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Load imbalance is a major source of performance degradation in parallel 

scientific applications. Load balancing increases performance of parallel applications in 

distributed environments.  At a coarse level of granularity, advances in runtime systems 

have been proposed in order to control available resources using task migration. At a 

finer granularity level, advances in algorithmic strategies for dynamically balancing loads 

by data redistribution have been proposed. Algorithmic and systemic load balancing 

strategies have complementary set of advantages. An integration of these two techniques 

should result in a system, which delivers advantages over each technique used in 

isolation.  This thesis presents a design and implementation of a system that combines an 

algorithmic load balancing strategy called Fractiling with a systemic load balancing 

system called Hector. It also reports on experimental results of running N-body 

simulations under this integrated system. The experimental results indicate that the 

integrated system provides performance improvement for large applications. 
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CHAPTER I 

 
INTRODUCTION 

 
 

Parallel and distributed computing has become one of the most interesting 

avenues followed in scientific applications and has become one of the fundamental 

research areas of computer science. Problems in science and engineering are often large, 

complex, highly irregular and computationally intensive. These problems can often be 

decomposed into sub problems that can simultaneously be solved. Thus, parallelization 

provides a way to solve large computationally intensive problems like ocean modeling, 

climate modeling fluid turbulence etc., which would otherwise be impossible to solve on 

a sequential machine. One factor, which typically influences parallel programming, is the 

type of processor communication used. The way processors communicate depends on the 

memory architecture, which can be classified as shared memory and distributed memory. 

In shared memory architectures multiple processors operate in an independent fashion but 

all share the same memory resources. Shared memory systems are difficult to scale as the 

number of processors increase. In distributed memory architectures, each processor has 

its own address space and operates in an independent manner. The processors are 

connected through the interconnection network and data sharing across the 

communication network is in general performed through message passing.  
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In general, we associate high performance with parallel and distributed 

computing. There are several factors that affect the performance of parallel applications 

running in a parallel and distributed computing environments. Some of these factors are: 

the choice of parallel algorithm used, load imbalance, the type of interconnection 

network, and others. Load imbalance is one of the major performance degradation factors 

in parallel scientific applications and by balancing the workload, their performance can 

significantly be improved [3, 27]. Scientific applications are in general data parallel. 

There are several factors that cause load imbalance in parallel scientific applications 

running in a distributed computing environment. A few major factors are: non-uniform 

data distribution, different computational requirements in various data partitions, 

variations in external workload on different computational nodes, operating system (OS) 

and network effects. 

With the increase in performance of commodity desktop workstations, 

advancement in high speed networks, and development of architecture independent ways 

to code parallel programs, such as MPI[20] and PVM[16], Network of Workstations 

(NOW) or Cluster of Workstations (COW) are becoming a cost effective popular choice 

for parallel and distributed computing. The operating systems for the workstations were 

initially developed for interactive sequential jobs with a single processor in mind. Over 

time, support for multiprocessing and networking has gradually been incorporated into 

operating systems. However, the commercial operating systems for workstations still do 

not offer adequate support for a transparent execution of parallel or sequential jobs over a 

NOW. The workstations in NOW are used by individuals, and the load across the 
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network varies dynamically, as users execute applications or relinquish workstations. 

This, along with other reasons mentioned earlier cause load imbalance when running 

applications in parallel and distributed environments.  Since the operating systems or 

message passing libraries (such as MPI) do not provide support for load balancing across 

workstations in NOW, executing parallel applications on NOW often leads to severe load 

imbalance and poor resource utilization.  This problem can be alleviated by addressing 

the load balancing problem through migration of tasks (coarse-grain)  or data (fine-grain) 

from the highly loaded workstations to the lightly loaded ones or idle workstations. 

Therefore, in a NOW environment, load balancing can be performed at both fine and 

coarse levels of granularity. 

Since load imbalance is one of the major performance degradation factors in data 

parallel scientific applications, providing solution(s) to this problem is an important 

computer science issue. Finding a generic solution that can dynamically balance load 

with low overhead could significantly improve the performance of parallel scientific 

applications. Even if the solution is applicable to only a class of applications, it will have 

a significant impact on performance of data parallel applications running in distributed 

computing environments. In the present work, an attempt has been made to find a 

solution to the load imbalance problem in a complex class of data parallel applications 

running in distributed computing environments: the N-body simulations. 

As there are several factors which cause load imbalance, finding algorithms and 

methods for addressing this problem in parallel and distributed computing environments 

is a complex problem.  Over time, various techniques to balance load at coarse and fine 
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levels of granularity have been proposed. In general, an individual processor’s 

performance may vary due to external workload, or non-uniform data distribution within 

an application, as well as other factors.  Therefore, methods to maintain an even 

distribution of work are usually needed in order to obtain good speedup and performance.  

In a distributed computing environment, coarse-grained strategies have been proposed at 

the system level, while fine-grained strategies have been proposed at the algorithmic 

level. By coarse-grained strategies at the system level, we mean that the load balancing is 

performed by the host operating system or runtime system. No modifications in the 

applications or algorithms are required by the user or programmer. By fine-grained 

strategies, we mean that the load balancing algorithm is built into the applications; the 

host operating system or runtime libraries are unaware of the load balancing performed 

by the applications. 

 

1.1 Systemic (Coarse-Grained) Load Balancing 

 In task-parallel applications, load balancing at the coarse-grain level is achieved 

via task migration. This involves transferring of a program's state from one processor to 

another during runtime.  Task-parallel applications have advantages such as: a natural 

mapping to the operating system (i.e. the entire process is transferred) and the ability to 

release resources (such as workstations) back to individual users by moving the work 

elsewhere, and freeing up both the CPU and the memory.   

Systemic load balancing via task migration from heavily to lightly loaded 

processors is typically coarse-grained and can be supported by two distinct methods.  
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First, users can write their own state-transfer routines which can be invoked by the 

runtime system to migrate or checkpoint a job.  Systems such as LSF [26, 46] and DQS 

[13] work in this fashion.  The disadvantages of these systems are that they put the 

burden of checkpointing onto the application developer and therefore, the routines must 

be actively maintained along with the rest of the source code.  The alternative is to 

provide systemic support for checkpointing and migration.  Condor [32, 42], and Hector 

[33] work in this fashion.  However, the Hector distributed runtime environment used in 

this thesis is unique in the depth and breadth of information gathered about tasks at 

runtime.  Hector runtime system supports the migration of parallel tasks.  These are 

capabilities that can be exploited by data-parallel load balancers.  In general, the systemic 

load balancing is application independent and implemented at the system level (operating 

system, communications library, or middleware), relieving the application programmer 

from this responsibility. 

 

1.2 Algorithmic (Fine-Grained) Load Balancing 

Algorithmic load balancing via data migration is supported by the applications 

and is typically fine-grained.  Data-parallel programs use data migration (or dynamic data 

allocation) to maintain balanced loads and therefore are “self-balancing”.  This represents 

a finer grain of control than task migration, because only fractions of a program state 

have to be moved.  Tasks can either negotiate as peers to exchange data from busy tasks 

to idle ones, or have a central master that allocates data to worker tasks.  Systems based 
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on Factoring [22] and Fractiling [5, 6] are examples of the former, and Piranha [11] is an 

example of the latter.  

Fractiling is a dynamic scheduling technique based on a probabilistic analysis that 

adapts to algorithmic and systemic load imbalances while maximizing data locality.  It 

draws from earlier loop scheduling techniques where iterates are dynamically scheduled 

in decreasing size chunks to reduce synchronization. It has successfully been 

implemented in  N-body simulations [5, 6]. The early large chunks have relatively little 

overhead and their uneven finishing times are smoothed over by later smaller chunks.  

Fractiling uses a tiling technique to optimize chunk shapes such that data locality and 

reuse are maximized. 

 

1.3 An Integrated Strategy 

Advances in runtime systems for parallel programs have been proposed in order 

to control available resources as efficiently as possible.  Simultaneously, advances in 

algorithmic methods of dynamically balancing computational load have been proposed in 

order to respond to variations in actual performance.  Both, coarse- and fine-grained 

strategies have advantages and disadvantages.  The coarse-grained approach may suffer 

from load imbalance due to the unequal sizes of tasks, or the total number of tasks that 

may not always be an integral   multiple of the number of workstations in the cluster. On 

the other hand, in the fine-grained approach, due to the absence of   migration capability, 

the resource utilization is limited to the workstations in use, and no use of new 

workstations may be acquired or removed during the application execution.  Let us 
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consider a scenario where in a sixteen processor cluster (p0 .. p15), six processors are 

available, and the cluster uses Hector as runtime system. A user lunches a parallel job 

with eight tasks. Since Hector works at task level it will assign four tasks to four 

processors (say p0 – p3) and two tasks/processor to the rest of the processors (p4 and p5). 

As a result, tasks running on p4 and p5 will finish their computation later than tasks 

running on p0 through p3. In the middle of the execution, if one or more processors 

become available, Hector can move additional tasks from p4 and p5 to newly available 

processors. Since tasks running on p4 and p5 shared the processor before migration they 

will still finish later than tasks running on p0 through p3. If the parallel application would 

have had incorporated the Fractiling algorithm, it would have balanced the workload 

among the tasks by using dynamic data redistribution before and after migration. Thus, 

all the processes would have finished almost at the same time.  Let us consider another 

scenario in which a fractiled scientific application is running on a cluster.  While fractiled 

tasks are running, one or more processors become overloaded due to some additional 

external load.  The Fractiling algorithm will now balance the load by migrating data from 

tasks running on overloaded processors to lightly loaded processors.  Let’s suppose that 

during the execution some other processors become idle. In the absence of Hector, the 

idle processors cannot be utilized. If Fractiling would have had the capability of task 

migration in a Hector-like fashion, the fractiled tasks from the overloaded processors 

could have been migrated to idle processors.  In this way, better resource utilization 

would have been achieved because idle resources would have been utilized. Therefore, in 

this respect, Hector and Fractiling complement each other. 
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An ideal runtime system should provide support for both systemic and 

algorithmic strategies since they have complementary sets of advantages.  The systemic 

coarse-grained strategy considers all tasks from all applications on the system, while the 

algorithmic fine-grained strategy is confined to individual applications.  Once the 

programmer has expressed the algorithm to be used, the runtime system should execute 

the program efficiently, taking maximum advantage of available resources.  It may have 

to migrate entire tasks in order to relinquish processors back to "owners".  If it does not 

have to migrate an entire task, it is desirable to move only the amount of data needed to 

rebalance the load.  The essential point is that these load balancing strategies can work in 

concert to provide additional benefits to one another.  The resulting integrated load 

balancing strategy is systemic in nature, and therefore the burden on the applications 

programmer is reduced. Moreover, the integration provides an improved performance for 

parallel applications over the improvements obtained by using either strategy 

individually.  

The present work called Hectiling proposes to combine the load balancing 

methodology used in Hector, a distributed runtime environment which provides coarse-

grained dynamic load balancing for parallel applications on Sun and SGI workstations, 

with Fractiling, a fine-grained dynamic load balancing technique based on a probabilistic 

analysis that has been proven to be effective in scientific applications (i.e. N-body 

simulations).  Hectiling should offer load balancing at both levels of granularity and 

provides a more efficient utilization of resources than either technique used in isolation.  

This thesis presents the design and implementation of Hectiling, and reports on 
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experimental results of running N-body simulations under this integrated system. The N-

body simulations consider N particles, their positions and velocities, and the problem is 

to compute the forces they exert on each other, and then calculate their new positions. 

The N-body simulations have been selected as a test application because it requires 

solutions of multiple algorithms, and is a complex and computationally intensive 

problem. It has been widely used in a broad class of application areas of science such as 

astrophysics, molecular dynamics, biophysics, molecular chemistry etc. N-body 

simulations employ algorithms, which are used in other areas, such as volume 

visualization. Therefore, if a technique provides performance improvement for N-body 

simulations it should applicable for a wide range of scientific applications. 

 

1.4  Hypothesis 
 
The hypothesis of this thesis is two fold: 

1. The integration of an algorithmic load balancing strategy (Fractiling) with a 

systemic load balancing strategy (Hector) is possible. 

2. For applications, which employ the N-body simulation algorithms, this integration 

will result in achieving better performance than applying any of these techniques 

independently. The overhead introduced by the combined (integrated) approach 

will be small and will be outweighed by the benefit of improved load balancing 

due to integration. The integrated system will perform no worse than any of the 

techniques applied in isolation. In other words for the integrated system the 

following inequality will hold: 
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CHectiling ≤ Min ( CFractiling, CHPFMA)   

 Where:  

CHectiling is the Parallel execution cost using Hectiling 

CFractiling is the Parallel execution cost using Fractiling 

CHPFMA is the Parallel execution cost using Hector 

 

1.5 Approach 
 
The work plan that has been followed in the process of validating the hypothesis 

is as follows: 

1. Survey different algorithmic load balancing techniques and algorithms. Study the 

Fractiling algorithm in detail and analyze implementation of a parallel application 

that has employed the Fractiling algorithm for load balancing.  For the present 

work, two parallel implementations of the N-body simulations (one with 

Fractiling and one without Fractiling) have been selected. 

2. Study and analyze the architecture and implementation of Hector. 

3. Design an integrated architecture: Hectiling, to combine Fractiling and Hector 

4. Implement the integrated architecture. 

5. Execute the following experiments and collect timing results 

i. Select a set of data representing different data sizes and data 

distributions. 
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ii. Execute following parallel implementations of the N-body 

simulations on various numbers of processors (up to 32) with each 

dataset selected at “i.” 

1. Straightforward parallelization. 

2. Straightforward parallelization under Hector. 

3. With Fractiling. 

4. With Fractiling under Hector 

5. With Hectiling (Fractiling and Hector integrated). 

6. Evaluate the overhead of integration experimentally. 

7. Select a set of metrics to measure the performance. Provide a qualitative and 

quantitative analysis of the performance of Hectiling using the experimental 

results. Validate the hypothesis. 

 

1.6 Expected Contributions 
 
The expected contributions from this thesis are as follows: 
 
1. Provide an integrated strategy to improve the performance of data parallel 

scientific applications. 

2. Provide an implementation of a runtime system (a modified Hector) for easy 

integration of any data parallel scientific application that incorporates 

Fractiling algorithm for load balancing. 

3. Provide implementation guidelines for integrating data parallel scientific 

applications with Fractiling into Hector. 
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4. Provide an estimate about the amount of effort it takes to integrate an 

application with Fractiling into Hector. 

5. Provide an qualitative and quantitative analysis of performance and overhead 

of Hectiling ( see Approach 6 and 7). 

 

1.7 Organization of this Thesis 

This thesis is organized as follows.  Chapter 2 presents the pertinent background 

and related work in the areas of systemic and algorithmic load balancing.  Chapter 3 

describes the design and implementation of Hectiling. Result and analysis are presented 

in Chapter 4, and finally, Chapter 5 presents conclusion and future work. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

 

2.1 Related Work on Systemic (Coarse-Grained) Load Balancing 

In the past years, many systems that run sequential and parallel programs on 

networks of workstations, shared memory processors (i.e., using SMPs), and massively 

parallel processors (MPP), have been proposed and successfully implemented.  Differing 

in their degree of sophistication and in the methods used to balance the computational 

load, they offer a variety of features and services.  A comprehensive survey of task-based 

job-scheduling systems has been presented by Baker, Fox and   Yau[2].  Features that 

such systems may contain include: scheduling of sequential and parallel jobs, load 

balancing, task migration, the nature and complexity of runtime information gathering, 

and others. Only few of these systems are enhanced to support task migration, and if they 

do, the migration applies only to sequential jobs.  In general, migration could be 

supported using two distinct methods. First, users can write their own state transfer 

routines, which can be invoked by the runtime system to migrate or checkpoint, a task.  

Systems such as LSF [26, 46] work in this manner.  The alternative is to provide support 

for task migration and checkpointing by the runtime system.  Systems such as Condor 

[32] work in this fashion.  

All systems mentioned in the survey provide some degree of load balancing at 

task granularity level.  This load balancing is static in nature, in the sense that at the time
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of launching a job, the entire system load and the scheduling of tasks to achieve load 

balancing across the entire system are considered.  No further action is taken by the 

runtime system after launching a job if system load varies for any reason such as 

termination of another job (which could translate into load imbalance of the parallel job 

at hand).  To the best of our knowledge, none of the systems mentioned so far in the 

literature provides support for migration of parallel tasks or sequential communicating 

tasks.  Therefore, there is a need to design runtime systems with support for task 

migration that can provide dynamic load balancing during job execution. 

One of the clustering systems presented in the survey by Baker, Fox, and Yau [2] 

is LSF [46].  It is a widely used commercial package for controlling clusters.  LSF works 

by launching utility tasks on each candidate host to monitor usage and to provide remote 

job-launch capability.  The usage monitor reports to a central master, which uses the data 

to decide which nodes are available for running jobs.  It runs parallel jobs, supports task 

migration through user-level checkpointing, and gathers node usage information.   The 

information is used to control the initial mapping of tasks to hosts. Condor [32], 

developed at University of Wisconsin, is another clustering system presented in the 

above-mentioned survey. It is a widely used public-domain cluster management software 

package.  It groups workstations into "flocks", monitors their availability, and only runs 

parallel jobs if they are designed to tolerate variable numbers of hosts during execution.  

Workstation load average is used for allocation and the system can either migrate tasks 

(with system-level checkpointing) or kill them when the workstation becomes busy with 

external applications.  Condor and LSF systems use a distributed architecture design. In 
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this context, by distributed architecture we mean that the components of the clustering 

system are distributed among its nodes. Both Condor and LSF use relatively coarse load 

information for initial allocation purposes and for determining if hosts are idle or busy.  

Both the systems don’t gather information from running tasks and in addition, LSF does 

not support systemic checkpointing. 

Recent work has highlighted the benefits of extracting information from 

applications during runtime [14].  For example, Nguyen et al. have shown that extracting 

runtime information can be minimally intrusive and can substantially improve the 

performance of a parallel job scheduler [39], whereas Gibbons proposed a simpler system 

to correlate runtimes to different job queues [17].  In either case, information gathered 

from tasks as they run can support job scheduling and allocation.  The Hector distributed 

runtime environment is intended to support this model [37].  It uses a distributed 

architecture, provides system-level checkpointing     routines, supports execution of 

unmodified MPI programs, and   gathers extensive information during runtime about the 

performance of hosts and individual tasks. Hector is designed to provide an infrastructure 

that controls parallel programs during their execution and to monitor their performance. 

Therefore it combines the benefits of both distributed and centralized processing.  The 

central decision-maker and control process is called a master allocator or “MA”.  

Running on each candidate platform (where a platform can range from a desktop 

workstation to a SMP) is a supervisory task called a slave allocator or “SA”.  The SA's 

gather performance information from the tasks (MPI processes) under their control and 
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execute commands issued by the MA.  Thus, Hector combines the functions of 

monitoring and execution contained in LSF's two distributed daemon processes [46]. 

Hector's instrumentation combines three different mechanisms [33-37].  First, 

static host information is gathered by the SA when it  is launched.  Second, dynamic host 

information is gleaned from a  series of system calls to read memory usage and CPU 

usage.  Third, Hector's modified MPI library provides task self-instrumentation that is 

monitored by the SA.  This instrumentation includes a breakdown of time spent 

communicating and computing, as well as a map of the task's communication topology. 

Task migration is supported by the run time system and a specially modified 

version of MPI to properly handle messages in transit.  In this way, applications do not 

need code changes in order to support task migration [33]. Both Hector and Hectiling use 

MPICH, an implementation of MPI by the Argonne National Laboratories and 

Mississippi State University. 

 

2.2 Related Work on Algorithmic (Fine-Grained) Load Balancing 

 Load balancing at the application level is algorithmic and fine-grained.  

Therefore load balancing techniques at this level of granularity have to be integrated into 

a specific application.  Selecting a technique that offers best performance and is relatively 

simple to integrate is essential to the success of the resulting application.  While load 

balancing can be applied to all parallel applications, scientific applications are of 

particular interest due to their intensive computational requirements.  In addition, large 

classes of scientific applications are irregular in nature, and therefore their performance is 
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severely degraded due to load imbalance. Imbalance over a few time steps of the 

computation could primarily be caused by changes in data distributions. Furthermore, 

within one time step, imbalance could be caused by irregularity of data distribution, 

different processing requirements of interior versus boundary data, and by system effects. 

Problems in scientific computing are in general data-parallel and have previously 

employed various methods to balance processor loads and to exploit locality.  For 

example, in unstructured problems, static partitioning and repetitive static partitioning 

heuristics have been the only methodology used so far to overcome dynamic load 

imbalance [9, 10, 23, 38, 40, 41, 45,]. Most of these methods use profiling by gathering 

information on the workload from a previous time step in the execution of an algorithm 

in order to estimate the optimal workload distribution at the present time step.  

"Profiling", in this context, refers to a detailed performance analysis that is only available 

after the program is finished, or at least after the current program iteration is completed.  

The cost of these methods increases with the number of processors and problem size [39, 

40, 44, 45]. A random assignment of certain sized amounts of work to processors has also 

been considered to improve the performance of simulations affected by load imbalance 

[18]. With random assignment, the load imbalances of individual work units mute each 

other out to some extent.  However, performance of these scientific applications is then 

severely degraded by loss of locality. 

Another important observation is that the above methods employ a static 

assignment of workload to processors during a time step, due to an assumption that the 

data distribution changes slowly between time steps. These assumptions are not valid in 
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the entire spectrum of scientific applications and therefore these methods are not robust, 

especially in the case of applications where none of the existing load balancing strategies 

accommodates the unpredictable behavior of simulations (i.e. plastic deformations, 

nonisothermal multiphase flow, etc.).  Therefore, there is a need for developing new 

techniques that address load imbalances between time steps, as well as during a time step. 

Dynamic scheduling schemes attempt to maintain balanced loads by assigning 

work to idle processors at runtime.  Thus, they accommodate systemic as well as 

algorithmic variances.  In general, there is a tension between exploiting data locality and 

dynamic load balancing as the re-assignment of work may necessitate access to remote 

data.  The cost of dynamic schemes is loss of locality, which translates into increased 

overhead. Another potential shortcoming involves the amount of data exchanged among 

tasks to balance the load.  If the amount of data is too large, the resulting corrections 

might be too coarse.  If the amount of data is too small, the process of exchanging data 

might incur much overhead.  Thus, in master/worker parallelism if the increment of 

workload that the master distributes is too small or too large, this might lead to either 

inefficiency or imbalance.  

Since loops are the most prevalent source of parallelism in scientific applications, 

their scheduling on parallel machines has received considerable attention.  The 

fundamental tradeoff when scheduling parallel loops is processor load imbalance versus 

overhead due to synchronization and communication.  Parallel loop scheduling schemes 

have been widely analyzed and measured [25, 28, 31, 43]. 
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Factoring, a scheduling scheme that evolves from earlier loop scheduling 

techniques, balances processor loads while reducing the overhead of synchronization 

[22].  Loop iterates are dynamically scheduled in decreasing size chunks such that early 

larger chunks have relatively little overhead, and their uneven finishing times are 

smoothed over by later smaller chunks.  The technique minimizes the cumulative 

contributions of load imbalances and scheduling synchronization.  A technique for 

reducing communication, called Tilling, statically partitions the iteration space into tiles 

whose shape is chosen to maximize data reuse and locality.  Factoring selects the optimal 

chunk sizes, (i.e. how many iterates to group together), while Tiling selects optimal 

chunk shapes (i.e. which iterates to group together). 

Another technique, Fractiling, combines the load balancing advantages of 

Factoring with the data reuse properties of Tiling [3, 21].  In this combined scheme, 

chunk sizes are determined globally according to a Factoring rule, while chunk shapes are 

determined locally according to a Tiling rule.  The Fractiling method was developed in 

response to the shortcomings of other methods and has successfully been applied to N-

body simulations [4, 6]. It is based on a probabilistic analysis, and therefore 

accommodates load imbalances caused by predictable events (such as irregular data) and 

unpredictable events (such as data access latency). Fractiling adapts to algorithmic and 

system induced load imbalances while maximizing data locality.  In Fractiling, the 

computation space is initially placed to processors in tiles, to maximize locality.  

Processors that finish early "borrow" decreasing size subtiles of work units from slower 

processors to balance loads.  The sizes of these subtiles are chosen so that they have a 
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high probability of finishing before the optimal time.  Subtile assignments are computed 

in an efficient way by exploiting the self-similarity property of fractals.  These decreasing 

size chunks are represented by multidimensional subtiles of the same shape selected to 

maximize data reuse.  The subtiles are combined in Morton order in larger subtiles, thus 

preserving the self-similarity property [4, 6].  Early in the program run, large 

performance variations can be accommodated by exchanging large subtiles.  As the 

computation progresses, the subtiles shrink so that smaller variations can be corrected.  

By having subtile sizes based on a uniform size ratio, a complex history of executed 

subtiles does not need to be maintained.  Each task simply keeps track of the size of its 

currently executing subtile, and in this way, the unit of data exchange among tasks is the 

largest subtile currently being executed by any task.  Thus the algorithm inherently 

minimizes the global "bookkeeping" overhead.  

This technique allows negotiations by idle resources to replace profiling.  The 

load balancing actions are a function of performance, in the sense that idle processors 

have performed well, but are not a function of a direct performance measurement.  

Rather, they simply exchange work from "busy" processors to "idle" ones.  This reduces 

overhead, as detailed data collection is not needed, and increases responsiveness, as load 

balancing can occur during an iteration step. The bulk of load balancing work is 

performed by idle tasks and therefore little negative effect on runtime is expected. 

Additionally, Fractiling does not take into account the source of load imbalance in order 

to spur useful performance gains.  Even applications where the amount of computation 
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per data element varies dynamically can benefit, because it would simply have to search 

for idle and busy resources. 

In the implementation of Fractiling in a distributed environment, one of the 

processors selected as master and called Fractiling Master controls and maintains the 

entire data exchange information.  In addition, it performs computation as all the other 

processors do, called Fractiling Tasks.  When computation starts, the Fractiling Master 

divides the computation space into P tiles, one per processor.  Each Fractiling Task starts 

by working first on half of its tile.  When this subtile is finished, the Fractiling Task sends 

a Fract_Ask message to the Fractiling Master to request additional work.  The Fractiling 

Master updates its information and assigns a new subtile size to the requesting Fractiling 

Task.  If a Fractiling Task completes its own tile, and there is still work left in other 

Fractiling Task's tile, the  Fractiling Master sends a request to another Fractiling Task to 

send data to the idle Fractiling Task.  The data is then forwarded to the idle Fractiling 

Task, which works on the received data and sends the result back to the owner. The 

above process is repeated until there is no more work left in any Fractiling Task's tile.  

When assigning subtiles to the Fractiling Tasks, the Fractiling Master always observes 

the following rules: (i) a task will have to have all the work completed in its own tile 

before starting to help another Fractiling Task; (ii) after completing its own tile, a 

Fractiling Task will always work on a tile with the largest available unfinished subtile 

size. 

Experimentation on both a distributed memory shared-address space and a 

message passing environment with Fractiling schemes applied to N-body simulations 
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have been presented in [3, 4, 6].  The distributed memory shared-address space 

implementation was run on a KSR-1 at the Cornell Theory  Center and the message 

passing environment implementation was run on an IBM SP2 at the Maui High 

Performance Computing  Center.  In experiments involving both uniform and nonuniform 

data distributions, performance of N-body simulation codes was improved by as much as 

53% by Fractiling.  The corresponding coefficient of variation of processor finishing 

times among the simulation tasks was extremely small, indicating a very good load 

balance was obtained.  Performance improvements were obtained even on uniform data 

distributions, underscoring the need for a scheduling scheme that accommodates system-

induced variance in addition to the algorithmic one. 
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CHAPTER III 

 
DESIGN AND IMPLEMENTATION 

  
 

Hector achieves better resource utilization by migrating tasks from highly loaded 

workstations to idle or lightly loaded workstations.  Since task sizes are unequal, an 

application using this coarse-grained load balancing strategy only will continue to suffer 

from load imbalance.  On the other hand, applications employing fine-grained data 

parallel load balancing strategies, such as Fractiling, ensure a high degree of load 

balancing by migrating data from one task to another.  However, in a distributed 

computing environment an application using Fractiling may suffer from poor resource 

utilization, because task migration is not supported.   One or more of the processors 

executing Fractiling tasks may become heavily loaded by other applications, thereby 

significantly degrading the performance of the Fractiling application.  Having the 

capability to migrate a Fractiling task from a heavily loaded to an idle or lightly loaded 

processor would enable the Fractiling application to utilize resources more efficiently. 

To take advantage of the benefits offered by Hector and Fractiling, a new system 

integrating both has been designed and implemented.  This system, Hectiling, combines 

systemic information gathering and task migration capabilities of Hector with fine-

grained algorithmic load balancing advantages of Fractiling.  Before describing the 

integrated architecture, the following two sections present the architecture of Hector and 

centralized management implementation of Fractiling. 
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3.1 Hector Architecture 

Hector is designed around a master-slave hierarchy. Figure 1 shows the 

architecture of Hector. There is a single task called the Master Allocator (MA) that 

performs all of the decision-making functions. This task doesn’t control MPI programs 

directly, but communicates with tasks called Slave Allocators (SA). There is one slave 

allocator per node. Each slave allocator  controls all MPI tasks running on its machine, 

and monitor their performance characteristics. It reports the performance information 

back to the MA, which makes decision about allocation and migration. The MA 

periodically collects information from every node on the network. If required, it then 

sends a command to migrate a targeted task to the slave allocator that launched the tasks. 

The slave allocators are directly involved in the process of migrating an MPI task. 

They notify a task that needs to migrate, track the status of migration, and notify the 

master that migration has completed. The SAs communicate with the MPI tasks under its 

control by maintaining a permanent UNIX socket at a predetermined port number, which 

allows the tasks to send information about their current status. The communication 

mechanisms and protocols used by the SAs to pass control information is an important 

part of Hector design and it is done through \a listener process attached to each MPI task. 
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Figure 3.1 Hector Architecture 

 

Task migration is the most important feature of Hector. There are three aspects to 

task migration. First, it is necessary to encapsulate a program’s state completely. Second, 

the state must be transferred to the destination as efficiently as possible. Third, the state 

must be reconstructed correctly and in such a way as not to corrupt the MPI environment. 

The process of task migration is shown in Figure 2 and the steps are as follows: 

1. When the MA decides to migrate a task, it sends a message to the appropriate SA, 

which in turn sends migration message to that task’s listeners. 

2. The listener finishes handling any other events such as establishing a connection, 

and sends a control signal to the tasks. 

3. The task sends a notification about its pending migration to all other tasks’ 

listeners and begins waiting for End Of Channel (EOC) messages from other 

tasks. 
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4. After all EOC messages have been received, the task closes all active connections. 

5. The MA informs the SA on the destination node and the task is spawned with the 

arguments to read in the program state. 

6. After the task has restarted, it sends its new location information to all other tasks’ 

listeners. 

7. The task sends a message back to the SA that the migration is complete and it is 

now available for migration again. Further details of Hector architecture and task 

migration can be found in [33-37]. 

Figure 3.2 Migration of Task under Hector 
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size subtiles of work units from slower processors to balance loads.  The sizes of these 

subtiles are chosen so that they have a high probability of finishing before the optimal 

time.  Subtile assignments are computed in an efficient way by exploiting the self-

similarity property of fractals.  Early in the program run, large performance variations 

can be accommodated by exchanging large subtiles.  As the computation progresses, the 

subtiles shrink so that smaller variations can be corrected.  By having subtile sizes based 

on a uniform size ratio, a complex history of executed subtiles does not need to be 

maintained.  Each task simply keeps track of the size of its currently executing subtile, 

and in this way, the unit of data exchange among tasks is the largest subtile currently 

being executed by any task.  Thus the algorithm inherently minimizes the global 

"bookkeeping" overhead.  

In a centralized management implementation of Fractiling scheme, one processor 

is selected as master, which manages the global variable and schedule data among other 

processors.  Thus, Fractiling also works around a master/slave hierarchy. The Fractiling 

communication pattern is shown in Figure 3. Fractiling divides the computation space 

into P tiles, one tile per processor. At the beginning each processor works on the half in 

its own tile. If a processor finishes its first half, it sends a FRACTILE_ASK message to 

the master. The master receives the message looks up the global variables, and then it 

assigns a job (subtile) to the requesting processor with FRACT_REPLY mesaage. The 

requesting processor receives the answer and continues to work. If the requesting 

processor completes its own tile and there is work available in other processor’s tile, the 

master will assign a subtile size in a neighboring processor, and then sends a 
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FRACT_COMM message to tell the neighboring processor to send its data to the helper 

(requesting processor). Meanwhile, the master sends FRACT_REPLY to the requesting 

processor indicating which processor is to be helped. The neighbor receives the message, 

and sends its data to the helping processor using FRACT_ORG_DATA. The helper 

receives the FRACT_ORG_DATA and works on the data. After completion, it sends a 

FRACT_ASK to the master to request a new job, and also sends the result to the 

processor (FRACT_FIN_DATA) that owns the data. The owner receives the data and 

stores it. The above steps are repeated until no subtiles are left. 

When assigning subtiles, the master processor always observes the following 

rules: 

• After completing its own tile a processor will help another processor to 

complete its tile. 

• After completing its own tile, a processor will always work on the largest 

subtile available. 

• At any time, the processor will finish its own tile first, then help other 

processors. 

With the combination of these features, Fractiling improves data locality and 

reduces load imbalance. 
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Figure 3.3 Master/Slave communication in Fractiling 

 

3.3 Hectiling Design and Implementation 

The architecture of Hectiling is shown in Figure 4.  Since Fractiling requires 

communications to control exchanges of data between tasks, and Hector has a built in 
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Fractiling Tasks.  Once the Fractiling Master receives this information, it "registers" with 

the MA by opening a socket and sending its port number and host name to the MA.  As a 

result, the MA is able to recognize which of the tasks is the Fractiling Master and where 

to forward the Fractile_Ask messages.  During the execution of the Fractiling application, 

when the MA receives a Fractile_Ask message, it first checks to see if the Fractiling 

Master has been "registered". If so, the message is forwarded to the Fractiling Master.  If 

not, the message is put into a queue which, has already been created at the beginning of 

the execution of the Fractiling application.  This queue is being maintained by the MA 

throughout the execution of the application.  Once the Fractiling Master registers with the 

MA, all pending messages are forwarded to it.  At the same time, the MA sends a 

message to the Fractiling Master's SA, which in turn interrupts the Fractiling Master 

allowing it to read the associated message from its socket (see Figure 5).  This 

mechanism was designed to address the fact that UNIX does not allow task interrupts on 

remote machines.  

The integration also imposes another challenge on Hector migration mechanism. 

In Hector, all the MPI tasks are treated equally, and the migration process is the same for 

all the tasks. However, in Hectiling the migration of the Fractiling Master is different 

from the ones of Fractiling Tasks.  This is  due to the fact that the MA needs to forward 

the Fractile_Ask message to the Fractiling Master.  Thus, the MA has to have the 

information about the location of the Fractiling Master, and this is achieved by the 

registration process of Fractiling Master presented above.   
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Figure 3.4 Hectiling Architechture 

 

In case of migration,  the Fractiling Master first un-registers itself with the MA, 

and upon completing the migration, it re-registers itself again with the MA. The un-
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Figure 3.5 Fractiling State Update: Interrupt-driven model 
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CHAPTER IV 

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

 

The experiments with the integrated system were conducted in two phases. In the 

first phase, Hectiling experiments were conducted without process migration.  The results 

are described in section 4.1. Section 4.2 describes the results of experiments with 

Hectiling using process migration.  Experiments were conducted on a system which 

consists of thirty-two 90 MHz Ross HyperSPARC processors arranged in a cluster of 

eight 4-processor machines. Each of the machines is a SMP running Solaris 2.6. The 

machines are connected by three interconnection technologies: (i) 155 Mbits/sec ATM 

switches, (ii) Myrinet, (iii) 10 Mbits/sec Ethernet. Any of them could be used for 

communication between machines. The ATM interconnection has been used in the 

experiments presented here. The experiments were conducted with three different data 

distributions: a uniform distribution ("Uniform"), a nonuniform Gaussian distribution 

("Gaussian"), and a nonuniform Gaussian distribution with the center shifted to the center 

of one of the octants of the computation space ("Corner"). Each distribution has four 

different data sizes: 10K particles, 20k particles, 50k particles and 100k particles. In total 

we conducted the experiments with 12 different data sets. All the executions were carried 

out three times and the result of the three executions were averaged. The metrics that has 

been chosen to measure the performance of different techniques are the parallel cost and 
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the coefficient of variation  (C.O.V) of processors finishing times. They are defines as 

follows:  

Cost = P X TP  

 P = Number of processor used 

 TP = Execution time of the processor which finishes last 
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 xi = Execution time of an individual processor 

 n = Number of processors 

 µ = Mean of xi s 

For each experiment individual processor finishing time was measured, from this parallel 

cost  and coefficient of variation of individual processor finishing time was calculated. 

 

4.1 Hectiling without Migration 

For testing in phase one, five implementations of the N-body simulations based 

on the Parallel Fast Multipole Algorithm (PFMA) by Greengard [19] have been used:  (i.) 

without Fractiling (PFMA); (ii.) with Fractiling (Fractiling); (iii.) under the Hector 

environment and without Fractiling (HPFMA); (iv.) with Fractiling under Hector 

environment (HFractiling); and (v.) with Hectiling (Hectiling).    

All distributions were run on 4, 8, 16 and 32 processors while the system was 

exclusively used for these experiments, to exclude the effects of any external loads.  The 

costs of runs using the "Uniform", "Gaussian", and "Corner" distributions for data size of 
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100k particles are shown in Figures 6-8. The costs of runs for data sizes 10K, 20K and 50 

K particles are shown in Appendix – A. From these results, it can be seen that in almost 

all cases the costs of Fractiling, HFractiling, and Hectiling are lower than those of PFMA 

and HPFMA.  When HFractiling is compared to Hectiling, it can be seen that the cost of 

Hectiling is in general lower.  However, for 32 processors, the cost of Hectiling becomes 

higher than that of HFractiling.   
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The coefficients of variation (C.O.V.)  of processors finishing times  for data sizes 

100K are shown in Figures 9-11.  They are significantly lower for Hectiling, HFractiling 

and Fractiling when compared to PFMA and HPFMA.  From the results presented in this 

section, it can be seen that the cost of Hectiling is slightly lower than those of HFractiling 

and Fractiling when a lower number of processors is used. However, when a higher 

number of processors is used, the cost of Hectiling is higher.  The underlying 

communication structure and the nature of the Fractiling algorithm are responsible for 

these differences in costs.  Hectiling uses UNIX sockets to implement this 

communication.  The MA maintains a single socket for receiving Fractile_Ask and 

Hector update messages, whereas Fractiling routes Fractile_Ask messages directly from 

the Fractiling task to the Fractiling master by using the MPI infrastructure.  Eventhough 

Hectiling adds an additional hop to the route taken by the Fractile_Ask messages, the 

socket implementation is faster. As a result, the overall cost of Hectiling is lower than 

that of HFractiling. However, as the number of processors increases, the number of 

Fractile_Ask messages also increases due to a larger number of Fractiling chunks. As the 

running application proceeds, the chunks sizes become smaller and require less time to 

complete.   This translates into an increased communication overhead, due to an increase 

in frequency of Fractile_Ask messages.  Therefore, at a higher number of processors, this 

creates a bottleneck in the MA and the cost of Hectiling increases   disproportionately.  

This problem can be alleviated by two techniques, which could be simultaneously 

applied.  One technique is to reduce the number of Fractiling chunks by increasing the 
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minimum chunk size. The other is to create separate sockets, one for Fractile_Ask 

messages and another for Hector update messages. 

Increasing the minimum chunk size would reduce the total number of   Fractiling 

scheduled chunks.  As a result, the number of Fractile_Ask messages would be reduced.  

However, with the increasing of the minimum chunk size, the probability of an increased 

load imbalance is higher.   
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Figure 4.15  C.O.V  for Corner Distribution (100 K particle) 
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A careful tuning of the   minimum chunk size should reduce the impact of the increased 

communication overhead.  Experiments using 32 processors for a uniform data 

distribution with various minimum chunk sizes were conducted.  The experimental 

results show that increasing the minimum chunk size from one to two iteration units, 

increases the performance by 8% for HFractiling and 12% for Hectiling, while increasing 

the chunk size from one to four iteration units increases the performance by only 5% for 

HFractiling and 10% for Hectiling.  With a minimum chunk size of one iteration unit 

versus two iteration units, the increase in communication overhead is larger than the gain 

obtained by load balancing. When the minimum chunk size is four iteration units versus 

two iteration units, the benefit of reducing the communication overhead is outweighed by 

the increase in load imbalance.  Therefore, these experiments establish an optimal 

minimum chunk size of two iteration units for best performance.  In general, optimal 

minimum chunk size may vary depending on the use of a specific architecture, 

application, data distribution, etc.  These results support the theory on which Fractiling is 

based.  In addition, these results show that the amount of performance improvement is 

larger for Hectiling than for HFractiling.  More experiments using different minimum 

chunk sizes, data distributions, and problem sizes are required to determine the optimum 

chunk size for best performance. 

The other technique for improving performance requires a separate dedicated 

socket for Fractile_Ask messages.  Presently, the MA processes all messages it receives 

in order of their arrival.  As a result, towards the end of the computation when the 

frequency of messages increases, Fractile_Ask messages stall at the MA before being 
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forwarded to the Fractiling Master.  To reduce the average stalling time the MA can use 

two separate sockets, one for the Fractile_Ask messages and another one for Hector 

update messages.  Messages at the Fractile_Ask message socket should be given priority 

in such a way that the stalling time is reduced  and that the Hector update messages do 

not suffer from starvation. 

 

4.2 Hectiling with Migration 

In this phase of testing five implementations of N-Body Simulations, using 

PFMA, HPFMA, Fractiling, HFractiling and Hectiling were studied.  Since maximum of 

32 processors were available and for task migration idle processors are required, 

experiments could not be executed on 32 processors. The experiments were executed on 

2, 4, 8 and 16 processors.  To determine the optimum chunk size, we conducted a limited 

number of experiments with all the distributions on 16 processors with minimum chunk 

sizes of one, two and four iteration units.  The results show that the cost was least when 

the chunk size was two iteration units. As a result, a minimum chunk size of two iteration 

units was chosen for all the experiments in this phase.  There were two sets of 

experiments in this phase. The first set of experiments was conducted with no external 

load. The costs of runs on all distributions without external load for data sizes 100K and 

50K particles are shown in Figures 12-17. The second set of experiments was conducted 

with controlled external load to measure the performance of migration. A specially 

developed external application which takes about 50% of the processor cycles was 

launched on half the processors about 10 seconds after the execution started. The 
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execution costs for all the distributions for data sizes 100k and 50K particles are shown in 

Figures 18-23. 

From these figures it can be seen that when there is no external load, the cost of 

HFractiling is slightly higher than that of Fractiling, and the cost of Hectiling is always 

lower than that of Fractiling. The reason for this behaviour has been discussed in 

subsection 4.1.   
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Figure 4.19 Cost for Uniform Distribution without Load (50 K particle)
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Figure 4.20 Cost for Gaussian Distribution without Load (50 K particle)
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Figure 4.21 Cost for Corner Distribution without Load (50 K particle)
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Figure 4.23 Cost for Gaussian Distribution with Load(100 K particle)
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Figure 4.25 Cost for Uniform Distribution with Load (50 K particle)
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Figure 4.26 Cost for Gaussian Distribution with Load (50 K particle)
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However, when there is external load, the cost of Fractiling is found to be always higher 

than that of  HFractiling or Hectiling, and is also found to be considerably higher than 

that of Fractiling with no external load. This can be attributed to the external load, which 

takes away CPU cycles, resulting in an increase of Fractiling cost.  In the case of 

HFractiling or Hectiling, the external load causes the process to migrate to an idle 

processor where it can use the CPU exclusively. As a result, the introduction of an 

external load does not result in a cost increase.  Due to migration overhead, the costs of 

HFractiling and Hectiling with external loads are slightly higher than those of Fractiling 

with no external loads.  The results show that because of its capability to migrate tasks 

from busy workstations to idle ones, Hectiling performs much better than Fractiling when 

external workloads are present. The results also show that Hectiling performs better than 

HFractiling. In addition, under no load conditions, Hectiling slightly outperforms both 

Fractiling and HFractiling, which indicates that the overhead of Hectiling is lower than 

that of Fractiling and HFractiling. The coefficients of variation (C.O.V.) of processors 

finishing times for data sizes 100K are shown in Figures 24-26.  They are similar for 

Hectiling, HFractiling and Fractiling, and significantly lower when compared to PFMA 

and HPFMA. The C.O.V.s of PFMA and HPFMA are 6 to 2000 times larger than those 

of Hectiling 

 

 

 

 



  51  

  

 

0

0.05

0.1

0.15

0.2

0.25

2 4 8 16

No. of Processors

C
.O

.V

PFMA

HPFMA

Fractiling

Hfract

Hectiling

Figure 4.28 C.O.V for Uniform Distribution (100 K particle)

Figure 4.29 C.O.V for Gaussian Distribution (100 K particle)

Figure 4.30 C.O.V for Corner Distribution (100 K particle)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 8 16

No. of Processors

C
.O

.V

PFMA

HPFMA

Fractiling

Hfract

Hectiling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 8 16

No. of Processors

C
.O

.V

PFMA

HPFMA

Fractiling

Hfract

Hectiling



  52  

  

4.3 Analysis 

Figure 27-29 show the percentage of improvement of Hectiling in cost over 

HPFMA, Fractiling and HFractiling without load for all Distribution for data size100K. 

Figure 30-32 shows the percentage of improvement with load for data sizes 100K.  From 

these result it can be seen that Hectiling always achive better performance than 

HPFMA,Fractiling or Hfractiling. In general as number of processor increases for a 

particular data size the percentage improvement also increases slighly. This is because as 

the number of  processor increases the load imbalance also increases and Hectiling does a 

better load blanacing than HPFMA, Fractiling or Hfractiling. More over the percentage of 

improvement over Fractiling with load is more than that of without load. That is because 

Hectiling migrates tasks from nodes with exaternal load to idle nodes, which Fractiling 

cannot do. 

Table 1-3 shows speed up for all distributions and data sizes without external 

load. The speed up is similar for Hectiling, Hfractiling and Fractiling. The speed up 

increases as the number of processors increases. This indicates that all these methods 

scale well as the number of processor increases. Moreover, for particular number of 

processor as the problem size increases the speed up increases, which indicates that 

Hectiling, Hfractiling and Hectiling scale well as the problem size increases. 

For every method we have conducted 48 experiments (12 data sets on 4 different 

number of processors) in the first phase, and 96 experiments (48 without external load 

and 48 with external load) in the second phase. Out of 144 experiments only in 9 

experiments Hectiling performs worse than Fractiling and in all cases Hectiling performs 
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better than HPFMA (PFMA under Hector). In experiments where external load is used 

(48 experiments), Hectiling always performed better than all other methods. Since in 

normal operating environment in network of workstations it is reasonable to assume that 

external loads will be present, the experimental results underscore the importance of 

running scientific applications using Hectiling.   

In all experiments of up to sixteen processors Hectiling always performed better 

than Fractiling or HPFMA. In the first phase of experimentation, in eight experiments out 

of forty eight experiments, Hectiling performed worse than Fractiling or HPFMA; these 

results occurred when the experiments were conducted on thirty two processors. There 

are two explanations for these behaviors. First, task migration, one of the major 

components of Hectiling could not be activated while running experiments on thirty two 

processors because a maximum of thirty two processors were available, and there were 

no idle processors available for task migration. The second explanation is that the 

problem sizes were not big enough to get a performance improvement. More 

experimentation would be conducted in the future on higher number of processors and 

larger problem sizes. 
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Figure 4.31 Hectiling Cost Improvement for Uniform Distribution without Load (100 K particles)

Figure 4.32 Hectiling Cost Improvement for Gaussian Distribution without Load(100 K particles)

Figure 4.33 Hectiling Cost Improvement for Corner Distribution without Load (100 K particles)
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Figure 4.34 Hectiling Cost Improvement for Uniform Distribution with Load (100 K particles)

Figure 4.35 Hectiling Cost Improvement for Gaussian Distribution with Load(100 K particles)

Figure 4.36 Hectiling Cost Improvement for Corner Distribution with Load (100 K particles)
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Table 4.1 Speedup for Uniform Distribution 

# Processors 2 4 8 16 Problem 

Size 

(Particles) 

Method     

Hectiling 1.84 3.21 5.67 6.89 

Hfractiling 1.82 3.14 5.41 6.65 

 

10 K 

Fractiling 1.78 2.99 5.01 6.09 

Hectiling 1.89 3.55 6.02 9.76 

Hfractiling 1.86 3.48 5.96 9.44 

 

20 K 

Fractiling 1.81 3.25 5.76 8.90 

Hectiling 1.91 3.76 6.97 10.79 

Hfractiling 1.89 3.67 6.88 10.67 

 

50 K 

Fractiling 1.86 3.54 6.55 10.41 

Hectiling 1.94 3.92 6.89 12.52 

Hfractiling 1.93 3.83 6.78 12.34 

 

100 K 

Fractiling 1.91 3.64 6.76 12.02 

 



  57  

  

Table 4.2 Speedup for Gaussian Distribution 

# Processors 2 4 8 16 Problem 

Size 

(Particles) 

Method     

Hectiling 1.73 2.88 4.80 5.98 

Hfractiling 1.64 2.73 4.61 5.78 

 

10 K 

Fractiling 1.66 2.76 4.62 5.81 

Hectiling 1.72 2.79 5.12 7.45 

Hfractiling 1.63 2.71 4.95 7.18 

 

20 K 

Fractiling 1.67 2.73 4.99 7.21 

Hectiling 1.92 3.61 6.28 8.28 

Hfractiling 1.81 3.38 6.02 8.02 

 

50 K 

Fractiling 1.84 3.41 6.06 8.05 

Hectiling 1.73 3.21 6.02 8.03 

Hfractiling 1.81 3.30 6.11 8.17 

 

100 K 

Fractiling 1.82 3.31 6.13 8.18 
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Table 4.3 Speedup for Corner Distribution 

# Processors 2 4 8 16 Problem 

Size 

(Particles) 

Method     

Hectiling 1.79 2.87 4.88 6.87 

Hfractiling 1.72 2.49 4.67 6.53 

 

10 K 

Fractiling 1.75 2.51 4.68 6.55 

Hectiling 1.82 2.94 5.08 8.32 

Hfractiling 1.95 2.48 4.81 7.97 

 

20 K 

Fractiling 1.93 2.52 4.84 8.00 

Hectiling 1.94 2.99 5.57 9.58 

Hfractiling 1.88 2.84 5.45 9.22 

 

50 K 

Fractiling 1.90 2.86 5.44 9.27 

Hectiling 1.93 2.89 5.65 9.88 

Hfractiling 1.90 2.73 5.22 9.47 

 

100 K 

Fractiling 1.91 2.72 5.25 9.49 
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The implementation of Hectiling and succecsfull run of experiments on different 

data sizes and processors validates the first part of the hypothesis, which state that: “The 

integration of an algorithmic load balancing strategy (Fractiling) with a systemic load 

balancing strategy (Hector) is possible.” 

When no external load is present in 92% (88 out of 96) experiments, Hectiling 

performs better than all other techniques. If we consider all the experiments in 94% (136 

out of 144) experiments, Hectiling performs better than Fractiling and in all case it 

performs better than HPFMA.  In experiments with external load Hectiling always 

performs better than Fractiling or HPFMA.  From these experiments it can be said that 

the following inequality has been proven for all cases up to sixteen processors and in 

92% cases up to thirty-two processors. 

CHectiling ≤ Min ( CFractiling, CHPFMA) 

Where:  

CHectiling = Parallel execution cost in Hectiling 

CFractiling = Parallel execution cost in Fractiling 

CHPFMA = Parallel execution cost in Hector 

Hence the second part of the hypothesis has also been proven. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

Load balancing improves the efficient use of resources and therefore the 

performance of parallel and distributed applications.  Over time, systemic techniques 

have improved the performance of runtime systems at coarse-grained levels, while 

algorithmic techniques have improved the performance of applications at fine-grained 

levels.  Combining strategies from both levels of granularity can result in methods, which 

deliver advantages of both.  This thesis describes lessons learned from the successes and 

limitations of Hectiling, a system that combines an algorithmic strategy for data-parallel 

load balancing with a systemic strategy for task-parallel load balancing.  In addition, 

avenues for performance enhancement are explored. 

Earlier experiments with algorithmic and systemic load balancing strategies 

showed their ability to improve performance.  A systemic coarse-grained load balancing 

was supported in Hector by monitoring and re-balancing loads via task migration.  

Algorithmic, fine-grained load balancing was supported using Fractiling by a dynamic 

redistribution of data assignments among tasks. 

After realizing that Fractiling could benefit by accessing the run-time information 

gathered by Hector, it was decided to develop an interface between them.  The integrated 

system was tested in order to measure the overhead of passing state-update messages 
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through Hector's Master Allocator.  The performance of the integrated version was better 

than that of Fractiling alone or Fractiling under Hector, in the presence of external load as 

well as in its absence.  This performance improvement is due to the fact that the overhead 

of Hectiling is considerably low while allowing dynamic process migration.   

For larger number of processors, the Hectiling cost could be reduced in a few 

ways.  One way to improve performance is through tuning of the minimum chunk size. 

Experiments with different minimum chunk sizes show that performance improvements 

can be obtained simply by tuning of the Fractiling scheme.  In addition, redesigning the 

Master Allocator with multiple sockets may overcome the performance bottlenecks.  

The integrated system was tested for N-body simulations. N-body simulations 

have been widely used in a broad class of application areas of science such as 

astrophysics, molecular dynamics, biophysics, molecular chemistry etc.  Hectiling will 

improve performance of any application that employs N-body simulations in a distributed 

computing environment. Parallel N-body simulations are a data parallel application. It is 

also reasonable to assume for this data parallel application, Hectiling will perform better 

than applying Fractiling or Hector independently. 

Extensions to both Hector and Fractiling may also prove fruitful.  For example, 

support for a distributed shared memory environment would enable thread-migration-

based load balancing, and the combination of Hector and Fractiling would then support 

the three ways that computational load can be redistributed (task, data, and thread 

migration).  In addition, enhancements to Fractiling that are currently being pursued, may 

in turn improve the functionality of the resulting integrated system. 
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In cases where low-overhead measurements of performance can be made, some 

improvements in Fractiling performance are possible.  For example, measurements of 

nearness to completion and of relative performance can allow the amount of data 

exchange to be proportional to the actual performance. In general, the measurements 

required are less expensive than the ones used in profiling, and can be immediately used, 

instead of waiting until a subtile execution is completed.  An advantage of the integration 

of Fractiling and Hector into a single framework is that it specifically facilitates this 

performance improvement. Since the MA periodically gathers information from the SAs 

about the tasks running under them, the nearness to completion of subtiles can be 

collected and forwarded to the Fractiling Master without any extra overhead. This 

enables the Fractiling Master to transfer data from a slow Fractile Task to a Fractiling 

Task, which is about to finish.  As a result, the Fractiling Tasks would not run out of data, 

and thus would not have to request the Fractiling Master to transfer data.  This results in 

minimizing communication and better resource utilization.   Another advantage of this 

integrated design is the re-routing of the Fractile_Ask message via the MA.  Since the re-

routing is implemented using sockets, it is faster   than a direct MPI based 

communication between Fractiling Master and Fractiling Tasks.   In general, the MPI 

communications use lower level communication primitives (i.e., sockets), which involve 

at least one extra level of interface.   A third advantage of this integrated design is that the 

controlling and the decision making component of the Fractiling Master could be moved 

as a module inside the MA, and this would reduce some of the communication overhead. 
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Hectiling can also be implemented on heterogeneous platforms. In such cases, 

Hectiling migrates tasks between pairs of homogeneous workstations, as for example, 

between pairs of Sun workstations, or pairs of SGI workstations, as opposed to between 

Sun and SGI workstations. The migration cost between two Sun SPARCstations 

connected by 10 Mbits/sec Ethernet was observed to be 0.6 Mbytes/sec[18]. If the 

workstations are connected by various bandwidth interconnection networks, the 

migration cost between different pairs of workstations will vary. In Hectiling, network 

information, such as bandwidth, latency, and congestion of interconnects, is presently not 

taken into account when making migration decisions. This may lead to reduced 

performance in some situations where, for instance, a very large task is migrated between 

workstations connected by a very slow connection. For such cases, the cost of migration 

may be higher than the increase in cost of running the task on the busy workstation. 

Further work to improve Hectiling can be pursued by incorporating network information 

into task migration decisions. 

The Hectiling paradigm can be generalized with little effort, to be applied to any 

scientific application that is data parallel. Even more, any algorithmic load balancing 

technique that works around a master slave strategy could be integrated into Hector with 

minor modifications. By careful planning and design, it is possible to develop a set of 

well-defined Hectiling APIs, which, in turn, can be used by scientific applications to 

incorporate Hectiling. 

 
 
 



    

 64 

REFERENCES 

 
 

1. C. R. Anderson, An Implementation of the Fast Multipole Method SIAM J. Sci. Stat. 
Comput.,1992, 923-947. 

 
2. M. Baker and G. Fox and H. Yau. Cluster Computing Review, Northeast Parallel 

Architecture Center, Syracuse www.npac.syr.edu/techreports/hypertext/sccs-
0748/cluster-review.html, 1995. 

 
3. I. Banicescu. Load Balancing and Data Locality in the Parallelization of the Fast 

Multipole Algorithm, Ph.D. Dissertation, Polytechnic University, 1996 January.  
 
4. I. Banicescu and S. F. Hummel. Balancing Processor Loads and Exploiting Data 

Locality in N-Body Simulations, Proceedings of Supercomputing'95 conference,1995 
(on CD-ROM).  

 
5. I. Banicescu and S. F. Hummel. Balancing Processor Loads and Exploiting Data 

Locality in Irregular Computations, IBM Research Report, 1995, RC19934. 
 
6. I. Banicescu and R. Lu. Experiences with Fractiling in N-Body        Simulations, 

Proceedings of High Performance Computing'98 Symposium, 121--126, 1998.  
 
7. I. Banicescu and S. Russ and M. Bilderback and S. Ghafoor. Competitive Resource 

Management in Distributed Computing Environment with Hectiling Proceedings of 
High Performance Computing'99 Symposium, 337-343, 1999. 

 
8. I. Banicescu and S. Ghafoor and M. Bilderback. Efficient Resource Management for       

Scientific Applications in Distributed Computing Environment, Proceedings of the 
Workshop on Distributed Computing on the Web (DCW'98), 45--54,1998. 

 
9. J. A. Board and J. Causey and J. F. Leathrum Jr. and Accelerated Molecular Dynamic 

Simulations with the Parallel Fast Multipole Algorithm, Chemical Physics Letters, 
1992, 198, 23-34. 

 
10. J. A. Board and Z. S. Hakura and W. D. Elliot and others. Scalable Variants of 

Multipole-based Algorithms for Molecular Dynamics Applications, In the Proceeding 
of Seventh SIAM Conference on Parallel Processing for Scientific Computing, 1995, 
SIAM, Philadelphia, 295--300, February. 

 



  65  

  

11. N. Carriero and E. Freeman and D. Gelernter and D. Kaminsky. Adaptive Parallelism 
and Piranha, Computer, 28, 1, 40-49, 1995. 

 
12. J. Casas and D. Clark and R. Konuru and S. W. Otto MPVM:  A Migration 

Transparent Version of PVM, Usenix Computing Systems Journal, 171--216, 8, 
2,1995. 

 
13. DQS User Manual - DQS Version 3.1.2.3Supercomputer Computations Research 

Institute, Florida State University, 1995. 
 
14. D.G. Feitelson, L. Rudolph, U. Schwiegelshohn,K.C. Sevcik and P. Wong". Theory 

and Practice in Parallel Job Scheduling. IPPS '97 Workshop on Job Scheduling 
Strategies for Parallel Processing, 1997. 

 
15. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure, 

Morgan Kaufmann, San Francisco, 1998. 
 
16. Al Geist, Adam Beguelin, Jack Dongara, Weiching Jiang, Robert Manchek, and 

Vaidy Sundaram. PVM: Parallel Virtual Machine. MIT Press, Cambridge, 1994. 
 
17. R. Gibbons. A Historical Application Profiler for Use by Parallel Schedulers, IPPS 

'97 Workshop on Job Scheduling Strategies for Parallel Processing, 1997. 
 
18. Y. Grama, V. Kumar and A. Sameh. Scalable Parallel Formulations of Barnes-Hut 

Method for N-Body Simulations, Proc. of Supercomputing'94, 439--448, November, 
1994 . 

 
19. L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulation, Journal of 

Computational Physics, 1987, May, 325--48, 73. 
 
20. Willium Gropp, Edwing Lusk and Anthony Skjellum. Using MPI. MIT Press, 

Cambridhge 1994. 
 
21. S. F. Hummel. Fractiling:  A Method for Scheduling Parallel Loops on NUMA 

Machines,  IBM RC18958, 1993.  
 
22. S. F. Hummel and E. Schonberg and L. E. Flynn, A Practical and Robust Method for 

Scheduling Parallel Loops, Communications of the ACM, 1992, 358, August, 90—
101. 

 
23. M.T. Jones and P.E. Plassman. Parallel Algorithms for Adaptive Mesh Refinement, 

SIAM Journal on Scientific Computing", Vol.18, pp 686-708, 1997. 
 
24. J. F. Leathrum and J. A. Board, The Parallel Fast Multipole Algorithm in Three      

Dimensions, Duke University, Department of Electrical Engineering, 1992, TR92-
001, April. 



  66  

  

25. H. Li, S. Tandri, M. Stumm and K. C. Sevcik. Locality and Loop Scheduling on 
NUMA Machines, Proceedings of Int. Conf. on Parallel Processing, pp II140-II147, 
1993.  

 
26. LSF. Product Reviews: Platform Computing Corp. Load  SunExpert, 8, 8, 62--64, 

1997 
 
27. R. Lu, Parallelization of the Fast Multipole Algorithm with Fractiling in Distributed  

Memory Architectures, Mississippi State University, 1997. 
 
28. E. P. Markatos and T. J. LeBlanc. Using Processor Affinity in Loop Scheduling on 

Shared-Memory Multiprocessors, IEEE Transactions on Parallel and Distributed 
Systems, Vol. 5, No. 4, pp 379-400, 1992.  

 
29. B. Neuman and S. Rao, The Prospero Resource Manager: A Scalable Framework for 

Processor Allocation in Distributed System, Concurrency: Practice and Experience,
 339--355, 1994. 

 
30. T.D. Nguyen, R. Vaswani and J. Zahorjan. Using Run-Time Measured Workload 

Characteristics in Parallel Processing Scheduling, IPPS '96 Workshop on Job 
Scheduling Strategies for Parallel Processing, 1996. 

 
31. C. Polychronopoulos and D. Kuck. Guided Self-Scheduling: A Practical Scheduling 

Scheme for Parallel Computers, IEEE Transactions on Computers, Vol. C-36, No. 12, 
pp1425-1439, 1987.  

  
32. J. Pruyne and M. Livney. Providing Resource Management Services to Parallel 

Applications, Workshop on Job Scheduling Strategies for Parallel Processing, 
Proceedings of the International Parallel Processing Symposium (IPPS 1995),1995.  

 
33. J. Robinson and S. Russ and B. Flachs and B. Heckel. A Task Migration 

Implementation of the Message-Passing Interface, 5th High Performance Distributed 
Computing Conference (HPDC-5), 61--68, 1996. 

34. S. Russ and B. Flachs and J. Robinson and B. Heckel. Hector: Automated Task 
Allocation for MPI, 10th International Parallel Processing Symposium, 344--
348,1996. 

 
35. S. Russ and M. Gleeson and B. Meyers and L. Rajagopalan and C. Tan, Using Hector 

to run MPI Programs over Networked Workstation, Concurrency: Practice and 
Experience, Accepted for publication. 

36. S. Russ and B. Meyers and M. Gleeson and J. Robinson and L. Rajagopalan and C. 
Tan and B. Heckel. User Transparent Run-Time Performance Optimization, The 2nd 
International Workshop on Embedded HPC and Applications at the 11th IEEE 
International Parallel Processing Symposium, 1997. 

 



  67  

  

37. S. H. Russ, K. Reece, J. Robinson, B. Meyers, L. Rajagopalan and C.-H. Tan. An 
Agent Based Architecture for Dynamic Resource Management, IEEE Concurrency, 
Vol. 7, No. 2, pp  47-55,     1999.  

 
38. J. Salmon and M. S. Warren, Parallel, Out-of-core Methods for N-Body Simulation, 

Proceeding of 8th SIAM Conference on Parallel Processing for Scientific Computing, 
1997, SIAM. 

 
39. J. Singh, Parallel Hierarchical N-Body Methods and  Their Implications for 

Multiprocessors, Stanford University, 1993 . 
 
40. J. Singh and C. Holt and T. Totsuka and others, A Parallel Adaptive Fast Multipole 

Algorithm, Proc. of Supercomputing'93, 54--65, 1993. 
 
41. A. Sohn and R. Biswas and H. Simon. Dynamic Load Balancing Framework for 

Unstructured Adaptive Computations on Distributed-Memory Multiprocessors, 
Proceedings of Symposium on Parallel Algorithms and Architectures, 189-192, 1997. 

 
42. T. Tannenbaum and M. Litzkow. The Condor Distributed Processing System, Dr. 

Dobbs' Journal of Software Tools for  20, 2, 40--48, 1995. 
 
43. T. H. Tzen and L. M. Ni. Dynamic Loop Scheduling for Shared-Memory 

Multiprocessors, Proc. Int. Conf. on Parallel Processing, II, 247-250, 1991. 
 
44. M. Warren and J. Salmon. Astrophysical N-Body Simulation Using Hierarchical Tree 

Structures, Proc. of Supercomputing'92, 1992. 
 
45. M. Warren and J. Salmon. A Parallel Hashed Oct Tree N-Body Algorithm, 

Proceeding of Supercomputing'93, 1993, 12--21, IEEE Computer Society. 
 
46. S. Zhou. LSF:  Load Sharing and Batch Queueing Software, Platform Computing 

Corporation, 1996, North York, Canada. 
 
 
 


	Integrating Algorithmic and Systemic Load Balancing Strategies in Parallel Scientific Applications
	Recommended Citation

	Microsoft Word - ambareen.doc

