607 research outputs found

    Using the High Productivity Language Chapel to Target GPGPU Architectures

    Get PDF
    It has been widely shown that GPGPU architectures offer large performance gains compared to their traditional CPU counterparts for many applications. The downside to these architectures is that the current programming models present numerous challenges to the programmer: lower-level languages, explicit data movement, loss of portability, and challenges in performance optimization. In this paper, we present novel methods and compiler transformations that increase productivity by enabling users to easily program GPGPU architectures using the high productivity programming language Chapel. Rather than resorting to different parallel libraries or annotations for a given parallel platform, we leverage a language that has been designed from first principles to address the challenge of programming for parallelism and locality. This also has the advantage of being portable across distinct classes of parallel architectures, including desktop multicores, distributed memory clusters, large-scale shared memory, and now CPU-GPU hybrids. We present experimental results from the Parboil benchmark suite which demonstrate that codes written in Chapel achieve performance comparable to the original versions implemented in CUDA.NSF CCF 0702260Cray Inc. Cray-SRA-2010-016962010-2011 Nvidia Research Fellowshipunpublishednot peer reviewe

    Optimization Techniques for Stencil Data Parallel Programs: Methodologies and Applications

    Get PDF
    The optimization of data parallel programs is a challenging open problem. We analyzed in detail the optimization techniques for stencil computations, which are a subset of data parallel computations. Drawing from previous research, we developed a structured model to describe the program transformations. We used this model to compare the different optimizations presented in literature and study the interaction between them

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    Automatic Performance Optimization of Stencil Codes

    Get PDF
    A widely used class of codes are stencil codes. Their general structure is very simple: data points in a large grid are repeatedly recomputed from neighboring values. This predefined neighborhood is the so-called stencil. Despite their very simple structure, stencil codes are hard to optimize since only few computations are performed while a comparatively large number of values have to be accessed, i.e., stencil codes usually have a very low computational intensity. Moreover, the set of optimizations and their parameters also depend on the hardware on which the code is executed. To cut a long story short, current production compilers are not able to fully optimize this class of codes and optimizing each application by hand is not practical. As a remedy, we propose a set of optimizations and describe how they can be applied automatically by a code generator for the domain of stencil codes. A combination of a space and time tiling is able to increase the data locality, which significantly reduces the memory-bandwidth requirements: a standard three-dimensional 7-point Jacobi stencil can be accelerated by a factor of 3. This optimization can target basically any stencil code, while others are more specialized. E.g., support for arbitrary linear data layout transformations is especially beneficial for colored kernels, such as a Red-Black Gauss-Seidel smoother. On the one hand, an optimized data layout for such kernels reduces the bandwidth requirements while, on the other hand, it simplifies an explicit vectorization. Other noticeable optimizations described in detail are redundancy elimination techniques to eliminate common subexpressions both in a sequence of statements and across loop boundaries, arithmetic simplifications and normalizations, and the vectorization mentioned previously. In combination, these optimizations are able to increase the performance not only of the model problem given by Poisson’s equation, but also of real-world applications: an optical flow simulation and the simulation of a non-isothermal and non-Newtonian fluid flow

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Generalized full sparse tiling of loop chains

    Get PDF
    2013 Fall.Includes bibliographical references.Computer and computational scientists are tackling increasingly large and complex problems and are seeking ways of improving the performance of their codes. The key issue faced is how to reach an effective balance between parallelism and locality. In trying to reach this balance, a problem commonly encountered is that of ascertaining the data dependences. Approaches that rely on automatic extraction of data dependences are frequently stymied by complications such as interprocedural and alias analysis. Placing the dependence analysis burden upon the programmer creates a significant barrier to adoption. In this work, we present a new programming abstraction, the loop chain, that specifies a series of loops and the data they access. Given this abstraction, a compiler, inspector, or runtime optimizer can avoid the computationally expensive process of formally determining data dependences, yet still determine beneficial and legal data and iteration reorderings. One optimization method that has been previously applied to irregular scientific codes is full sparse tiling. Full sparse tiling has been used to improve the performance of a handful of scientific codes, but in each case the technique had to be applied from scratch by an expert after careful manual analysis of the possible data dependence patterns. The full sparse tiling approach was extended and generalized as part of this work to apply to any code represented by the loop chain abstraction. Using only the abstraction, the generalized algorithm can produce a new data and iteration ordering as well as a parallel execution schedule. Insight into tuning a generalized full sparse tiled application was gained through a study of the different factors influencing tile count. This work lays the foundation for an efficient autotuning approach to optimizing tile count

    Scalable Task Parallelism for NUMA: A Uniform Abstraction for Coordinated Scheduling and Memory Management

    Get PDF
    International audienceDynamic task-parallel programming models are popular on shared-memory systems, promising enhanced scalability, load balancing and locality. Yet these promises are undermined by non-uniform memory access (NUMA). We show that using NUMA-aware task and data placement, it is possible to preserve the uniform abstraction of both computing and memory resources for task-parallel programming models while achieving high data locality. Our data placement scheme guarantees that all accesses to task output data target the local memory of the accessing core. The complementary task placement heuristic improves the locality of task input data on a best effort basis. Our algorithms take advantage of data-flow style task parallelism, where the privatization of task data enhances scalability by eliminating false dependences and enabling fine-grained dynamic control over data placement. The algorithms are fully automatic, application-independent, performance-portable across NUMA machines, and adapt to dynamic changes. Placement decisions use information about inter-task data dependences readily available in the run-time system and placement information from the operating system. We achieve 94% of local memory accesses on a 192-core system with 24 NUMA nodes, up to 5Ă— higher performance than NUMA-aware hierarchical work-stealing, and even 5.6Ă— compared to static interleaved allocation. Finally, we show that state-of-the-art dynamic page migration by the operating system cannot catch up with frequent affinity changes between cores and data and thus fails to accelerate task-parallel applications

    Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality Potential

    Get PDF
    Emerging computer architectures will feature drastically decreased flops/byte (ratio of peak processing rate to memory bandwidth) as highlighted by recent studies on Exascale architectural trends. Further, flops are getting cheaper while the energy cost of data movement is increasingly dominant. The understanding and characterization of data locality properties of computations is critical in order to guide efforts to enhance data locality. Reuse distance analysis of memory address traces is a valuable tool to perform data locality characterization of programs. A single reuse distance analysis can be used to estimate the number of cache misses in a fully associative LRU cache of any size, thereby providing estimates on the minimum bandwidth requirements at different levels of the memory hierarchy to avoid being bandwidth bound. However, such an analysis only holds for the particular execution order that produced the trace. It cannot estimate potential improvement in data locality through dependence preserving transformations that change the execution schedule of the operations in the computation. In this article, we develop a novel dynamic analysis approach to characterize the inherent locality properties of a computation and thereby assess the potential for data locality enhancement via dependence preserving transformations. The execution trace of a code is analyzed to extract a computational directed acyclic graph (CDAG) of the data dependences. The CDAG is then partitioned into convex subsets, and the convex partitioning is used to reorder the operations in the execution trace to enhance data locality. The approach enables us to go beyond reuse distance analysis of a single specific order of execution of the operations of a computation in characterization of its data locality properties. It can serve a valuable role in identifying promising code regions for manual transformation, as well as assessing the effectiveness of compiler transformations for data locality enhancement. We demonstrate the effectiveness of the approach using a number of benchmarks, including case studies where the potential shown by the analysis is exploited to achieve lower data movement costs and better performance.Comment: Transaction on Architecture and Code Optimization (2014
    • …
    corecore