
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2003

Integrating Algorithmic and Systemic Load Balancing Strategies Integrating Algorithmic and Systemic Load Balancing Strategies

in Parallel Scientific Applications in Parallel Scientific Applications

Sheikh Khaled Ghafoor

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Ghafoor, Sheikh Khaled, "Integrating Algorithmic and Systemic Load Balancing Strategies in Parallel
Scientific Applications" (2003). Theses and Dissertations. 2764.
https://scholarsjunction.msstate.edu/td/2764

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2764?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2764&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

INTEGRATING ALGORITHMIC AND SYSTEMIC LOAD BALANCING

STRATEGIES IN PARALLEL SCIENTIFIC APPLICATIONS

By

Sheikh Khaled Ghafoor

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2003

INTEGRATING ALGORITHMIC AND SYSTEMIC LOAD BALANCING

STRATEGIES IN PARALLEL SCIENTIFIC APPLICATIONS

By

Sheikh Khaled Ghafoor

Approved:

____________________________ _____________________________
Ioana Banicescu Rayford B. Vaughn Jr.
Associate Professor of Associate Professor of
Computer Science and Engineering Computer Science and Engineering
(Major Professor) (Committee Member)

____________________________ _____________________________
Anthony Skjellum Susan M. Bridges
Professor of Computer and Information Sciences Professor of
University of Alabama at Birmingham Computer Science and Engineering
(Committee Member) (Graduate Coordinator)

A.Wayne Bennett
Dean of the Bagley college of Engineering

Name: Sheikh K. Ghafoor

Date of Degree: December 13, 2003

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Ioana Banicescu

Title of Study: INTEGRATING ALGORITHMIC AND SYSTEMIC LOAD
BALANCING STRATEGIES IN PARALLEL SCIENTIFIC
APPLICATIONS

Pages in Study: 67

Candidate for Degree of Master of Science

Load imbalance is a major source of performance degradation in parallel

scientific applications. Load balancing increases performance of parallel applications in

distributed environments. At a coarse level of granularity, advances in runtime systems

have been proposed in order to control available resources using task migration. At a

finer granularity level, advances in algorithmic strategies for dynamically balancing loads

by data redistribution have been proposed. Algorithmic and systemic load balancing

strategies have complementary set of advantages. An integration of these two techniques

should result in a system, which delivers advantages over each technique used in

isolation. This thesis presents a design and implementation of a system that combines an

algorithmic load balancing strategy called Fractiling with a systemic load balancing

system called Hector. It also reports on experimental results of running N-body

simulations under this integrated system. The experimental results indicate that the

integrated system provides performance improvement for large applications.

ii

ACKNOWLEDGMENTS

I would like to express my sincerest appreciation for the people who helped me in

many ways during the course of this thesis. My earnest gratitude goes to my major

professor, Dr. Ioana Banicecu, who supported me generously, guided me with constant

encouragement and imperative directions, and had the patience to accommodate my

mistakes to make me learn from them. I am very grateful to Dr. Anthony Skjellum,

member of my graduate committee, for his suggestions and help during the work on this

thesis. I would also like to thank Dr. Rayford B. Vaughn, for serving as a member in my

graduate committee, providing me with useful suggestions and comments. I am very

grateful to Dr. Samuel H. Russ, former associate professor of Electrical and Computer

Engineering, for his guidance and help during the work on this thesis. In addition, I

would like to thank Rong Lu, former. student of this department for his assistance. My

work on this thesis has been partially supported by the National Science Foundation

through the following grants: CAREER # 9984465, ITR/ACS # 0081303,ITR # 0085969,

973038. I would also like to take the opportunity to acknowledge the support for

infrastructure and resources provided by Engineering Research Center of Mississippi

State University. I wish to thank all the faculty members here at the Computer Science

and Engineering Department from whom I learned a lot. Finally I would like to thank my

wife Ambareen Siraj for her encouragement, support, and for her continuous help through

the writing of this thesis

iii

TABLE OF CONTENTS

 Page

ACKNOWLDEGMENT……………………………………………………….……. ii

LIST OF TABLES ………………………………………………………………….. v

LIST OF FIGURES…………………………………………………………………. vi

CHAPTER

 I. INTRODUCTION…………………………………………………………. 1

 1.1 Systemic (Coarse-Grained) Load Balancing…………………………… 4

 1.2 Algorithmic (Fine-Grained) Load Balancing………………………….. 5

 1.3 An Integrated Strategy…………………………………………………. 6

 1.4 Hypothesis……………………………………………………………… 9

 1.5 Approach……………………………………………………………….. 10

 1.6 Expected Contributions………………………………………………… 11

 1.7 Organization of this Thesis…………………………………………….. 12

 II. BACKGROUND AND RELATED WORK……………………………….. 13

 2.1 Related Work on Systemic (Coarse-Grained) Load Balancing………... 13

 2.2 Related Work on Algorithmic (Fine-Grained) Load Balancing……….. 16

 III. DESIGN AND IMPLEMENTATION……………………………………… 23

 3.1 Hector Architecture…………………………………………………….. 24

 3.2 Fractiling Implementation……………………………………………… 26

 3.3 Hectiling Design and Implementation…………………………………. 29

iv

CHAPTER Page

 IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS…….. 33

 4.1 Hectiling without migration……………………………………………. 34

 4.2 Hectiling with migration……………………………………………….. 44

 4.3 Analysis………………………………………………………………… 52

 V. CONCLUSION AND FUTURE WORK………………………………… 60

REFERENCES………………………………………………………………………. 64

v

LIST OF TABLES

TABLE Page

 4.1 Speedup for Uniform Distribution…………………………………….. 56

 4.2 Speedup for Gaussian Distribution……………………………………. 57

 4.3 Speedup for Corner Distribution………………………………………. 58

vi

LIST OF FIGURES

FIGURE Page

 3.1 Hector Architecture……………………………………………………………. 25

 3.2 Migration of Tasks under Hector……………………………………………… 26

 3.3 Master/Slave communication in Fractiling……………………………………. 29

 3.4 Hectiling Architecture…………………………………………………………. 31

 3.5 Fractiling State Update: Interrupt Driven Model……………………………… 32

 4.1 Cost for Uniform Distribution (100k particle)………………………………… 36

 4.2 Cost for Gaussian Distribution (100k particle)……………………………….. 36

 4.3 Cost for Corner Distribution (100k particle)………………………………….. 36

 4.4 Cost for Uniform Distribution (10k particle)…………………………………. 37

 4.5 Cost for Gaussian Distribution (10k particle)…………………………………. 37

 4.6 Cost for Corner Distribution (10k particle)……………………………………. 37

 4.7 Cost for Uniform Distribution (20k particle)………………………………….. 38

 4.8 Cost for Gaussian Distribution (20k particle)…………………………………. 38

 4.9 Cost for Corner Distribution (20k particle)……………………………………. 38

 4.10 Cost for Uniform Distribution (50k particle)………………………………….. 39

 4.11 Cost for Gaussian Distribution (50k particle)…………………………………. 39

 4.12 Cost for Corner Distribution (50k particle)……………………………………. 39

 4.13 C.O.V. for Uniform Distribution (100k particle)……………………………… 42

 4.14 C.O.V. for Gaussian Distribution (100k particle)…………………………….. 42

 4.15 C.O.V. for Corner Distribution (100k particle)………………………………. 42

 4.16 Cost for Uniform Distribution without Load (100k particle)………………….. 46

 4.17 Cost for Gaussian Distribution without Load (100k particle)…………………. 46

 4.18 Cost for Corner Distribution without Load (100k particle)…………………… 46

 4.19 Cost for Uniform Distribution without Load (50k particle)………………….. 47

 4.20 Cost for Gaussian Distribution without Load (50k particle)………………….. 47

 4.21 Cost for Corner Distribution without Load (50k particle)…………………….. 47

 4.22 Cost for Uniform Distribution with Load (100k particle)…………………….. 48

 4.23 Cost for Gaussian Distribution with Load (100k particle)…………………….. 48

 4.24 Cost for Corner Distribution with Load (100k particle)………………………. 48

vii

FIGURE Page

 4.25 Cost for Uniform Distribution with Load (50k particle)……………………… 49

 4.26 Cost for Gaussian Distribution with Load (50k particle)……………………… 49

 4.27 Cost for Corner Distribution with Load (50k particle)………………………... 49

 4.28 C.O.V. for Uniform Distribution (100k particle)……………………………… 51

 4.29 C.O.V. for Gaussian Distribution (100k particle)……………………………... 51

 4.30 C.O.V. for Corner Distribution (100k

particle)………………………………………………………………………...

51

 4.31 Hectiling Cost Improvement for Uniform Distribution without Load (100k

particle)………………………………………………………………………...

54

 4.32 Hectiling Cost Improvement for Gaussian Distribution without Load (100k

particle)………………………………………………………………………...

54

 4.33 Hectiling Cost Improvement for Corner Distribution without Load (100k

particle)………………………………………………………………………...

54

 4.34 Hectiling Cost Improvement for Uniform Distribution with Load (100k

particle)………………………………………………………………………...

55

 4.35 Hectiling Cost Improvement for Gaussian Distribution with Load (100k

particle)………………………………………………………………………...

55

 4.36 Hectiling Cost Improvement for Corner Distribution with Load (100k

particle)………………………………………………………………………...

55

 1

CHAPTER I

INTRODUCTION

Parallel and distributed computing has become one of the most interesting

avenues followed in scientific applications and has become one of the fundamental

research areas of computer science. Problems in science and engineering are often large,

complex, highly irregular and computationally intensive. These problems can often be

decomposed into sub problems that can simultaneously be solved. Thus, parallelization

provides a way to solve large computationally intensive problems like ocean modeling,

climate modeling fluid turbulence etc., which would otherwise be impossible to solve on

a sequential machine. One factor, which typically influences parallel programming, is the

type of processor communication used. The way processors communicate depends on the

memory architecture, which can be classified as shared memory and distributed memory.

In shared memory architectures multiple processors operate in an independent fashion but

all share the same memory resources. Shared memory systems are difficult to scale as the

number of processors increase. In distributed memory architectures, each processor has

its own address space and operates in an independent manner. The processors are

connected through the interconnection network and data sharing across the

communication network is in general performed through message passing.

 2

In general, we associate high performance with parallel and distributed

computing. There are several factors that affect the performance of parallel applications

running in a parallel and distributed computing environments. Some of these factors are:

the choice of parallel algorithm used, load imbalance, the type of interconnection

network, and others. Load imbalance is one of the major performance degradation factors

in parallel scientific applications and by balancing the workload, their performance can

significantly be improved [3, 27]. Scientific applications are in general data parallel.

There are several factors that cause load imbalance in parallel scientific applications

running in a distributed computing environment. A few major factors are: non-uniform

data distribution, different computational requirements in various data partitions,

variations in external workload on different computational nodes, operating system (OS)

and network effects.

With the increase in performance of commodity desktop workstations,

advancement in high speed networks, and development of architecture independent ways

to code parallel programs, such as MPI[20] and PVM[16], Network of Workstations

(NOW) or Cluster of Workstations (COW) are becoming a cost effective popular choice

for parallel and distributed computing. The operating systems for the workstations were

initially developed for interactive sequential jobs with a single processor in mind. Over

time, support for multiprocessing and networking has gradually been incorporated into

operating systems. However, the commercial operating systems for workstations still do

not offer adequate support for a transparent execution of parallel or sequential jobs over a

NOW. The workstations in NOW are used by individuals, and the load across the

 3

network varies dynamically, as users execute applications or relinquish workstations.

This, along with other reasons mentioned earlier cause load imbalance when running

applications in parallel and distributed environments. Since the operating systems or

message passing libraries (such as MPI) do not provide support for load balancing across

workstations in NOW, executing parallel applications on NOW often leads to severe load

imbalance and poor resource utilization. This problem can be alleviated by addressing

the load balancing problem through migration of tasks (coarse-grain) or data (fine-grain)

from the highly loaded workstations to the lightly loaded ones or idle workstations.

Therefore, in a NOW environment, load balancing can be performed at both fine and

coarse levels of granularity.

Since load imbalance is one of the major performance degradation factors in data

parallel scientific applications, providing solution(s) to this problem is an important

computer science issue. Finding a generic solution that can dynamically balance load

with low overhead could significantly improve the performance of parallel scientific

applications. Even if the solution is applicable to only a class of applications, it will have

a significant impact on performance of data parallel applications running in distributed

computing environments. In the present work, an attempt has been made to find a

solution to the load imbalance problem in a complex class of data parallel applications

running in distributed computing environments: the N-body simulations.

As there are several factors which cause load imbalance, finding algorithms and

methods for addressing this problem in parallel and distributed computing environments

is a complex problem. Over time, various techniques to balance load at coarse and fine

 4

levels of granularity have been proposed. In general, an individual processor’s

performance may vary due to external workload, or non-uniform data distribution within

an application, as well as other factors. Therefore, methods to maintain an even

distribution of work are usually needed in order to obtain good speedup and performance.

In a distributed computing environment, coarse-grained strategies have been proposed at

the system level, while fine-grained strategies have been proposed at the algorithmic

level. By coarse-grained strategies at the system level, we mean that the load balancing is

performed by the host operating system or runtime system. No modifications in the

applications or algorithms are required by the user or programmer. By fine-grained

strategies, we mean that the load balancing algorithm is built into the applications; the

host operating system or runtime libraries are unaware of the load balancing performed

by the applications.

1.1 Systemic (Coarse-Grained) Load Balancing

 In task-parallel applications, load balancing at the coarse-grain level is achieved

via task migration. This involves transferring of a program's state from one processor to

another during runtime. Task-parallel applications have advantages such as: a natural

mapping to the operating system (i.e. the entire process is transferred) and the ability to

release resources (such as workstations) back to individual users by moving the work

elsewhere, and freeing up both the CPU and the memory.

Systemic load balancing via task migration from heavily to lightly loaded

processors is typically coarse-grained and can be supported by two distinct methods.

 5

First, users can write their own state-transfer routines which can be invoked by the

runtime system to migrate or checkpoint a job. Systems such as LSF [26, 46] and DQS

[13] work in this fashion. The disadvantages of these systems are that they put the

burden of checkpointing onto the application developer and therefore, the routines must

be actively maintained along with the rest of the source code. The alternative is to

provide systemic support for checkpointing and migration. Condor [32, 42], and Hector

[33] work in this fashion. However, the Hector distributed runtime environment used in

this thesis is unique in the depth and breadth of information gathered about tasks at

runtime. Hector runtime system supports the migration of parallel tasks. These are

capabilities that can be exploited by data-parallel load balancers. In general, the systemic

load balancing is application independent and implemented at the system level (operating

system, communications library, or middleware), relieving the application programmer

from this responsibility.

1.2 Algorithmic (Fine-Grained) Load Balancing

Algorithmic load balancing via data migration is supported by the applications

and is typically fine-grained. Data-parallel programs use data migration (or dynamic data

allocation) to maintain balanced loads and therefore are “self-balancing”. This represents

a finer grain of control than task migration, because only fractions of a program state

have to be moved. Tasks can either negotiate as peers to exchange data from busy tasks

to idle ones, or have a central master that allocates data to worker tasks. Systems based

 6

on Factoring [22] and Fractiling [5, 6] are examples of the former, and Piranha [11] is an

example of the latter.

Fractiling is a dynamic scheduling technique based on a probabilistic analysis that

adapts to algorithmic and systemic load imbalances while maximizing data locality. It

draws from earlier loop scheduling techniques where iterates are dynamically scheduled

in decreasing size chunks to reduce synchronization. It has successfully been

implemented in N-body simulations [5, 6]. The early large chunks have relatively little

overhead and their uneven finishing times are smoothed over by later smaller chunks.

Fractiling uses a tiling technique to optimize chunk shapes such that data locality and

reuse are maximized.

1.3 An Integrated Strategy

Advances in runtime systems for parallel programs have been proposed in order

to control available resources as efficiently as possible. Simultaneously, advances in

algorithmic methods of dynamically balancing computational load have been proposed in

order to respond to variations in actual performance. Both, coarse- and fine-grained

strategies have advantages and disadvantages. The coarse-grained approach may suffer

from load imbalance due to the unequal sizes of tasks, or the total number of tasks that

may not always be an integral multiple of the number of workstations in the cluster. On

the other hand, in the fine-grained approach, due to the absence of migration capability,

the resource utilization is limited to the workstations in use, and no use of new

workstations may be acquired or removed during the application execution. Let us

 7

consider a scenario where in a sixteen processor cluster (p0 .. p15), six processors are

available, and the cluster uses Hector as runtime system. A user lunches a parallel job

with eight tasks. Since Hector works at task level it will assign four tasks to four

processors (say p0 – p3) and two tasks/processor to the rest of the processors (p4 and p5).

As a result, tasks running on p4 and p5 will finish their computation later than tasks

running on p0 through p3. In the middle of the execution, if one or more processors

become available, Hector can move additional tasks from p4 and p5 to newly available

processors. Since tasks running on p4 and p5 shared the processor before migration they

will still finish later than tasks running on p0 through p3. If the parallel application would

have had incorporated the Fractiling algorithm, it would have balanced the workload

among the tasks by using dynamic data redistribution before and after migration. Thus,

all the processes would have finished almost at the same time. Let us consider another

scenario in which a fractiled scientific application is running on a cluster. While fractiled

tasks are running, one or more processors become overloaded due to some additional

external load. The Fractiling algorithm will now balance the load by migrating data from

tasks running on overloaded processors to lightly loaded processors. Let’s suppose that

during the execution some other processors become idle. In the absence of Hector, the

idle processors cannot be utilized. If Fractiling would have had the capability of task

migration in a Hector-like fashion, the fractiled tasks from the overloaded processors

could have been migrated to idle processors. In this way, better resource utilization

would have been achieved because idle resources would have been utilized. Therefore, in

this respect, Hector and Fractiling complement each other.

 8

An ideal runtime system should provide support for both systemic and

algorithmic strategies since they have complementary sets of advantages. The systemic

coarse-grained strategy considers all tasks from all applications on the system, while the

algorithmic fine-grained strategy is confined to individual applications. Once the

programmer has expressed the algorithm to be used, the runtime system should execute

the program efficiently, taking maximum advantage of available resources. It may have

to migrate entire tasks in order to relinquish processors back to "owners". If it does not

have to migrate an entire task, it is desirable to move only the amount of data needed to

rebalance the load. The essential point is that these load balancing strategies can work in

concert to provide additional benefits to one another. The resulting integrated load

balancing strategy is systemic in nature, and therefore the burden on the applications

programmer is reduced. Moreover, the integration provides an improved performance for

parallel applications over the improvements obtained by using either strategy

individually.

The present work called Hectiling proposes to combine the load balancing

methodology used in Hector, a distributed runtime environment which provides coarse-

grained dynamic load balancing for parallel applications on Sun and SGI workstations,

with Fractiling, a fine-grained dynamic load balancing technique based on a probabilistic

analysis that has been proven to be effective in scientific applications (i.e. N-body

simulations). Hectiling should offer load balancing at both levels of granularity and

provides a more efficient utilization of resources than either technique used in isolation.

This thesis presents the design and implementation of Hectiling, and reports on

 9

experimental results of running N-body simulations under this integrated system. The N-

body simulations consider N particles, their positions and velocities, and the problem is

to compute the forces they exert on each other, and then calculate their new positions.

The N-body simulations have been selected as a test application because it requires

solutions of multiple algorithms, and is a complex and computationally intensive

problem. It has been widely used in a broad class of application areas of science such as

astrophysics, molecular dynamics, biophysics, molecular chemistry etc. N-body

simulations employ algorithms, which are used in other areas, such as volume

visualization. Therefore, if a technique provides performance improvement for N-body

simulations it should applicable for a wide range of scientific applications.

1.4 Hypothesis

The hypothesis of this thesis is two fold:

1. The integration of an algorithmic load balancing strategy (Fractiling) with a

systemic load balancing strategy (Hector) is possible.

2. For applications, which employ the N-body simulation algorithms, this integration

will result in achieving better performance than applying any of these techniques

independently. The overhead introduced by the combined (integrated) approach

will be small and will be outweighed by the benefit of improved load balancing

due to integration. The integrated system will perform no worse than any of the

techniques applied in isolation. In other words for the integrated system the

following inequality will hold:

 10

CHectiling ≤ Min (CFractiling, CHPFMA)

 Where:

CHectiling is the Parallel execution cost using Hectiling

CFractiling is the Parallel execution cost using Fractiling

CHPFMA is the Parallel execution cost using Hector

1.5 Approach

The work plan that has been followed in the process of validating the hypothesis

is as follows:

1. Survey different algorithmic load balancing techniques and algorithms. Study the

Fractiling algorithm in detail and analyze implementation of a parallel application

that has employed the Fractiling algorithm for load balancing. For the present

work, two parallel implementations of the N-body simulations (one with

Fractiling and one without Fractiling) have been selected.

2. Study and analyze the architecture and implementation of Hector.

3. Design an integrated architecture: Hectiling, to combine Fractiling and Hector

4. Implement the integrated architecture.

5. Execute the following experiments and collect timing results

i. Select a set of data representing different data sizes and data

distributions.

 11

ii. Execute following parallel implementations of the N-body

simulations on various numbers of processors (up to 32) with each

dataset selected at “i.”

1. Straightforward parallelization.

2. Straightforward parallelization under Hector.

3. With Fractiling.

4. With Fractiling under Hector

5. With Hectiling (Fractiling and Hector integrated).

6. Evaluate the overhead of integration experimentally.

7. Select a set of metrics to measure the performance. Provide a qualitative and

quantitative analysis of the performance of Hectiling using the experimental

results. Validate the hypothesis.

1.6 Expected Contributions

The expected contributions from this thesis are as follows:

1. Provide an integrated strategy to improve the performance of data parallel

scientific applications.

2. Provide an implementation of a runtime system (a modified Hector) for easy

integration of any data parallel scientific application that incorporates

Fractiling algorithm for load balancing.

3. Provide implementation guidelines for integrating data parallel scientific

applications with Fractiling into Hector.

 12

4. Provide an estimate about the amount of effort it takes to integrate an

application with Fractiling into Hector.

5. Provide an qualitative and quantitative analysis of performance and overhead

of Hectiling (see Approach 6 and 7).

1.7 Organization of this Thesis

This thesis is organized as follows. Chapter 2 presents the pertinent background

and related work in the areas of systemic and algorithmic load balancing. Chapter 3

describes the design and implementation of Hectiling. Result and analysis are presented

in Chapter 4, and finally, Chapter 5 presents conclusion and future work.

 13

CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Related Work on Systemic (Coarse-Grained) Load Balancing

In the past years, many systems that run sequential and parallel programs on

networks of workstations, shared memory processors (i.e., using SMPs), and massively

parallel processors (MPP), have been proposed and successfully implemented. Differing

in their degree of sophistication and in the methods used to balance the computational

load, they offer a variety of features and services. A comprehensive survey of task-based

job-scheduling systems has been presented by Baker, Fox and Yau[2]. Features that

such systems may contain include: scheduling of sequential and parallel jobs, load

balancing, task migration, the nature and complexity of runtime information gathering,

and others. Only few of these systems are enhanced to support task migration, and if they

do, the migration applies only to sequential jobs. In general, migration could be

supported using two distinct methods. First, users can write their own state transfer

routines, which can be invoked by the runtime system to migrate or checkpoint, a task.

Systems such as LSF [26, 46] work in this manner. The alternative is to provide support

for task migration and checkpointing by the runtime system. Systems such as Condor

[32] work in this fashion.

All systems mentioned in the survey provide some degree of load balancing at

task granularity level. This load balancing is static in nature, in the sense that at the time

 14

of launching a job, the entire system load and the scheduling of tasks to achieve load

balancing across the entire system are considered. No further action is taken by the

runtime system after launching a job if system load varies for any reason such as

termination of another job (which could translate into load imbalance of the parallel job

at hand). To the best of our knowledge, none of the systems mentioned so far in the

literature provides support for migration of parallel tasks or sequential communicating

tasks. Therefore, there is a need to design runtime systems with support for task

migration that can provide dynamic load balancing during job execution.

One of the clustering systems presented in the survey by Baker, Fox, and Yau [2]

is LSF [46]. It is a widely used commercial package for controlling clusters. LSF works

by launching utility tasks on each candidate host to monitor usage and to provide remote

job-launch capability. The usage monitor reports to a central master, which uses the data

to decide which nodes are available for running jobs. It runs parallel jobs, supports task

migration through user-level checkpointing, and gathers node usage information. The

information is used to control the initial mapping of tasks to hosts. Condor [32],

developed at University of Wisconsin, is another clustering system presented in the

above-mentioned survey. It is a widely used public-domain cluster management software

package. It groups workstations into "flocks", monitors their availability, and only runs

parallel jobs if they are designed to tolerate variable numbers of hosts during execution.

Workstation load average is used for allocation and the system can either migrate tasks

(with system-level checkpointing) or kill them when the workstation becomes busy with

external applications. Condor and LSF systems use a distributed architecture design. In

 15

this context, by distributed architecture we mean that the components of the clustering

system are distributed among its nodes. Both Condor and LSF use relatively coarse load

information for initial allocation purposes and for determining if hosts are idle or busy.

Both the systems don’t gather information from running tasks and in addition, LSF does

not support systemic checkpointing.

Recent work has highlighted the benefits of extracting information from

applications during runtime [14]. For example, Nguyen et al. have shown that extracting

runtime information can be minimally intrusive and can substantially improve the

performance of a parallel job scheduler [39], whereas Gibbons proposed a simpler system

to correlate runtimes to different job queues [17]. In either case, information gathered

from tasks as they run can support job scheduling and allocation. The Hector distributed

runtime environment is intended to support this model [37]. It uses a distributed

architecture, provides system-level checkpointing routines, supports execution of

unmodified MPI programs, and gathers extensive information during runtime about the

performance of hosts and individual tasks. Hector is designed to provide an infrastructure

that controls parallel programs during their execution and to monitor their performance.

Therefore it combines the benefits of both distributed and centralized processing. The

central decision-maker and control process is called a master allocator or “MA”.

Running on each candidate platform (where a platform can range from a desktop

workstation to a SMP) is a supervisory task called a slave allocator or “SA”. The SA's

gather performance information from the tasks (MPI processes) under their control and

 16

execute commands issued by the MA. Thus, Hector combines the functions of

monitoring and execution contained in LSF's two distributed daemon processes [46].

Hector's instrumentation combines three different mechanisms [33-37]. First,

static host information is gathered by the SA when it is launched. Second, dynamic host

information is gleaned from a series of system calls to read memory usage and CPU

usage. Third, Hector's modified MPI library provides task self-instrumentation that is

monitored by the SA. This instrumentation includes a breakdown of time spent

communicating and computing, as well as a map of the task's communication topology.

Task migration is supported by the run time system and a specially modified

version of MPI to properly handle messages in transit. In this way, applications do not

need code changes in order to support task migration [33]. Both Hector and Hectiling use

MPICH, an implementation of MPI by the Argonne National Laboratories and

Mississippi State University.

2.2 Related Work on Algorithmic (Fine-Grained) Load Balancing

 Load balancing at the application level is algorithmic and fine-grained.

Therefore load balancing techniques at this level of granularity have to be integrated into

a specific application. Selecting a technique that offers best performance and is relatively

simple to integrate is essential to the success of the resulting application. While load

balancing can be applied to all parallel applications, scientific applications are of

particular interest due to their intensive computational requirements. In addition, large

classes of scientific applications are irregular in nature, and therefore their performance is

 17

severely degraded due to load imbalance. Imbalance over a few time steps of the

computation could primarily be caused by changes in data distributions. Furthermore,

within one time step, imbalance could be caused by irregularity of data distribution,

different processing requirements of interior versus boundary data, and by system effects.

Problems in scientific computing are in general data-parallel and have previously

employed various methods to balance processor loads and to exploit locality. For

example, in unstructured problems, static partitioning and repetitive static partitioning

heuristics have been the only methodology used so far to overcome dynamic load

imbalance [9, 10, 23, 38, 40, 41, 45,]. Most of these methods use profiling by gathering

information on the workload from a previous time step in the execution of an algorithm

in order to estimate the optimal workload distribution at the present time step.

"Profiling", in this context, refers to a detailed performance analysis that is only available

after the program is finished, or at least after the current program iteration is completed.

The cost of these methods increases with the number of processors and problem size [39,

40, 44, 45]. A random assignment of certain sized amounts of work to processors has also

been considered to improve the performance of simulations affected by load imbalance

[18]. With random assignment, the load imbalances of individual work units mute each

other out to some extent. However, performance of these scientific applications is then

severely degraded by loss of locality.

Another important observation is that the above methods employ a static

assignment of workload to processors during a time step, due to an assumption that the

data distribution changes slowly between time steps. These assumptions are not valid in

 18

the entire spectrum of scientific applications and therefore these methods are not robust,

especially in the case of applications where none of the existing load balancing strategies

accommodates the unpredictable behavior of simulations (i.e. plastic deformations,

nonisothermal multiphase flow, etc.). Therefore, there is a need for developing new

techniques that address load imbalances between time steps, as well as during a time step.

Dynamic scheduling schemes attempt to maintain balanced loads by assigning

work to idle processors at runtime. Thus, they accommodate systemic as well as

algorithmic variances. In general, there is a tension between exploiting data locality and

dynamic load balancing as the re-assignment of work may necessitate access to remote

data. The cost of dynamic schemes is loss of locality, which translates into increased

overhead. Another potential shortcoming involves the amount of data exchanged among

tasks to balance the load. If the amount of data is too large, the resulting corrections

might be too coarse. If the amount of data is too small, the process of exchanging data

might incur much overhead. Thus, in master/worker parallelism if the increment of

workload that the master distributes is too small or too large, this might lead to either

inefficiency or imbalance.

Since loops are the most prevalent source of parallelism in scientific applications,

their scheduling on parallel machines has received considerable attention. The

fundamental tradeoff when scheduling parallel loops is processor load imbalance versus

overhead due to synchronization and communication. Parallel loop scheduling schemes

have been widely analyzed and measured [25, 28, 31, 43].

 19

Factoring, a scheduling scheme that evolves from earlier loop scheduling

techniques, balances processor loads while reducing the overhead of synchronization

[22]. Loop iterates are dynamically scheduled in decreasing size chunks such that early

larger chunks have relatively little overhead, and their uneven finishing times are

smoothed over by later smaller chunks. The technique minimizes the cumulative

contributions of load imbalances and scheduling synchronization. A technique for

reducing communication, called Tilling, statically partitions the iteration space into tiles

whose shape is chosen to maximize data reuse and locality. Factoring selects the optimal

chunk sizes, (i.e. how many iterates to group together), while Tiling selects optimal

chunk shapes (i.e. which iterates to group together).

Another technique, Fractiling, combines the load balancing advantages of

Factoring with the data reuse properties of Tiling [3, 21]. In this combined scheme,

chunk sizes are determined globally according to a Factoring rule, while chunk shapes are

determined locally according to a Tiling rule. The Fractiling method was developed in

response to the shortcomings of other methods and has successfully been applied to N-

body simulations [4, 6]. It is based on a probabilistic analysis, and therefore

accommodates load imbalances caused by predictable events (such as irregular data) and

unpredictable events (such as data access latency). Fractiling adapts to algorithmic and

system induced load imbalances while maximizing data locality. In Fractiling, the

computation space is initially placed to processors in tiles, to maximize locality.

Processors that finish early "borrow" decreasing size subtiles of work units from slower

processors to balance loads. The sizes of these subtiles are chosen so that they have a

 20

high probability of finishing before the optimal time. Subtile assignments are computed

in an efficient way by exploiting the self-similarity property of fractals. These decreasing

size chunks are represented by multidimensional subtiles of the same shape selected to

maximize data reuse. The subtiles are combined in Morton order in larger subtiles, thus

preserving the self-similarity property [4, 6]. Early in the program run, large

performance variations can be accommodated by exchanging large subtiles. As the

computation progresses, the subtiles shrink so that smaller variations can be corrected.

By having subtile sizes based on a uniform size ratio, a complex history of executed

subtiles does not need to be maintained. Each task simply keeps track of the size of its

currently executing subtile, and in this way, the unit of data exchange among tasks is the

largest subtile currently being executed by any task. Thus the algorithm inherently

minimizes the global "bookkeeping" overhead.

This technique allows negotiations by idle resources to replace profiling. The

load balancing actions are a function of performance, in the sense that idle processors

have performed well, but are not a function of a direct performance measurement.

Rather, they simply exchange work from "busy" processors to "idle" ones. This reduces

overhead, as detailed data collection is not needed, and increases responsiveness, as load

balancing can occur during an iteration step. The bulk of load balancing work is

performed by idle tasks and therefore little negative effect on runtime is expected.

Additionally, Fractiling does not take into account the source of load imbalance in order

to spur useful performance gains. Even applications where the amount of computation

 21

per data element varies dynamically can benefit, because it would simply have to search

for idle and busy resources.

In the implementation of Fractiling in a distributed environment, one of the

processors selected as master and called Fractiling Master controls and maintains the

entire data exchange information. In addition, it performs computation as all the other

processors do, called Fractiling Tasks. When computation starts, the Fractiling Master

divides the computation space into P tiles, one per processor. Each Fractiling Task starts

by working first on half of its tile. When this subtile is finished, the Fractiling Task sends

a Fract_Ask message to the Fractiling Master to request additional work. The Fractiling

Master updates its information and assigns a new subtile size to the requesting Fractiling

Task. If a Fractiling Task completes its own tile, and there is still work left in other

Fractiling Task's tile, the Fractiling Master sends a request to another Fractiling Task to

send data to the idle Fractiling Task. The data is then forwarded to the idle Fractiling

Task, which works on the received data and sends the result back to the owner. The

above process is repeated until there is no more work left in any Fractiling Task's tile.

When assigning subtiles to the Fractiling Tasks, the Fractiling Master always observes

the following rules: (i) a task will have to have all the work completed in its own tile

before starting to help another Fractiling Task; (ii) after completing its own tile, a

Fractiling Task will always work on a tile with the largest available unfinished subtile

size.

Experimentation on both a distributed memory shared-address space and a

message passing environment with Fractiling schemes applied to N-body simulations

 22

have been presented in [3, 4, 6]. The distributed memory shared-address space

implementation was run on a KSR-1 at the Cornell Theory Center and the message

passing environment implementation was run on an IBM SP2 at the Maui High

Performance Computing Center. In experiments involving both uniform and nonuniform

data distributions, performance of N-body simulation codes was improved by as much as

53% by Fractiling. The corresponding coefficient of variation of processor finishing

times among the simulation tasks was extremely small, indicating a very good load

balance was obtained. Performance improvements were obtained even on uniform data

distributions, underscoring the need for a scheduling scheme that accommodates system-

induced variance in addition to the algorithmic one.

 23

CHAPTER III

DESIGN AND IMPLEMENTATION

Hector achieves better resource utilization by migrating tasks from highly loaded

workstations to idle or lightly loaded workstations. Since task sizes are unequal, an

application using this coarse-grained load balancing strategy only will continue to suffer

from load imbalance. On the other hand, applications employing fine-grained data

parallel load balancing strategies, such as Fractiling, ensure a high degree of load

balancing by migrating data from one task to another. However, in a distributed

computing environment an application using Fractiling may suffer from poor resource

utilization, because task migration is not supported. One or more of the processors

executing Fractiling tasks may become heavily loaded by other applications, thereby

significantly degrading the performance of the Fractiling application. Having the

capability to migrate a Fractiling task from a heavily loaded to an idle or lightly loaded

processor would enable the Fractiling application to utilize resources more efficiently.

To take advantage of the benefits offered by Hector and Fractiling, a new system

integrating both has been designed and implemented. This system, Hectiling, combines

systemic information gathering and task migration capabilities of Hector with fine-

grained algorithmic load balancing advantages of Fractiling. Before describing the

integrated architecture, the following two sections present the architecture of Hector and

centralized management implementation of Fractiling.

 24

3.1 Hector Architecture

Hector is designed around a master-slave hierarchy. Figure 1 shows the

architecture of Hector. There is a single task called the Master Allocator (MA) that

performs all of the decision-making functions. This task doesn’t control MPI programs

directly, but communicates with tasks called Slave Allocators (SA). There is one slave

allocator per node. Each slave allocator controls all MPI tasks running on its machine,

and monitor their performance characteristics. It reports the performance information

back to the MA, which makes decision about allocation and migration. The MA

periodically collects information from every node on the network. If required, it then

sends a command to migrate a targeted task to the slave allocator that launched the tasks.

The slave allocators are directly involved in the process of migrating an MPI task.

They notify a task that needs to migrate, track the status of migration, and notify the

master that migration has completed. The SAs communicate with the MPI tasks under its

control by maintaining a permanent UNIX socket at a predetermined port number, which

allows the tasks to send information about their current status. The communication

mechanisms and protocols used by the SAs to pass control information is an important

part of Hector design and it is done through \a listener process attached to each MPI task.

 25

Figure 3.1 Hector Architecture

Task migration is the most important feature of Hector. There are three aspects to

task migration. First, it is necessary to encapsulate a program’s state completely. Second,

the state must be transferred to the destination as efficiently as possible. Third, the state

must be reconstructed correctly and in such a way as not to corrupt the MPI environment.

The process of task migration is shown in Figure 2 and the steps are as follows:

1. When the MA decides to migrate a task, it sends a message to the appropriate SA,

which in turn sends migration message to that task’s listeners.

2. The listener finishes handling any other events such as establishing a connection,

and sends a control signal to the tasks.

3. The task sends a notification about its pending migration to all other tasks’

listeners and begins waiting for End Of Channel (EOC) messages from other

tasks.

System
Info

Performance
Info Commands

Performance
Info

Commands

Master Allocator
Decision Maker

Slave Allocator
Other Slave Allocators

Local MPI
Tasks

 26

4. After all EOC messages have been received, the task closes all active connections.

5. The MA informs the SA on the destination node and the task is spawned with the

arguments to read in the program state.

6. After the task has restarted, it sends its new location information to all other tasks’

listeners.

7. The task sends a message back to the SA that the migration is complete and it is

now available for migration again. Further details of Hector architecture and task

migration can be found in [33-37].

Figure 3.2 Migration of Task under Hector

3.2 Fractiling Implementation

Fractiling adapts to algorithmic and system induced load imbalances while

maximizing data locality. In Fractiling, the computation space is initially placed to

processors in tiles, to maximize locality. Processors that finish early "borrow" decreasing

X

Notify
Migration

Notify
Completion

Ready
Message

Send
Migration
Signal

Task Migration

Master Allocator

Slave Allocator Slave Allocator Slave Allocator

Task to be
Migrated Other Tasks Migrated

Task

 27

size subtiles of work units from slower processors to balance loads. The sizes of these

subtiles are chosen so that they have a high probability of finishing before the optimal

time. Subtile assignments are computed in an efficient way by exploiting the self-

similarity property of fractals. Early in the program run, large performance variations

can be accommodated by exchanging large subtiles. As the computation progresses, the

subtiles shrink so that smaller variations can be corrected. By having subtile sizes based

on a uniform size ratio, a complex history of executed subtiles does not need to be

maintained. Each task simply keeps track of the size of its currently executing subtile,

and in this way, the unit of data exchange among tasks is the largest subtile currently

being executed by any task. Thus the algorithm inherently minimizes the global

"bookkeeping" overhead.

In a centralized management implementation of Fractiling scheme, one processor

is selected as master, which manages the global variable and schedule data among other

processors. Thus, Fractiling also works around a master/slave hierarchy. The Fractiling

communication pattern is shown in Figure 3. Fractiling divides the computation space

into P tiles, one tile per processor. At the beginning each processor works on the half in

its own tile. If a processor finishes its first half, it sends a FRACTILE_ASK message to

the master. The master receives the message looks up the global variables, and then it

assigns a job (subtile) to the requesting processor with FRACT_REPLY mesaage. The

requesting processor receives the answer and continues to work. If the requesting

processor completes its own tile and there is work available in other processor’s tile, the

master will assign a subtile size in a neighboring processor, and then sends a

 28

FRACT_COMM message to tell the neighboring processor to send its data to the helper

(requesting processor). Meanwhile, the master sends FRACT_REPLY to the requesting

processor indicating which processor is to be helped. The neighbor receives the message,

and sends its data to the helping processor using FRACT_ORG_DATA. The helper

receives the FRACT_ORG_DATA and works on the data. After completion, it sends a

FRACT_ASK to the master to request a new job, and also sends the result to the

processor (FRACT_FIN_DATA) that owns the data. The owner receives the data and

stores it. The above steps are repeated until no subtiles are left.

When assigning subtiles, the master processor always observes the following

rules:

• After completing its own tile a processor will help another processor to

complete its tile.

• After completing its own tile, a processor will always work on the largest

subtile available.

• At any time, the processor will finish its own tile first, then help other

processors.

With the combination of these features, Fractiling improves data locality and

reduces load imbalance.

 29

Figure 3.3 Master/Slave communication in Fractiling

3.3 Hectiling Design and Implementation

The architecture of Hectiling is shown in Figure 4. Since Fractiling requires

communications to control exchanges of data between tasks, and Hector has a built in

information gathering infrastructure, it was decided in the first phase of this design to a

re-routing of “Fractile_Ask messages” from Fractiling Tasks to the Fractiling Master via

the MA. This requires a communication channel from Fractiling Tasks to the MA. The

integration imposes several challenges. In the Hector paradigm, the MPI tasks do not

communicate with the MA. Thus, a communication mechanism has to be devised from a

task to the MA, and care has to be taken so that non-Fractiling tasks, where task-to-MA

communication is not required, could also run under the same integrated system. To

accomplish this, the location and port number of the MA must first be conveyed to all

Master

Proc 1

Proc 2

1. FRACTILE_ASK

2. FRACTILE_REPLY

3. FRACT_COMM

4. FRACT_ORG_DATA 5. FRACT_FIN_DATA

 30

Fractiling Tasks. Once the Fractiling Master receives this information, it "registers" with

the MA by opening a socket and sending its port number and host name to the MA. As a

result, the MA is able to recognize which of the tasks is the Fractiling Master and where

to forward the Fractile_Ask messages. During the execution of the Fractiling application,

when the MA receives a Fractile_Ask message, it first checks to see if the Fractiling

Master has been "registered". If so, the message is forwarded to the Fractiling Master. If

not, the message is put into a queue which, has already been created at the beginning of

the execution of the Fractiling application. This queue is being maintained by the MA

throughout the execution of the application. Once the Fractiling Master registers with the

MA, all pending messages are forwarded to it. At the same time, the MA sends a

message to the Fractiling Master's SA, which in turn interrupts the Fractiling Master

allowing it to read the associated message from its socket (see Figure 5). This

mechanism was designed to address the fact that UNIX does not allow task interrupts on

remote machines.

The integration also imposes another challenge on Hector migration mechanism.

In Hector, all the MPI tasks are treated equally, and the migration process is the same for

all the tasks. However, in Hectiling the migration of the Fractiling Master is different

from the ones of Fractiling Tasks. This is due to the fact that the MA needs to forward

the Fractile_Ask message to the Fractiling Master. Thus, the MA has to have the

information about the location of the Fractiling Master, and this is achieved by the

registration process of Fractiling Master presented above.

 31

Figure 3.4 Hectiling Architechture

In case of migration, the Fractiling Master first un-registers itself with the MA,

and upon completing the migration, it re-registers itself again with the MA. The un-

registration process consists of two steps. First, when the MA decides to migrate the

Fractiling Master, it sends an End-of-Channel message to the Fractiling Master, and stops

forwarding any Fractile_Ask message to it. If the MA receives any Fractile_Ask

messages from the Fractiling Tasks before the migration is complete, it queues these

messages. This process ensures that no Fractile_Ask message is lost during the migration

of the Fractiling Master. In the second step, the Fractiling Master closes its socket as

soon as it receives the End-of-Channel message, and only then the migration could start.

The re-registration process involves the opening of a new socket and sending of the

associated port number and the new host name to the MA. After re-registration, the MA

sends any messages queued during the migration to the Fractiling Master.

 Registration

Fractile_Ask Fractile_Ask

Data Migration

Command

Hector

Info

Fractiling
Info

Data
Migration

Master Allocator

Slave Allocator

Fractiling

Task

 Fractiling

Task

Fractiling

Master

Command

Slave Allocator
 Slave Allocator

 32

Figure 3.5 Fractiling State Update: Interrupt-driven model

Local
Socket

5. Local
Queue

1. State
Update

2. Forwarded
State Update

3. Orders
Signal

4. Signal

Master Allocator

Fractiling
Task

Slave Allocator

Fractiling
Master

 33

CHAPTER IV

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

The experiments with the integrated system were conducted in two phases. In the

first phase, Hectiling experiments were conducted without process migration. The results

are described in section 4.1. Section 4.2 describes the results of experiments with

Hectiling using process migration. Experiments were conducted on a system which

consists of thirty-two 90 MHz Ross HyperSPARC processors arranged in a cluster of

eight 4-processor machines. Each of the machines is a SMP running Solaris 2.6. The

machines are connected by three interconnection technologies: (i) 155 Mbits/sec ATM

switches, (ii) Myrinet, (iii) 10 Mbits/sec Ethernet. Any of them could be used for

communication between machines. The ATM interconnection has been used in the

experiments presented here. The experiments were conducted with three different data

distributions: a uniform distribution ("Uniform"), a nonuniform Gaussian distribution

("Gaussian"), and a nonuniform Gaussian distribution with the center shifted to the center

of one of the octants of the computation space ("Corner"). Each distribution has four

different data sizes: 10K particles, 20k particles, 50k particles and 100k particles. In total

we conducted the experiments with 12 different data sets. All the executions were carried

out three times and the result of the three executions were averaged. The metrics that has

been chosen to measure the performance of different techniques are the parallel cost and

 34

the coefficient of variation (C.O.V) of processors finishing times. They are defines as

follows:

Cost = P X TP

 P = Number of processor used

 TP = Execution time of the processor which finishes last

µµ
/)

1

)(
(..

1

2

� = −
−

= n

i

i

n

x
voc

 xi = Execution time of an individual processor

 n = Number of processors

 µ = Mean of xi s

For each experiment individual processor finishing time was measured, from this parallel

cost and coefficient of variation of individual processor finishing time was calculated.

4.1 Hectiling without Migration

For testing in phase one, five implementations of the N-body simulations based

on the Parallel Fast Multipole Algorithm (PFMA) by Greengard [19] have been used: (i.)

without Fractiling (PFMA); (ii.) with Fractiling (Fractiling); (iii.) under the Hector

environment and without Fractiling (HPFMA); (iv.) with Fractiling under Hector

environment (HFractiling); and (v.) with Hectiling (Hectiling).

All distributions were run on 4, 8, 16 and 32 processors while the system was

exclusively used for these experiments, to exclude the effects of any external loads. The

costs of runs using the "Uniform", "Gaussian", and "Corner" distributions for data size of

 35

100k particles are shown in Figures 6-8. The costs of runs for data sizes 10K, 20K and 50

K particles are shown in Appendix – A. From these results, it can be seen that in almost

all cases the costs of Fractiling, HFractiling, and Hectiling are lower than those of PFMA

and HPFMA. When HFractiling is compared to Hectiling, it can be seen that the cost of

Hectiling is in general lower. However, for 32 processors, the cost of Hectiling becomes

higher than that of HFractiling.

 36

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)
PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.1 Cost for Uniform Distribution (100 K particle)

0

1000

2000

3000

4000

5000

6000

7000

8000

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.2 Cost for Gaussian Distribution (100 K particle)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.3 Cost for Corner Distribution (100 K particle)

 37

0

50

100

150

200

250

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.4 Cost for Uniform Distribution (10 K particle)

0

100

200

300

400

500

600

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.5 Cost for Gaussian Distribution (10 K particle)

0

50

100

150

200

250

300

350

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.6 Cost for Corner Distribution (10 K particle)

 38

0

100

200

300

400

500

600

700

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)
PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.7 Cost for Uniform Distribution (20 K particle)

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.8 Cost for Gaussian Distribution (20 K particle)

0

200

400

600

800

1000

1200

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.9 Cost for Corner Distribution (20 K particle)

 39

0

200

400

600

800

1000

1200

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)
PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.10 Cost for Uniform Distribution (50 K particle)

0

500

1000

1500

2000

2500

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.11 Cost for Gaussian Distribution (50 K particle)

0

200

400

600

800

1000

1200

1400

1600

4 8 16 32

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.12 Cost for Corner Distribution (50 K particle)

 40

The coefficients of variation (C.O.V.) of processors finishing times for data sizes

100K are shown in Figures 9-11. They are significantly lower for Hectiling, HFractiling

and Fractiling when compared to PFMA and HPFMA. From the results presented in this

section, it can be seen that the cost of Hectiling is slightly lower than those of HFractiling

and Fractiling when a lower number of processors is used. However, when a higher

number of processors is used, the cost of Hectiling is higher. The underlying

communication structure and the nature of the Fractiling algorithm are responsible for

these differences in costs. Hectiling uses UNIX sockets to implement this

communication. The MA maintains a single socket for receiving Fractile_Ask and

Hector update messages, whereas Fractiling routes Fractile_Ask messages directly from

the Fractiling task to the Fractiling master by using the MPI infrastructure. Eventhough

Hectiling adds an additional hop to the route taken by the Fractile_Ask messages, the

socket implementation is faster. As a result, the overall cost of Hectiling is lower than

that of HFractiling. However, as the number of processors increases, the number of

Fractile_Ask messages also increases due to a larger number of Fractiling chunks. As the

running application proceeds, the chunks sizes become smaller and require less time to

complete. This translates into an increased communication overhead, due to an increase

in frequency of Fractile_Ask messages. Therefore, at a higher number of processors, this

creates a bottleneck in the MA and the cost of Hectiling increases disproportionately.

This problem can be alleviated by two techniques, which could be simultaneously

applied. One technique is to reduce the number of Fractiling chunks by increasing the

 41

minimum chunk size. The other is to create separate sockets, one for Fractile_Ask

messages and another for Hector update messages.

Increasing the minimum chunk size would reduce the total number of Fractiling

scheduled chunks. As a result, the number of Fractile_Ask messages would be reduced.

However, with the increasing of the minimum chunk size, the probability of an increased

load imbalance is higher.

 42

0

0.05

0.1

0.15

0.2

0.25

4 8 16 32
No. of Processors

C.
O.
V

PFMA
HPFMA
Fractiling
Hfract
Hectiling

Figure 4.13 C.O.V for Uniform Distribution (100 K particle)

Figure 4.14 C.O.V for Gaussian Distribution (100 K particle)

Figure 4.15 C.O.V for Corner Distribution (100 K particle)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 8 16 32
No. of Processors

C.
O.
V

PFMA
HPFMA
Fractiling
Hfract
Hectiling

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4 8 16 32
No. of Processors

C.
O.
V

PFMA
HPFMA
Fractiling
Hfract
Hectiling

 43

A careful tuning of the minimum chunk size should reduce the impact of the increased

communication overhead. Experiments using 32 processors for a uniform data

distribution with various minimum chunk sizes were conducted. The experimental

results show that increasing the minimum chunk size from one to two iteration units,

increases the performance by 8% for HFractiling and 12% for Hectiling, while increasing

the chunk size from one to four iteration units increases the performance by only 5% for

HFractiling and 10% for Hectiling. With a minimum chunk size of one iteration unit

versus two iteration units, the increase in communication overhead is larger than the gain

obtained by load balancing. When the minimum chunk size is four iteration units versus

two iteration units, the benefit of reducing the communication overhead is outweighed by

the increase in load imbalance. Therefore, these experiments establish an optimal

minimum chunk size of two iteration units for best performance. In general, optimal

minimum chunk size may vary depending on the use of a specific architecture,

application, data distribution, etc. These results support the theory on which Fractiling is

based. In addition, these results show that the amount of performance improvement is

larger for Hectiling than for HFractiling. More experiments using different minimum

chunk sizes, data distributions, and problem sizes are required to determine the optimum

chunk size for best performance.

The other technique for improving performance requires a separate dedicated

socket for Fractile_Ask messages. Presently, the MA processes all messages it receives

in order of their arrival. As a result, towards the end of the computation when the

frequency of messages increases, Fractile_Ask messages stall at the MA before being

 44

forwarded to the Fractiling Master. To reduce the average stalling time the MA can use

two separate sockets, one for the Fractile_Ask messages and another one for Hector

update messages. Messages at the Fractile_Ask message socket should be given priority

in such a way that the stalling time is reduced and that the Hector update messages do

not suffer from starvation.

4.2 Hectiling with Migration

In this phase of testing five implementations of N-Body Simulations, using

PFMA, HPFMA, Fractiling, HFractiling and Hectiling were studied. Since maximum of

32 processors were available and for task migration idle processors are required,

experiments could not be executed on 32 processors. The experiments were executed on

2, 4, 8 and 16 processors. To determine the optimum chunk size, we conducted a limited

number of experiments with all the distributions on 16 processors with minimum chunk

sizes of one, two and four iteration units. The results show that the cost was least when

the chunk size was two iteration units. As a result, a minimum chunk size of two iteration

units was chosen for all the experiments in this phase. There were two sets of

experiments in this phase. The first set of experiments was conducted with no external

load. The costs of runs on all distributions without external load for data sizes 100K and

50K particles are shown in Figures 12-17. The second set of experiments was conducted

with controlled external load to measure the performance of migration. A specially

developed external application which takes about 50% of the processor cycles was

launched on half the processors about 10 seconds after the execution started. The

 45

execution costs for all the distributions for data sizes 100k and 50K particles are shown in

Figures 18-23.

From these figures it can be seen that when there is no external load, the cost of

HFractiling is slightly higher than that of Fractiling, and the cost of Hectiling is always

lower than that of Fractiling. The reason for this behaviour has been discussed in

subsection 4.1.

 46

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.16 Cost for Uniform Distribution without Load (100 K particle)

0

500

1000

1500

2000

2500

3000

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.17 Cost for Gaussian Distribution without Load(100 K particle)

0

1000

2000

3000

4000

5000

6000

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.18 Cost for Corner Distribution without Load (100 K particle)

 47

0

100

200

300

400

500

600

700

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)
PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.19 Cost for Uniform Distribution without Load (50 K particle)

0

200

400

600

800

1000

1200

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.20 Cost for Gaussian Distribution without Load (50 K particle)

0

500

1000

1500

2000

2500

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.21 Cost for Corner Distribution without Load (50 K particle)

 48

0

500

1000

1500

2000

2500

3000

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)
PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.22 Cost for Uniform Distribution with Load (100 K particle)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.23 Cost for Gaussian Distribution with Load(100 K particle)

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.24 Cost for Corner Distribution with Load (100 K particle)

 49

0
100

200
300

400
500

600
700

800
900

1000

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)
PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.25 Cost for Uniform Distribution with Load (50 K particle)

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.26 Cost for Gaussian Distribution with Load (50 K particle)

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16

No. of Processors

C
o

st
 (

se
c.

)

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.27 Cost for Corner Distribution with Load (50 K particle)

 50

However, when there is external load, the cost of Fractiling is found to be always higher

than that of HFractiling or Hectiling, and is also found to be considerably higher than

that of Fractiling with no external load. This can be attributed to the external load, which

takes away CPU cycles, resulting in an increase of Fractiling cost. In the case of

HFractiling or Hectiling, the external load causes the process to migrate to an idle

processor where it can use the CPU exclusively. As a result, the introduction of an

external load does not result in a cost increase. Due to migration overhead, the costs of

HFractiling and Hectiling with external loads are slightly higher than those of Fractiling

with no external loads. The results show that because of its capability to migrate tasks

from busy workstations to idle ones, Hectiling performs much better than Fractiling when

external workloads are present. The results also show that Hectiling performs better than

HFractiling. In addition, under no load conditions, Hectiling slightly outperforms both

Fractiling and HFractiling, which indicates that the overhead of Hectiling is lower than

that of Fractiling and HFractiling. The coefficients of variation (C.O.V.) of processors

finishing times for data sizes 100K are shown in Figures 24-26. They are similar for

Hectiling, HFractiling and Fractiling, and significantly lower when compared to PFMA

and HPFMA. The C.O.V.s of PFMA and HPFMA are 6 to 2000 times larger than those

of Hectiling

 51

0

0.05

0.1

0.15

0.2

0.25

2 4 8 16

No. of Processors

C
.O

.V

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.28 C.O.V for Uniform Distribution (100 K particle)

Figure 4.29 C.O.V for Gaussian Distribution (100 K particle)

Figure 4.30 C.O.V for Corner Distribution (100 K particle)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 8 16

No. of Processors

C
.O

.V

PFMA

HPFMA

Fractiling

Hfract

Hectiling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 8 16

No. of Processors

C
.O

.V

PFMA

HPFMA

Fractiling

Hfract

Hectiling

 52

4.3 Analysis

Figure 27-29 show the percentage of improvement of Hectiling in cost over

HPFMA, Fractiling and HFractiling without load for all Distribution for data size100K.

Figure 30-32 shows the percentage of improvement with load for data sizes 100K. From

these result it can be seen that Hectiling always achive better performance than

HPFMA,Fractiling or Hfractiling. In general as number of processor increases for a

particular data size the percentage improvement also increases slighly. This is because as

the number of processor increases the load imbalance also increases and Hectiling does a

better load blanacing than HPFMA, Fractiling or Hfractiling. More over the percentage of

improvement over Fractiling with load is more than that of without load. That is because

Hectiling migrates tasks from nodes with exaternal load to idle nodes, which Fractiling

cannot do.

Table 1-3 shows speed up for all distributions and data sizes without external

load. The speed up is similar for Hectiling, Hfractiling and Fractiling. The speed up

increases as the number of processors increases. This indicates that all these methods

scale well as the number of processor increases. Moreover, for particular number of

processor as the problem size increases the speed up increases, which indicates that

Hectiling, Hfractiling and Hectiling scale well as the problem size increases.

For every method we have conducted 48 experiments (12 data sets on 4 different

number of processors) in the first phase, and 96 experiments (48 without external load

and 48 with external load) in the second phase. Out of 144 experiments only in 9

experiments Hectiling performs worse than Fractiling and in all cases Hectiling performs

 53

better than HPFMA (PFMA under Hector). In experiments where external load is used

(48 experiments), Hectiling always performed better than all other methods. Since in

normal operating environment in network of workstations it is reasonable to assume that

external loads will be present, the experimental results underscore the importance of

running scientific applications using Hectiling.

In all experiments of up to sixteen processors Hectiling always performed better

than Fractiling or HPFMA. In the first phase of experimentation, in eight experiments out

of forty eight experiments, Hectiling performed worse than Fractiling or HPFMA; these

results occurred when the experiments were conducted on thirty two processors. There

are two explanations for these behaviors. First, task migration, one of the major

components of Hectiling could not be activated while running experiments on thirty two

processors because a maximum of thirty two processors were available, and there were

no idle processors available for task migration. The second explanation is that the

problem sizes were not big enough to get a performance improvement. More

experimentation would be conducted in the future on higher number of processors and

larger problem sizes.

 54

0

5

10

15

20

25

2 4 8 16

No. of Processors

%
 o

f
Im

p
ro

ve
m

en
t

Over
Fractiling
Over
HFractiling
Over
HPFMA

0

5

10

15

20

25

2 4 8 16

No. of Processors

%
 o

f
Im

p
ro

ve
m

en
t

Over
Fractiling
Over
HFractiling
Over
HPFMA

0

5

10

15

20

25

30

35

40

2 4 8 16

No. of Processors

%
 o

f
Im

p
ro

ve
m

en
t

Over
Fractiling
Over
HFractiling
Over
HPFMA

Figure 4.31 Hectiling Cost Improvement for Uniform Distribution without Load (100 K particles)

Figure 4.32 Hectiling Cost Improvement for Gaussian Distribution without Load(100 K particles)

Figure 4.33 Hectiling Cost Improvement for Corner Distribution without Load (100 K particles)

 55

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16

No. of Processors

%
 o

f
Im

p
ro

ve
m

en
t

Over
Fractiling
Over
HFractiling
Over
HPFMA

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16

No. of Processors

%
 o

f
Im

p
ro

ve
m

en
t

Over
Fractiling
Over
HFractiling
Over
HPFMA

0

5

10

15

20

25

30

35

40

2 4 8 16

No. of Processors

%
 o

f
Im

p
ro

ve
m

en
t

Over
Fractiling
Over
HFractiling
Over
HPFMA

Figure 4.34 Hectiling Cost Improvement for Uniform Distribution with Load (100 K particles)

Figure 4.35 Hectiling Cost Improvement for Gaussian Distribution with Load(100 K particles)

Figure 4.36 Hectiling Cost Improvement for Corner Distribution with Load (100 K particles)

 56

Table 4.1 Speedup for Uniform Distribution

Processors 2 4 8 16 Problem

Size

(Particles)

Method

Hectiling 1.84 3.21 5.67 6.89

Hfractiling 1.82 3.14 5.41 6.65

10 K

Fractiling 1.78 2.99 5.01 6.09

Hectiling 1.89 3.55 6.02 9.76

Hfractiling 1.86 3.48 5.96 9.44

20 K

Fractiling 1.81 3.25 5.76 8.90

Hectiling 1.91 3.76 6.97 10.79

Hfractiling 1.89 3.67 6.88 10.67

50 K

Fractiling 1.86 3.54 6.55 10.41

Hectiling 1.94 3.92 6.89 12.52

Hfractiling 1.93 3.83 6.78 12.34

100 K

Fractiling 1.91 3.64 6.76 12.02

 57

Table 4.2 Speedup for Gaussian Distribution

Processors 2 4 8 16 Problem

Size

(Particles)

Method

Hectiling 1.73 2.88 4.80 5.98

Hfractiling 1.64 2.73 4.61 5.78

10 K

Fractiling 1.66 2.76 4.62 5.81

Hectiling 1.72 2.79 5.12 7.45

Hfractiling 1.63 2.71 4.95 7.18

20 K

Fractiling 1.67 2.73 4.99 7.21

Hectiling 1.92 3.61 6.28 8.28

Hfractiling 1.81 3.38 6.02 8.02

50 K

Fractiling 1.84 3.41 6.06 8.05

Hectiling 1.73 3.21 6.02 8.03

Hfractiling 1.81 3.30 6.11 8.17

100 K

Fractiling 1.82 3.31 6.13 8.18

 58

Table 4.3 Speedup for Corner Distribution

Processors 2 4 8 16 Problem

Size

(Particles)

Method

Hectiling 1.79 2.87 4.88 6.87

Hfractiling 1.72 2.49 4.67 6.53

10 K

Fractiling 1.75 2.51 4.68 6.55

Hectiling 1.82 2.94 5.08 8.32

Hfractiling 1.95 2.48 4.81 7.97

20 K

Fractiling 1.93 2.52 4.84 8.00

Hectiling 1.94 2.99 5.57 9.58

Hfractiling 1.88 2.84 5.45 9.22

50 K

Fractiling 1.90 2.86 5.44 9.27

Hectiling 1.93 2.89 5.65 9.88

Hfractiling 1.90 2.73 5.22 9.47

100 K

Fractiling 1.91 2.72 5.25 9.49

 59

The implementation of Hectiling and succecsfull run of experiments on different

data sizes and processors validates the first part of the hypothesis, which state that: “The

integration of an algorithmic load balancing strategy (Fractiling) with a systemic load

balancing strategy (Hector) is possible.”

When no external load is present in 92% (88 out of 96) experiments, Hectiling

performs better than all other techniques. If we consider all the experiments in 94% (136

out of 144) experiments, Hectiling performs better than Fractiling and in all case it

performs better than HPFMA. In experiments with external load Hectiling always

performs better than Fractiling or HPFMA. From these experiments it can be said that

the following inequality has been proven for all cases up to sixteen processors and in

92% cases up to thirty-two processors.

CHectiling ≤ Min (CFractiling, CHPFMA)

Where:

CHectiling = Parallel execution cost in Hectiling

CFractiling = Parallel execution cost in Fractiling

CHPFMA = Parallel execution cost in Hector

Hence the second part of the hypothesis has also been proven.

 60

CHAPTER V

CONCLUSION AND FUTURE WORK

Load balancing improves the efficient use of resources and therefore the

performance of parallel and distributed applications. Over time, systemic techniques

have improved the performance of runtime systems at coarse-grained levels, while

algorithmic techniques have improved the performance of applications at fine-grained

levels. Combining strategies from both levels of granularity can result in methods, which

deliver advantages of both. This thesis describes lessons learned from the successes and

limitations of Hectiling, a system that combines an algorithmic strategy for data-parallel

load balancing with a systemic strategy for task-parallel load balancing. In addition,

avenues for performance enhancement are explored.

Earlier experiments with algorithmic and systemic load balancing strategies

showed their ability to improve performance. A systemic coarse-grained load balancing

was supported in Hector by monitoring and re-balancing loads via task migration.

Algorithmic, fine-grained load balancing was supported using Fractiling by a dynamic

redistribution of data assignments among tasks.

After realizing that Fractiling could benefit by accessing the run-time information

gathered by Hector, it was decided to develop an interface between them. The integrated

system was tested in order to measure the overhead of passing state-update messages

 61

through Hector's Master Allocator. The performance of the integrated version was better

than that of Fractiling alone or Fractiling under Hector, in the presence of external load as

well as in its absence. This performance improvement is due to the fact that the overhead

of Hectiling is considerably low while allowing dynamic process migration.

For larger number of processors, the Hectiling cost could be reduced in a few

ways. One way to improve performance is through tuning of the minimum chunk size.

Experiments with different minimum chunk sizes show that performance improvements

can be obtained simply by tuning of the Fractiling scheme. In addition, redesigning the

Master Allocator with multiple sockets may overcome the performance bottlenecks.

The integrated system was tested for N-body simulations. N-body simulations

have been widely used in a broad class of application areas of science such as

astrophysics, molecular dynamics, biophysics, molecular chemistry etc. Hectiling will

improve performance of any application that employs N-body simulations in a distributed

computing environment. Parallel N-body simulations are a data parallel application. It is

also reasonable to assume for this data parallel application, Hectiling will perform better

than applying Fractiling or Hector independently.

Extensions to both Hector and Fractiling may also prove fruitful. For example,

support for a distributed shared memory environment would enable thread-migration-

based load balancing, and the combination of Hector and Fractiling would then support

the three ways that computational load can be redistributed (task, data, and thread

migration). In addition, enhancements to Fractiling that are currently being pursued, may

in turn improve the functionality of the resulting integrated system.

 62

In cases where low-overhead measurements of performance can be made, some

improvements in Fractiling performance are possible. For example, measurements of

nearness to completion and of relative performance can allow the amount of data

exchange to be proportional to the actual performance. In general, the measurements

required are less expensive than the ones used in profiling, and can be immediately used,

instead of waiting until a subtile execution is completed. An advantage of the integration

of Fractiling and Hector into a single framework is that it specifically facilitates this

performance improvement. Since the MA periodically gathers information from the SAs

about the tasks running under them, the nearness to completion of subtiles can be

collected and forwarded to the Fractiling Master without any extra overhead. This

enables the Fractiling Master to transfer data from a slow Fractile Task to a Fractiling

Task, which is about to finish. As a result, the Fractiling Tasks would not run out of data,

and thus would not have to request the Fractiling Master to transfer data. This results in

minimizing communication and better resource utilization. Another advantage of this

integrated design is the re-routing of the Fractile_Ask message via the MA. Since the re-

routing is implemented using sockets, it is faster than a direct MPI based

communication between Fractiling Master and Fractiling Tasks. In general, the MPI

communications use lower level communication primitives (i.e., sockets), which involve

at least one extra level of interface. A third advantage of this integrated design is that the

controlling and the decision making component of the Fractiling Master could be moved

as a module inside the MA, and this would reduce some of the communication overhead.

 63

Hectiling can also be implemented on heterogeneous platforms. In such cases,

Hectiling migrates tasks between pairs of homogeneous workstations, as for example,

between pairs of Sun workstations, or pairs of SGI workstations, as opposed to between

Sun and SGI workstations. The migration cost between two Sun SPARCstations

connected by 10 Mbits/sec Ethernet was observed to be 0.6 Mbytes/sec[18]. If the

workstations are connected by various bandwidth interconnection networks, the

migration cost between different pairs of workstations will vary. In Hectiling, network

information, such as bandwidth, latency, and congestion of interconnects, is presently not

taken into account when making migration decisions. This may lead to reduced

performance in some situations where, for instance, a very large task is migrated between

workstations connected by a very slow connection. For such cases, the cost of migration

may be higher than the increase in cost of running the task on the busy workstation.

Further work to improve Hectiling can be pursued by incorporating network information

into task migration decisions.

The Hectiling paradigm can be generalized with little effort, to be applied to any

scientific application that is data parallel. Even more, any algorithmic load balancing

technique that works around a master slave strategy could be integrated into Hector with

minor modifications. By careful planning and design, it is possible to develop a set of

well-defined Hectiling APIs, which, in turn, can be used by scientific applications to

incorporate Hectiling.

 64

REFERENCES

1. C. R. Anderson, An Implementation of the Fast Multipole Method SIAM J. Sci. Stat.
Comput.,1992, 923-947.

2. M. Baker and G. Fox and H. Yau. Cluster Computing Review, Northeast Parallel

Architecture Center, Syracuse www.npac.syr.edu/techreports/hypertext/sccs-
0748/cluster-review.html, 1995.

3. I. Banicescu. Load Balancing and Data Locality in the Parallelization of the Fast

Multipole Algorithm, Ph.D. Dissertation, Polytechnic University, 1996 January.

4. I. Banicescu and S. F. Hummel. Balancing Processor Loads and Exploiting Data

Locality in N-Body Simulations, Proceedings of Supercomputing'95 conference,1995
(on CD-ROM).

5. I. Banicescu and S. F. Hummel. Balancing Processor Loads and Exploiting Data

Locality in Irregular Computations, IBM Research Report, 1995, RC19934.

6. I. Banicescu and R. Lu. Experiences with Fractiling in N-Body Simulations,

Proceedings of High Performance Computing'98 Symposium, 121--126, 1998.

7. I. Banicescu and S. Russ and M. Bilderback and S. Ghafoor. Competitive Resource

Management in Distributed Computing Environment with Hectiling Proceedings of
High Performance Computing'99 Symposium, 337-343, 1999.

8. I. Banicescu and S. Ghafoor and M. Bilderback. Efficient Resource Management for

Scientific Applications in Distributed Computing Environment, Proceedings of the
Workshop on Distributed Computing on the Web (DCW'98), 45--54,1998.

9. J. A. Board and J. Causey and J. F. Leathrum Jr. and Accelerated Molecular Dynamic

Simulations with the Parallel Fast Multipole Algorithm, Chemical Physics Letters,
1992, 198, 23-34.

10. J. A. Board and Z. S. Hakura and W. D. Elliot and others. Scalable Variants of

Multipole-based Algorithms for Molecular Dynamics Applications, In the Proceeding
of Seventh SIAM Conference on Parallel Processing for Scientific Computing, 1995,
SIAM, Philadelphia, 295--300, February.

 65

11. N. Carriero and E. Freeman and D. Gelernter and D. Kaminsky. Adaptive Parallelism
and Piranha, Computer, 28, 1, 40-49, 1995.

12. J. Casas and D. Clark and R. Konuru and S. W. Otto MPVM: A Migration

Transparent Version of PVM, Usenix Computing Systems Journal, 171--216, 8,
2,1995.

13. DQS User Manual - DQS Version 3.1.2.3Supercomputer Computations Research

Institute, Florida State University, 1995.

14. D.G. Feitelson, L. Rudolph, U. Schwiegelshohn,K.C. Sevcik and P. Wong". Theory

and Practice in Parallel Job Scheduling. IPPS '97 Workshop on Job Scheduling
Strategies for Parallel Processing, 1997.

15. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann, San Francisco, 1998.

16. Al Geist, Adam Beguelin, Jack Dongara, Weiching Jiang, Robert Manchek, and

Vaidy Sundaram. PVM: Parallel Virtual Machine. MIT Press, Cambridge, 1994.

17. R. Gibbons. A Historical Application Profiler for Use by Parallel Schedulers, IPPS

'97 Workshop on Job Scheduling Strategies for Parallel Processing, 1997.

18. Y. Grama, V. Kumar and A. Sameh. Scalable Parallel Formulations of Barnes-Hut

Method for N-Body Simulations, Proc. of Supercomputing'94, 439--448, November,
1994 .

19. L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulation, Journal of

Computational Physics, 1987, May, 325--48, 73.

20. Willium Gropp, Edwing Lusk and Anthony Skjellum. Using MPI. MIT Press,

Cambridhge 1994.

21. S. F. Hummel. Fractiling: A Method for Scheduling Parallel Loops on NUMA

Machines, IBM RC18958, 1993.

22. S. F. Hummel and E. Schonberg and L. E. Flynn, A Practical and Robust Method for

Scheduling Parallel Loops, Communications of the ACM, 1992, 358, August, 90—
101.

23. M.T. Jones and P.E. Plassman. Parallel Algorithms for Adaptive Mesh Refinement,

SIAM Journal on Scientific Computing", Vol.18, pp 686-708, 1997.

24. J. F. Leathrum and J. A. Board, The Parallel Fast Multipole Algorithm in Three

Dimensions, Duke University, Department of Electrical Engineering, 1992, TR92-
001, April.

 66

25. H. Li, S. Tandri, M. Stumm and K. C. Sevcik. Locality and Loop Scheduling on
NUMA Machines, Proceedings of Int. Conf. on Parallel Processing, pp II140-II147,
1993.

26. LSF. Product Reviews: Platform Computing Corp. Load SunExpert, 8, 8, 62--64,

1997

27. R. Lu, Parallelization of the Fast Multipole Algorithm with Fractiling in Distributed

Memory Architectures, Mississippi State University, 1997.

28. E. P. Markatos and T. J. LeBlanc. Using Processor Affinity in Loop Scheduling on

Shared-Memory Multiprocessors, IEEE Transactions on Parallel and Distributed
Systems, Vol. 5, No. 4, pp 379-400, 1992.

29. B. Neuman and S. Rao, The Prospero Resource Manager: A Scalable Framework for

Processor Allocation in Distributed System, Concurrency: Practice and Experience,
 339--355, 1994.

30. T.D. Nguyen, R. Vaswani and J. Zahorjan. Using Run-Time Measured Workload

Characteristics in Parallel Processing Scheduling, IPPS '96 Workshop on Job
Scheduling Strategies for Parallel Processing, 1996.

31. C. Polychronopoulos and D. Kuck. Guided Self-Scheduling: A Practical Scheduling

Scheme for Parallel Computers, IEEE Transactions on Computers, Vol. C-36, No. 12,
pp1425-1439, 1987.

32. J. Pruyne and M. Livney. Providing Resource Management Services to Parallel

Applications, Workshop on Job Scheduling Strategies for Parallel Processing,
Proceedings of the International Parallel Processing Symposium (IPPS 1995),1995.

33. J. Robinson and S. Russ and B. Flachs and B. Heckel. A Task Migration

Implementation of the Message-Passing Interface, 5th High Performance Distributed
Computing Conference (HPDC-5), 61--68, 1996.

34. S. Russ and B. Flachs and J. Robinson and B. Heckel. Hector: Automated Task
Allocation for MPI, 10th International Parallel Processing Symposium, 344--
348,1996.

35. S. Russ and M. Gleeson and B. Meyers and L. Rajagopalan and C. Tan, Using Hector

to run MPI Programs over Networked Workstation, Concurrency: Practice and
Experience, Accepted for publication.

36. S. Russ and B. Meyers and M. Gleeson and J. Robinson and L. Rajagopalan and C.
Tan and B. Heckel. User Transparent Run-Time Performance Optimization, The 2nd
International Workshop on Embedded HPC and Applications at the 11th IEEE
International Parallel Processing Symposium, 1997.

 67

37. S. H. Russ, K. Reece, J. Robinson, B. Meyers, L. Rajagopalan and C.-H. Tan. An
Agent Based Architecture for Dynamic Resource Management, IEEE Concurrency,
Vol. 7, No. 2, pp 47-55, 1999.

38. J. Salmon and M. S. Warren, Parallel, Out-of-core Methods for N-Body Simulation,

Proceeding of 8th SIAM Conference on Parallel Processing for Scientific Computing,
1997, SIAM.

39. J. Singh, Parallel Hierarchical N-Body Methods and Their Implications for

Multiprocessors, Stanford University, 1993 .

40. J. Singh and C. Holt and T. Totsuka and others, A Parallel Adaptive Fast Multipole

Algorithm, Proc. of Supercomputing'93, 54--65, 1993.

41. A. Sohn and R. Biswas and H. Simon. Dynamic Load Balancing Framework for

Unstructured Adaptive Computations on Distributed-Memory Multiprocessors,
Proceedings of Symposium on Parallel Algorithms and Architectures, 189-192, 1997.

42. T. Tannenbaum and M. Litzkow. The Condor Distributed Processing System, Dr.

Dobbs' Journal of Software Tools for 20, 2, 40--48, 1995.

43. T. H. Tzen and L. M. Ni. Dynamic Loop Scheduling for Shared-Memory

Multiprocessors, Proc. Int. Conf. on Parallel Processing, II, 247-250, 1991.

44. M. Warren and J. Salmon. Astrophysical N-Body Simulation Using Hierarchical Tree

Structures, Proc. of Supercomputing'92, 1992.

45. M. Warren and J. Salmon. A Parallel Hashed Oct Tree N-Body Algorithm,

Proceeding of Supercomputing'93, 1993, 12--21, IEEE Computer Society.

46. S. Zhou. LSF: Load Sharing and Batch Queueing Software, Platform Computing

Corporation, 1996, North York, Canada.

	Integrating Algorithmic and Systemic Load Balancing Strategies in Parallel Scientific Applications
	Recommended Citation

	Microsoft Word - ambareen.doc

