Mississippi State University

Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2003

Integrating Algorithmic and Systemic Load Balancing Strategies
in Parallel Scientific Applications

Sheikh Khaled Ghafoor

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Ghafoor, Sheikh Khaled, "Integrating Algorithmic and Systemic Load Balancing Strategies in Parallel
Scientific Applications" (2003). Theses and Dissertations. 2764.
https://scholarsjunction.msstate.edu/td/2764

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@messtate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2764?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2764&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

INTEGRATING ALGORITHMIC AND SYSTEMIC LOAD BALANCING

STRATEGIES IN PARALLEL SCIENTIFIC APPLICATIONS

By

Sheikh Khaled Ghafoor

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfilment of the Requirements
for the Degree of Master of Science
in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2003

INTEGRATING ALGORITHMIC AND SYSTEMIC LOAD BALANCING

STRATEGIES IN PARALLEL SCIENTIFIC APPLICATIONS

By

Sheikh Khaled Ghafoor

Approved:

loana Banicescu Rayford B. Vaughn Jr.

Associate Professor of Associate Professor of

Computer Science and Engineering Computer Science and Engineering
(Major Professor) (Committee Member)

Anthony Skjellum Susan M. Bridges

Professor of Computer and Information Sciences Professor of

University of Alabama at Birmingham Computer Science and Engineering
(Committee Member) (Graduate Coordinator)

A.Wayne Bennett
Dean of the Bagley college of Engineering

Name: Sheikh K. Ghafoor

Date of Degree: December 13, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. loana Banicescu

Title of Study: INTEGRATING ALGORITHMIC AND SYSTEMIC LOAD
BALANCING STRATEGIES IN PARALLEL SCIENTIFIC
APPLICATIONS

Pages in Study: 67

Candidate for Degree of Master of Science

Load imbalance is a major source of performance degradation inleparal
scientific applications. Load balancing increases performance aligdaapplications in
distributed environments. At a coarse level of granularity, advanaesmtime systems
have been proposed in order to control available resources using taskianight a
finer granularity level, advances in algorithmic strategiesljoramically balancing loads
by data redistribution have been proposed. Algorithmic and systemic |d¢ackcibg
strategies have complementary set of advantages. An integratioeseftwo techniques
should result in a system, which delivers advantages over each techusigdein
isolation. This thesis presents a design and implementation efearsthat combines an
algorithmic load balancing strategy called Fractiling withsystemic load balancing
system called Hector. It also reports on experimental regiltsunning N-body
simulations under this integrated system. The experimental gesdicate that the

integrated system provides performance improvement for large applications.

ACKNOWLEDGMENTS

| would like to express my sincerest appreciation for the peoplehefped me in
many ways during the course of this thesis. My earnest gratgads to my major
professor, Dr. loana Banicecu, who supported me generously, guided meomstant
encouragement and imperative directions, and had the patience to acceenmgda
mistakes to make me learn from them. | am very grateful toADbthony Skjellum,
member of my graduate committee, for his suggestions and help theimgprk on this
thesis. | would also like to thank Dr. Rayford B. Vaughn, for serving m&mber in my
graduate committee, providing me with useful suggestions and commkats. very
grateful to Dr. Samuel H. Russ, former associate professorectrieal and Computer
Engineering, for his guidance and help during the work on this thesis. Ihoaddi
would like to thank Rong Lu, former. student of this department for histasse. My
work on this thesis has been partially supported by the National 8ckemmdation
through the following grants: CAREER # 9984465, ITR/ACS # 0081303,ITR # 0085969,
973038. | would also like to take the opportunity to acknowledge the support for
infrastructure and resources provided by Engineering Research ©énéssissippi
State University. | wish to thank all the faculty members la¢rihe Computer Science
and Engineering Department from whom | learned a lot. Finallyulaviike to thank my
wife Ambareen Siraj for her encouragement, support, and for her contindpubkrbegh

the writing of this thesis

TABLE OF CONTENTS

ACKNOWLDEGMENT ...ttt e e e e e e e

LIST OF TABLES ...

LIST OF FIGURES.t e e e e e e e e e

CHAPTER

INTRODUCTION.ttt st e e e e e e e e e

1.1 Systemic (Coarse-Grained) Load Balancing...............c.c.ooeevivnnnnen.
1.2 Algorithmic (Fine-Grained) Load Balancing............................

1.3 An Integrated Strategy.........coeviiiiiiiii i e e
1.4 HYPONESIS .. ottt e e e e
1.5 APPIOACH. ...t
1.6 Expected CoNntribULIONS.c.ouiuii it e e e e e

1.7 Organization of this ThesiS...........cccoiiii i

BACKGROUND AND RELATED WORKccoiiiiiiiiie e
2.1 Related Work on Systemic (Coarse-Graihedyd Balancing............
2.2 Related Work on Algorithmic (Fine-Graifjdgad Balancing...........

DESIGN AND IMPLEMENTATIONot e e
3.1 Hector ArChiteCture.......coovi i e e,
3.2 Fractiling Implementation..............cccoooi i,

3.3 Hectiling Design and Implementation................ccceeveie i veniennnn,

Page

Vi

10
11
12

13
13
16

23
24
26
29

CHAPTER

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANAYSIS........

4.1 Hectiling without migration.............cc.cooiiiiii i

4.2 Hectiling with migration..............c.coooi i,

4.3 ANAIYSIS. ..ttt
V. CONCLUSION AND FUTURE WORK.......ccoi it e e

REFERENCES

Page

33
34
44
52
60
64

LIST OF TABLES

TABLE Page
4.1 Speedup for Uniform Distribution................cooiiiii i, 56
4.2 Speedup for Gaussian Distribution...............cooiii i, 57
4.3 Speedup for Corner Distribution................ooiii 58

FIGURE
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
413
414
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

LIST OF FIGURES

HeCtor ArChiteCtUre. e e
Migration of Tasks under HeCtor...........c.cooiiii it e e,
Master/Slave communication in Fractiling................c.coocoviiiici i,

Hectiling ArChiteCTUIe. ... e e e e e

Fractiling State Update: Interrupt Drivendéd........

Cost for Uniform Distribution (100k partigle..........
Cost for Gaussian Distribution (100k paejcl.........
Cost for Corner Distribution (100k particle)..........

Cost for Uniform Distribution (10k particle)..........

Cost for Gaussian Distribution (10k pardicle.........

Cost for Corner Distribution (10k particle).........cccooeviiiiiiiiici e,

Cost for Uniform Distribution (20k particle)..........

Cost for Gaussian Distribution (20k pardicle.........

Cost for Corner Distribution (20k particle)...........cccoviiieiiiii i,

Cost for Uniform Distribution (50k partigle...........
Cost for Gaussian Distribution (50k paefcl..........
Cost for Corner Distribution (50k particle)...........
C.0.V. for Uniform Distribution (100k pasig)........

C.0.V. for Gaussian Distribution (100k pee)........
C.0.V. for Corner Distribution (100k pals)..........

Cost for Uniform Distribution without Log@iO0k particle).......................

Cost for Gaussian Distribution without Lda@0k particle)......................
Cost for Corner Distribution without LoaDQk particle)................c.ee..e.

Cost for Uniform Distribution without Log80k particle).......................

Cost for Gaussian Distribution without Ld&a@k particle).......................

Cost for Corner Distribution without LodaDk particle)..........................

Cost for Uniform Distribution with Loadd@k particle)..........................

Cost for Gaussian Distribution with Loa@@k particle)..........................

Cost for Corner Distribution with Load (XO@article)

Vi

32
36
36
36
37
37
37
38
38
38
39
39
39
42
42
42
46
46
46
47
47
47
48
48
48

FIGURE Page

4.25 Cost for Uniform Distribution with Loadk particle)........................... 49
4.26 Cost for Gaussian Distribution with Loa@K%article)........................... 49
4.27 Cost for Corner Distribution with Load (5p&rticle).................cccoeiie 49
4.28 C.0.V. for Uniform Distribution (100k pai).............ccoevevevivinnnnennn. 51
4.29 C.0O.V. for Gaussian Distribution (100K pa&)...............cooviiiiiinnnnnn 51
4.30 C.0.V. for Corner Distribution (100k

=T 03) 51
4.31 Hectiling Cost Improvement for Uniform Dibution without Load (100k

=T 03 54
4.32 Hectiling Cost Improvement for Gaussiantiiisition without Load (100k

PAITICIE) .. e e e e e 54
4.33 Hectiling Cost Improvement for Corner Olstition without Load (100k

PAITICIE) .. e e 54
4.34 Hectiling Cost Improvement for Uniform Dibution with Load (100k

PAITICIE) ..ttt e e e e e 55
4.35 Hectiling Cost Improvement for Gaussiantiibsition with Load (100k

PAITICIE) .. e et e e e e 55

4.36 Hectiling Cost Improvement for Corner Olsfition with Load (100k
PAITICIE) .. e e e e 55

vii

CHAPTER |

INTRODUCTION

Parallel and distributed computing has become one of the most imgrest
avenues followed in scientific applications and has become one of themfemidd
research areas of computer science. Problems in science ancengiaee often large,
complex, highly irregular and computationally intensive. These probtamsoften be
decomposed into sub problems that can simultaneously be solved. Thus,izatiatiel
provides a way to solve large computationally intensive problemstkan modeling,
climate modeling fluid turbulence etc., which would otherwise be imiplest solve on
a sequential machine. One factor, which typically influences papthgramming, is the
type of processor communication used. The way processors communicatdsdepehe
memory architecture, which can be classified as shared membigtributed memory.

In shared memory architectures multiple processors operatendegpendent fashion but

all share the same memory resources. Shared memory systedifficult to scale as the
number of processors increase. In distributed memory architectacds peocessor has

its own address space and operates in an independent manner. The prasessors
connected through the interconnection network and data sharing across the

communication network is in general performed through message passing.

In general, we associate high performance with parallel andibdisid
computing. There are several factors that affect the perfornadnuarallel applications
running in a parallel and distributed computing environments. Some offtluéses are:
the choice of parallel algorithm used, load imbalance, the type efcamnection
network, and others. Load imbalance is one of the major performanceategrdactors
in parallel scientific applications and by balancing the workloady presformance can
significantly be improved [3, 27]. Scientific applications are in gandata parallel.
There are several factors that cause load imbalance in pacbeatific applications
running in a distributed computing environment. A few major factorsrame:uniform
data distribution, different computational requirements in various dathtiqves,
variations in external workload on different computational nodes, opesatatgm (OS)
and network effects.

With the increase in performance of commodity desktop workstations,
advancement in high speed networks, and development of architecture indepeygent
to code parallel programs, such as MPI[20] and PVM[16], Network of \&iiaes
(NOW) or Cluster of Workstations (COW) are becoming a costsie popular choice
for parallel and distributed computing. The operating systems forvadhnlestations were
initially developed for interactive sequential jobs with a single@ssor in mind. Over
time, support for multiprocessing and networking has gradually been inatagadnto
operating systems. However, the commercial operating systemsfkstations still do
not offer adequate support for a transparent execution of paraledwergtial jobs over a

NOW. The workstations in NOW are used by individuals, and the load attrtess

network varies dynamically, as users execute applications oqueth workstations.
This, along with other reasons mentioned earlier cause load imbaidese running

applications in parallel and distributed environments. Since the oppststems or
message passing libraries (such as MPI) do not provide supportddrdtzancing across
workstations in NOW, executing parallel applications on NOW oftadd¢o severe load
imbalance and poor resource utilization. This problem can be al\bgtaddressing
the load balancing problem through migration of tasks (coarse-goaidata (fine-grain)
from the highly loaded workstations to the lightly loaded ones or idiekstations.

Therefore, in a NOW environment, load balancing can be performed atibethand

coarse levels of granularity.

Since load imbalance is one of the major performance degradattorsfacdata
parallel scientific applications, providing solution(s) to this probleman important
computer science issue. Finding a generic solution that can dyngntiakince load
with low overhead could significantly improve the performance of mdratiientific
applications. Even if the solution is applicable to only a class oicapiphs, it will have
a significant impact on performance of data parallel applicationsing in distributed
computing environments. In the present work, an attempt has been maade @ fi
solution to the load imbalance problem in a complex class of datbepagplications
running in distributed computing environments: the N-body simulations.

As there are several factors which cause load imbalance, fiathogthms and
methods for addressing this problem in parallel and distributed compuntungpnments

is a complex problem. Over time, various techniques to balance laadrae and fine

levels of granularity have been proposed. In general, an individual prdsessor
performance may vary due to external workload, or non-uniform datebdigin within
an application, as well as other factors. Therefore, methods totamaian even
distribution of work are usually needed in order to obtain good speedup andnaexter
In a distributed computing environment, coarse-grained strategiedbbaneproposed at
the system level, while fine-grained strategies have been proposbe algorithmic
level. By coarse-grained strategies at the system levehees that the load balancing is
performed by the host operating system or runtime system. No natidifis in the
applications or algorithms are required by the user or programnyefin-grained
strategies, we mean that the load balancing algorithm is htoltthe applications; the
host operating system or runtime libraries are unaware of thebl@ancing performed

by the applications.

1.1 Systemic (Coarse-Grained) L oad Balancing

In task-parallel applications, load balancing at the coarse-gra@h is achieved
via task migration. This involves transferring of a program' $tatn one processor to
another during runtime. Task-parallel applications have advantagesasuahnatural
mapping to the operating system (i.e. the entire process isetma@wyfand the ability to
release resources (such as workstations) back to individual usensvoyg the work
elsewhere, and freeing up both the CPU and the memory.

Systemic load balancing via task migration from heavily to hghtaded

processors is typically coarse-grained and can be supported by tivmtdmsethods.

First, users can write their own state-transfer routines wbah be invoked by the
runtime system to migrate or checkpoint a job. Systems sucBR$26, 46] and DQS
[13] work in this fashion. The disadvantages of these systemsatréhey put the
burden of checkpointing onto the application developer and therefore, the rontises
be actively maintained along with the rest of the source code. aliémative is to
provide systemic support for checkpointing and migration. Condor [32, 42], ahdrHec
[33] work in this fashion. However, the Hector distributed runtime enviesnirased in
this thesis is unique in the depth and breadth of information gathered tabksitat
runtime. Hector runtime system supports the migration of paralédds. These are
capabilities that can be exploited by data-parallel load balantegeneral, the systemic
load balancing is application independent and implemented at the dgst#r{foperating
system, communications library, or middleware), relieving the agit programmer

from this responsibility.

1.2 Algorithmic (Fine-Grained) L oad Balancing

Algorithmic load balancing via data migration is supported by the agins
and is typically fine-grained. Data-parallel programs use m&eation (or dynamic data
allocation) to maintain balanced loads and therefore are “selidat. This represents
a finer grain of control than task migration, because only fractéres program state
have to be moved. Tasks can either negotiate as peers to exchangenddusy tasks

to idle ones, or have a central master that allocates data kentasks. Systems based

on Factoring [22] and Fractiling [5, 6] are examples of the foraret,Piranha [11] is an
example of the latter.

Fractiling is a dynamic scheduling technique based on a probalalistigsis that
adapts to algorithmic and systemic load imbalances while maxigndata locality. It
draws from earlier loop scheduling techniques where iteratedyaeanically scheduled
in decreasing size chunks to reduce synchronization. It has sucgesséadh
implemented in N-body simulations [5, 6]. The early large chunks leagvely little
overhead and their uneven finishing times are smoothed over by latéersthanks.
Fractiling uses a tiling technique to optimize chunk shapes suclddteatiocality and

reuse are maximized.

1.3 An Integrated Strategy

Advances in runtime systems for parallel programs have been proposetker
to control available resources as efficiently as possible. &madusly, advances in
algorithmic methods of dynamically balancing computational load havegreposed in
order to respond to variations in actual performandgoth, coarse- and fine-grained
strategies have advantages and disadvantages. The coarse-grphoedramay suffer
from load imbalance due to the unequal sizes of tasks, or the total mahtbsks that
may not always be an integral multiple of the number of workstain the cluster. On
the other hand, in the fine-grained approach, due to the absence oftiomigapability,
the resource utilization is limited to the workstations in use, andus® of new

workstations may be acquired or removed during the application execukien.us

consider a scenario where in a sixteen processor cluster [), Six processors are
available, and the cluster uses Hector as runtime system. Aunsdes a parallel job
with eight tasks. Since Hector works at task level it wikigis four tasks to four
processors (sayp- p3) and two tasks/processor to the rest of the processpandpg).

As a result, tasks running on pnd g will finish their computation later than tasks
running on p through p. In the middle of the execution, if one or more processors
become available, Hector can move additional tasks fropang g to newly available
processors. Since tasks running qrapd g shared the processor before migration they
will still finish later than tasks running o phrough g. If the parallel application would
have had incorporated the Fractiling algorithm, it would have balanesavahkload
among the tasks by using dynamic data redistribution before andradgextion. Thus,

all the processes would have finished almost at the same tisteuslconsider another
scenario in which a fractiled scientific application is running cfuater. While fractiled
tasks are running, one or more processors become overloaded due to soimeabddit
external load. The Fractiling algorithm will now balance thel loy migrating data from
tasks running on overloaded processors to lightly loaded processors.sumisse that
during the execution some other processors become idle. In the abséteetaf the
idle processors cannot be utilized. If Fractiling would have had tpabday of task
migration in a Hector-like fashion, the fractiled tasks from d¢kerloaded processors
could have been migrated to idle processors. In this way, bettarrcesutilization
would have been achieved because idle resources would have been utilizefhrdhe

this respect, Hector and Fractiling complement each other.

An ideal runtime system should provide support for both systemic and
algorithmic strategies since they have complementary setdvaintages. The systemic
coarse-grained strategy considers all tasks from all apphsadn the system, while the
algorithmic fine-grained strategy is confined to individual appbecest Once the
programmer has expressed the algorithm to be used, the runtire systuld execute
the program efficiently, taking maximum advantage of availaldeurees. It may have
to migrate entire tasks in order to relinquish processors back teefsWw If it does not
have to migrate an entire task, it is desirable to move onlymioeirst of data needed to
rebalance the load. The essential point is that these load balatraitegies can work in
concert to provide additional benefits to one another. The resultingatadgload
balancing strategy is systemic in nature, and therefore the baordéime applications
programmer is reduced. Moreover, the integration provides an improvednpenfoe for
parallel applications over the improvements obtained by using -eithhategst
individually.

The present work called Hectiling proposes to combine the load balancing
methodology used in Hector, a distributed runtime environment which prowodesee
grained dynamic load balancing for parallel applications on Sun andv&®stations,
with Fractiling, a fine-grained dynamic load balancing techniquedbase probabilistic
analysis that has been proven to be effective in scientific apphsa(i.e. N-body
simulations). Hectiling should offer load balancing at both levelgrahularity and
provides a more efficient utilization of resources than eithémigqoe used in isolation.

This thesis presents the design and implementation of Hectiling, repatts on

experimental results of running N-body simulations under this inesysaistem. The N-
body simulations consider N patrticles, their positions and velocitesthee problem is
to compute the forces they exert on each other, and then calculateetepositions.
The N-body simulations have been selected as a test applicatiomsédataequires
solutions of multiple algorithms, and is a complex and computationatnsive
problem. It has been widely used in a broad class of applicationarsei®nce such as
astrophysics, molecular dynamics, biophysics, molecular chemisty Nitbody
simulations employ algorithms, which are used in other areas, sucholasie
visualization. Therefore, if a technique provides performance improveimeni-body

simulations it should applicable for a wide range of scientific applications.

1.4 Hypothesis
The hypothesis of this thesis is two fold:

1. The integration of an algorithmic load balancing strategy (knag with a
systemic load balancing strategy (Hector) is possible.

2. For applications, which employ the N-body simulation algorithms, ritegtiation
will result in achieving better performance than applying any afethechniques
independently. The overhead introduced by the combined (integrated) approach
will be small and will be outweighed by the benefit of improved loddnzang
due to integration. The integrated system will perform no worse dhg of the
techniques applied in isolation. In other words for the integratednsyste

following inequality will hold:

10

Chiectiling< Min (Crractiling Crprma)

Where:

CheciiingIS theParallel execution cost using Hectiling
Crraciiing!S the Parallel execution cost using Fractiling

Chprmalis theParallel execution cost using Hector

1.5 Approach

The work plan that has been followed in the process of validating thehlegoot
is as follows:

1. Survey different algorithmic load balancing techniques and algorititudy the
Fractiling algorithm in detail and analyze implementation ofralfg application
that has employed the Fractiling algorithm for load balancing. thempresent
work, two parallel implementations of the N-body simulations (one with
Fractiling and one without Fractiling) have been selected.

2. Study and analyze the architecture and implementation of Hector.

3. Design an integrated architecture: Hectiling, to combine Fractiling actdrHe

4. Implement the integrated architecture.

5. Execute the following experiments and collect timing results

i. Select a set of data representing different data sizes and data

distributions.

11

ii. Execute following parallel implementations of the N-body
simulations on various numbers of processors (up to 32) with each
dataset selected at “i.”
1. Straightforward parallelization.
2. Straightforward parallelization under Hector.
3. With Fractiling.
4. With Fractiling under Hector
5. With Hectiling (Fractiling and Hector integrated).
6. Evaluate the overhead of integration experimentally.
7. Select a set of metrics to measure the performance. Provide a qualitative and
guantitative analysis of the performance of Hectiling using the experimental

results. Validate the hypothesis.

1.6 Expected Contributions
The expected contributions from this thesis are as follows:

1. Provide an integrated strategy to improve the performance ofpeedéel
scientific applications.

2. Provide an implementation of a runtime system (a modified Hectogasy
integration of any data parallel scientific application that ipomates
Fractiling algorithm for load balancing.

3. Provide implementation guidelines for integrating data paratiEnsfic

applications with Fractiling into Hector.

12

4. Provide an estimate about the amount of effort it takes to itdegra
application with Fractiling into Hector.
5. Provide an qualitative and quantitative analysis of performance artteader

of Hectiling (see Approach 6 and 7).

1.7 Organization of thisThesis

This thesis is organized as follows. Chapter 2 presents thaeguerbackground
and related work in the areas of systemic and algorithmic loahdiay. Chapter 3
describes the design and implementation of Hectiling. Result angssnate presented

in Chapter 4, and finally, Chapter 5 presents conclusion and future work.

CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Related Work on Systemic (Coarse-Grained) L oad Balancing

In the past years, many systems that run sequential and paralighms on
networks of workstations, shared memory processors (i.e., using SMBspassively
parallel processors (MPP), have been proposed and successfully imglémBiffering
in their degree of sophistication and in the methods used to balancentipaitational
load, they offer a variety of features and services. A comprefeesisivey of task-based
job-scheduling systems has been presented by Baker, Fox and YaafureB that
such systems may contain include: scheduling of sequential and Ipgob#e load
balancing, task migration, the nature and complexity of runtime intamaathering,
and others. Only few of these systems are enhanced to supportdastom; and if they
do, the migration applies only to sequential jobs. In general, nugratould be
supported using two distinct methods. First, users can write theirstat@ transfer
routines, which can be invoked by the runtime system to migrate okpzhet; a task.
Systems such as LSF [26, 46] work in this manner. The alternatiegorovide support
for task migration and checkpointing by the runtime system. Systaoisas Condor
[32] work in this fashion.

All systems mentioned in the survey provide some degree of load ipglaatc

task granularity level. This load balancing is static in natarthe sense that at the time

13

14

of launching a job, the entire system load and the scheduling of asichieve load

balancing across the entire system are considered. No furtien & taken by the

runtime system after launching a job if system load variesafiyr reason such as
termination of another job (which could translate into load imbalanteeogbarallel job

at hand). To the best of our knowledge, none of the systems mentionedirsdhia

literature provides support for migration of parallel tasks or se@iex@mmunicating

tasks. Therefore, there is a need to design runtime systemssupport for task
migration that can provide dynamic load balancing during job execution.

One of the clustering systems presented in the survey by Bakemrkb¥Xau [2]
is LSF [46]. Itis a widely used commercial package for cdmigptlusters. LSF works
by launching utility tasks on each candidate host to monitor usage anavide remote
job-launch capability. The usage monitor reports to a central mestieh uses the data
to decide which nodes are available for running jobs. It runs pgaikel supports task
migration through user-level checkpointing, and gathers node usage indormathe
information is used to control the initial mapping of tasks to hosts. Coj3&jr
developed at University of Wisconsin, is another clustering systesemed in the
above-mentioned survey. It is a widely used public-domain cluster nraepagsoftware
package. It groups workstations into "flocks", monitors their avaitiabénd only runs
parallel jobs if they are designed to tolerate variable numbdrest§ during execution.
Workstation load average is used for allocation and the systemtbanraigrate tasks
(with system-level checkpointing) or kill them when the workstaticcotrees busy with

external applications. Condor and LSF systems use a distributetteture design. In

15

this context, by distributed architecture we mean that the compouoietiie clustering
system are distributed among its nodes. Both Condor and LSF useetglatiarse load
information for initial allocation purposes and for determining if haesesidle or busy.
Both the systems don't gather information from running tasks and inagddiSF does
not support systemic checkpointing.

Recent work has highlighted the benefits of extracting informatiam f
applications during runtime [14]. For example, Nguyen et al. have shawextracting
runtime information can be minimally intrusive and can substantiatlyrove the
performance of a parallel job scheduler [39], whereas Gibbons proposepler system
to correlate runtimes to different job queues [17]. In either ¢ak®mation gathered
from tasks as they run can support job scheduling and allocation. Tter Histributed
runtime environment is intended to support this model [37]. It uses @bulist
architecture, provides system-level checkpointing routines, supgatsution of
unmodified MPI programs, and gathers extensive information duringnei@ibout the
performance of hosts and individual tasks. Hector is designed to provideaatructure
that controls parallel programs during their execution and to mohiear performance.
Therefore it combines the benefits of both distributed and centrglioegssing. The
central decision-maker and control process is called a madteatat or “MA”.
Running on each candidate platform (where a platform can range froeskdop
workstation to a SMP) is a supervisory task called a slaveastloor “SA”. The SA's

gather performance information from the tasks (MPI processes) theleicontrol and

16

execute commands issued by the MA. Thus, Hector combines the funofions
monitoring and execution contained in LSF's two distributed daemon processes [46].
Hector's instrumentation combines three different mechanisms [33-Birt,
static host information is gathered by the SA when it is launcBedond, dynamic host
information is gleaned from a series of system calls td rramory usage and CPU
usage. Third, Hector's modified MPI library provides task setfunsentation that is
monitored by the SA. This instrumentation includes a breakdown of tpeat s
communicating and computing, as well as a map of the task's communication topology.
Task migration is supported by the run time system and a speciallijfied
version of MPI to properly handle messages in transit. In this agplications do not
need code changes in order to support task migration [33]. Both Hectoeanhlihl use
MPICH, an implementation of MPI by the Argonne National Laboratoaesl

Mississippi State University.

2.2 Related Work on Algorithmic (Fine-Grained) L oad Balancing

Load balancing at the application level is algorithmic and finexgda
Therefore load balancing techniques at this level of granularity toave integrated into
a specific application. Selecting a technique that offers besiripance and is relatively
simple to integrate is essential to the success of theingsalpplication. While load
balancing can be applied to all parallel applications, scientbigliGations are of
particular interest due to their intensive computational requiremdntsaddition, large

classes of scientific applications are irregular in natureflar@fore their performance is

17

severely degraded due to load imbalance. Imbalance over a fewstape of the
computation could primarily be caused by changes in data distributiortbefffoore,
within one time step, imbalance could be caused by irregularity taf diatribution,
different processing requirements of interior versus boundary data, and by system eff

Problems in scientific computing are in general data-paraittlh@ve previously
employed various methods to balance processor loads and to exploitylockbir
example, in unstructured problems, static partitioning and repetitiie partitioning
heuristics have been the only methodology used so far to overcome dyloaohic
imbalance [9, 10, 23, 38, 40, 41, 45,]. Most of these methods use profiling by rgatheri
information on the workload from a previous time step in the executian afgorithm
in order to estimate the optimal workload distribution at the preterd step.
"Profiling", in this context, refers to a detailed performanceyaisathat is only available
after the program is finished, or at least after the curr@gram iteration is completed.
The cost of these methods increases with the number of processprslaed size [39,
40, 44, 45]. A random assignment of certain sized amounts of work to processalsohas
been considered to improve the performance of simulations affectesdynhbalance
[18]. With random assignment, the load imbalances of individual work units gach
other out to some extent. However, performance of these sciamglications is then
severely degraded by loss of locality.

Another important observation is that the above methods employ a static
assignment of workload to processors during a time step, due to arpassutimat the

data distribution changes slowly between time steps. These assusngte not valid in

18

the entire spectrum of scientific applications and therefore thesieods are not robust,
especially in the case of applications where none of the existidgbalancing strategies
accommodates the unpredictable behavior of simulations (i.e. plasbemagibns,
nonisothermal multiphase flow, etc.). Therefore, there is a needef@loping new
techniques that address load imbalances between time steps, as well as duengepti

Dynamic scheduling schemes attempt to maintain balanced loadssigyig
work to idle processors at runtime. Thus, they accommodate systamweell as
algorithmic variances. In general, there is a tension betwg®oitexy data locality and
dynamic load balancing as the re-assignment of work may netessitaess to remote
data. The cost of dynamic schemes is loss of locality, whicisl&tes into increased
overhead. Another potential shortcoming involves the amount of data exchangeg a
tasks to balance the load. If the amount of data is too largegdb#img corrections
might be too coarse. If the amount of data is too small, the protesshanging data
might incur much overhead. Thus, in master/worker parallelism ifintrement of
workload that the master distributes is too small or too large,night lead to either
inefficiency or imbalance.

Since loops are the most prevalent source of parallelism inificiapiplications,
their scheduling on parallel machines has received considerablgiosite The
fundamental tradeoff when scheduling parallel loops is processor |dediaimee versus
overhead due to synchronization and communication. Parallel loop schedulkemgesc

have been widely analyzed and measured [25, 28, 31, 43].

19

Factoring, a scheduling scheme that evolves from earlier loop saigeduli
techniques, balances processor loads while reducing the overhead of syatiomoni
[22]. Loop iterates are dynamically scheduled in decreasingbirgks such that early
larger chunks have relatively little overhead, and their uneven finistiings are
smoothed over by later smaller chunks. The technique minimizes thelatie
contributions of load imbalances and scheduling synchronization. A techroque f
reducing communication, called Tilling, statically partitions tieeation space into tiles
whose shape is chosen to maximize data reuse and locality. ik@skects the optimal
chunk sizes, (i.e. how many iterates to group together), while Ts@dgcts optimal
chunk shapes (i.e. which iterates to group together).

Another technique, Fractiling, combines the load balancing advantages of
Factoring with the data reuse properties of Tiling [3, 21]. In ¢bimbined scheme,
chunk sizes are determined globally according to a Factoring roike, ehunk shapes are
determined locally according to a Tiling rule. The Fractilingtmd was developed in
response to the shortcomings of other methods and has successfullyble=hta N-
body simulations [4, 6]. It is based on a probabilistic analysis, andefoiner
accommodates load imbalances caused by predictable events (suebwdaridata) and
unpredictable events (such as data access latency). Fractiapgs @o algorithmic and
system induced load imbalances while maximizing data locality. Fractiling, the
computation space is initially placed to processors in tiles, tginmze locality.
Processors that finish early "borrow" decreasing size suldfile®rk units from slower

processors to balance loads. The sizes of these subtiles are shdabat they have a

20

high probability of finishing before the optimal time. Subtile assignts are computed
in an efficient way by exploiting the self-similarity propedfyfractals. These decreasing
size chunks are represented by multidimensional subtiles of thestape selected to
maximize data reuse. The subtiles are combined in Morton ordamr Isubtiles, thus
preserving the self-similarity property [4, 6]. Early in the paog run, large
performance variations can be accommodated by exchanging largessubfis the
computation progresses, the subtiles shrink so that smaller variationise corrected.
By having subtile sizes based on a uniform size ratio, a compleonyhisf executed
subtiles does not need to be maintained. Each task simply keepsfttheksize of its
currently executing subtile, and in this way, the unit of data exehamgpng tasks is the
largest subtile currently being executed by any task. Thus gwitam inherently
minimizes the global "bookkeeping" overhead.

This technique allows negotiations by idle resources to replacdingofiThe
load balancing actions are a function of performance, in the senseléharocessors
have performed well, but are not a function of a direct performan@surement.
Rather, they simply exchange work from "busy" processors to 'oies. This reduces
overhead, as detailed data collection is not needed, and increasesivespsasas load
balancing can occur during an iteration step. The bulk of load balancing igor
performed by idle tasks and therefore little negative effectumtime is expected.
Additionally, Fractiling does not take into account the source of lobdlance in order

to spur useful performance gains. Even applications where the amatorhp@tation

21

per data element varies dynamically can benefit, because it wionbdy have to search
for idle and busy resources.

In the implementation of Fractiling in a distributed environment, on¢hef
processors selected as master and called Fractiling Mastéols and maintains the
entire data exchange information. In addition, it performs computasiail #ghe other
processors do, called Fractiling Tasks. When computation startSrabiing Master
divides the computation space into P tiles, one per processor. Eathnigrdask starts
by working first on half of its tile. When this subitile is finished, theckling Task sends
a Fract_Ask message to the Fractiling Master to requesiadditvork. The Fractiling
Master updates its information and assigns a new subtile sike tequesting Fractiling
Task. If a Fractiling Task completes its own tile, and thsrstill work left in other
Fractiling Task's tile, the Fractiling Master sends a refgieeanother Fractiling Task to
send data to the idle Fractiling Task. The data is then forwaoddee idle Fractiling
Task, which works on the received data and sends the result back tortee dhe
above process is repeated until there is no more work left in acyilifg Task's tile.
When assigning subtiles to the Fractiling Tasks, the FractMlagter always observes
the following rules: (i) a task will have to have all the work pteted in its own tile
before starting to help another Fractiling Task; (ii) after gletng its own tile, a
Fractiling Task will always work on a tile with the largestailable unfinished subtile
size.

Experimentation on both a distributed memory shared-address space and a

message passing environment with Fractiling schemes appliedbtmyNsimulations

22

have been presented in [3, 4, 6]. The distributed memory shared-address spa
implementation was run on a KSR-1 at the Cornell Theory Centethen message
passing environment implementation was run on an IBM SP2 at the Magui H
Performance Computing Center. In experiments involving both uniform and nonuniform
data distributions, performance of N-body simulation codes was improvasl foyich as
53% by Fractiling. The corresponding coefficient of variation of psmresinishing
times among the simulation tasks was extremely small, imdica very good load
balance was obtained. Performance improvements were obtained evenoom aaifa
distributions, underscoring the need for a scheduling scheme that accaesrsdhem-

induced variance in addition to the algorithmic one.

CHAPTER Il

DESIGN AND IMPLEMENTATION

Hector achieves better resource utilization by migrating taeks highly loaded
workstations to idle or lightly loaded workstations. Since taskss&#e unequal, an
application using this coarse-grained load balancing strategy d@higontinue to suffer
from load imbalance. On the other hand, applications employing fineegradata
parallel load balancing strategies, such as Fractiling, ensurghadegree of load
balancing by migrating data from one task to another. However, irstabdted
computing environment an application using Fractiling may suffer fpoor resource
utilization, because task migration is not supported. One or motee gbrbcessors
executing Fractiling tasks may become heavily loaded by othercapptis, thereby
significantly degrading the performance of the Fractiling apfptica Having the
capability to migrate a Fractiling task from a heavily loattedn idle or lightly loaded
processor would enable the Fractiling application to utilize resources maiergf.

To take advantage of the benefits offered by Hector and Fractlingw system
integrating both has been designed and implemented. This systemingiembmbines
systemic information gathering and task migration capabilitiedHedtor with fine-
grained algorithmic load balancing advantages of Fractiling. Befl@scribing the
integrated architecture, the following two sections present tiétecture of Hector and

centralized management implementation of Fractiling.

23

24

3.1 Hector Architecture

Hector is designed around a master-slave hierarchy. Figure 1 stih@ws
architecture of Hector. There is a single task called thetaviaslocator (MA) that
performs all of the decision-making functions. This task doesn’t coktirdl programs
directly, but communicates with tasks called Slave Allocatofg.($here is one slave
allocator per node. Each slave allocator controls all MPI tasksing on its machine,
and monitor their performance characteristics. It reports therpehce information
back to the MA, which makes decision about allocation and migration. ThAe M
periodically collects information from every node on the network. duired, it then
sends a command to migrate a targeted task to the slave allocator that launcsdathe t

The slave allocators are directly involved in the process of tmgran MPI task.
They notify a task that needs to migrate, track the status grfanmn, and notify the
master that migration has completed. The SAs communicate wiMRhéasks under its
control by maintaining a permanent UNIX socket at a predetermineédhgmber, which
allows the tasks to send information about their current status. dinenunication
mechanisms and protocols used by the SAs to pass control informasionngortant

part of Hector design and it is done through \a listener process attached to eactkMPI ta

Performance
Info

Master Allocator
Decision Maker

Commands

Slave Allocator

System

Info 4

Performance
Info

Local MPI
Tasks

Task migration is the most important feature of Hector. Ther¢haee aspects to
task migration. First, it is necessary to encapsulate a prtgstate completely. Second,

the state must be transferred to the destination as efficenghpssible. Third, the state

Commands

Other Slave Allocators

Figure 3.1 Hector Architecture

25

must be reconstructed correctly and in such a way as not to cdreudi®l environment.

The process of task migration is shown in Figure 2 and the steps are as follows:

1. When the MA decides to migrate a task, it sends a messHye dppropriate SA,

which in turn sends migration message to that task’s listeners.

2. The listener finishes handling any other events such as estabbsbomnection,

and sends a control signal to the tasks.

3. The task sends a notification about its pending migration to all ¢tdisks’

listeners and begins waiting for End Of Channel (EOC) mesdages other

tasks.

26

4. After all EOC messages have been received, the task closes all activeéicnsnec

5. The MA informs the SA on the destination node and the task is spavthettiav
arguments to read in the program state.

6. After the task has restarted, it sends its new location informatahdther tasks’

listeners.

7. The task sends a message back to the SA that the migratmmptete and it is

now available for migration again. Further details of Hector techire and task

migration can be found in [33-37].

Master Allocator

F N

v

Slave Allocator

Notify
Completion

A

Ready
Message

Slave Allocator Slave Allocator
Send
Migration
Signal Notify
Migration 1

Task to be
Migrated

Task Migration

Migrated
Task

Figure 3.2 Migration of Task under Hector

3.2 Fractiling Implementation

Fractiling adapts to algorithmic and system induced load imbalawtés

maximizing data locality. In Fractiling, the computation spacenitially placed to

processors in tiles, to maximize locality. Processors thahfiearly "borrow" decreasing

27

size subtiles of work units from slower processors to balance IoHus.sizes of these
subtiles are chosen so that they have a high probability of finishiogebine optimal
time. Subtile assignments are computed in an efficient wayxploieng the self-
similarity property of fractals. Early in the program rungéperformance variations
can be accommodated by exchanging large subtiles. As the compptatpesses, the
subtiles shrink so that smaller variations can be corrected. \Byghsubtile sizes based
on a uniform size ratio, a complex history of executed subtiles doeseed to be
maintained. Each task simply keeps track of the size of iterdiyrexecuting subtile,
and in this way, the unit of data exchange among tasks is thatlaggile currently
being executed by any task. Thus the algorithm inherently minintlzesglobal
"bookkeeping" overhead.

In a centralized management implementation of Fractiling schengeprocessor
is selected as master, which manages the global variable lzeduke data among other
processors. Thus, Fractiling also works around a master/slavechyeréhe Fractiling
communication pattern is shown in Figure 3. Fractiling divides the catputspace
into P tiles, one tile per processor. At the beginning each proogesks on the half in
its own tile. If a processor finishes its first half, it seadSRACTILE_ASK message to
the master. The master receives the message looks up the\gldbbles, and then it
assigns a job (subtile) to the requesting processor with FRACTLRERSsaage. The
requesting processor receives the answer and continues to work. fédghesting
processor completes its own tile and there is work available in ptbeessor’s tile, the

master will assign a subtile size in a neighboring processor, tlael sends a

28

FRACT_COMM message to tell the neighboring processor to seddtasto the helper
(requesting processor). Meanwhile, the master sends FRACT_REPih¢ trequesting
processor indicating which processor is to be helped. The neighbor settevmessage,
and sends its data to the helping processor using FRACT_ORG_DATAhédlper
receives the FRACT_ORG_DATA and works on the data. After complatieends a
FRACT_ASK to the master to request a new job, and also sendssihié te the
processor (FRACT_FIN_DATA) that owns the data. The owner recé¢hesslata and
stores it. The above steps are repeated until no subtiles are left.
When assigning subtiles, the master processor always observésldiaeng
rules:
» After completing its own tile a processor will help another premeso
complete its tile.
» After completing its own tile, a processor will always work ba targest
subtile available.
* At any time, the processor will finish its own tile first, thealp other
processors.
With the combination of these features, Fractiling improves datitip@and

reduces load imbalance.

29

1. FRACTILE_ASK
N = Proc 1
2. FRACTILE_REPLY
Master :
5. FRACT_FIN_DATA 4. FRACT_ORG_DATA
y
Proc 2
3. FRACT_COMM

Figure 3.3 Master/Slave communication in Fractiling

3.3 Hectiling Design and I mplementation

The architecture of Hectiling is shown in Figure 4. Since Hragtrequires
communications to control exchanges of data between tasks, and Hectorbhdt in
information gathering infrastructure, it was decided in the firgtse of this design to a
re-routing of “Fractile_Ask messages” from Fractiling Tagkshe Fractiling Master via
the MA. This requires a communication channel from Fractilinkd &s the MA. The
integration imposes several challenges. In the Hector paradignMRheasks do not
communicate with the MA. Thus, a communication mechanism has to bedlévm a
task to the MA, and care has to be taken so that non-Fractiling telsése task-to-MA
communication is not required, could also run under the same integratedhsyTo

accomplish this, the location and port number of the MA must firstoheeyed to all

30

Fractiling Tasks. Once the Fractiling Master receivesitiigdmation, it "registers" with
the MA by opening a socket and sending its port number and host naméviA.th&s a
result, the MA is able to recognize which of the tasks is thetling Master and where
to forward the Fractile_Ask messages. During the execution &fréotiling application,
when the MA receives a Fractile_Ask message, it first chexzlsee if the Fractiling
Master has been "registered". If so, the message is forwtrded Fractiling Master. If
not, the message is put into a queue which, has already been ctahtetheginning of
the execution of the Fractiling application. This queue is beingtaiaed by the MA
throughout the execution of the application. Once the Fractiling Ma&gjisters with the
MA, all pending messages are forwarded to it. At the same, tihe MA sends a
message to the Fractiling Master's SA, which in turn interrth@sFractiling Master
allowing it to read the associated message from its socket Fggure 5). This
mechanism was designed to address the fact that UNIX doesawttadk interrupts on
remote machines.

The integration also imposes another challenge on Hector migragohamsm.
In Hector, all the MPI tasks are treated equally, and the tiugrprocess is the same for
all the tasks. However, in Hectiling the migration of the HiagtiMaster is different
from the ones of Fractiling Tasks. This is due to the factttteaMA needs to forward
the Fractile_Ask message to the Fractiling Master. ThusMAehas to have the
information about the location of the Fractiling Master, and thiacisieved by the

registration process of Fractiling Master presented above.

31

Registration

Master Allocator

Fractile_As} . v Fractile_Ask
FraC}I“f ng \
n

Slave Allocator Slave Allocator Slave Allocator
Hector
Info
Data Migration
i l Command |
Fractiling Fractiling Fractiling A
Task Data Task Master
Migration

Command

Figure 3.4 Hectiling Architechture

In case of migration, the Fractiling Master first un-regsstitself with the MA,
and upon completing the migration, it re-registers itself agaih the MA. The un-
registration process consists of two steps. First, when the Miledeto migrate the
Fractiling Master, it sends an End-of-Channel message to tb#liRgpMaster, and stops
forwarding any Fractile_Ask message to it. If the MA receiasy Fractile_Ask
messages from the Fractiling Tasks before the migratioongplete, it queues these
messages. This process ensures that no Fractile_ Ask meskejeluring the migration
of the Fractiling Master. In the second step, the Fractilingt®decloses its socket as
soon as it receives the End-of-Channel message, and only then tagamigould start.
The re-registration process involves the opening of a new socketadohg of the
associated port number and the new host name to the MA. Afterisgaggn, the MA

sends any messages queued during the migration to the Fractiling Master.

32

Master Allocator

1. State

Update 2. Forwarded

State Update

Slave Allocator

Fractiling
Tasl

4. Signal

Fractiling
Maste

Figure 3.5 Fractiling State Update: Interrupt-driven model Queut

CHAPTER IV

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

The experiments with the integrated system were conducted iphases. In the
first phase, Hectiling experiments were conducted without procggatan. The results
are described in section 4.1. Section 4.2 describes the results ofmexger with
Hectiling using process migration. Experiments were conducted systam which
consists of thirty-two 90 MHz Ross HyperSPARC processors aaimga cluster of
eight 4-processor machines. Each of the machines is a SMP runnargs 206. The
machines are connected by three interconnection technologies: (i) 155SEDIATM
switches, (i) Myrinet, (iii) 10 Mbits/sec Ethernet. Any of therould be used for
communication between machines. The ATM interconnection has been uskd in t
experiments presented here. The experiments were conducted wihdiffieeent data
distributions: a uniform distribution ("Uniform"), a nonuniform Gaussiartritistion
("Gaussian"), and a nonuniform Gaussian distribution with the centerdstofthe center
of one of the octants of the computation space ("Corner”). Each dismihas four
different data sizes: 10K particles, 20k particles, 50k particldsl@0k particles. In total
we conducted the experiments with 12 different data sets. Alkgmugons were carried
out three times and the result of the three executions wereggaderEhe metrics that has

been chosen to measure the performance of different techniques peeded cost and

33

34

the coefficient of variation (C.0.V) of processors finishing timBsey are defines as
follows:
Cost=P X}

P = Number of processor used

Tp= Execution time of the processor which finishes last

cov = (/Zn (X ,U)2) u

X; = Execution time of an individual processor
n = Number of processors
K = Mean of xs
For each experiment individual processor finishing time was mehduoen this parallel

cost and coefficient of variation of individual processor finishing time was ctddula

4.1 Hectiling without Migration

For testing in phase one, five implementations of the N-body simuldtiased
on the Parallel Fast Multipole Algorithm (PFMA) by Greengdr®] have been used: (i.)
without Fractiling (PFMA); (ii.) with Fractiling (Fractitig); (iii.) under the Hector
environment and without Fractiling (HPFMA); (iv.) with Fractilingnder Hector
environment (HFractiling); and (v.) with Hectiling (Hectiling).

All distributions were run on 4, 8, 16 and 32 processors while the systésm w
exclusively used for these experiments, to exclude the effeetisycéxternal loads. The

costs of runs using the "Uniform”, "Gaussian”, and "Corner" distribufmmdata size of

35

100k particles are shown in Figures 6-8. The costs of runs for desalflK, 20K and 50
K particles are shown in Appendix — A. From these results, it caedre that in almost
all cases the costs of Fractiling, HFractiling, and Hectiéirgylower than those of PFMA
and HPFMA. When HFractiling is compared to Hectiling, it carsdzen that the cost of
Hectiling is in general lower. However, for 32 processors, theofddéectiling becomes

higher than that of HFractiling.

3500

3000 /K
2500 - —e—PFMA
S —= HPFMA
@ 2000 N
&, Fractiling
g 1500 - //' Hfract
© 1000 :;'zf// —%— Hectiling
500
0
4 8 16 32
No. of Processors
Figure 4.1 Cost for Uniform Distribution (100 K particle)
8000
7000 - /
Va
6000 —e—PFMA
) 000 - —=— HPFMA
2 4000 - Fractiling
(%]
8 3000 - Hiract
[—x— Hectilin
2000 — 9
—
1000 -
0
4 8 16 32
No. of Processors
Figure 4.2 Cost for Gaussian Distribution (100 K particle)
5000
4500 - /
4000
3500 - / / —+—PFMA
g 3000 —m HPFMA
< 2500 Fractiling
§ 2000 TV Hfract
—x— Hectilin
1500 —— 9
1000 -
500
0
4 8 16 32
No. of Processors

Figure 4.3 Cost for Corner Distribution (100 K particle)

250

200 -
—e—PFMA
8 150 —m— HPFMA
& Fractiling
3100 - Hfract
© —x— Hectiling
50
0
4 8 16 32
No. of Processors
Figure 4.4 Cost for Uniform Distribution (10 K particle)
600
500 /
—e—PFMA
~ 400 X
g —m— HPFMA
2 300 Fractiling
3 // Hfract
© 200 Z .
,,,,-// —x— Hectiling
—
100 S
0
4 8 16 32
No. of Processors
Figure 4.5 Cost for Gaussian Distribution (10 K particle)
350
300 - "
250 / —e—PFMA
o —=— HPFMA
3 200 /
L Fractiling
§ 150 - Hfract
100 - / —x— Hectiling
50
0
4 8 16 32
No. of Processors

Figure 4.6 Cost for Corner Distribution (10 K particle)

700

600 -
500 —e—PFMA
13 —m—HPFMA
© 400 - = o
) = Fractiling
© 300 ,*g%.j = Hfract
S 200 */x —%— Hectiling
100
0
4 8 16 32
No. of Processors
Figure 4.7 Cost for Uniform Distribution (20 K particle)
1800
1600)
1400
—e—PFMA
~ 1200
8 1000 —m—HPFMA
:‘:—’/ / Fractiling
oo X Hfract
© 600 , o
._{,j-(—x— Hectiling
400 =
200
0
4 8 16 32
No. of Processors
Figure 4.8 Cost for Gaussian Distribution (20 K particle)
1200 /
1000 /
—e—PFMA
. 800 /
S —m— HPFMA
L"l 600 | Fractiling
§ Hfract
400 + —x— Hectiling
200 -
0
4 8 16 32
No. of Processors

Figure 4.9 Cost for Corner Distribution (20 K particle)

39

1200
1000 -
—e— PFMA
—~ 800 -
9 —m— HPFMA
L:, 600 - / Fractiling
§ 400 s Hfract
—x— Hectilin
L — g
200 -
0
4 8 16 32
No. of Processors
Figure 4.10 Cost for Uniform Distribution (50 K particle)
2500
2000 /
/ —e—PFMA
g 1500 —m— HPFMA
% Fractiling
§ 1000 - Hfract
| —x¥— Hectiling
= [
500
0
4 8 16 32
No. of Processors
Figure 4.11 Cost for Gaussian Distribution (50 K particle)
1600
1400 - /
1200 - / —e—PFMA
g 1000 / —s—HPFMA
% 800 Fractiling
(%]
8 600 - Hfract
— | —x— Hectiling
400 A
200
0
4 8 16 32
No. of Processors

Figure 4.12 Cost for Corner Distribution (50 K particle)

40

The coefficients of variation (C.0.V.) of processors finishing sinfier data sizes
100K are shown in Figures 9-11. They are significantly lower fatikteyg, HFractiling
and Fractiling when compared to PFMA and HPFMA. From the rgsdsented in this
section, it can be seen that the cost of Hectiling is sligiher than those of HFractiling
and Fractiling when a lower number of processors is used. However, avhegher
number of processors is used, the cost of Hectiling is higher. Therlyimgle
communication structure and the nature of the Fractiling algoritlenresponsible for
these differences in costs. Hectiling uses UNIX sockets tplement this
communication. The MA maintains a single socket for receivingtifgaAsk and
Hector update messages, whereas Fractiling routes Fractlenédssages directly from
the Fractiling task to the Fractiling master by using the Mfastructure. Eventhough
Hectiling adds an additional hop to the route taken by the Fractilen®sisages, the
socket implementation is faster. As a result, the overall cobBkeofiling is lower than
that of HFractiling. However, as the number of processors increttsesiumber of
Fractile_Ask messages also increases due to a larger nunthacbling chunks. As the
running application proceeds, the chunks sizes become smaller and lesgiitiene to
complete. This translates into an increased communication overhedd,atuscrease
in frequency of Fractile_Ask messages. Therefore, at a highdranwhprocessors, this
creates a bottleneck in the MA and the cost of Hectiling ineseaglisproportionately.
This problem can be alleviated by two techniques, which could be sinmutpe

applied. One technique is to reduce the number of Fractiling chunksregsimg the

41

minimum chunk size. The other is to create separate sockets, of@atmile Ask
messages and another for Hector update messages.

Increasing the minimum chunk size would reduce the total number attilifig
scheduled chunks. As a result, the number of Fractile_Ask messagkshe reduced.
However, with the increasing of the minimum chunk size, the probabflay increased

load imbalance is higher.

0.25
0.2
C. @ PFMA
0. 0.15 HPFMA
v m Fractiling
0.1 Kl Hfract
m Hectiling
0.05
0 [FFA
4 8 16 32
No. of Processors
Figure 4.13 C.0.V for Uniform Distribution (100 K particle)
0.7
0.6
c. 0.5 @ PFMA
0. HPFMA
vy 0.4 i -
m Fractiling
0.3 & Hfract
0.2 m Hectiling
N |
0 —w e [A .
4 8 16 32
No. of Processors
Figure 4.14 C.0.V for Gaussian Distribution (100 K particle)
0.9
0.8
0.7
PFMA
C- o6 -

0. 05 EHPFMA
v ’ m Fractiling
L m Hfract
0.3 m Hectiling

0.2 1 o —
AN 7N
0 |

4 8 16
No. of Processors

32

Figure 4.15 C.0.V for Corner Distribution (100 K particle)

42

43

A careful tuning of the minimum chunk size should reduce the impabeahcreased
communication overhead. Experiments using 32 processors for a uniform data
distribution with various minimum chunk sizes were conducted. The exgr&am
results show that increasing the minimum chunk size from one toténagion units,
increases the performance by 8% for HFractiling and 12% for Ingctivhile increasing
the chunk size from one to four iteration units increases the perfoentsy only 5% for
HFractiling and 10% for Hectiling. With a minimum chunk size of d@eeation unit
versus two iteration units, the increase in communication overheadés than the gain
obtained by load balancing. When the minimum chunk size is four iteratiuansus
two iteration units, the benefit of reducing the communication overheadvugighed by
the increase in load imbalance. Therefore, these experimeatdiststan optimal
minimum chunk size of two iteration units for best performance. hergé optimal
minimum chunk size may vary depending on the use of a specific atahie
application, data distribution, etc. These results support the theorlgion Fractiling is
based. In addition, these results show that the amount of performgmoeement is
larger for Hectiling than for HFractiling. More experimentsng different minimum
chunk sizes, data distributions, and problem sizes are required to idetédmmoptimum
chunk size for best performance.

The other technique for improving performance requires a separateatdddic
socket for Fractile_Ask messages. Presently, the MA procalsegssages it receives
in order of their arrival. As a result, towards the end of the catipantwhen the

frequency of messages increases, Fractile_Ask messadest ste# MA before being

44

forwarded to the Fractiling Master. To reduce the averagengtéime the MA can use
two separate sockets, one for the Fractile_Ask messages and amuthéar Hector
update messages. Messages at the Fractile_Ask messageshocke be given priority
in such a way that the stalling time is reduced and that tbeHepdate messages do

not suffer from starvation.

4.2 Hectiling with Migration
In this phase of testing five implementations of N-Body Simulatiarssng

PFMA, HPFMA, Fractiling, HFractiling and Hectiling were stedli Since maximum of
32 processors were available and for task migration idle proceasersequired,
experiments could not be executed on 32 processors. The experimenexeeried on
2, 4, 8 and 16 processors. To determine the optimum chunk size, we conduuieztia |
number of experiments with all the distributions on 16 processors wiimom chunk
sizes of one, two and four iteration units. The results show thabttevas least when
the chunk size was two iteration units. As a result, a minimum chzaloBtwo iteration
units was chosen for all the experiments in this phase. There twer sets of
experiments in this phase. The first set of experiments was deddwdh no external
load. The costs of runs on all distributions without external load fersia¢s 100K and
50K particles are shown in Figures 12-17. The second set of experiwantonducted
with controlled external load to measure the performance of naigraf specially
developed external application which takes about 50% of the processes eyab

launched on half the processors about 10 seconds after the executied. sfag

45

execution costs for all the distributions for data sizes 100k and 50K paatielsiown in

Figures 18-23.

From these figures it can be seen that when there is no eXtaadathe cost of

HFractiling is slightly higher than that of Fractiling, and tiwst of Hectiling is always

subsection 4.1.

1600

1400 -
1200

1000 -
800 -
600 -
400 -
200

Cost (sec.)

=

.
Zf/‘

—e—PFMA

—a— HPFMA
Fractiling
Hfract

—x— Hectiling

4

8 16

No. of Processors

Figure 4.16 Cost for Uniform Distribution without Load (100 K particle)

3000

2500

)

. 2000

Cost (sec

1000

1500+ g—or

500

—e—PFMA

—=— HPFMA
Fractiling
Hfract

—x— Hectiling

4

8 16

No. of Processors

Figure 4.17 Cost for Gaussian Distribution without Load(100 K particle)

—e—PFMA

—m— HPFMA
Fractiling
Hfract

—x— Hectiling

6000
5000 A
__ 4000 '/”//////’
-
o
2 3000 - /
© 2000 -
/
— |
1000 |
0
2 4 8 16

No. of Processors

Figure 4.18 Cost for Corner Distribution without Load (100 K particle)

46

700

600 /

500 X —e—PFMA
M —=— HPFMA
© 400 -
L / Fractiling
» 300 > Hfract
S géﬁ/ —x— Hectilin

200 9

100 -

0

2 4 8 16

No. of Processors

Figure 4.19 Cost for Uniform Distribution without Load (50 K particle)

1200
1000
5D —e—PFMA
S / —=— HPFMA
o -
— 600 /./ 5 Fractiling
§ E/"///m Hiract
400 - —— Hectiling
200
0
8 16

2 4

No. of Processors

Figure 4.20 Cost for Gaussian Distribution without Load (50 K particle)

2500

2000 A
/ —e— PFMA
S 1500 — —=— HPFMA
L Fractiling
g 1000 - />/ Hfract
)K/)K —x— Hectiling
500

2 4 8 16

No. of Processors

Figure 4.21 Cost for Corner Distribution without Load (50 K particle)

a7

-

—
—

—e— PFMA

—=— HPFMA
Fractiling
Hfract

—x— Hectiling

2 4 8
No. of Processors

16

Figure 4.22 Cost for Uniform Distribution with Load (100 K particle)

—e—PFMA

—=— HPFMA
Fractiling
Hfract

—x— Hectiling

2 4 8

No. of Processors

Figure 4.23 Cost for Gaussian Distribution with Load(100 K particle)

8000

7000

6000
3 5000

(5]

2 4000

]
8 3000

—e—PFMA

—m— HPFMA
Fractiling
Hiract

—x— Hectiling

2000
1000

0

2 4 8

No. of Processors

16

Figure 4.24 Cost for Corner Distribution with Load (100 K particle)

48

1000

900
800 e
700 - / o~ —e—PFMA
8 600 - / /K —=— HPFMA
L _w Fractilin
500 > g
g 400 — - Hfract
© 300 A /// —x— Hectiling
200 ¥
100
0
2 4 8 16
No. of Processors
Figure 4.25 Cost for Uniform Distribution with Load (50 K particle)

1600

1400 -

1200 —e—PFMA
o LetD - —= HPFMA
% . ./-;:/} FraCtiIing
9 <
S e00{ T« Hiract

—x— Hectiling
400
200 -
0
2 4 8 16
No. of Processors
Figure 4.26 Cost for Gaussian Distribution with Load (50 K particle)

3500

3000

. / —+—PFMA
8 2000 > —m—HPFMA
N //:/ Fractiling
3 1500 Hfract
8 :’// -

1000 | — —x— Hectiling

500
0
2 4 8 16

No. of Processors

Figure 4.27 Cost for Corner Distribution with Load (50 K particle)

50

However, when there is external load, the cost of Fractilingusd to be always higher
than that of HFractiling or Hectiling, and is also found to be coraidie higher than
that of Fractiling with no external load. This can be attributatié¢cexternal load, which
takes away CPU cycles, resulting in an increase of Fragtdost. In the case of
HFractiling or Hectiling, the external load causes the protessiigrate to an idle
processor where it can use the CPU exclusively. As a resulintitoeluction of an
external load does not result in a cost increase. Due to mig@ierhead, the costs of
HFractiling and Hectiling with external loads are slightlgher than those of Fractiling
with no external loads. The results show that because of its igptbimigrate tasks
from busy workstations to idle ones, Hectiling performs much béiser Eractiling when
external workloads are present. The results also show thatirtpp@rforms better than
HFractiling. In addition, under no load conditions, Hectiling slightly odtpers both
Fractiling and HFractiling, which indicates that the overhead afiliey is lower than
that of Fractiling and HFractiling. The coefficients of vadati(C.O.V.) of processors
finishing times for data sizes 100K are shown in Figures 24-26. adtgegimilar for
Hectiling, HFractiling and Fractiling, and significantly lomehen compared to PFMA
and HPFMA. The C.0.V.s of PFMA and HPFMA are 6 to 2000 times lahger those

of Hectiling

0.25

0.2

0.15

C.0.v

0.1

0.05 ~

2 4 8 16

No. of Processors

PFMA

B HPFMA
m Fractiling
Hfract

g Hectiling

Figure 4.28 C.0.V for Uniform Distribution (100 K particle)

0.7
0.6
0.5 PFMA
g HPFMA
> 0.4
o Fractiling
O 0.3 N Hfract
0.2 Hectiling
0.1
0 %
2 4 8 16
No. of Processors
Figure 4.29 C.0.V for Gaussian Distribution (100 K particle)
0.9
0.8 -
0.7 -
7 PFMA
0.6 -
@) Fractiling
O |
0.4 N Hfract
0.3 - Hectiling
0.2

0.1

No. of Processors

Figure 4.30 C.O.V for Corner Distribution (100 K particle)

51

52

4.3 Analysis

Figure 27-29 show the percentage of improvement of Hectiling in cost ove
HPFMA, Fractiling and HFractiling without load for all Distrilbant for data size100K.
Figure 30-32 shows the percentage of improvement with load for datal€i9K. From
these result it can be seen that Hectiling always achiveerbp#rformance than
HPFMA,Fractiling or Hfractiling. In general as number of prooesscreases for a
particular data size the percentage improvement also incrgageyg. This is because as
the number of processor increases the load imbalance also isaedsdectiling does a
better load blanacing than HPFMA, Fractiling or Hfractiling. Mover the percentage of
improvement over Fractiling with load is more than that of withoud.IGé&at is because
Hectiling migrates tasks from nodes with exaternal load toridi#es, which Fractiling
cannot do.

Table 1-3 shows speed up for all distributions and data sizes withtawhaix
load. The speed up is similar for Hectiling, Hfractiling and #ag. The speed up
increases as the number of processors increases. This indictes! these methods
scale well as the number of processor increases. Moreover, faulgrinumber of
processor as the problem size increases the speed up increasbsjnditiates that
Hectiling, Hfractiling and Hectiling scale well as the problem sizeceses.

For every method we have conducted 48 experiments (12 data sets omeftdiffe
number of processors) in the first phase, and 96 experiments (48 wikteurtaé load
and 48 with external load) in the second phase. Out of 144 experimentsno@ly

experiments Hectiling performs worse than Fractiling and inases Hectiling performs

53

better than HPFMA (PFMA under Hector). In experiments wherereak load is used
(48 experiments), Hectiling always performed better than allr atiethods. Since in
normal operating environment in network of workstations it is reasobalagsume that
external loads will be present, the experimental results undersicerimportance of
running scientific applications using Hectiling.

In all experiments of up to sixteen processors Hectiling alyway®rmed better
than Fractiling or HPFMA. In the first phase of experimentatioight experiments out
of forty eight experiments, Hectiling performed worse than Hiragtor HPFMA; these
results occurred when the experiments were conducted on thirty twespoos. There
are two explanations for these behaviors. First, task migration, orteoimajor
components of Hectiling could not be activated while running experinoentisirty two
processors because a maximum of thirty two processors werald@adnd there were
no idle processors available for task migration. The second explanatithrat the
problem sizes were not big enough to get a performance improvemene Mor
experimentation would be conducted in the future on higher number of procasdors

larger problem sizes.

54

25
20 -
=
[}
5
Q 154 —e— Over
g Fractiling
£ —m— Over
£ 101 "
— HFractiling
° Over
=S HPFMA
5 4
0
2 4 8 16
No. of Processors

Figure 4.31 Hectiling Cost Improvement for Uniform Distribution without Load (100 K particles)

25
20
c
[0}
OE, 15 —e— Over
g Fractiling
S —m— Over
E 10 gl\zlrea:ctiling
g HPFMA
© 5 — _————*
0
2 4 8 16
No. of Processors

Figure 4.32 Hectiling Cost Improvement for Gaussian Distribution without Load(100 K particles)

40
35 A
= 30
()
§ 251 —e—Over
3 Fractiling
5 20 A —m— Over
1S HFractiling
« 15 4 Over
2 HPFIA
X 10 A
o e
0 ‘ ‘
2 4 8 16
No. of Processors

Figure 4.33 Hectiling Cost Improvement for Corner Distribution without Load (100 K particles)

50

45
40

35

30
25

20
15

% of Improvement

10 | —

—&— Over
Fractiling

—m— Over
HFractiling
Over

HPFMA

4

8

No. of Processors

16

Figure 4.34 Hectiling Cost Improvement for Uniform Distribution with Load (100 K particles)

50

45

40

30

25
20

15

% of Improvement

—e— Over
Fractiling

—— Over
HFractiling
Over
HPFMA

ol

2

4

8

No. of Processors

16

55

Figure 4.35 Hectiling Cost Improvement for Gaussian Distribution with Load(100 K particles)

40
35

30

25
20

15

% of Improvement

10 -

—&— Over
Fractiling

—— Over
HFractiling
Over
HPFMA

4

8

No. of Processors

16

Figure 4.36 Hectiling Cost Improvement for Corner Distribution with Load (100 K particles)

Table 4.1 Speedup for Uniform Distribution

56

Problem # Processors 2 4 8 16
Size Method
(Particles)
Hectiling 1.84 3.21 5.67 6.89
10K Hfractiling 1.82 3.14 5.41 6.65
Fractiling 1.78 2.99 5.01 6.09
Hectiling 1.89 3.55 6.02 9.76
20K Hfractiling 1.86 3.48 5.96 9.44
Fractiling 1.81 3.25 5.76 8.90
Hectiling 191 3.76 6.97 10.79
50K Hfractiling 1.89 3.67 6.88 10.67
Fractiling 1.86 3.54 6.55 10.41
Hectiling 1.94 3.92 6.89 12.52
100 K Hfractiling 1.93 3.83 6.78 12.34
Fractiling 1.91 3.64 6.76 12.02

Table 4.2 Speedup for Gaussian Distribution

57

Problem # Processors 2 4 8 16
Size Method
(Particles)

Hectiling 1.73 2.88 4.80 5.98

10K Hfractiling 1.64 2.73 4.61 5.78
Fractiling 1.66 2.76 4.62 5.81
Hectiling 1.72 2.79 5.12 7.45

20K Hfractiling 1.63 2.71 4.95 7.18
Fractiling 1.67 2.73 4.99 7.21
Hectiling 1.92 3.61 6.28 8.28

50K Hfractiling 1.81 3.38 6.02 8.02
Fractiling 1.84 341 6.06 8.05
Hectiling 1.73 3.21 6.02 8.03

100 K Hfractiling 1.81 3.30 6.11 8.17
Fractiling 1.82 3.31 6.13 8.18

Table 4.3 Speedup for Corner Distribution

58

Problem # Processors 2 4 8 16
Size Method
(Particles)
Hectiling 1.79 2.87 4.88 6.87
10K Hfractiling 1.72 2.49 4.67 6.53
Fractiling 1.75 2.51 4.68 6.55
Hectiling 1.82 2.94 5.08 8.32
20K Hfractiling 1.95 2.48 4.81 7.97
Fractiling 1.93 2.52 4.84 8.00
Hectiling 1.94 2.99 5.57 9.58
50K Hfractiling 1.88 2.84 5.45 9.22
Fractiling 1.90 2.86 5.44 9.27
Hectiling 1.93 2.89 5.65 9.88
100 K Hfractiling 1.90 2.73 5.22 9.47
Fractiling 191 2.72 5.25 9.49

59

The implementation of Hectiling and succecsfull run of experimemtdifferent
data sizes and processors validates the first part of the hygothbgh state that: “The
integration of an algorithmic load balancing strategy (Fragjliwith a systemic load
balancing strategy (Hector) is possible.”

When no external load is present in 92% (88 out of 96) experiments|ihgecti
performs better than all other techniques. If we consider alixjperienents in 94% (136
out of 144) experiments, Hectiling performs better than Fractdind in all case it
performs better than HPFMA. In experiments with external loadtilthg always
performs better than Fractiling or HPFMA. From these expertisnié can be said that
the following inequality has been proven for all cases up to sixtemaegsors and in
92% cases up to thirty-two processors.

Chectiling< Min (Crractiling Crprma)

Where:

Checiiling =Parallel execution cost in Hectiling
Crractiing =Parallel execution cost in Fractiling
Cuprva = Parallel execution cost in Hector

Hence the second part of the hypothesis has also been proven.

CHAPTER V

CONCLUSION AND FUTURE WORK

Load balancing improves the efficient use of resources and therdfere
performance of parallel and distributed applications. Over timeéemys techniques
have improved the performance of runtime systems at coarse-grawveld, while
algorithmic techniques have improved the performance of applicatiofiseagrained
levels. Combining strategies from both levels of granularityreanlt in methods, which
deliver advantages of both. This thesis describes lessons leaymethé& successes and
limitations of Hectiling, a system that combines an algorithstiategy for data-parallel
load balancing with a systemic strategy for task-paralld loalancing. In addition,
avenues for performance enhancement are explored.

Earlier experiments with algorithmic and systemic load bat@ndtrategies
showed their ability to improve performance. A systemic coaideqy load balancing
was supported in Hector by monitoring and re-balancing loads via taglatiomn.
Algorithmic, fine-grained load balancing was supported using Fragthy a dynamic
redistribution of data assignments among tasks.

After realizing that Fractiling could benefit by accessingrtiretime information
gathered by Hector, it was decided to develop an interface betieran The integrated

system was tested in order to measure the overhead of pass@gpsiate messages

60

61

through Hector's Master Allocator. The performance of the inesgjrgersion was better
than that of Fractiling alone or Fractiling under Hector, in thegiree of external load as
well as in its absence. This performance improvement is due tacthdat the overhead
of Hectiling is considerably low while allowing dynamic process migration.

For larger number of processors, the Hectiling cost could be redncadew
ways. One way to improve performance is through tuning of the miniotnumk size.
Experiments with different minimum chunk sizes show that performenpeovements
can be obtained simply by tuning of the Fractiling scheme. In addigdesigning the
Master Allocator with multiple sockets may overcome the performance boktenec

The integrated system was tested for N-body simulations. N-boaylagions
have been widely used in a broad class of application areas of escseich as
astrophysics, molecular dynamics, biophysics, molecular chemistry léctiling will
improve performance of any application that employs N-body simulatioaslistributed
computing environment. Parallel N-body simulations are a data papgigcation. It is
also reasonable to assume for this data parallel applicationlitdeetll perform better
than applying Fractiling or Hector independently.

Extensions to both Hector and Fractiling may also prove fruitful. eikample,
support for a distributed shared memory environment would enable thresatiomg
based load balancing, and the combination of Hector and Fractiling woulgupgort
the three ways that computational load can be redistributed (task, ated thread
migration). In addition, enhancements to Fractiling that are clyteging pursued, may

in turn improve the functionality of the resulting integrated system.

62

In cases where low-overhead measurements of performance can hesamade
improvements in Fractiling performance are possible. For examm@asurements of
nearness to completion and of relative performance can allow the ambufita
exchange to be proportional to the actual performance. In general,etsumaments
required are less expensive than the ones used in profiling, and camédiately used,
instead of waiting until a subtile execution is completed. An adgardgithe integration
of Fractiling and Hector into a single framework is that itcgpmlly facilitates this
performance improvement. Since the MA periodically gathers infeom#fitom the SAs
about the tasks running under them, the nearness to completion of sudtildse c
collected and forwarded to the Fractiling Master without anyaertrerhead. This
enables the Fractiling Master to transfer data from a slaetife Task to a Fractiling
Task, which is about to finish. As a result, the Fractiling Tasks wouldunaiut of data,
and thus would not have to request the Fractiling Master to tradegier This results in
minimizing communication and better resource utilization. Anotherradgea of this
integrated design is the re-routing of the Fractile_Ask messaghe MA. Since the re-
routing is implemented using sockets, it is faster than a tdiéel based
communication between Fractiling Master and Fractiling Tashs. general, the MPI
communications use lower level communication primitives (i.e., socketsgh involve
at least one extra level of interface. A third advantage irtkegrated design is that the
controlling and the decision making component of the Fractiling Mastdd be moved

as a module inside the MA, and this would reduce some of the communication overhead.

63

Hectiling can also be implemented on heterogeneous platforms. In ases, c
Hectiling migrates tasks between pairs of homogeneous workstati®riey example,
between pairs of Sun workstations, or pairs of SGI workstations, as dpjposetween
Sun and SGI workstations. The migration cost between two Sun SPARGSsta
connected by 10 Mbits/sec Ethernet was observed to be 0.6 Mbytes/séic[ti].
workstations are connected by various bandwidth interconnection networks, the
migration cost between different pairs of workstations will vamyHectiling, network
information, such as bandwidth, latency, and congestion of interconnecesseasby not
taken into account when making migration decisions. This may lead diccae
performance in some situations where, for instance, a very Esigestmigrated between
workstations connected by a very slow connection. For such cases, tlo¢ mwogtation
may be higher than the increase in cost of running the task on thewnbusstation.
Further work to improve Hectiling can be pursued by incorporating netwbotmation
into task migration decisions.

The Hectiling paradigm can be generalized with little effiarthe applied to any
scientific application that is data parallel. Even more, any iggoic load balancing
technique that works around a master slave strategy could be tedegr@ Hector with
minor modifications. By careful planning and design, it is possible velde a set of
well-defined Hectiling APIs, which, in turn, can be used by sciengfpplications to

incorporate Hectiling.

10.

REFERENCES

C. R. Anderson, An Implementation of the Fast Multipole Method SIASti].Stat.
Comput.,1992, 923-947.

M. Baker and G. Fox and H. Yau. Cluster Computing Review, NortheeastePa
Architecture Center, Syracuse www.npac.syr.edu/techreports/hypertext/sccs-
0748cluster-review.html, 1995.

I. Banicescu. Load Balancing and Data Locality in the Partedn of the Fast
Multipole Algorithm, Ph.D. Dissertation, Polytechnic University, 1996 January.

I. Banicescu and S. F. Hummel. Balancing Processor Loads and HExplDdia
Locality in N-Body Simulations, Proceedings of Supercomputing'95 conted95
(on CD-ROM).

I. Banicescu and S. F. Hummel. Balancing Processor Loads and HExplDdia
Locality in Irregular Computations, IBM Research Report, 1995, RC19934.

I. Banicescu and R. Lu. Experiences with Fractiling in N-Body Simulations,
Proceedings of High Performance Computing'98 Symposium, 121--126, 1998.

I. Banicescu and S. Russ and M. Bilderback and S. Ghafoor. Competitivarée
Management in Distributed Computing Environment with Hectiling Pdiogs of
High Performance Computing'99 Symposium, 337-343, 1999.

I. Banicescu and S. Ghafoor and M. Bilderback. Efficient Resourcegdiansent for
Scientific Applications in Distributed Computing Environment, Proceedofgthe
Workshop on Distributed Computing on the Web (DCW'98), 45--54,1998.

J. A. Board and J. Causey and J. F. Leathrum Jr. and Acceleratenilisiol@ynamic
Simulations with the Parallel Fast Multipole Algorithm, Cherhieaysics Letters,
1992, 198, 23-34.

J. A. Board and Z. S. Hakura and W. D. Elliot and others. Scalableniddada
Multipole-based Algorithms for Molecular Dynamics Applications,Ha Proceeding
of Seventh SIAM Conference on Parallel Processing for Scie@dmputing, 1995,
SIAM, Philadelphia, 295--300, February.

64

65

11. N. Carriero and E. Freeman and D. Gelernter and D. Kaminsky. AdBptiakelism
and Piranha, Computer, 28, 1, 40-49, 1995.

12.J. Casas and D. Clark and R. Konuru and S. W. Otto MPVM: A Migration
Transparent Version of PVM, Usenix Computing Systems Journal, 171--216, 8,
2,1995.

13. DQS User Manual - DQS Version 3.1.2.3Supercomputer Computations Research
Institute, Florida State University, 1995.

14. D.G. Feitelson, L. Rudolph, U. Schwiegelshohn,K.C. Sevcik and P. Wong". Theory
and Practice in Parallel Job Scheduling. IPPS '97 Workshop on Job Scheduling
Strategies for Parallel Processing, 1997.

15. 1. Foster and C. Kesselman. The Grid: Blueprint for a New Compuafiagtructure,
Morgan Kaufmann, San Francisco, 1998.

16. Al Geist, Adam Beguelin, Jack Dongara, Weiching Jiang, Robert Manahe
Vaidy Sundaram. PVM: Parallel Virtual Machine. MIT Press, Cambridge, 1994.

17. R. Gibbons. A Historical Application Profiler for Use by Paraiehedulers, IPPS
'97 Workshop on Job Scheduling Strategies for Parallel Processing, 1997.

18. Y. Grama, V. Kumar and A. Sameh. Scalable Parallel FormulatioBarots-Hut
Method for N-Body Simulations, Proc. of Supercomputing'94, 439--448, November,
1994

19. L. Greengard and V. Rokhlin. A Fast Algorithm for Particle SimanatJournal of
Computational Physics, 1987, May, 325--48, 73.

20. Willium Gropp, Edwing Lusk and Anthony Skjellum. Using MPI. MIT Press,
Cambridhge 1994.

21. S. F. Hummel. Fractiling: A Method for Scheduling Parallel LoopSNoivA
Machines, IBM RC18958, 1993.

22. S. F. Hummel and E. Schonberg and L. E. Flynn, A Practical and Robimstd\Vet
Scheduling Parallel Loops, Communications of the ACM, 1992, 358, August, 90—
101.

23. M.T. Jones and P.E. Plassman. Parallel Algorithms for Adaptive Riefsiement,
SIAM Journal on Scientific Computing”, Vol.18, pp 686-708, 1997.

24.J. F. Leathrum and J. A. Board, The Parallel Fast Multipole Ahgorin Three
Dimensions, Duke University, Department of Electrical Engineerd®§2, TR92-
001, April.

66

25. H. Li, S. Tandri, M. Stumm and K. C. Sevcik. Locality and Loop Scheduling on
NUMA Machines, Proceedings of Int. Conf. on Parallel Processing,1d0-11147,
1993.

26. LSF. Product Reviews: Platform Computing Corp. Load SunExpert, 8, 8, 62--64,
1997

27. R. Lu, Parallelization of the Fast Multipole Algorithm with Fitagy in Distributed
Memory Architectures, Mississippi State University, 1997.

28. E. P. Markatos and T. J. LeBlanc. Using Processor Affinity in Lotyedgding on
Shared-Memory Multiprocessors, IEEE Transactions on Parallel asitibDted
Systems, Vol. 5, No. 4, pp 379-400, 1992.

29. B. Neuman and S. Rao, The Prospero Resource Manager: A Scalaidevéia for
Processor Allocation in Distributed System, Concurrency: PraaticeExperience,
339--355, 1994.

30. T.D. Nguyen, R. Vaswani and J. Zahorjan. Using Run-Time Measured Workload
Characteristics in Parallel Processing Scheduling, IPPS '96ksWap on Job
Scheduling Strategies for Parallel Processing, 1996.

31. C. Polychronopoulos and D. Kuck. Guided Self-Scheduling: A Practical Scigeduli
Scheme for Parallel Computers, IEEE Transactions on Computers;A26l. No. 12,
ppl425-1439, 1987.

32.J. Pruyne and M. Livney. Providing Resource Management Services aitelPar
Applications, Workshop on Job Scheduling Strategies for Parallel Processing,
Proceedings of the International Parallel Processing Symposium (IPPS 1995),1995.

33.J. Robinson and S. Russ and B. Flachs and B. Heckel. A Task Migration
Implementation of the Message-Passing Interface, 5th High Penfice Distributed
Computing Conference (HPDC-5), 61--68, 1996.

34.S. Russ and B. Flachs and J. Robinson and B. Heckel. Hector: Automated Tas
Allocation for MPI, 10th International Parallel Processing Symposia#4--
348,1996.

35. S. Russ and M. Gleeson and B. Meyers and L. Rajagopalan and C. TarH&tdorg
to run MPI Programs over Networked Workstation, Concurrency: Praatick
Experience, Accepted for publication.

36. S. Russ and B. Meyers and M. Gleeson and J. Robinson and L. Rajagopalan and C
Tan and B. Heckel. User Transparent Run-Time Performance Ogionizahe 2nd
International Workshop on Embedded HPC and Applications at the 11th IEEE
International Parallel Processing Symposium, 1997.

67

37.S. H. Russ, K. Reece, J. Robinson, B. Meyers, L. Rajagopalan and C.-FAnTan.
Agent Based Architecture for Dynamic Resource Management, [E&teurrency,
Vol. 7, No. 2, pp 47-55, 1999.

38. J. Salmon and M. S. Warren, Parallel, Out-of-core Methods for N-Baayleiion,
Proceeding of 8th SIAM Conference on Parallel Processing font8iceComputing,
1997, SIAM.

39.J. Singh, Parallel Hierarchical N-Body Methods and Their Intgits for
Multiprocessors, Stanford University, 1993

40. J. Singh and C. Holt and T. Totsuka and others, A Parallel Adaptive Fast Multipole
Algorithm, Proc. of Supercomputing'93, 54--65, 1993.

41. A. Sohn and R. Biswas and H. Simon. Dynamic Load Balancing Framework for
Unstructured Adaptive Computations on Distributed-Memory Multiprocessors,
Proceedings of Symposium on Parallel Algorithms and Architectures, 189-192, 1997.

42. T. Tannenbaum and M. Litzkow. The Condor Distributed Processing System, Dr
Dobbs' Journal of Software Tools for 20, 2, 40--48, 1995.

43.T. H. Tzen and L. M. Ni. Dynamic Loop Scheduling for Shared-Memory
Multiprocessors, Proc. Int. Conf. on Parallel Processing, Il, 247-250, 1991.

44. M. Warren and J. Salmon. Astrophysical N-Body Simulation Using tdrecal Tree
Structures, Proc. of Supercomputing'92, 1992.

45. M. Warren and J. Salmon. A Parallel Hashed Oct Tree N-Body ithkigor
Proceeding of Supercomputing'93, 1993, 12--21, IEEE Computer Society.

46. S. Zhou. LSF: Load Sharing and Batch Queueing Software, Platform Qugmput
Corporation, 1996, North York, Canada.

	Integrating Algorithmic and Systemic Load Balancing Strategies in Parallel Scientific Applications
	Recommended Citation

	Microsoft Word - ambareen.doc

