameters the task unit expects, as defined in the w ork_init() 
member function for the specific task unit class.

tem plate param eter The name of the task unit class being spawned if the ta sk .u n it  is 
to execute heterogenous work; none for homogenous work.

spawn_f orO purpose Spawn a new loop .u n it .
m em ber function  
param eters

The first two parameters specify the bounds of the loop, the rest are 
the parameters the loop unit expects, as defined in the w ork_init() 
member function for the specific loop unit class.

tem plate param eter The name of the loop unit class being spawned if the lo o p .u n it is 
to execute heterogenous work, none for homogenous work

sta rt.w o rk in g () purpose Start the execution vehicles (kernel threads).
m em ber function  
param eters

None.

tem plate param eter None.
s t  op.working() purpose Stop the execution vehicles (kernel threads).

m em ber function  
param eters

None.

tem plate param eter None.
r o o t .b a r r ie r () purpose Wait until the root work.unit and all its children have completed 

execution.
m em ber function  
param eters

The work.unit that is the root of the computation.

tem plate param e
ters

None.

ch ild _ b a rr ier () purpose Wait until all children of this work.unit have completed execution.
m em ber function  
param eters

The work.unit to wait upon.

tem plate param e
ters

None.

Table 3.2: Member functions of the fa c to ry  class.

units. In Section 4 we describe the member functions in further detail and we demonstrate 

their proper use through a programming example.

3.2 Scheduling

Factory incorporates a generic, queue-based runtime system which can be used as the basis 

for the implementation of a multitude of scheduling algorithms. The current implemen
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tation is based on local, per execution context work queues. The queue hierarchy can be 

easily extended in order to map more accurately to the target parallel architecture. We have 

implemented several kinds of scheduling algorithms based on LIFO and FIFO execution or

der of work units, but programmers can also define their own, according to the specific 

needs of their applications. Our performance evaluation section demonstrates that Fac

tory schedulers achieve identical or better performance than both generic and customized, 

application-embedded user-level schedulers.

The internal queue hierarchy of Factory is implemented using non-blocking, lock-free 

FIFO and LIFO queue management algorithms [27]. Non-blocking, lock-free algorithms 

have been shown to outperform lock-based ones whenever there is high contention on a 

shared resource or the multiprogramming degree is higher than one. Our experimental 

results, presented in Section 5, indicate that non-blocking, lock-free implementations can 

also be beneficial under moderate contention, when the contending threads are executed on 

the execution contexts of the same physical processor.

Factory uses kernel threads as execution vehicles. Each execution vehicle is bound to 

a specific execution context and has its own local work queue, from which it receives work 

through the active scheduling algorithm. As a measure for the implicit preservation of 

locality, newly generated work is added to the local queue of the thread that spawned 

it. Load balancing is achieved via work stealing from remote queues. Factory provides 

hierarchy-conscious work stealing algorithms, which favor work stealing between execution 

contexts close in the architecture hierarchy. For SMT- and CMP-based multiprocessors this 

translates to favoring work stealing between threads that run on the execution contexts of
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the same physical processor, rather than across threads running on different physical CPUs.

3.3 M em ory M anagement

The use of objects to represent work units necessitates the frequent creation and destruction 

of many small objects over the execution of an application. These objects have a relatively 

short average lifespan and the frequent allocation and deallocation of such objects can 

become a severe bottleneck. In order to alleviate this problem and enhance its scalability, 

Factory integrates a customized memory manager. User-defined work unit objects are 

allocated through a slab allocator [9] which is capable of managing objects of varying sizes. 

The allocator can satisfy simultaneous requests for multiple types of objects, by multiple 

threads. The architecture of the slab allocator is depicted in Figure 3.2.

The main focus during the design of the slab allocator has been the support of simul

taneous memory allocations and deallocations, by multiple threads, and the elimination of 

memory management-related contention. For each object type the slab allocator handles, 

there is a private, per thread list of slabs. Upon an allocation request, the slab allocator 

identifies the appropriate group of slabs and accesses the slab list associated with the re

questing thread. Slabs can be in one of the following three states: all free, partially free or 

full. Whenever a slab becomes full, it is moved to the end of the slab list. This practice 

results in the first slab in the list having a free slot in the vast majority of the cases. Each 

slab with free slots maintains a pointer to one. This slot is used to satisfy the memory 

request. Afterwards, the slab is searched linearly to determine the position of the next free
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th read  0 |siat>|---Hsiab I— Hslab I— *islab |

object type A
th read  1 |siabh--Hsiab I— H slab I— “Islab I

/ th read  N |siab|---Hsiab I— Hslab I— *islab |

/ th read  0 I slab I---H slab I— Hslab I— “Islab |

Allocator v ' object type B
th read  1 | slab |- - - j  slab I— Hslab I— *islab |
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\ th read  1 fsiibf-Hsiab I--- Hslab I— Mslab |
object type Z

th read  N |siab|---Hsiab I--- Hslab I— "Islab |

Figure 3.2: Slab allocator internal organization.

slot. If, however, the slab becomes full, its status is set to full and, on the next access, it 

will be moved to the end of the list.

If all slabs corresponding to the specific object type and thread are full, then a new 

slab is allocated. We progressively grow slab sizes, in order to reduce the number of slab 

allocations for applications with high memory requirements and low memory recycling. 

However, a high slab growth rate would soon cause requests of very large memory segments, 

increasing unnecessarily the virtual memory footprint of the application. On the other hand, 

a low slab growth rate might result in too many memory requests, which would be satisfied 

sequentially by the operating system, causing the bottleneck the slab allocator tries to 

eliminate. We have heuristically identified a growth rate of 1.25 to be a sweet-spot in this
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tradeoff.

Currently, the slab allocator has no mechanisms for balancing or migrating slabs across 

processors because none of the applications we used to test Factory needed such function

ality. All of the applications had uniform memory requirements across all threads for the 

duration of the program.

We refer to the mechanisms that Factory uses internally to handle all work unit allo

cations and deallocations through the slab allocator as the managed approach to memory 

management.

Although Factory uses an optimized internal memory allocator, it is possible to further 

enhance the efficiency of memory management by taking into account application-specific 

characteristics. Some applications have a particular property that can be used to entirely 

circumvent the need for Factory to allocate and manage work units. In general, a work unit 

is an abstraction of some sort of computation. The formal representation of this abstraction 

is the class definition itself. It is often the case that there is a 1-to-l correspondence between 

work units and application data structures they operate on. Formally, this property holds 

if each work unit instance represents a computation applied on one and only one instance of 

a data structure of the application. The allocation and deallocation of such data structures 

is already explicitly managed by the application, thus nullifying the memory management 

overhead in Factory, should data structures be directly associated with work units.

Merging work units and application-specific data structures is possible through multiple 

inheritance, which is necessary if the target application data structure is already a part of an 

application-internal inheritance hierarchy. This approach combines the computation with
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class Triangle: public TriangleQuality, public task_unit { 
private:

// Not shown: Triangle related private data members and functions 

public:
// Not shown: Triangle related public member functions
void work_init(Cavity* _cavity, double* _xy, double _area, double _angle, Triangle* parent); 
void workO ;

h ________________________________________________________________________________

Figure 3.3: An example of unmanaged work using the T riangle data structure from PCDM.

the data structure itself; there is no longer a separate class that represents just the com

putation abstraction. An example from the PCDM [3] application evaluated in Section 5.2 

is presented in Figure 3.3. We refer to this alternative method of memory management as 

the unmanaged approach and we exploit it in Factory to improve performance in fine-grain 

parallel codes with very large numbers of work units. In the unmanaged approach, the 

application programmer is responsible for initializing the work unit, managing its alloca

tion and deallocation, and merging work unit code with application data structure code. 

Although the unmanaged approach is certainly more intrusive than the managed one, the 

significant performance benefits it offers in some applications outweigh its complexity.

3.4 Synchronization

Factory provides support for the efficient execution of dependence-driven parallel codes. 

Each work unit employs a children counter to keep track of the number of in-flight work 

units, i.e., work units it has spawned and have not yet finished their execution. When the 

work chunk associated with a work unit is executed, the parent of the work unit is notified, 

by updating its children counter. As a result, a dependence tree is dynamically formed and 

maintained at run-time. The leaves of the tree are work units without dependencies, which
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are either currently executing, or are ready to execute in the future. The internal nodes 

represent work units that are currently executing or have executed in the past, but have 

to wait for the termination of their children before terminating themselves. Task-parallel 

programs tend to form deep dependence trees, while data-parallel, loop-based codes form 

shallow trees, as shown in Figure 3.4. In the diagram, work units are represented as nodes 

in a tree. Work units are dependent on their children and all subtrees. Sibling work units, 

however, are independent and can execute in parallel. Hence, the parallelism in task based 

work is limited by how wide the tree is at any given level, which is the same as how many 

tasks are spawned by each task. Loop based work is as parallelizable as the number of 

execution vehicles, but the profitability of parallelizing loop based work depends on the size 

of the loop.

task loop
Level 0

Level 1

Level 2

Level N

Figure 3.4: Example work unit dependence tree.

Correct order of execution is enforced through Factory barriers, which operate on a 

particular work unit. Barriers come in two versions: the execution is either blocked until 

all children work units in the dependence subtree of the calling work unit have terminated 

(c h ild .b a r r ie r  () member function of the fa c to ry  class), or until both the children and the 

work unit at the root of the subtree have terminated (ro o t_ b arrie r () member function).
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Whenever a not-yet-achieved barrier prevents further execution of a work unit, the cor

responding execution vehicle is not blocked. Factory code implementing the barrier invokes 

the user-level scheduling algorithm instead, and the execution vehicle starts executing other 

work units. When the dependencies of the blocked work unit are satisfied, then the barrier 

is achieved and the work unit resumes execution.



Chapter 4

Program m ing Exam ples

This chapter illustrates, through detailed programming examples, how to code parallel 

programs using Factory. The first example uses task-based parallelism to introduce how 

parallelism is defined and how the programmer interacts with the Factory runtime. The 

second example introduces how loop parallelism is achieved with Factory. The third and 

final example uses concepts from the two previous examples to code a multiparadigm and 

multilevel parallel algorithm. Finally, we compare programming with Factory to other 

multithreaded programming models.

4.1 Task Parallelism: Fibonacci

This section uses the Fibonacci sequence to demonstrate how task parallelism is achieved 

using Factory.

The fa c to ry  object f ib b e r is the programmer’s handle to interact with the Factory

23
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factory<Fibonacci> fibber(8, LOGICAL, FIFO_STEAL);

F igure 4.1: Declaration of a Factory object for the Fibonacci sequence.

runtime system, as illustrated in Figure 4.1. The template parameter to the factory object 

is the class Fibonacci, which is the name of Fibonacci work unit. The constructor parame

ters specify how many execution contexts to use, Factory’s view of the processors and what 

scheduling algorithm to apply. If the number of execution contexts is not provided as a 

parameter, Factory automatically detects the number of execution contexts available in the 

system and uses all of them. The second parameter controls how Factory views processors. 

The constant LOGICAL means that all hardware execution contexts of the system should be 

viewed as independent processors. For example, if the system is a 4-way SMP with SMT 

processors and each SMT processor has two hardware execution contexts, then LOGICAL 

implies that Factory should view the system as 8 identical processors, each with its own 

scheduling queue. If the constant PHYSICAL is used instead, Factory will view the system as 

4 physical processors, each with its own local scheduling queue. This distinction is neces

sary because some codes that were not designed to run on multiple execution contexts per 

physical CPU may experience slowdown due to shared resource contention. The scheduling 

algorithm specified, namely, LIFO_STEAL, enforces a LIFO execution order. Each processor 

first queries its local queue for work and idle processors perform work stealing from remote 

queues. Factory also provides algorithms in which processors execute work in FIFO order, 

with or without work stealing, as well as SMT/CMP aware work stealing algorithms which 

were discussed in Section 3.2. The scheduling algorithm can be changed at runtime, how

ever all work units managed by the same Factory object use the same scheduling algorithm, 

which is a reasonable choice for most practical purposes.
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fibber.start.working();
Fibonacci* root = fibber.spawn(N, ftresult (Fibonacci*)NULL); 
fibber.root.barrier(root); 
f ibber.st op.working();

Figure 4.2: Starting the Fibonacci sequence.

Figure 4.2 shows how the parallel computation is started. The start .working () mem

ber function forks the kernel threads that will be used as execution vehicles to run work 

units. The spawn () member function initiates the computation by creating the root task junit 

of the program. Factory handles the creation and allocation of work units, and passes the 

parameters of spawn () on to the newly created work unit objects. The last parameter to 

spawn() is a pointer to the parent work unit, i.e., the work unit that spawned the newly cre

ated one. Since the last parameter is NULL in this case, this spawned work unit has no parent 

and becomes the root of a new dependence tree. The spawn () member function returns a 

handle to the newly created work unit which is used as a parameter to the root .barrier () 

member function. Upon the call to root.barrier(), the main thread of control for the 

program is blocked until the spawned computation has completed. The underlying kernel 

thread, however, is not blocked. It can still participate in the execution of other work units. 

Finally, stop.workingC) is invoked to join and destroy all kernel threads of the program 

that Factory spawned and used as execution vehicles, as they are no longer needed.

The Fibonacci work unit class, Fibonacci, is defined in Figure 4.3. Since the work 

unit is task based, it inherits from the task.unit class. The algorithm itself is defined in 

the workO function. Inside workO, the calls to spawnO create new Fibonacci work units 

which complete the recursion. Each of these work units is passed the this pointer to indicate 

that the spawned work units are children of the current work unit. This information is used
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class Fibonacci: public task.unit { 
private: 

int n;
int* result; 

public:
void work.init(int _n, int* .result, Fibonacci* parent) { 
task.unit::work_init(parent); 
n = _n;
result = .result;

>

void workO { 
if (n < 2) ■(
♦result = n;

> else {
int parti, part2;

fibber.spawn(n - 1, fcpartl, this); 
fibber.spawn(n - 2, &part2, this); 
fibber.child.barrier(this);

♦result = parti + part2;
>

>
};

F igure 4.3: Definition of a Fibonacci work unit.

internally in Factory for the construction and maintenance of the work unit dependence 

tree. The call to ch ild _ b a rrie r () ensures the correct order of execution; when it is passed 

the th is  pointer, as in this case, it waits until all of this work unit’s children have finished 

execution.

The w ork_init() member function is used by the Factory runtime to initialize each 

newly constructed work unit. The final parameter must be a pointer to the parent work 

unit, and a call must be made to the base class’ w ork_init() member function. Note 

that the parameters passed to spawn () match the type signature of the work J .n it  member 

function. This signature match allows the compiler to enforce type safety with each call to 

spawn().



CHAPTER 4. PROGRAMMING EXAMPLES

4.2 Loop Parallelism: Naive M atrix M ultiplication

27

To demonstrate loop based parallelism, we present a naive matrix multiplication. Instead of 

presenting a complete example as we did in the previous section, we highlight the differences 

between loop and

Figure 4.4 shows how loop parallel work is started. The spawn_for() member function 

is used for loop work, and it expects three parameters that spawn() does not. The first 

two parameters are the boundaries of the whole iteration space of the loop. The third 

parameter identifies the algorithm to be used for scheduling loop iterations to execution 

vehicles. Factory currently offers only a STATIC scheduling policy, however the extension 

with other policies, such as those offered by OpenMP, is straightforward. Factory uses this 

scheduling algorithm to divide the iteration space in chunks of work and assign chunks to 

execution vehicles.

class Naive_Matmul: public loop_unit {
private:
double* one, two, result;

public:
// Not shown: work unit initialization
void workO {

for (int i = loop_start; i < loop_stop; i += loop_step)
for (int j =0; j < N; ++j)

for (int k = 0; k < N; ++k)
result[i * N + j] += one[i * N + k] * two[k * N + j];

>
>;

F igure 4.5: Definition of a naive matrix multiplication work unit.

The naive matrix multiplication work unit, Naive-Matmul, is defined in Figure 4.5.

task parallelism.

naive_matmul root;
multiplier.spawn_for(0, N, STATIC, one, two, result, ftroot); 
multiplier.root_barrier(&root);

F igure 4.4: Starting the naive matrix multiplication.



CHAPTER 4. PROGRAMMING EXAM PLES 28

Because it is loop based work, it derives from loop_unit. This class provides three constants 

for parallelizing the loop: lo op_sta rt, loop .stop, and loop_step. These values are set by 

the Factory runtime and depend on the loop scheduling policy.

4.3 M ultiparadigm Parallelism: Strassen M atrix M ultiplica

tion

This section presents a multiparadigm and multilevel parallel algorithm. We are specifi

cally using Strassen’s matrix multiplication [32] as an example algorithm. Strassen matrix 

multiplication exposes two levels of parallelism: task-level parallelism, via recursive calls 

for the calculation of intermediate matrix products, and loop-level parallelism within the 

calculation of each matrix product.

factory<mixed_work> matmul(8, LOGICAL, LIFO_STEAL);

Figure 4.6: Declaration of a Factory object for heterogenous work.

The declaration of the fa c to ry  object is slightly different in the case of heterogenous 

work, as shown in Figure 4.6. The template parameter to the fa c to ry  object is now the 

predefined class mixed_work, which indicates that Factory will manage multiple types of 

work units. Before, the presence of a programmer defined work unit told the Factory 

runtime system to manage only one kind of work unit.

The definition of the S trassen  work unit is depicted in Figure 4.7. The algorithm has 

been parallelized at two levels: each recursive call is executed in parallel, and the matrix 

additions and subtractions at each level of recursion are also parallelized. The parallel work
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class Strassen: public task_unit { 
private:

double* a, b, c;
int matrix.size, a.width, b_width, c_width; 

public:
// Not shown: work unit initialization ... 
void workO {

if (matrix_size <= BASE_CASE_SIZE)
sequential_matmul(a, b, c, matrix_size, a_width, b_width, c_width); 

else {
const int size = matrix_size »  1;
// Not shown: quadrant declarations and allocations ... 
matmul.spawn_for<Before_Matrix.Add>( 0, size, STATIC,

all, al2, a21, a22,
bll, bl2, b21, b22,
si, s2, s3, s4,
tl, t2, t3, t4,
size, a_width, b_width, c_width, this)

matmul.child_barrier(this);

matmul.spawn<Strassen>(all, bll, pi, size, a_width, b_width, size, this); 
matmul.spawn<Strassen>(al2, b21, p2, size, a_width, b_width, size, this); 
matmul.spawn<Strassen>(si, tl, p3, size, size, size, size, this);
matmul.spawn<Strassen>(s2, t2, p4, size, size, size, size, this);
matmul.spawn<Strassen>(s3, t3, p5, size, size, size, size, this);
matmul.spawn<Strassen>(s4, b22, p6, size, size, b_width, size, this);
matmul.spawn<Strassen>(a22, t4, p7, size, a_width, size, size, this);
matmul.child_barrier(this);

matmul.spawn_for<After_Matrix_Add>( 0, size, STATIC,
ell, cl2, c21, c22,
pi, p2, p3, p4, p5, p6, p7,
u2, u3, u6,
size, c_width, this);

matmul.child_barrier(this);
// Not shown: quadrant deallocations . . .

>;

Figure 4.7: Definition of a S trassen  work unit.

units of the recursive calls inherit from the ta sk .u n it class. The computation itself is 

defined in the workO function. To synchronize nested and recursive parallel work, the calls 

to spawn() within a work unit are passed the th i s  pointer to indicate that spawned work 

units are children of the current work unit.

The fa c to ry  member function spawn J io rO  is called to spawn loop-parallel work. The 

template parameters to spawnO and spawn J io rO  specify the exact type of work unit to 

be spawned (S trassen, BeforeJ4atrix_Add, After_Matrix_Add). To guarantee the correct
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execution order, work units are synchronized in three cases with calls to c h ild J b a rr ie r (). 

Whenever c h i ld .b a r r ie r () is invoked, the parent work unit waits for the termination of 

all its children.

class Before_Matrix_Add: public loop_imit {
private:

double* all, al2, a21, a22,
bll, bl2, b21, b22,
si, s2, s3, s4,
tl, t2, t3, t4;

int matrix_size, a_width, b_width, c_width;

public:
// Not shown: work unit initialization...
void workO -[

for (int i = loop_start; i < loop_stop; i += loop_step)
for (int j = 0; j < matrix_size; ++j) {

sl[i * matrix_size + j] = a21[i * a_width + j] + a22[i * a_width + j]
tl[i * matrix_size + j] = bl2[i * b_width + j] - bll[i * b_width + j]
s3[i * matrix_size + j] = all[i * a_width + j] - a21[i * a_width + j]
t3[i * matrix_size + j] = b22[i * b_width + j] - bl2[i * b_width + j]
s2[i * matrix_size + j] = sl[i * matrix_size + j] - all[i * a_width + j];
t2[i * matrix_size + j] = b22[i * b_width + j] - tl[i * matrix_size + j];
s4[i * matrix_size + j] = al2[i * a_width + j] - s2[i * matrix_size + j];
t4[i * matrix_size + j] = b21[i * b_width +

>
>

>;

j] - t2[i * matrix_size + j b

F igure 4.8: Definition of the Bef ore_Matrix_Add class.

Figure 4.8 depicts the implementation of the class Bef ore_MatrixJhid, which is a work 

unit that derives from loop_unit. The programmer defines the matrix arithmetic that is 

part of the Strassen algorithm in the workO member function. The bounds loop_start 

and loop.end of the parallelized loop, i.e. the outermost one, as well as the loop stepping 

loop .step , are transparently set by the effective loop scheduling policy.

4.4 Program m ability Comparisons

Our programming examples showed how to use Factory to define task-based parallelism, 

loop-based parallelism, and multiparadigm parallelism which uses both task and loop paral-
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lelism. Our examples demonstrate that Factory can express potentially complicated forms 

of parallelism in a clean and concise manner. In this section we compare the complexity 

of the Factory implementations of these algorithms with the Cilk and OpenMP versions. 

For each implementation, porting the code to use Cilk involves the definition of c i lk  pro

cedures which have an 1-to-l correspondence with work unit classes. However, since Cilk 

does not offer explicit looping mechanisms, the programmer has to undertake the task of 

the management and distribution of the loop iteration space to threads. The corresponding 

OpenMP implementation expresses task work units as a recursive function. Each recursive 

call is preceded by a work distribution directive for task-parallel work. Loop-parallel work is 

expressed inline, and is once again preceded by the appropriate work distribution directives.

Factory Cilk O penM P
task loop

F ibonacci 55 lines 32 lines 49 lines -
N aive M atrix  M u ltip lication 57 lines - - 29 lines

S in gle-level S trassen 634 lines 601 lines 612 lines -
M u lti-leve l S trassen 733 lines - 614 lines

Table 4.1: A comparison of the number of lines of code in the example programs using Factory, 
Cilk, and OpenMP.

Table 4.1 summarizes the lines of code required for programming four different parallel 

programs using the same programming style conventions in Factory, Cilk and OpenMP. 

Fibonacci, Naive Matrix Multiplication and Multi-level Strassen are presented earlier in 

this chapter. Single-level Strassen is an implementation of the Strassen algorithm that only 

parallelizes the recursive calls. In general, Cilk has the most concise expression of task 

parallelism, and OpenMP has the most concise expression of loop parallelism. However, 

directly using Factory as a multithreading substrate involves, in general, comparable pro
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gramming effort as programming with Cilk or OpenMP. At the same time, Factory does 

not require algorithmic modifications as Cilk often does. Moreover, Factory does not need 

compiler support and is thus independent of particular compiler implementations. As a 

result, it is significantly more portable and can be easily integrated into existing projects.
f

Implementing these programs using only POSIX threads requires programmers to design 

and implement their own system for expressing and executing task- and loop-parallelism. 

Consequently, such programs would be significantly longer and the expression of parallelism 

would likely be problem specific.



Chapter 5

Performance Evaluation

We have experimentally evaluated the performance of Factory on an SMT-based multi

processor. The use of such a multilevel parallel architecture allows us to experiment with 

different options for exploiting nested parallelism with Factory. It also facilitates the assess

ment of the efficiency of alternative scheduling policies offered by Factory, which take into 

account the characteristics of the two disjoint levels of available parallelism, namely within 

the execution contexts of each physical processor and within the different physical proces

sors of the same SMP. We compare Factory against other popular parallel programming 

models, namely OpenMP, Cilk, and manual parallelization using POSIX threads.

Table 5.1 outlines the hardware and software configuration of our experimental platform. 

The Intel Hyper-Threaded architecture follows the SMT organization [37]: a relatively wide 

superscalar processor core executes mixes of instructions originating from two threads of 

control. The Hyper-Threaded architecture shares most of the resources of the processor 

between the threads. In particular, the caches, the data TLB, and all execution units are

33
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Processor Intel Xeon with Hyper-Threaded Technology
Frequency 2 GHz
Cache 8KB, 4-way associative DL1, 12KB instruction IL1 

512KB, 8-way associative unified L2 
1MB, 8-way associative unified L3

TLB 64-entry fully associative DTLB 
2x64-entry fully associative ITLB

Memory 2GB DRAM
Operating System SUSE Linux 9.2, 2.6.8-24.13-smp kernel
Compiler Intel Compiler for 32-bit applications, Version 8.1

T able 5.1: Hardware and software configuration of the experimental platform used to evaluate 
Factory.

shared and are made available—on demand—to any thread. The processor maintains a 

private set of per thread architectural registers, as well as a private instruction TLB for 

each thread.

We experimented using both microbenchmarks and parallel applications. The evalua

tion with microbenchmarks assesses the overhead for managing parallelism, or equivalently, 

identifies the minimum granularity of exploitable parallelism by each of the target parallel 

programming models. We also used microbenchmarks in order to evaluate the performance 

of the slab allocator integrated with Factory.

Experiments with real applications also compare Factory against the aforementioned 

parallel programming models. We focus on both task- and loop-parallel applications. Fac

tory and OpenMP natively support task- and loop-level parallelism through their respective 

APIs1. Cilk and POSIX threads do not offer explicit support for both forms of parallelism, 

however it is always possible to express task- and loop-level parallel algorithms at the cost

xIn fact the support for task-parallel codes by the official OpenMP standard (i.e. through SECTIONS 
directives) is still immature. However, Intel has introduced OpenMP extensions for the support of task 
queues [41].
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of additional—and often significant—overhead for the programmer.

We have also used PCDM [3], a parallel mesh generation application, to assess the 

effectiveness of the unmanaged approach to memory allocation offered by Factory. PCDM 

is particularly demanding in terms of efficient memory management.

The final experiment compares the effectiveness of thread binding schemes using one of 

the Factory implementations of an application. Our results indicate that Factory’s perfor

mance does not depend on thread placement.

All experiments throughout our evaluation have been executed 20 times. We report the 

average timings across all 20 repetitions. The 95% confidence interval for each data point 

has always been lower than 1.7% of the average, so it is not plotted on the graphs. The only 

exception is the experiment evaluating the performance of the memory management. In 

this case, the 95% confidence interval boundaries are reported on the corresponding graph.

5.1 M inimum Granularity of Exploitable Parallelism

The minimum granularity of parallelism that can be effectively exploited by any multi

threaded substrate is directly related to the degree of overhead associated with the cre

ation and management of parallel jobs. The minimum exploitable granularity is partially 

dependent on architecture-specific parameters, such as the context-switch overhead. Multi

threading substrates introduce additional overheads for the creation and destruction of the 

data structures used to represent chunks of parallel work, for the execution of scheduling 

algorithms, and for the synchronization between jobs. Thus, it is important to investigate
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whether the implementation of a multithreading library maintains such overheads as close 

as possible to the limits imposed by the architecture.

More formally stated, the parallel execution time (T//) of a fully parallelizable job can 

be expressed as:

Til — +  Overhead(nthr) > (5.1)
nthr

where Tseq stands for the sequential execution time of the job, n thr for the number of threads 

used for the parallel execution and Overhead{nthr) for the overheads associated with the 

exploitation of parallelism (as a function of nthr)- The minimum granularity of exploitable 

parallelism ('Tgran{nthr)) is the Tseq for which:

T
Tseq — ——  +  Overhead(nthr)• (5.2)

Hthr

Tasks with sequential execution time less than Tgran(nthr) can not be executed efficiently in 

parallel with nthr threads, since the overheads outweigh the benefits of parallel execution. 

It is obvious that as the overhead introduced by the multithreading substrate increases, the 

minimum granularity of exploitable parallelism also increases accordingly.

The experiment for the evaluation of Tgran(nthr) is organized as follows. The paral

lelized job consists of a variable number of pause machine instructions. The number of the

instructions is reduced until a break-even point is identified, at which point the sequential 

execution is as fast as the parallel one with n thr threads. The sequential execution time of 

the number of instructions corresponding to the break-even point is the minimum granular

ity. We represent work with pause instructions because they incur as minimal interference 

as possible when executed simultaneously on the different execution contexts of a single
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Hyper-Threaded processor. The minimum granularity may be coarser for realistic codes2, 

however this does not affect the comparison of Factory against the other multithreading 

substrates. In general, it is reasonable to expect that the minimum exploitable granularity 

when threads are running on the same processor is different than when threads are running 

on different processors, because of the implications of resource sharing inside the processor.

As discussed earlier, the minimum granularity is also a factor of the number of threads 

used for the parallel execution. We thus evaluate the minimum granularity for the parallel 

execution with 2, 4 and 8 threads. In the 2 threads experiments, threads are bound to 

either 2 different physical CPUs, or to the 2 execution contexts of a single CPU. Similarly, 

4 threads can be executed on either 2 or 4 physical CPUs. Finally, the experiments using 

8 threads are executed on 4 physical processors, with 2 execution contexts active on each 

processor. The different binding schemes allow the evaluation of both intra- and inter

processor parallelism overheads.

2 T hreads 4 T hreads 8 Threads
1 C P U 2 C P U s 2 C P U s 4 C P U s 4 C P U s

Factory
Cilk

O penM P  task  
O penM P  loop

6.2/xsec
121/isec
20/isec
10/isec

6.2/xsec
81/xsec
20yusec

6.2/isec

10/isec
153/usec
26/isec

6.2^sec

10//sec
153/isec
24yusec

4.2/zsec

26yusec
222yusec
202/isec
68/isec

Table 5.2: Comparison of the minimum granularity of effectively exploitable parallelism.

Table 5.2 summarizes the measured minimum exploitable granularity of Factory and the 

other multithreading systems. We compare Factory against Cilk, which supports only strict

2The minimum granularity in this case will also depend on the instruction mix executed by the different 
threads on the same physical processor. The two execution contexts on a Hyper-Threaded processor share 
functional units. If the instruction mix between the two contexts causes conflicts in the shared functional 
units, then thread execution is effectively serialized.
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multithreaded computations with recursive task parallelism, and OpenMP. For the latter, 

we distinguish between the minimum granularity that can be exploited by the loop execution 

mechanism and the one exploitable by the task execution mechanism. OpenMP runtime 

libraries use different mechanisms for the two types of parallelism. We have evaluated 

the minimum granularity of task parallelism using Intel compiler’s workqueue extensions 

to OpenMP [29,41]. Factory uses the same mechanisms for creating parallel work units, 

regardless of whether these work units are used for task- or loop-parallelism. As a result, 

it is represented by only one entry in the table. Table 5.2 does not include experimental 

results for the minimum exploitable granularity of applications parallelized directly with 

POSIX threads. POSIX threads are implemented on Linux directly on top of kernel threads, 

with an 1-to-l correspondence between each POSIX and kernel thread. Thus, they incur 

excessive overhead if used directly for the parallelization of fine-grain computations. As a 

consequence, POSIX threads are typically used only as execution vehicles, combined with a 

user-level threads package or an application-specific work representation and management 

mechanism, such as application-level work queues.

Factory’s minimum task granularity is finer than Intel’s task queue implementation in 

OpenMP. Factory’s granularity remains competitive with OpenMP’s loop granularity as 

well. At the same time, Factory proves able to exploit significantly finer granularity than 

Cilk. Although the point where Cilk starts achieving speedup is relatively high, the break

even point is significantly lower, close to the performance of OpenMP tasks. This behavior 

can be attributed to the fact that for very fine-grain parallel work, the Cilk run time actually 

schedules multiple tasks to the same execution vehicle (kernel thread). Hence, Cilk requires 

a relatively large work load before multiple threads are used to execute it.
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It should be pointed out that Intel’s implementation of loop- and task-level parallel 

execution is heavily optimized. Sophisticated compile-time techniques, such as multi-entry 

threading [36] are used. Multi-entry threading avoids generating separate modules and func

tions for loop and task bodies. The benefits of these compile-time optimizations are evident 

in the minimum granularities measured: the minimum exploitable granularity is actually 

reduced for the parallel execution with 2 and 4 threads. The fact that Factory performs 

comparably to this implementation without being supported by compile-time optimizations 

is indicative of its efficiency.

Both Cilk and OpenMP generally perform better when threads are spread to as many 

physical CPUs as possible. Factory overheads, on the other hand, are uncorrelated with 

thread placement. This property makes Factory a much more predictable multithreading 

substrate for deep, multilevel parallel systems.

5.2 M anaged vs. Unm anaged M emory Allocation

The distinction between managed and unmanaged work allocation has been discussed in 

Section 3.3. In this section, we evaluate the performance gains unmanaged work allocation 

can offer.

PCDM (Parallel Constrained Delaunay Mesh Generation) [3] is a method for creating 

unstructured meshes in parallel, while guaranteeing the quality of the resulting mesh under 

geometric, qualitative criteria. The method is based on the Bowyer-Watson kernel [10,39]. 

The algorithm first identifies an offending triangle which does not satisfy the qualitative
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criteria. The triangle is deleted and a new point is inserted at the circumcenter of the 

offending triangle. The kernel then performs a cavity expansion; it detects the immediate 

or higher order neighbors of the offending triangle, whose circumcircles include the newly 

inserted point (incircle test). The triangles in the cavity of the offending triangle are also 

deleted. Finally, the area is retriangulated by connecting points at the boundary of the 

cavity with the newly inserted point. The cavity expansion accounts for almost 60% of the 

total execution time of PCDM and is similar to a breadth-first search of a graph. It can 

be executed in parallel, however it offers limited concurrency (2 on average). Each cavity 

expansion has an average duration of 4 to 6 /isec on our experimental platform.

The main data structure of the algorithm is a graph of the triangles comprising the 

mesh. Nodes of this graph, which are triangles, are deleted during cavity expansions and 

new nodes are inserted during the retriangulations. Each Factory work unit corresponds to 

an incircle test for a specific triangle. Due to its extremely fine granularity, and due to the 

strict 1-to-l relation between work units and triangles, PCDM is a good candidate for the 

evaluation of the benefits of unmanaged work in Factory. In the Factory implementation of 

PCDM, the triangle data structure inherits directly from a Factory task_unit class. Since 

the allocation and deallocation of triangles is already handled natively by PCDM, work unit 

creation and memory management inside Factory is no longer necessary.

1 th r e a d 2 th r e a d s
M a n a g e d

U n m a n a g e d
61.7sec
57.7sec

98.8sec
89.9sec

Table 5.3: Comparing execution times of PCDM with managed and unmanaged work unit alloca
tion.
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Table 5.3 outlines the performance gains from merging the management of work units 

with that of application triangles in PCDM. The reported execution times were obtained by 

executing PCDM for an output problem size of 10 million triangles. We used either one or 

two Hyper-Threads on a single processor on our experimental platform. In this context the 

unmanaged approach provides a measurable performance benefit (a reduction in execution 

time ranging between 6.4% and 9.0%).

PCDM does not scale because of excessive scheduling and synchronization overheads. 

These problems become even more pronounced when the threads are executed on differ

ent physical processors. Hyper-Threading actually reduces overhead, by allowing synchro

nization operations to take advantage of the shared cache. The scalability problems of 

PCDM are endemic and can not be solved without better hardware mechanisms for creat

ing, scheduling and synchronizing threads [3]. The experimental results reported here simply 

illustrate the potential of the unmanaged approach to work unit allocation in Factory.

5.3 M em ory M anagem ent

The performance of any multithreading library is sensitive to the efficient management of 

its own data structures. Since work in Factory is represented by small objects and these 

objects are the dominant unit of memory allocations, we opted to implement an efficient 

user-level, small object, multithreaded allocator as discussed in Section 3. Each execution 

vehicle has its own list of slabs from which it allocates objects. Maintaining lists for each 

thread allows the allocator to satisfy simultaneous memory requests from multiple threads
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and also implicitly promotes locality. The performance of our allocator versus the C ++ 

new /  d e le te  operators is depicted in the diagram of Figure 5.1.

Slab Allocator vs. C++ new/delete
30 -r

25

a> 20M 4,w

new /delete■“  15
slab

100000 1000000100 1000 
Recycling Rate

10000

Figure 5.1: Comparison of the slab allocator with new/delete.

Each of the 8 threads participating in the experiment allocates 107 work units. The 

horizontal axis represents the period of work unit recycling, i.e., the number of consecutive 

work unit allocations before the first deallocation takes place. For example, an x-axis 

value of 10 indicates 10 work unit allocations followed by 10 deallocations. By varying this 

frequency, we can simulate different recycling rates that Factory might encounter in a real 

application. The results indicate that our allocator is consistently better suited for small 

object allocations among multiple threads when the recycling rate is between 10 and 104. 

This range corresponds to task based codes with deep levels of recursion.

The improvement, in this range, over native memory allocation can be attributed to the 

fact that our memory allocator is designed to avoid contention during memory management
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in the common case. Since each thread has access to its private list of slabs, it does not 

have to compete with other threads to satisfy a memory request. When objects, however, 

are recycled with a period higher than 104, the average slab size tends to become relatively 

large. As a result, a significant amount of time may be spent identifying free objects inside 

the slab.

This experiment realistically simulates the pressure experienced by the memory man

ager during a Factory execution. Work units are, in most cases, deallocated by the same 

execution vehicle that initially allocated them. The only exception is when work units are 

migrated to different execution vehicles as a result of work stealing. However, the percent

age of migrated work units is typically negligible compared with the total number of work 

units created by a program.

5.4 Factory vs. PO SIX Threads: Splash-2 Radiosity

Radiosity is an application from the Splash-2 [40] benchmark suite. It computes the equi

librium distribution of light in a scene. It uses several pointer-based data structures and an 

irregular memory access pattern. The code uses application-level task queues and applies 

work stealing for load balancing. Radiosity tests Factory’s ability to handle fine grain syn

chronization. As Radavic and Hagersten have already demonstrated [12], its performance 

is sensitive to the efficiency of synchronization mechanisms. Radiosity also allows a direct 

comparison of Factory with POSIX Threads as underlying substrates for the implementa

tion of hand crafted parallel codes. Porting the original code to Factory required just the
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conversion of the task concept to a work unit object. Both implementations were executed 

with the options -ba tch  -largeroom . The performance results are depicted in Figure 5.2.

Radiosity (Splash-2)
18 1

®  12 M  1
POSIX
Threads

Factory 
FIFO LF

- - Factory 
LIFO LF

Number of Threads

Figure 5.2: Comparison of the performance of Factory and POSIX Threads Radiosity implemen
tations.

Factory consistently performs at least 13% faster than the POSIX Threads implemen

tation, mainly due to its efficient, localized, fine-grain synchronization mechanisms. There 

is almost no performance improvement if more than 4 threads are used. This can be at

tributed to the fact that one Radiosity thread per physical CPU manages to effectively use 

almost all shared execution resources. However, the additional SMT contexts provide only 

marginal performance benefits.

We tested Factory using both LIFO and FIFO scheduling policies. In all cases, the 

internal queues have been implemented using lock-free algorithms. LIFO execution ordering 

yielded better performance due to temporal locality. Data shared between the parent and 

children work units are likely to be found in the processor cache if a LIFO ordering is
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applied. The same trend has also been observed for the experiments presented in the 

following sections. As a result, in these sections we report only experimental results that 

have been attained using a LIFO execution ordering.

5.5 Factory vs. OpenM P : NA S IS

Integer Sort (IS) is part of the NAS [4] benchmark suite. We are using the OpenMP 

version of the 3.1 release of the benchmarks. The sorting method IS implements is often 

used in particle simulation codes. The application stresses integer execution units and data 

communication paths. The conversion of the application to the Factory programming model 

is straightforward. Each omp p a r a l le l  fo r  OpenMP work sharing construct is substituted 

by the definition of a loop .un it class and called with spawnfforO.

All experiments have been performed using the Class C problem size, which sorts 227 

keys. The results are depicted in Figure 5.3.

Neither the OpenMP nor the Factory implementation of IS scales well on our platform. 

In fact, the use of more than three threads results in slowdown. Dell has already identified 

the performance problem of IS on Xeon-based PowerEdge servers [1, 26]. The source of the 

problem has been pinpointed to the saturation of the system bus. As mentioned previously, 

IS has high memory bandwidth requirements. Two IS threads are enough to saturate the 

bus that connects processors to the main memory. The addition of more threads has adverse 

effects for two reasons. First, it results to more conflicts on the system bus. Second, more 

than one thread shares the cache hierarchy on each processor, thus reducing the effective
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Integer Sort (NAS-IS, Class C)
135 - t

130
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Factory
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Number of Threads

F igure 5.3: Comparison of OpenMP and Factory implementations of the NAS IS (Class C) appli
cation.

cache size and resulting in more memory references being satisfied by main memory, through 

the system bus.

In any case, the Factory implementation always performs within 1% of the OpenMP 

version, despite the fact that Intel OpenMP compilers take advantage of OpenMP semantics 

to guide aggressive, compile-time optimizations.

5.6 Factory vs. Cilk and OpenMP: Single-level Parallel Strassen 

M atrix M ultiplication

We have used an optimized, single-level parallel implementation of the Strassen algorithm 

from the Cilk distribution. The algorithm is applied on 2048x2048 double precision floating 

point matrices. The OpenMP version of the application is based on Intel’s OpenMP ex-
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tensions for the support of task queues, which facilitate the implementation of task-parallel 

codes in OpenMP.

Once again, the conversion to the Factory programming model was straightforward. 

We replaced recursive Cilk functions by work unit classes (specifically, work units of type 

ta sk .u n it) . The conversion to OpenMP was also simple: recursive calls to Cilk functions 

have just been preceded by OpenMP ta sk  directives.

Optimized Strassen Matrix Multiplication

20

o> 15 Cilk

-■— OpenMP

Factory LF

Factory Lock

Number of Threads

F igure 5.4: Performance of Factory, Cilk, and OpenMP taskq for a single-level, parallel, Strassen 
matrix multiplication.

As shown in Figure 5.4, we also experimented with lock-free and lock-based queue im

plementations in Factory. All four implementations attain good scalability until 4 threads. 

After that point, at least one processor is forced to execute threads on both SMT contexts. 

When more than 4 threads are used, the OpenMP implementation suffers erratic perfor

mance. Cilk is not affected by intra-processor parallelism. It should be noted that Cilk’s 

work stealing algorithm avoids locking the queues in the common execution scenario [20].
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The Factory implementation that uses a lock-based queue implementation also suffers a 

performance degradation at 5 and 6 threads. However, the problem is solved if lock-free 

queues are used. In fact, the lock-free Factory implementation outperforms all others in all 

but 2 cases: OpenMP is more efficient than Factory when 7 or 8 threads are used.

Our experiments suggest that the performance degradation at 5 and 6 threads is related 

to synchronization. Previous studies indicate that lock-free algorithms are more efficient 

than lock-based ones under high contention or multiprogramming, i.e., when the runnable 

threads are more than the available processors [27]. The execution of more than one thread 

on the execution contexts of SMT processors often has similarities to multiprogrammed 

execution on a conventional SMP. If the shared processor resources can not satisfy the 

simultaneous requirements of all threads, the threads will eventually have to time-share 

the resources. As a result, SMT-based multiprocessors may prove more sensitive to the 

efficiency of synchronization mechanisms than conventional SMPs.

5.7 Factory vs. OpenM P: M ultilevel Parallel Strassen Ma

trix M ultiplication

In Chapter 4 we presented a multilevel parallel implementation of the Strassen algorithm 

with Factory. In this section we evaluate the performance of that implementation and we 

compare it to the corresponding OpenMP multilevel code. The experimental results are 

depicted in Figure 5.5.

The Factory implementation scales consistently up to 4 threads. When 5 or more threads
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Multilevel Strassen Matrix Multiplication

------------ Factory

- - *  - - OpenMP
■5 10

Number of Threads

Figure 5.5: Performance of a Factory and an OpenMP implementation of multilevel parallel 
Strassen matrix multiplication.

are used, resource sharing inside each SMT processor limits execution time improvement. 

Using 8 threads activates all 8 executions context on the 4 SMT processors of the system. 

However, the exploitation of all execution contexts offers performance improvement of only 

0.5 seconds over the execution with 4 threads. The multilevel Factory implementation is 

slightly slower than the single-level one. This is expected, since the scalability of the single- 

level code is not limited by the lack of parallelism, but rather by intra-processor resource 

sharing. As a result, the exploitation of the second level of parallelism in Strassen simply 

adds additional parallelism management overhead.

The performance of the OpenMP implementation is comparable to that of Factory. It 

still, however, experiences the same performance degradation as the single-level code when 

5 or 6 threads are used, due to the SMT-unfriendly task queue implementation in the 

OpenMP compiler backend.
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5.8 Thread Binding

50

A common optimization for multithreaded programs running on multiprocessors is to bind 

each thread to run on a particular processor. The rationale behind this optimization is 

that if a thread has already been running on a particular processor, that processor’s cache 

is warm with that thread’s data. Migrating the thread to a different processor will cause 

many unnecessary cache misses and likely increase the thread’s execution time. An optimal 

binding of threads on a deep multiprocessor requires prior knowledge of how the multipro

cessor is structured. We tested the single-level Strassen application from Section 5.6 with 

different binding schemes, as shown in Figure 5.6.

Binding Scheme Comparison

 n o b in d

 v ir tu a l

p h y s ic a l
3  10

Threads

F igure 5.6: A comparison of different binding schemes using the single-level implementation of 
Strassen. nobind represents letting the Linux scheduler decide thread placement, virtual represents 
binding each thread to one execution context (one virtual processor), and physical represents binding 
each thread to two execution contexts (one physical processor).
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We evaluated three different binding schemes: nobind, which performs no binding and 

left thread placement up to the Linux 2.6 scheduler; virtual, which binds each thread to 

one virtual processor (or execution context) just as is done on a standard multiprocessor; 

and physical, which binds each thread to a physical processor (each physical processor has 

two execution contexts). Our results show that the performance improvement with binding 

threads is negligible when compared to letting the Linux scheduler manage their placement. 

After four threads, where a second execution context is active on at least one processor, the 

binding schemes show a marginal improvement. As expected, the physical binding scheme 

outperforms the virtual binding scheme. This improvement is expected because each thread 

can run on two execution contexts (as opposed to one), and on both it is guaranteed to have 

a warm cache. However, the marginal difference between binding and not binding shows 

that in the case of the Linux 2.6 scheduler, letting the operating system handle thread 

placement is appropriate.

These results indicate that Factory’s performance is independent of thread placement 

schemes. While binding threads to one physical processor only marginally improved per

formance, such binding schemes can expose the underlying processor architecture to the 

scheduling algorithm. When the scheduling algorithm is aware of the parallelism offered by 

the processor, then it can schedule work in such a manner to fully exploit the processor’s 

capabilities.



Chapter 6

Conclusions and Future Work

We have presented Factory, an object-oriented parallel programming framework, which al

lows the exploitation of multiple types of parallelism on deep parallel architectures. Factory 

uses a clean, unified interface to express different, and potentially nested, forms of paral

lelism. Its design preserves the C + +  type system and its implementation allows its use 

both as a standalone parallel programming library and as a runtime system for high-level 

object-oriented parallel programming languages. Factory includes a number of performance 

optimizations, all of which make the runtime system aware of the hierarchical structure of 

execution resources and memories on modern parallel architectures. The performance op

timizations of Factory include efficient multithreaded memory allocation mechanisms that 

minimize contention and exploit locality; lock-free synchronization for internal concurrent 

data structures; integration of the management of the parallel work units with the mem

ory management of native application data structures; and scheduling policies which are 

aware of the topology of execution contexts in multi-SMT or multi-CMP systems. We have

52



CHAPTER 6. CONCLUSIONS AND FUTURE WORK  53

presented performance results that illustrate the efficiency of the central mechanisms for 

managing parallelism in Factory and justify our design choices for these mechanisms. We 

have also presented results obtained from the implementation of several parallel applications 

with Factory and we have shown that Factory performs competitively and often better than 

OpenMP and Cilk, two widely used and well optimized parallel programming models for 

shared-memory systems. Moreover, we have shown that Factory can outperform manually 

tuned implementations of parallel applications with hand-coded mechanisms for managing 

parallelism.

We regard Factory as a viable means for programming emerging parallel architectures 

and for preserving both productivity and efficiency. We plan to extend Factory in several 

directions. First, we plan to investigate hierarchical scheduling algorithms, in which the 

scheduling policies are localized to groups of work units, according to the type of parallel 

work performed in each group. In the same context, we plan to investigate algorithms for 

dynamically selecting the scheduling strategy, using both compile-time and runtime infor

mation. Second, we plan to investigate dynamic concurrency control using Factory. Con

currency control is important for fine-grain parallel work running within SMTs or CMPs, 

because the interactions between threads may prevent parallel speedup within the proces

sor, and the additional execution contexts in the processor may be used for purposes other 

than parallel execution, such as the overlapping of computation with I/O, or for assisted 

execution via precomputation of long-latency events [38]. Third, we shall consider the im

plications of hierarchical parallel architectures on the Factory synchronization mechanisms 

and investigate how the lock-free synchronization mechanisms can exploit resource sharing 

within SMTs and CMPs. Finally, we plan to extend Factory to incorporate transparent data
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distribution and data movement facilities in order to provide runtime support for emerging 

chip multiprocessors with non-uniform cache architectures.
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