
DISSERTATION

GENERALIZED FULL SPARSE TILING OF LOOP CHAINS

Submitted by

Christopher D. Krieger

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2013

Doctoral Committee:

Advisor: Michelle Mills Strout

Wim Böhm
Sanjay Radjopadhye
Jennifer Mueller

ABSTRACT

GENERALIZED FULL SPARSE TILING OF LOOP CHAINS

Computer and computational scientists are tackling increasingly large and complex prob-

lems and are seeking ways of improving the performance of their codes. The key issue faced

is how to reach an effective balance between parallelism and locality. In trying to reach

this balance, a problem commonly encountered is that of ascertaining the data dependences.

Approaches that rely on automatic extraction of data dependences are frequently stymied

by complications such as interprocedural and alias analysis. Placing the dependence analysis

burden upon the programmer creates a significant barrier to adoption.

In this work, we present a new programming abstraction, the loop chain, that specifies

a series of loops and the data they access. Given this abstraction, a compiler, inspector, or

runtime optimizer can avoid the computationally expensive process of formally determining

data dependences, yet still determine beneficial and legal data and iteration reorderings.

One optimization method that has been previously applied to irregular scientific codes is

full sparse tiling. Full sparse tiling has been used to improve the performance of a handful

of scientific codes, but in each case the technique had to be applied from scratch by an

expert after careful manual analysis of the possible data dependence patterns. The full

sparse tiling approach was extended and generalized as part of this work to apply to any

code represented by the loop chain abstraction. Using only the abstraction, the generalized

algorithm can produce a new data and iteration ordering as well as a parallel execution

schedule.

Insight into tuning a generalized full sparse tiled application was gained through a study

of the different factors influencing tile count. This work lays the foundation for an efficient

autotuning approach to optimizing tile count.

ii

ACKNOWLEDGEMENTS

I gratefully acknowledge support for this research from the Department of Energy

CACHE Institute grant DE-SC04030, DOE grant DE-SC0003956, and NSF grant CCF

0746693. This research utilized the CSU ISTeC Cray HPC System supported by NSF Grant

CNS-0923386. I also acknowledge the use of the machines in Intel’s Manycore Testing Lab.

I also appreciate the feedback and support received throughout my graduate career from

my fellow students Andy Stone, Chris Wilcox, Tomofumi Yuki, and Alan LaMielle, as well

as from faculty members Cathie Olschanowsky, Sanjay Rajopadhye, and Wim Böhm.

I thank Samantha Wood for her work on full sparse tiling the matrix powers kernel and

her invaluable SMOReS thesis, which was frequently consulted when analyzing the behavior

of different sparse matrices.

I am also thankful for the patience and understanding of my colleagues at Intel, Ram

Srinivasan, Jim Callister, Stephanie Postal, Richard Blumburg, Alex Settle, Lambert

Schaelicke, Eric Borch, and Derek Cho. Their unflagging support contributed significantly

to my ability to work on my research while continuing my career.

While developing the loop chain abstraction, I received valuable feedback and code ex-

amples from Xinfang Gao and Stephen Guzak of the Colorado State University Mechanical

Engineering Department and from Brian Van Straalen and Sam Williams of Lawrence Berke-

ley National Lab.

I appreciate the help of my collaborators Paul HJ Kelly, Doru Bercea, Fabio Luporini,

and Graham Markall at Imperial College of London, Carlo Bertolli at IBM Research, and

Gihan Mudalige at Oxford College. Our discussions on full sparse tiling unearthed many

weaknesses in early versions of the generalized full sparse tiling algorithm. I also thank them

for their support regarding the airfoil benchmark.

iii

DEDICATION

I give special thanks to my advisor, Michelle Strout, who was willing to advise, against

her better judgement, a student attempting to live the oxymoron“part time PhD student.”

Her years of guidance, teaching, and patience with my non-standard and protracted graduate

program is much appreciated.

I dedicate this work to my wife Lockey and our four sons Ian, Thomas, Jacob, and Eli.

The original dedication in my master’s thesis read,“To Lockey, who kept this a thesis and

not a dissertation,” reflecting her desire to be done with graduate school. Now, after more

than a decade and over six more years of schooling, she finally has her wish.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

1 Introduction . 1

1.1 Balancing Parallelism and Locality in Scientific Codes 1

1.2 Existing Approaches to Balancing Parallelism and Locality 2

1.3 Introduction to Loop Chains . 4

1.4 Introduction to Full Sparse Tiling . 8

1.5 Problems with Single Purpose Approaches to Full Sparse Tiling 9

1.6 Generalized Full Sparse Tiling . 11

1.7 Understanding the Impact of Tile Size and Parallelism Under Generalized Full

Sparse Tiling . 12

1.8 Summary of Contributions . 13

2 Loop Chain Programming Abstraction . 16

2.1 Motivation for the Loop Chain Abstraction 16

2.2 Formal Definition of the Loop Chain Abstraction 18

2.2.1 Iteration Spaces . 18

2.2.2 Data Spaces . 20

2.2.3 Data Access Relations . 20

2.3 Methods for Specifying Loop Chains . 22

2.3.1 Application Programming Interfaces 22

2.3.2 Pragmas . 23

2.3.3 Domain Specific Languages . 24

2.4 Optimizations Enabled by Loop Chains . 26

2.5 Examples of Loop Chains Present in Existing Scientific Codes 28

v

2.6 Prior Work Related to Loop Chains . 31

2.6.1 Programming Models Using User Defined Tasks 31

2.6.2 Automatic Approaches for Task Detection 33

2.6.3 Communication Avoidance . 33

2.7 Limitations of Loop Chains . 34

3 Generalized Full Sparse Tiling . 37

3.1 Prior Single Purpose Approaches to Full Sparse Tiling 37

3.2 Issues With Generalization of Full Sparse Tiling 39

3.2.1 Complexity of Data Dependency Computation 39

3.2.2 Handling Parallel Reductions . 44

3.2.3 Dependences Between Non-Adjacent Loops 44

3.2.4 Complexity of Creating the Initial Partitions 45

3.3 General Full Sparse Tiling Algorithm . 46

3.3.1 The Top Level Full Sparse Tiling Algorithm 48

3.3.2 Partitioning of the Seed Iteration Space 52

3.3.3 Tracking Data Reads and Writes . 53

3.3.4 Backward and Forward Tiling Algorithms 54

3.3.5 Task Graph Generation . 62

3.4 Validity of the General Full Sparse Tiling Algorithm 64

3.5 Other Parallelization Approaches Related to Full Sparse Tiling 65

4 Locality Considerations For Full Sparse Tiling . 68

4.1 Interaction Between Locality and Full Sparse Tiling 69

4.1.1 Iteration Placement To Improve Locality 69

4.1.2 Relationships Between Tile Footprints and Cache Sizes 71

4.1.3 Distributions of Tile Memory Footprints 72

4.2 Partitioning the Seed Space to Improve Temporal Locality 75

4.3 Data Reordering and Generalized Full Sparse Tiling 78

vi

5 Parallelism Considerations for Full Sparse Tiling 81

5.1 Coloring Seed Partitions To Improve Parallelism 81

5.2 Issues with Measuring and Controlling Task Graph Parallelism 84

5.2.1 Statistics for Measuring Parallelism 84

5.2.2 Using Tile Count to Control Parallelism 85

5.3 Determining the Optimal Amount of Parallelism 87

6 Competing Forces In Optimization of Generalized Full Sparse Tiling 97

6.1 Impact of Scheduling Overhead . 97

6.2 Impact of Locality Dilution . 100

6.3 Impact of Tile Irregular Data Footprint . 101

6.4 Impact of Parallelism and Load Imbalance 102

6.5 Interaction of Forces . 106

7 The Generalized Reordering Optimizer for Ubiquitous Tiling (GROUT) Library

and Programming Interface . 108

7.1 Specifying the Elements of a Loop Chain . 108

7.1.1 Iteration Spaces . 110

7.1.2 Data Spaces . 110

7.1.3 Data Access Relations . 111

7.1.4 Loop Bodies . 113

7.1.5 Loops and Loop Chains . 116

7.2 Applying Optimizations Using Inspectors . 117

7.3 Executing Loop Chains Using Executors . 118

7.4 A Complete Example Using GROUT . 119

8 Conclusions And Future Research . 122

8.1 Conclusions . 122

8.2 Areas Identified for Further Research . 124

vii

8.2.1 Full Sparse Tiling for Distributed Memory Systems 124

8.2.2 Extending Domain Specific Languages To Define Loop Chains 125

8.2.3 Locality Improvements to the Generalized Full Sparse Tiling

Algorithm . 126

8.3 Summary . 127

viii

Chapter 1

Introduction

Computer and computational scientists are tackling increasingly large and complex prob-

lems and are seeking ways of improving the performance of their codes. One of the key issues

faced by these scientists and others in the high performance computing community is how to

reach an effective balance between parallelism and locality. The general solution is to bundle

together work that uses the same data, thereby improving locality. That work then executes

according to a parallel schedule that respects all data dependences. Many different solutions,

each with its advantages and disadvantages, have been proposed but the issue remains an

area of active research.

A challenge commonly encountered by existing approaches is how to ascertain the data

dependences. Approaches that rely on automatic extraction of data dependences are fre-

quently stymied by complications such as interprocedural program analysis and alias anal-

ysis. Placing the dependence analysis burden upon the programmer creates a significant

barrier to adoption.

In this work, we present a new programming abstraction, loop chains, that allows pro-

grammers or tools to specify a series of loops and the data they access. Declaring what data

is accessed by a loop is far simpler than determining data dependences. Working from this

abstraction, a generalized version of the full sparse tiling approach is then able to create high

locality, parallel schedules.

1.1 Balancing Parallelism and Locality in Scientific

Codes

There is a significant, established code base in the scientific computing community. To

date, many of these codes have been parallelized. However, these parallel codes are now

1

encountering scalability issues due to poor data locality, inefficient data distributions, and/or

load imbalance as they are run on larger and larger systems. Code and algorithm changes

are therefore necessary in order to effectively utilize new computational resources, many of

which require ever increasing levels of parallelism for efficient execution.

With the increase in the amount of computational power has come an increased need for

memory bandwidth to supply those resources with data. However, memory technology has

not kept pace with advances in computation rate. This has led to an imbalance between the

compute capabilities of multicore systems and accelerators and the ability of the memory

subsystem or interconnect network to deliver data. To address this problem, codes are being

modified to reduce their bandwidth requirements, often by improving data locality. This

often requires changes to data and work distribution methodologies.

Given this shifting landscape of increasing compute power, often from sources such as

accelerators, diminishing relative performance of memory systems, and large amounts of

critical, validated scientific codes with rigid explicit data distributions yielding non-portable

performance, it is no surprise that balancing parallelism and locality remains a significant

challenge for the scientific computing community.

1.2 Existing Approaches to Balancing Parallelism and

Locality

Various solutions have emerged for addressing the challenge of achieving and balancing

both parallelism and data locality. One current approach is the incremental addition of par-

allelism using OpenMP [23] parallel loop pragmas. In this approach, the compiler adds the

necessary code for parallel execution and synchronization. This method enables the unobtru-

sive addition of parallelism. Unfortunately, this approach typically provides the programmer

with little control over how data and computation are grouped or distributed. For example,

OpenMP only allows statically or dynamically sized blocks of contiguous iterations to be

assigned to threads. Good data locality is only obtained if consecutive iterations of a loop

access data in common or can be made to do so. OpenMP also does not provide a way to

2

group iterations of different loops together. These limitations make it difficult to improve

data locality during parallel execution.

An earlier and still quite popular approach to parallelization that is significantly less

incremental is to use explicit message passing libraries such as MPI [33]. MPI has been used

to parallelize a significant fraction of mature parallel scientific codes. MPI development is

disruptive and requires a considerable coding effort. However, the difficult aspects of the

MPI programming model also lead to advantages in terms of data locality. Specifically,

the programmer must manage the distribution for both the data and the computation and

specify communication between nodes with explicit sends and receives. The programmer

can therefore put computation together that accesses similar data.

Both OpenMP and MPI programming models have led to codes with one parallel loop af-

ter another in sequence. Communication among processing elements typically occurs between

loops. At its simplest, this bulk model can be synchronized using barriers. Unfortunately,

this approach can be inefficient if different processing elements take different amounts of

time to complete their assigned work. This is usually the case when work cannot be evenly

divided between processors or if execution times differ due to varying data access times. In

this case, processors sit idle, waiting until the last processor completes its work and reaches

the barrier.

In order to achieve the high levels of parallelism required to efficiently execute on large

parallel machines, it is necessary to move from this bulk parallelism to asynchronous paral-

lelism. With asynchronous parallelism, the ordering dependences between tasks are deter-

mined either in advance or dynamically at runtime. A task is allowed to execute immediately

upon the completion of all its predecessor tasks. This model circumvents many of the load

balancing issues of bulk synchronization. Models such as the OpenMP 3.0 task model [30],

the Concurrent Collections model [17], and StarPU [3] directly expose asynchronous tasks.

Other approaches to managing the parallelism and data locality tradeoff include Parti-

tioned Global Address Space (PGAS) languages such as Unified Parallel C [31] or Co-Array

Fortran [47]. In these languages, users explicitly distribute data to nodes and can therefore

3

achieve good locality, just as was done using direct MPI calls to distribute data. These

languages have the advantage that the necessary communication code is abstracted away

behind a one-sided communication model. In this model, accessing remote data is coded in

a way that is syntactically similar to local accesses and a compiler inserts the necessary data

transfers. Consequently, while data distribution is still explicitly under programmer control,

communication is not as cumbersome in a PGAS language. Unfortunately, PGAS languages

have no language features to improve data locality across loops within a node.

Relatively new parallel programming languages such as Chapel [15] or X10 [18] provide

mechanisms for specifying data locality such as places and locales, but these specifications

are done on a loop by loop or computation by computation basis. The parallel constructs

are considered in isolation with respect to other adjacent or surrounding constructs. There

is no way to aggregate parallel loops. There is also a prohibitive cost in porting existing

code to an entirely new language.

At the opposite end of the spectrum lie autoparallelization [4, 32] approaches. Under

these schemes, a compiler or other tool determines the data and computation distribution

automatically. Examples such as the Build To Order BLAS compiler perform data locality

and parallelization optimizations across function calls [9]. An autoparallelization approach

can achieve good performance portably and frees the programmer from having to make

fixed choices, but also means the programmer has little ability to alter or further optimize

the distributions. More significantly, automatic approaches typically rely on extensive data

dependence analysis. Precise data dependence analysis is an open research challenge, fraught

with difficulties such as pointer aliasing and interprocedural analysis that historically have

forced these algorithms to make overly conservative assumptions on real-world codes.

1.3 Introduction to Loop Chains

Given the extremes of user-laborious, non-portable parallelization approaches or limited

automatic methods previously outlined, it seems that the best answer lies between the two.

Ideally, the scheduling and placement of computation and distribution of data would be

4

handled automatically by a compiler and/or runtime that is aware of the target system and

can optimize for it. However, it is important for such a system not to rely heavily on the

automatic detection of data dependences, especially across the many procedure calls that

occur in modular scientific computing software.

One way to eliminate the need for automatic dependence analysis is to require the pro-

grammer to provide this information. Unfortunately, in general, and particularly in irregular

codes, the programmer does not reason about the code in terms of formal data dependences

between loop iterations. Even more rarely does the programmer consider dependences across

different loops. What is needed is a way for the data dependences to be expressed in a way

that is easily understood by a programmer and fits with his or her intuition about the code.

In this work, we introduce a new abstraction called a loop chain in which a sequence of

parallel and/or reduction loops that explicitly share data are grouped together into a chain.

A description of the data accessed within each loop is provided as part of the abstraction.

The loop chain stands at an intermediate point, still close enough to the concrete code that

the programmer can reason about it, yet also close enough to the explicit data dependences

that the optimizer can derive ordering constraints from it.

The definition of a loop chain consists of three pieces, namely:

• Well defined iteration spaces for each loop, {L0, L2, . . . , LN−1}

• Data spaces for accessed data, {D0, D2, . . . , DM−1}

• Access relations for data read/written by each iteration of each loop:

RLl→Dd
(~i) or WLl→Dd

(~i)

Note that because the loop chain abstraction requires the explicit declaration of data

access relations, it is not dependent on automatic techniques or interprocedural program

analysis to discover data dependences. Because the iteration spaces are well defined, every

iteration of every loop is clearly defined in the loop chain. Satisfying producer-consumer

relationships for data imposes a partial ordering on the execution sequence of the iterations.

5

1 for (int t=0; t < numIters ; t += 2) {
2 for (int i =0; i<numrows ; i++) {
3 double diag = 1 . 0 ;
4 Ueven [i] = 0 . 0 ;
5 for (int p=IA [i] ; p < IA [i +1; p++) {
6 int j = JA [p] ;
7 i f (j==i) { diag = A[p] ; }
8 else { Ueven [i] += A[p] ∗ Uodd [j] ; }
9 }

10 Ueven [i] = (F [i] − Ueven [i]) / diag ;
11 }
12
13 for (int i =0; i<numrows ; i++) {
14 double diag = 1 . 0 ;
15 Uodd [i] = 0 . 0 ;
16 for (int p=IA [i] ; p < IA [i +1] ; p++) {
17 int j = JA [p] ;
18 i f (j==i) { diag = A[p] ; }
19 else { Uodd [i] += A[p] ∗ Ueven [j] ; }
20 }
21 Uodd [i] = (F [i] − Uodd [i]) / diag ;
22 }
23 }

Figure 1.1: The kernel of the sparse Jacobi solver for CSR sparse matrices. Output vectors
Ueven and Uodd are used in an alternating, ping-pong, fashion. The loops beginning on
lines 2 and 13 can be chained.

Therefore, once specified, a loop chain can be used to derive a set of loop iterations under

a partial ordering. This partially ordered set of iterations makes scheduling and determining

data distributions across loops possible for a compiler and/or run-time system. The flexibility

of being able to schedule across loops enables better management of the data locality and

parallelism tradeoff.

The concept of a loop chain can be illustrated with a concrete example. Figure 1.1 shows

the C code for a sparse Jacobi solver. Given a sparse matrix A, and a vector ~f , related by

A~u = ~f , each iteration of the sparse Jacobi method produces an approximation to the un-

known vector ~u. The recurrence equation closely resembles matrix vector multiplication and

is representative of a broad class of sparse linear algebra applications. This code uses a ping-

pong approach to the output vector, switching between Ueven and Uodd. The outermost

loop repeats the kernel for a fixed number of repetitions.

If the two loops shown on lines 2 and 13 are combined into a loop chain, they form a

chained iteration space like that shown in Figure 1.2. The specific space shown is for a sample

matrix with seven rows and columns. In Figure 1.2, the boxes represent data spaces or arrays

6

1 2

2 3 4 5 6 71

3 4 5 6 7

2 3 4 5 6 71

1 2 3 4 5 6 7

Uodd

Ueven

Loop 0

Loop 1

Figure 1.2: The data and iteration space view of the Jacobi code in Figure 1.1. The boxes
represent the Ueven and Uodd vectors, the circles represent iterations of the two loops.
The data access functions are represented by arrows. The upward pointing read arrows are
irregular and dictated by the particular sparse matrix, while the downward pointing write
accesses are an identity relation. Chain invariant data, such as F, IA, JA, and A, are present
in the loop chain data structures but are omitted from this diagram.

D0=Ueven and D1=Uodd, while the circles represent iterations of the loops beginning on

lines 2 and 13. The sparse matrix used as input is

A =

1 2 0 0 0 0 0
4 3 0 0 0 0 0
0 0 6 2 0 0 0
0 9 2 2 0 0 0
0 0 0 8 2 5 0
0 0 0 0 0 2 1
0 0 0 0 1 4 7

. (1.1)

The iteration spaces shown for the two loops are L0 = {1, 2, . . . , 7} and L1 = {1, 2, . . . , 7},

which is the case for the given sparse matrix with 7 rows. Arrows represent the data access

relations, with upward pointing arrows indicating the data reads RL0→D1 = RL1→D2 = {[1]→

[2], [2] → [1], [3] → [4], [4] → [2], [4] → [3], [5] → [4], [5] → [6], [6] → [7], [7] → [5], [7] → [6]}

and downward pointing arrows indicating the identity relation for data writes WL0→D2 =

WL1→D1 = {[1]→ [1], [2]→ [2], [3]→ [3], [4]→ [4], [5]→ [5], [6]→ [6], [7]→ [7]}.

Given the loop chain abstraction of the Jacobi solver code, generating the partially or-

dered set of iterations is a straightforward process. The result is shown in Figure 1.3. Any

7

3 2

4 1

4 6

3 5

5 7

7 6

1

2

Figure 1.3: Partial ordering of iterations in the Jacobi loop chain

schedule for the loops in the loop chain that respects the partial ordering shown will be

valid. This gives tremendous flexibility to the compiler, or in this case the runtime system to

manipulate the iteration orderings to achieve a target mix of parallelism and data locality.

1.4 Introduction to Full Sparse Tiling

Given a loop chain and the implicit iteration partial ordering, the next step in generating

a high performing schedule is selecting an iteration grouping and ordering that provides

adequate parallelism while maximizing data locality. Full sparse tiling [55, 53] (FST) is a

technique for accomplishing that goal. Full sparse tiling aims to cluster together iterations

that access data in common, even across different loops in the loop chain. This converts

eventual data reuse into more immediate data reuse, thereby improving temporal locality

and in turn improving performance due to an improved cache hit rate. These iteration

clusters are called sparse tiles. There is a partial ordering on when sparse tiles can execute

relative to one another, which is simply an aggregation of the orderings imposed on individual

iterations due to the data dependences captured by the data access relations. The partial

ordering of sparse tiles can be expressed as a task graph.

Different full sparse tilings of loop chain iterations can vary the number of iteration clus-

ters, called sparse tiles, used in the execution schedule. Schedules with fewer, and therefore

larger, sparse tiles may have better locality than smaller tiles. Schedules with more tiles gen-

erally exhibit greater parallelism. Thus, by carefully constructing the tiles and controlling

their size, full sparse tiling can balance parallelism and locality as appropriate for a given

hardware system.

8

1 2

1 2

3

4

3 4

5 6

5 6

7

7

(a) A schedule with high
locality and low parallelism.

1 4

2 3

5 6

7

2 3

1 4

7

5 6

(b) A schedule with more balanced locality and parallelism.

Figure 1.4: Different full sparse tilings yield different amounts of parallelism and locality.

Examples of some of the full sparse tilings possible for the loop chain presented in Figure

1.2 are given in Figure 1.4. The schedule shown in Figure 1.4a has excellent data reuse be-

tween iterations within a tile. However, only one tile can be executed at a time. The schedule

shown in Figure 1.4b maintains some locality, but initially permits two tiles to execute in

parallel. These are only two possibilities along the broad spectrum of possible full sparse

tilings. To select between the different possible schedules, a human can manually evaluate

the performance of different schedules and select the highest performing one. Alternatively,

schedules can be selected based on predictions from a performance model or an autotuning

approach can be used.

1.5 Problems with Single Purpose Approaches to Full

Sparse Tiling

Previous to this work, each application of full sparse tiling was implemented for a specific

type of code. For example, full sparse tilers were written for the MolDyn molecular dynamics

simulator [53], a Jacobi solver such as was described in Section 1.3 [40], a Gauss-Seidel

solver [54], and a matrix powers kernel [57, 25, 46]. Each of these tilers was developed

largely from scratch and took considerable development effort. There was very little, if any,

code reuse between the full sparse tilers. This led to a variety of code maintenance issues

and unnecessary duplication of effort.

9

Because each tiler was purpose-built for a specific application, the tilers took advantage

of properties of the given application to make assumptions about the tiling problem. For

example, the Jacobi solver was written with the understanding that all vector writes would

be done with an identity access pattern and that all read accesses would be specified by the

non-zero pattern in the sparse matrix. These assumptions were valid and resulted in tiling

code that, while inappropriate for other applications, was considerably simplified. However,

in some cases, even a slight deviation from the original assumptions would result in invalid

schedules being generated. For example, if a non-symmetric matrix were given to the Jacobi

code, the tiler would ignore some storage related dependences and could sequence iterations

illegally.

Similarly, assumptions were also made while writing the custom full sparse tiling code

for the MolDyn molecular dynamics simulation. This simulation code consists of three loops

in the loop chain. The first and last loops access memory through identity updates. It is

only the center loop that has irregular accesses. Given this pattern, the custom code was

able to partition the center loop and then assign iterations of the outer loops to tiles in

a straightforward manner. This generates correct serial schedules. However, when these

schedules were parallelized using the Jacobi task graph generation code directly, potentially

illegal schedules were produced. This is because the Jacobi task sequencer does not consider

reduction dependences within a loop, a situation that does not arise in the Jacobi solver but

that is present in the center loop in MolDyn.

Finally, tile sizes resulting in optimal performance were determined for each application,

and in some cases, for each input set, in an ad hoc fashion. These were usually determined

through manual search, perhaps directed by a heuristic that made many simplifying assump-

tions. For example, some tile size selection code assumes that a seed partition’s footprint

should be equal to one-eighth of the mid level cache [54]. From this fixed starting point, the

user would repeatedly run the application, making adjustments to the tile size until good

performance was attained.

10

Experience with these application-specific full sparse tilers led to several conclusions.

First, significant performance improvements, in some cases exceeding 50%, can be achieved

by full sparse tiling [42]. However, it was also clear that writing a full sparse tiler is a laborious

process that requires expert knowledge of tiling as well as domain knowledge. Second, little

code could be reused between efforts due to deeply rooted assumptions that did not hold

in other applications. Lastly, each of the tiler’s parameters had to be tuned for the specific

application in order to achieve sizable performance gains. No formal algorithm existed

for finding the best performance for a given processor, core count, memory hierarchy, and

scientific application. These problems together formed a formidable barrier to widespread

adoption of full sparse tiling approaches.

1.6 Generalized Full Sparse Tiling

A major contribution of this research effort is the creation of a generally applicable full

sparse tiling algorithm. As a precursor to designing such an algorithm, we identified several

areas in which prior individual approaches were not general.

First, the efforts relied on pieces of the problem being described or specified in a particular

way. For example, much of the Jacobi full sparse tiler depends on the data access pattern

being described by the non-zeros within a compressed sparse row (CSR) formatted sparse

matrix. Any problem in which dependences are not expressed as a sparse matrix immediately

encounters incompatibilities.

Furthermore, a general full sparse tiler cannot assume a particular pattern or number of

loops, nor can it rely on a specific type of data dependence between loops. It must be able

to take all types of dependences into consideration, including storage related anti-, input,

and output dependences.

In addition, if tiles are to be executed in parallel, dependences between tiles must also be

understood. This therefore requires that the partial ordering between tiles, typically repre-

sented as a task graph, must honor an aggregation of the individual iteration dependences.

In addition, the tiles must also be ordered to respect reduction dependences, even though

11

these dependences do not contribute to the partial ordering between loop iterations in a

serial schedule.

Our general full sparse tiling algorithm was developed to squarely addresses these issues.

A central feature of the algorithm is that it tiles code that has been expressed as a loop chain.

No additional requirements are imposed as to the structure of the code and no additional

information is needed. By using loop chains as an intermediary abstraction between the

original code and the full sparse tiling algorithm, many of the pitfalls to generality that

ensnared previous full sparse tiling efforts are neatly avoided.

Given a loop chain, the general algorithm is able to respect all types of data dependences,

including storage related dependences and reduction dependences that were not explicitly

analyzed in previous work. These dependences are completely derived from the data access

relations and relative placement of loops as described in the loop chain. The algorithm

accounts for all dependences while creating a serial schedule as well as a parallel task graph

schedule. A complete description of the general full sparse tiling algorithm is presented in

Chapter 3.

1.7 Understanding the Impact of Tile Size and Paral-

lelism Under Generalized Full Sparse Tiling

Selecting the proper balance of parallelism and locality while full sparse tiling is an

extremely challenging problem. Both parallelism and locality are heavily influenced by the

number of tiles used when full sparse tiling, precluding the independent optimization of these

two factors. If the task graph has low parallelism, particularly if the parallelism is lower than

the number of cores available, the execution will be restricted to a subset of the total cores

and therefore will have limited scalability. Likewise, if the average tile memory footprint

greatly exceeds the target size, usually related to the size of a hardware cache, performance

improvements will not be fully realized. This is due to the tile working set being larger than

what can be supported by the cache hierarchy. In this case, while full sparse tiling improves

locality, it does not sufficiently shorten the reuse distance of data to be smaller than the

12

cache size. Therefore, some understanding of the interaction between, or relative priority or

importance of, parallelism and locality is useful when optimizing performance.

This work studies what metrics should be used when discussing and optimizing the tile

size for improved locality. It also examines how the amount of parallelism in a task graph

should be expressed. In addition to determining to what properties task graph execution

time is sensitive, we also develop guidelines for balancing between locality and parallelism

when selecting the tile count for a generalized full sparse tiling of a loop chain.

1.8 Summary of Contributions

This work spans a variety of important contributions, most of which are presented in

greater detail later in this dissertation. Here is a succinct summary of the more significant

items.

1. The Loop Chain Abstraction

(a) A formal definition of a new programming construct called a loop chain.

(b) A presentation of possible mechanisms for specifying the loop chaining. abstrac-

tion using libraries, domain specific languages, and pragmas.

(c) A complete C++ loop chaining library and application programming interface for

specifying loop chains.

2. Generalization of the Full Sparse Tiling Algorithm

(a) A formal definition of generalized full sparse tiling for any loop chain that encom-

passes reduction and storage related dependences as well as flow dependences.

(b) A C++ library that applies full sparse tiling to loop chains specified using the

loop chain API.

(c) Additional supporting algorithms and code:

i. A novel graph partitioning algorithm, ParCubed, that is fast and parallelized

for shared memory.

13

ii. A novel hypergraph partitioning algorithm, HyperParCubed, that is fast and

parallelized for shared memory.

iii. A task graph execution engine for shared memory that builds upon the fol-

lowing existing parallel models:

A. Intel’s Concurrent Collections programming model,

B. OpenMP parallel for loops,

C. OpenMP 3.0 tasks,

D. Cilk Plus spawn/sync language extensions,

E. pThreads library,

F. Intel’s Threading Building Blocks flow graphs

3. A study of the forces affecting performance of a generalized full sparse tiled Jacobi

solver including:

(a) The identification of irregular data footprint and median parallelism as important

metrics for understanding performance in the context of generalized full sparse

tiling.

(b) A study of the correlation between performance of generalized full sparse tiled

code and cache size.

(c) Guidelines for selecting the amount of parallelism and the best irregular data

footprint for optimal execution.

This dissertation work is a comprehensive effort to remove barriers to the wider adoption

of full sparse tiling. Unlike previous full sparse tiling implementations, thanks to its use of

loop chains, this work is useable by scientific domain experts and other programmers who

are not specifically trained in parallel program optimization. A sparse tiling is automatically

generated and relative tile dependences are captured in a task graph. This resulting graph

is then executed in shared memory using the task graph executors specifically developed as

part of this work. Thus, this dissertation is a complete sparse tiling package, from facilitating

14

a programmer’s specification of a loop chain to generation of an optimized parallel schedule

to efficient execution of the loops.

15

Chapter 2

Loop Chain Programming Abstraction

Each previous full sparse tiling effort focused on a single application. However, each of

these applications had specific properties that made it a good candidate for full sparse tiling.

Specifically, each had a series of loops that shared data. Each full sparse tiling research

effort developed code and algorithms for analyzing the producer-consumer data dependency

chains in that application’s sequence of loops. By examining the similarities in these different

instances of full sparse tiling, it became apparent that the dependency analysis code could

be made general if application specific information describing the loops were expressed in a

more abstract and universal fashion. In addition, if this abstraction were carefully designed,

it could also be used by a much wider variety of reordering transformations than just full

sparse tiling.

In Section 2.1, we further describe our motivation for developing the loop chain abstrac-

tion. We then define the abstraction and describe ways for specifying loop chains in Sections

2.2 and 2.3. Optimizations facilitated by loop chains, including, but not limited to, full

sparse tiling, are discussed in Section 2.4. Sections 2.5 through 2.7 cover examples of loop

chains that naturally occur in scientific codes, a comparison between loop chains and other

related approaches, and a review of the limitations of the loop chain abstraction.

2.1 Motivation for the Loop Chain Abstraction

Typically, the bulk of the execution time of a scientific application is spent in loops.

Thus, optimization efforts understandably focus on decreasing the execution time of these

loops. Many of these optimizations consist of scheduling the iterations of the loops to achieve

some objective. For example, iterations may be scheduled to improve data locality, minimize

communication, or improve parallelism.

16

Reordering transformations are a class of optimizations that reschedule the execution

order of iterations of a loop. In doing so, these transformations must respect the data

dependences present in the original code. To do so, the dependences must be determined in

some fashion. Approaches that rely on automatic code analysis often encounter challenges

such as interprocedural data and pointer alias analysis that forces the use of conservative

approximations. These issues can be avoided by requiring the programmer to explicitly

enumerate the formal flow, anti, input and output dependences. However, such analysis is

tedious, error prone, and is beyond the abilities of many programmers.

In this work, we have developed a new programming abstraction, loop chains, to address

the problem of finding data dependences. Within the framework of a loop chain, a pro-

grammer specifies what data is accessed by each iteration of a loop through a data access

relation. A data access relation is a simple relation from an iteration of a loop to the data

elements that are accessed during the execution of that loop iteration. In many cases, this

relation can be determined through simple code inspection. For example, for the code: A[i]

= k*B[C[i]], the relation would be from iteration [i] to element [i] of array A and from

iteration [i] to element C[i] of array B. Listing data accesses is considerably easier for a

programmer to do than to find the explicit data dependences. Having all the data accesses

specified circumvents many of the issues that arise during interprocedural or alias analy-

sis. The compiler, runtime, inspector, and/or other optimizer is then able to analyze these

data access relations and find a partial ordering on the loop iterations based on the data

dependences present in the original code. From these partial orderings, many different legal

schedules can be derived. Some schedules can emphasize improved locality, while others

provide a large degree of parallelism. Each of these optimized schedules results in a different

grouping of the iterations.

To summarize, loop chains provide an incremental interface between programmers and

compilers/run-time systems. They formalize and abstract a pattern that already exists in

many scientific computing applications and domain-specific libraries. With the information

17

they provide, compilers and/or run-time systems are able to better balance between data

locality and parallelism.

2.2 Formal Definition of the Loop Chain Abstraction

The loop chain abstraction consists of an ordered sequence of contiguous loops. Each

loop must execute a fixed and known set of iterations. This excludes while loops or loops

containing break statements. Additionally, there must not be any code between the loops in

a loop chain. Loops in a loop chain must be doall parallel or reductions. There must not be

any required ordering of iterations within a loop, such as would result from loop carried data

dependences. Finally, there can be no conditional execution of any of the loops in a chain.

Loops cannot be guarded with if statements or other statements that alter the control flow

of the code. Any sequence of loops that meets these requirements can be expressed as a loop

chain.

A loop chain abstracts away much of the detail of the original series of loops. What

remains can be described using three components: iteration spaces, data spaces, and data

access relations. Iteration spaces concisely describe all the iterations that a compiler or other

optimizer must schedule. Similarly, the data spaces describe arrays or other chunks of mem-

ory accessed by code within the loop chain. Iterations and data space elements together are

the building blocks that are grouped, reordered, or distributed to effect a specific optimiza-

tion. The data access relations define the relationship between iterations and data. These

relations expose not only limitations on iteration reordering due to data dependences but

also reveal opportunities to improve locality. The notation used to refer to these components

is given in Table 2.1 and each is described in the following sections.

2.2.1 Iteration Spaces

Each loop has a well defined iteration space, L0, . . . , LN−1, where N is the number of

loops in the chain. In the context of loop chains, the term iteration space refers to the

unordered set of executed iterations of a loop body, with each iteration identified by an

18

Table 2.1: A summary of the symbols used to represent loop chains.

Symbol Description
L A sequence of loops

(L0, L1, ...Ll, ...LN−1).
l An identifier for the lth loop in the

sequence.
Ll The iteration space associated

with the lth loop in the sequence.
~i A vector that identifies a specific

iteration within a loop.
D A set of data spaces

{D0, D1, ...Dd, ...DM−1}.
Dd A specific data space. For exam-

ple, D0 may correspond to a data
array X.

~d A vector that identifies a specific
element within a data space.

RLl→Dd
(~i) A relation between iterations and

the data they read.

WLl→Dd
(~i) A relation between iterations and

the data they write.

iteration vector or tuple containing the values of all index variables for that iteration. For

example, in the case of a simple for loop: for (i=0; i < 5; ++i) {...}, L0 would refer

to the five iterations of the loop, L0 = {[0], [1], [2], [3], [4]}.

One could define a loop’s iteration domain as a contiguous range, a polyhedral set,

or an explicitly enumerated set of items. For example, if iterating over the edges of an

unstructured mesh, the domain may be defined as {[edge0], [edge1], . . . , [edgenumEdges−1]}.

Likewise, a container can implicitly define an iteration space as a traversal over all elements

in the container. Threading Building Blocks [35], as well as the OP2 unstructured mesh

library [11] and the Chombo library [21], both discussed in Section 2.3, all support this type

of iteration. The loop chain abstraction does not require that a particular definition of the

domain of iterations be used, just that the iteration space domain is well defined.

19

Observe that an iteration space’s set of iterations is unordered. This implies that the

original loop must be either doall parallel or else a reduction. There can be no loop carried

dependences that impose a relative order on the execution of iterations within a loop. Further

note that in the case of iteration spaces, the subscript indicates ordering within the chain,

e.g. L0 precedes L1 and so forth. This means that any data dependence is between iterations

of different loops and that the original ordering of those two loops is known. Taken together,

these two requirements greatly simplify dependence analysis. For example, a flow dependence

is always from a write in one loop to a read in a higher numbered loop.

2.2.2 Data Spaces

Each data structure accessed within the loop chain must be formally declared as a data

space, denoted D0, D1, . . . , Dm. For data spaces, the subscript numbering does not de-

note an ordering or placement in a sequence and is only used to uniquely identify the

various spaces. Each data space must have a well defined domain. Typical data spaces

are one dimensional or multidimensional arrays, though associative arrays, maps, or sets

are also possible. Analogous to iteration spaces, a data space refers to a data structure

and the complete set of valid indices in the structure’s domain or index space. For exam-

ple, a data space, D0, for the ten element array A, would be D0 = {A[0], A[1], . . . , A[9]}.

While all one dimensional, ten element arrays share the same domain, each would have

a unique data space. A data space on a map, paint, indexed by color names might be

D1 = {paint(red), paint(green), . . . , paint(black)}. Note that the values stored in the

referenced data structure are irrelevant and are not part of the data space.

2.2.3 Data Access Relations

As part of a loop chain definition, each loop in the loop chain must declare the data

items that are read or written by each iteration of the loop. This is accomplished through

the use of data access relations (DARs). Data access relations are mathematical relations

between iterations in an iteration space, Ll, and elements in a data space, Dd. Read relations

20

Table 2.2: Enumeration of the data access relations for the example given in Figure 1.2.

DAR on Loop 1 Elements DAR on Loop 2 Elements
RL1→DUodd

(1) {2} RL2→DUeven
(1) {2}

WL1→DUeven
(1) {1} WL2→DUodd

(1) {1}
RL1→DUodd

(2) {1} RL2→DUeven
(2) {1}

WL1→DUeven
(2) {2} WL2→DUodd

(2) {2}
RL1→DUodd

(3) {4} RL2→DUeven
(3) {4}

WL1→DUeven
(3) {3} WL2→DUodd

(3) {3}
RL1→DUodd

(4) {2,3} RL2→DUeven
(4) {2,3}

WL1→DUeven
(4) {4} WL2→DUodd

(4) {4}
RL1→DUodd

(5) {4,6} RL2→DUeven
(5) {4,6}

WL1→DUeven
(5) {5} WL2→DUodd

(5) {5}
RL1→DUodd

(6) {7} RL2→DUeven
(6) {7}

WL1→DUeven
(6) {6} WL2→DUodd

(6) {6}
RL1→DUodd

(7) {5,6} RL2→DUeven
(7) {5,6}

WL1→DUeven
(7) {7} WL2→DUodd

(7) {7}

are described by RLl→Dd
(~i) and write relations by WLl→Dd

(~i). The access relations indicate

which data locations in data space Dd that an iteration ~i ∈ Ll accesses.

The DARs can be uninterpreted at compile-time, but must be known at runtime before

the execution of the loop chain begins. This may be the case when the data access relation

is dependent on input data, such as an unstructured mesh’s topology or the placement of

non-zeroes in a sparse matrix. Table 2.2 shows the data access relations for the example

Jacobi solver and specific sparse matrix used in Figure 1.2

The data access relations are the critical piece of the loop chain abstraction. The DARs

fully specify the data dependences between iterations of loops in the loop chain. The DARs

can be used directly to determine if two iterations access the same data and therefore poten-

tially have a data dependence or the DARS can be transformed into formal data dependency

relations.

When specifying the access relations for a loop body, the programmer must include any

data accesses that result in data dependences between iterations. This includes accesses that

may be made from within procedures called from the loop body. Because the access relations

are specified by the user, the granularity of the access relations can be user-determined. For

21

example, in a molecular dynamics application, the access relations may be from a loop

iteration to a single directional component of the velocity vector of an atom, to any element

of the velocity vector of an atom, or simply to the entire data structure for a particular

atom, including velocity, force, position, etc. The programmer can also decide if a data

access present in the code is relevant to the loop chain. For example, if a loop accesses data

that remains invariant throughout the lifetime of the loop chain, the user may or may not

choose to include those accesses. Some optimizations may benefit from that information,

while others may not be impacted by the absence of that information.

2.3 Methods for Specifying Loop Chains

While it may be possible for a loop chain abstraction to be automatically extracted from

source code by a compiler or other tool, in most cases a programmer will be required to

specify all or part of the loop chain information. There are a variety of mechanisms that can

be used to accomplish this task. These approaches range from an explicit description of the

loop chain using an application programming interface or set of pragmas, to more implicit

methods using domain specific languages or language extensions.

2.3.1 Application Programming Interfaces

As part of this dissertation, we wrote a complete application programming interface and

C++ library called GROUT for specifying loop chains. The objects in the class library

map directly to the elements in a loop chain definition. Figure 2.1 shows an example of

using this API on the Jacobi solver code presented earlier in Figure 1.1. Line 2 creates a

loop chain object. Line 6 instantiates an iteration space with a continuous range from 0 to

numberOfRows-1 as its domain.

Lines 9 and 10 declare the data spaces for the UOdd and UEven arrays. The library

supports several types of data access relations. The most general explicitly enumerates the

data items associated with each iteration. Other access relations are provided for common,

but more specialized, relations. The read data access relation declared on line 13 is of type

22

1 // dec l a r e a loop chain
2 LoopChain chain0 ;
3
4 // crea t e the i t e r a t i o n space
5 int numberOfRows = matrix−>getNumRows () ;
6 Cont iguousIterSpace i te rAl lRows (0 , numberOfRows−1) ;
7
8 // crea t e the data spaces
9 DataSpace UOdd(numberOfRows) ;

10 DataSpace UEven(numberOfRows) ;
11
12 // Create the access r e l a t i o n s
13 CSRAccessRelation relReadUOdd (iterAl lRows , UOdd, matrix ,
14 AccessType : :READ) ;
15 Iden t i t yAcce s sRe l a t i on relWriteUPrime (iterAl lRows , UEven ,
16 AccessType : :WRITE) ;
17
18 // Assemble the loop
19 Loop loopUpdateUEven (bodyJacobiUpdateUEven , i te rAl lRows) ;
20 loopUpdateUEven . addAccessRelat ion(&relReadUOdd) ;
21 loopUpdateUEven . addAccessRelat ion(&relWriteUEven) ;
22
23 // add the loop to the loop chain
24 chain0 . addLoop (loopUpdateUEven) ;

Figure 2.1: The kernel of a sparse Jacobi solver loop chained using the LoopChain API.

CSRAccessRelation and is an example of a specialized access relation that is derived from

the non-zero pattern in the provided sparse matrix. The write relation on line 15 is a simple

identity relation. These data access relations are attached to the loop loopUpdateUEven,

which is then added to the loop chain on line 24.

Using the LoopChain API requires knowledge of loop chains and their definition. It

requires 16 lines to fully specify the chain of two loops found in the Jacobi solver kernel.

This approach to specifying loop chains is best used by experts or as the target of a tool,

such as a source-to-source translator.

2.3.2 Pragmas

Pragmas can be used to annotate a program’s source code, thereby delimiting the loop

chain and providing information about data and iteration spaces and access relations. Figure

2.2 shows code taken from the Jacobi sparse matrix solver presented earlier in Figure 1.1.

On lines 1 through 3, a hypothetical chain pragma, similar to OpenMP’s pragmas, is shown.

It declares the loop as part of a loop chain named chain0. For this example, the proposed

system would infer the iteration space from the loop bounds.

23

1 #pragma chain chain0 \\
2 access (read , UEven , func t i on (JA [p] , IA [i] <= p < IA [i +1])) \\
3 access (write , UOdd, i d e n t i t y (i))
4 for (int i =0; i<numrows ; i++) {
5 double diag = 1 . 0 ;
6 UEven [i] = 0 . 0 ;
7 for (int p=IA [i] ; p < IA [i +1] ; p++) {
8 int j = JA [p] ;
9 i f (j==i) { diag = A[p] ; }

10 else { UEven [i] += A[p] ∗ UOdd[j] ; }
11 }
12 UEven [i] = (F [i] − UEven [i]) / diag ;
13 }
14 . . .

Figure 2.2: The kernel of a sparse Jacobi solver loop chained using hypothetical OpenMP
style pragmas.

Lines 2 and 3 show how data access relations could be specified. Line 2 is a read relation

on the U array. The relation itself might be a function declared using a function keyword

describing the access as JA[p], where the value of p is given by the inequality IA[i] <= p

< IA[i+1]. The identity write relation on the Uprime array is given on line 3. The second

loop in the loop chain would be specified with a similar pragma.

Using a pragma-based approach may require only two pragmas to specify the loop chain

in the Jacobi solver. However, the programmer must still be aware of the specifics of how loop

chains are defined and the syntax for the pragmas might be considered cumbersome. Using

pragmas also requires a compiler that can recognize and process the pragma appropriately.

More research is necessary to determine the best pragma syntax that is both useable for

programmers and feasible within existing compiler frameworks.

2.3.3 Domain Specific Languages

If loop chains are used in conjunction with an existing domain specific language (DSL),

the task of specifying the needed loop information can be considerably simplified. Consider

the OP2 (Oxford Parallel Library, version 2) [11] DSL. OP2 is designed for parallel compu-

tation on unstructured meshes. Its main feature is a parallel loop structure, op par loop.

This parallel loop call takes as arguments an iteration space as well as some number of maps

that go between iterations within the provided iteration space and elements in data struc-

24

1 program meshProgram
2 ca l l op d e c l s e t (v e r t i c e s , meshFile , ” v e r t i c e s ”)
3 ca l l op d e c l s e t (c e l l s , meshFile , ” c e l l s ”)
4 ca l l op d e c l s e t (edges , meshFile , ” edges ”)
5
6 ca l l op dec l da t (v e r t i c e s , 6 , vertexData , meshFile , ” vertexData ”)
7 ca l l op dec l da t (edges , 6 , edgeData , meshFile , ”edgeData”)
8
9 ca l l op decl map (edges , v e r t i c e s , 2 , edges2Ver t i c e s , meshFile , ” edge s2Ver t i c e s ”)

10 ca l l op decl map (c e l l s , v e r t i c e s , 2 , c e l l s 2V e r t i c e s , meshFile , ” c e l l s 2V e r t i c e s ”)
11
12 beg in l oopcha in ()
13
14 ! loop over edges
15 ca l l op par loop (edges , kerne l1 , &
16 op arg dat (temp , 1 , edge s2ve r t i c e , OP INC) , &
17 op arg dat (temp , 2 , edge s2ve r t i c e , OP INC) , &
18 op arg dat (x , −1, OP ID , OP READ))
19
20 ! loop over c e l l s
21 ca l l op par loop (c e l l s , kerne l2 , &
22 op arg dat (temp , 1 , c e l l s 2 v e r t i c e s , OP READ) , &
23 op arg dat (temp , 2 , c e l l s 2 v e r t i c e s , OP READ) , &
24 op arg dat (temp , 3 , c e l l s 2 v e r t i c e s , OP READ) , &
25 op arg dat (res , −1, OP ID , OP WRITE))
26
27 end loopcha in ()

Figure 2.3: A kernel loop chained using OP2 loop constructs.

tures. The parallel loop mechanism works by calling the specified subroutine and passing it

a single element of the iteration space. Additional arguments are retrieved from data sets

using the iteration element and the data maps and passed to the subroutine.

Consider the example shown in Figure 2.3. The code shown here is two op2 par loop

calls that have been loop chained together. Lines 2 through 4 declare sets over which iteration

can occur. These are the vertices, cells, and edges of the underlying mesh. Lines 6 and 7

identify data that is associated with vertices and edges, respectively. Lines 9 and 10 define

mappings from edges to vertices or from cells to vertices.

If these OP2 DSL calls are considered from the vantage point of loop chains, analogies can

be drawn. The op decl set calls of lines 2-4 are iteration space definitions. The op decl dat

calls (lines 6-7) identify data spaces and the op decl map calls (lines 9-10) define data access

relations. However, note that all these lines are present in OP2 code and are not specific to

loop chaining. The only lines added for loop chains are lines 12 and 27, which declare the

start and end of the loop chain.

25

Other DSLs, such as Chombo Fortran [21] for thermodynamics computations on structure

meshes, also provide a similar level of ease of use for loop chaining.

2.4 Optimizations Enabled by Loop Chains

The loop chain’s data access relations describe the data accesses that occur within each

iteration of each loop in the chain. Based on that information, a compiler, runtime execution

engine, or inspector can determine how best to schedule and place iteration execution as well

as determine data layout and distribution.

For example, given a loop chain, data within sequential data spaces like arrays can be

reordered to place data items such that they are stored in the order they are accessed.

One algorithm for accomplishing this type of data reordering is the consecutive packing

(CPACK) algorithm [28], which packs together data based on the first time it is accessed.

Similarly, if iterations are grouped together into tiles or blocks, data can be reordered and

packed such that all data items accessed by iterations within a tile are located in adjacent

memory locations. These are just two examples of data reordering transformations that can

be implemented using only data access relations and iteration orderings.

The loop chain abstraction also enables iteration reordering transformations, including

those that mix iterations from different loops. One simple example is loop fusion [2], an

optimization in which the nth iteration of two or more loops are either combined into a

single loop iteration or are scheduled one after another. A simple examination of the iteration

partial ordering can determine if this optimization is valid and a review of the data access

relations can show if loop fusion would result in improved data locality.

Full sparse tiling, introduced in Section 1.4, also reorders iterations across loops in an

effort to improve locality. The seed iteration space is partitioned using a graph or hypergraph

derived from the data access relations. These seed partitions are then grown to include

iterations of other loops, once again under the direction of the data access relations. Figure

1.4 shows two schedules generated by full sparse tiling for the Jacobi solver example given

in Figure 1.1.

26

3 2

4 1

4 6

3 5

5 7

7 6

1

2

Block 1 Block 2

Figure 2.4: A distributed memory work distribution across two nodes. Only element 5 of
the Ueven vector, written by iteration 5 of the first loop, needs to be communicated from
node 2 to node 1. All other data can be placed during initial data distribution.

A wide range of parallelization techniques can also be applied to loop chains. Different

schedules or iteration groupings can be generated, depending on the type of parallel hardware

being targeted. For example, a shared memory tiling can focus on memory locality and

grouping the iterations based on in-core cache size.

Unlike shared memory parallelization, a distributed memory parallelization must consider

internodal communication and data distribution. Fortunately, using data access relations,

the data needed by each iteration assigned to a distributed memory node or address space

is immediately known. Any data a node needs that are invariant over the life of the loop

chain can be initially distributed using the appropriate communication. Since it is clear

what data is altered during execution of the loop chain and by what node it is written, a

communication schedule can be generated directly. This data being sent between nodes can

then be aggregated into a small number of communication requests.

For example, in Figure 2.4, a distributed memory work distribution is shown for the

Jacobi example of Figure 1.1. This schedule is easily derived from the partially ordered

iterations of Figure 1.3. All communication between the two nodes is indicated by arrows

crossing between nodes. Only data item UEven[4] needs to be sent between the nodes.

Work by Basumallik et al. [7] takes an approach similar to this to aggregate and overlap

communication and computation in a distributed memory system.

27

Parallelization approaches that involve work offload to a general purpose graphics pro-

cessing unit (GPGPU) require much the same data distribution as traditional distributed

memory parallelization. These approaches, however, may have additional requirements in

terms of communication and synchronization between threads on the GPGPU. Because loop

chains require that all iterations of a particular loop have no imposed ordering, no intraloop

synchronization is required except in the case of reductions. Between loops, synchroniza-

tion is only needed as determined by the partial ordering. This allows the computation to

be broken into thread blocks that communicate via shared memory and only need to com-

municate via global memory rarely. Consider again Figure 2.4. The iterations assigned to

node one could be executed within a thread block and those assigned to node two could

be executed in another thread block. Each iteration in a given loop could be assigned to a

different thread within the block. Between loops, the GPGPU would need to synchronize

using hardware synchronization, such as is requested via Nvidia’s CUDA language prima-

tive syncthreads(). The only communication needing global memory is the passing of

UEven[4]. Synchronization between thread blocks requires scheduling assistance from the

CPU to ensure that the thread block handling block two is not launched on the GPGPU

until after block one has completed.

The examples given in this section are representative of the wide range of optimizations

and code transformations that are enabled by loop chains. Shared memory, distributed

memory, and GPGPU parallelization methods are all facilitated by using the loop chain

abstraction. Data and iteration reordering transformations also can be expressed within the

context of loop chains.

2.5 Examples of Loop Chains Present in Existing Sci-

entific Codes

Commonly, data in scientific applications is organized as structured or unstructured

meshes, grids, or geometric subdivisions, such as boxes, of a larger three dimensional space.

28

These subdivisions may come from finite element or finite volume approaches to solving

partial differential equations.

In order to promote sustainability and reusability of code, scientific applications are often

architected as a series of passes over some data structures. Each pass applies a particular

function or computes one type of value, e.g. temperature, pressure, velocity, position, and

so forth. Data from one pass often feeds the next pass through a producer-consumer rela-

tionship. Multiple passes may also be the result of applying a function to each of multiple

dimensions, such as the force in the x, y, and z dimensions. Rather than combine passes,

the passes are kept distinct so that the code can be reused and so that the code does not

become intertangled [37, 21].

One example of this code structure is given in Figure 2.5, which shows the central kernel

of a molecular dynamics benchmark. Here a sequence of three loops is found inside an outer

time step loop.

Figure 2.6 shows another example of a loop chain. This example is drawn from the airfoil

computational fluid dynamics test program [10, 11]. A series of three loops in enclosed in

an outer time step loop. The inner loops compute the change in area of a mesh cell, the flux

residual for each edge, and the flow through each cell, respectively.

Even though this example is drawn from an entirely different scientific domain and is

solving a distinctly different problem, the overarching design of the code very closely resem-

bles the molecular dynamics simulation given in Figure 2.5. Other similar occurrences of

series of loops can be found in thermodynamics simulations [21].

In some cases, a series of loops is the result of unrolling a loop by some factor. What

was previously one loop becomes a series of related loops after unrolling. This was seen

in the case of the ping-pong version of the Jacobi solver seen in Figure 1.1. In this code,

the main convergence loop has been unrolled by a factor of two, resulting in a series of two

sequential loops. These unrolled loops form a loop chain. Greater unrolling factors generate

progressively longer loop chains.

29

1 for (int t imestep=0; t imestep < maxTimesteps ; ++timestep)
2 {
3 // do the per−atom po s i t i on updates
4 for (int i =0; i < numAtoms ; i++)
5 {
6 x (i) = x (i) + vhx (i) + fx (i) ;
7 y (i) = y (i) + vhy (i) + fy (i) ;
8 z (i) = z (i) + vhz (i) + f z (i) ;
9

10 // c l e a r the f o r ce vec to r
11 fx (i) = 0 . 0 ;
12 fy (i) = 0 . 0 ;
13 f z (i) = 0 . 0 ;
14 }
15
16 // do the per−i n t e r a c t i on fo r ce updates
17 for (int i i =0; i i < n in t e r ; i i ++)
18 {
19 int i = i n t e r 1 (i i) ;
20 int j = i n t e r 2 (i i) ;
21
22 // compute the f o r ce between i n t e r a c t i n g atoms
23 f o r c ex = f (x (i) , x (j))
24 f o r c ey = f (y (i) , y (j))
25 f o r c e z = f (z (i) , z (j))
26
27 fx (i) += fo r c ex ;
28 fy (i) += fo r c ey ;
29 f z (i) += f o r c e z ;
30
31 fx (j) −= fo r c ex ;
32 fy (j) −= fo r c ey ;
33 f z (j) −= fo r c e z ;
34 }
35
36 // do the per−atom v e l o c i t y updates
37 for (int i =0; i < numAtoms ; i++)
38 {
39 . . .
40 vhx (i) += fx (i) ;
41 vhy (i) += fy (i) ;
42 vhz (i) += f z (i) ;
43 }
44
45 }

Figure 2.5: The kernel of the MolDyn molecular dynamics benchmark. Within the outer
time step loop is a sequence of three inner loops. They compute the position, interactive
force, and velocity of atoms in the simulation, respectively, and form a classic loop chain.

30

1
2 int edgesToCel l s [numEdges] [2] ; // maps from edge to c e l l s on e i t h e r s i d e
3
4 for (int t imestep=0; t imestep < maxTimesteps ; ++timestep)
5 {
6
7 // fo r each c e l l , compute the change in area based on f l ow q
8 for (int c e l l =0; c e l l < numCells ; ++c e l l)
9 {

10 updateArea (q [c e l l] , a r ea dt [c e l l]) ;
11 }
12
13 // fo r each edge , update the f l u x r e s i d ua l f o r c e l l s on e i t h e r s i d e o f edge
14 for (int edge=0; edge < numEdges ; ++edge)
15 {
16 ca l cF luxRes idua l (q [edge s2Ce l l s [0]] , q [edge s2Ce l l s [1]] ,
17 a r ea dt [edge s2Ce l l s [0]] , a r ea dt [edge s2Ce l l s [1]] ,
18 r e s i d u a l [edge s2Ce l l s [0]] , r e s i d u a l [edge s2Ce l l s [1]]) ;
19 }
20
21 // update the f l ow f i e l d per c e l l based on the area and r e s i d ua l
22 for (int c e l l =0; c e l l < numCells ; ++c e l l)
23 {
24 updateFlowField (a r ea dt [c e l l] , r e s i d u a l [c e l l] , q [c e l l]) ;
25 }
26
27 }

Figure 2.6: The kernel of the airfoil computational fluid dynamics benchmark. Within the
outer time step loop is a sequence of three inner loops. They compute the change in area,
flux residual, and flow field, respectively, and form a classic loop chain.

2.6 Prior Work Related to Loop Chains

The loop chaining abstraction complements the application of previously developed au-

tomated code transformation strategies. The abstraction promises to enable the same level

of performance as manual approaches, while remaining portable to new architectures and

not requiring users to define explicit tasks. This section describes work previously done to

expose asynchronous parallelism by scheduling manually defined tasks, scheduling automat-

ically discovered tasks, and by rewriting existing algorithms to avoid communication.

2.6.1 Programming Models Using User Defined Tasks

The following describes several projects that aim to expose the available parallelism in

code through the application of new programming models that involve the programmer

defining tasks.

31

The Tarragon system [20] provides an API for programmers to create a task graph with

edges labeled with what data needs to be communicated from one task to the next. Dis-

tributed memory parallelism is handled by having any data on an edge be sent as a message.

The run-time system schedules the task graph so that there is computation and communi-

cation overlap. This approach requires the programmer to decide what computations will

be aggregated into tasks.

In the SuperMatrix work [16], the programming model is to specify matrix computations

as submatrix computations. The run-time system can determine how many times subdivision

occurs and then can create a task graph at run-time to expose asynchronous parallelism. This

solution removes the burden of selecting task sizes from the user, but is more restricted than

the loop chaining programming abstraction we are proposing that will work more generally

for sequences of data parallel loops.

Concurrent Collections (CnC) is a programming model based on data-flow programming

models. The programmer expresses the computation in terms of high-level application spe-

cific components, partially-ordered only by data and control flow constraints. Since data

items are restricted to a single assignment model, the run-time system has more flexibility

in the scheduling of steps. This is a “managed computation” approach where data reuse and

scheduling need to be managed by the run-time system. To achieve performance, aggregation

of computations into groups that access similar data is still necessary [17]. The loop chain-

ing abstraction better exposes the partially ordered set of fine-grained computations so that

this aggregation into tasks can be done automatically. Additionally, loop chaining is a more

iterative approach for converting data parallel programs into programs with asynchronous

computation.

StarPU [3] is a runtime system providing a high-level, unified execution model tightly

coupled with a data management and communication library. The main goals of StarPU are

to provide scientific kernel designers with a convenient way to generate parallel tasks over

heterogeneous hardware and to easily develop and tune scheduling algorithms. The StarPU

work focuses on scheduling to both CPUs and GPUs and dynamically selecting the most

32

efficient hardware type for a given task. In this scheme, tasks, called codelets, are manually

defined for different architectures. The loop chaining abstraction is a more incremental

approach for defining tasks and could dovetail with the StarPU work nicely.

2.6.2 Automatic Approaches for Task Detection

An alternative to providing a new programming model is to automatically examine ap-

plication code and create task graphs.

Iteration space slicing [48, 49] is an optimization that would be applicable in loop chains

where the access relations are affine. Overlapping iteration space slices would have duplicate

computation, but a large amount of parallelism.

A method of partitioning loops with irregular accesses for parallel execution on distributed

systems was presented in [7]. This method takes advantage of OpenMP directives and

combines both compile-time and runtime techniques to translate OpenMP code to MPI. Data

accesses and computations are reordered in order to increase the overlap of communication

and computation. However, loops are examined individually and locality between different

loops is not examined. This work could leverage the loop chaining abstraction to reduce the

program analysis necessary.

The code generation technique presented in [50] examines the data affinity among loops

and partitions the execution with the goal of minimizing communication between processes,

while maintaining load balancing. This technique is also aimed at irregular applications

executing in a distributed memory environment, and it could leverage the loop chaining

abstraction.

2.6.3 Communication Avoidance

Several techniques for scheduling across loops to avoid communication have been proto-

typed by hand or with specialized code generators.

In structured codes, using multiple layers of halo, or ghost, cells is a common optimiza-

tion [6], but when done by hand breaks the typical software modularity in large applications.

33

Structured codes can also use overlapped tiling techniques that reduce communication at the

expense of performing redundant computation [59]. These techniques work by dividing a loop

nest’s iteration space into a number of overlapping regions called tiles. These tiles are shaped

such that each of them can execute in parallel without requiring communication. Several

researchers have examined using overlapped communication techniques within single loop

nest computations [44, 43, 19]. We believe that an overlapped tiling optimizer could use

information from the loop chaining abstraction to do overlapped tiling across loops.

For unstructured codes, there has been various inspector/executor strategies [45] that

reschedule across loops to improve data locality while still providing parallelism [29, 54, 25,

40]. The term communication avoidance was coined by Demmel et al. [25] to refer to such

schedules, some of which have processors perform some amount of overlapped computation

to avoid communication. All of these techniques that schedule across loops potentially could

be more easily automated if the loop chaining abstraction were used.

2.7 Limitations of Loop Chains

While loop chains are a capable tool for describing a specific class of loop sequences,

the nature of loop chains imposes some limitations on the types of code loop chains can

represent.

For example, the requirement that all loops in a loop chain be doall parallel or reductions

precludes the chaining of any loop containing loop carried dependences or having any ordering

of iterations within a single loop. This prevents the chaining of the key loops in kernels such

as the sparse Gauss-Seidel solver, which has a loop carried dependence. Sparse Gauss-Seidel,

can, however, be scheduled using a custom full sparse tiler [55]. This indicates that some

sequences of loops that share data and that are optimizable using techniques similar to those

presented in this dissertation cannot be expressed using the current loop chain definition.

To handle these types of intra-loop dependence patterns, the loop chain definition would

need to be extended to include a partial ordering on iterations within a loop. This is a

straightforward addition to the loop chain abstraction, but does have some disadvantages.

34

First, the programmer or automated system would have to detect and understand these

dependences. A key principle in the design of the loop chain abstraction was to avoid

having to deal with dependence analysis, making this addition an undesirable departure

from that goal. Second, any optimization that processes loop chains would have to support

the significant added complexity of intra-loop dependences. For these reasons, intra-loop

dependences are not presently supported.

Another limitation of loop chains is the requirement that there be no code between the

loops in the chain; the loops must be contiguous. This poses a challenge to the use of loop

chains in some scientific applications. For example, there may be code to do checkpointing

or in-situ visualization placed between loops in an otherwise chainable series of loops. These

codes may involve strictly ordered writing of data to a network or storage device.

If enough loops are present in the chain, it may be possible to split the chain into

two chains, one containing the loops before the intervening code and one containing the

loops after the interrupting code. This may reduce the efficacy of some locality-improving

optimizations, but allows some chaining to take place.

In some cases, code between loops can be coerced into the loop chain model. This can

be accomplished by introducing a loop with a single iteration. This loop has a data access

relation indicating that the single loop iteration reads all the data elements to which the

preceding loop writes. These reads may be actually present in the singleton iteration or can

be contrived. This will serialize the execution of the single loop iteration after the execution

of all iterations of the preceding loop. A new data space with one element is then added to

the loop chain and a write data access relation is added stating that the singleton iteration

writes to this data item. A read data access relation is also added to the loop following

the intervening code indicating that all iterations of the following loop read from this single

item. In this way, code between loops can be forced to execute at the appropriate time.

Note however that this process essentially creates a barrier between the loops and greatly

reduces the parallelism of any schedule found for the loop chain.

35

An additional limitation on loop chains is their lack of explicit support for conditional

execution. All iterations of all loops within a loop chain must execute each time the chain

executes. However, this is largely a performance concern, rather than a limitation on ex-

pressivity, because each loop body is permitted to contain conditionals. If a loop body is

entirely contained within an if statement, the same effect is achieved as if the loop itself were

within a conditional. Note that if loop bodies contain conditional statements, data access

relations must capture all possible memory accesses in any execution path through the loop

body code. This may lead to overly conservative, but legal, execution orderings.

Overall, the loop chain abstraction is a careful tradeoff between expressivity and sim-

plicity. If it were to be extended, the expressivity would increase, but it most likely would

be more difficult for application programmers and optimization developers to use. If it were

simpler to use, it would not have enough information to succeed as a gateway to a partial

ordering on loop iterations. Future work may further refine the level of abstraction of a loop

chain.

36

Chapter 3

Generalized Full Sparse Tiling

One class of optimizations that can take advantage of the loop chain abstraction are

inspector/executor (I/E) schemes [52]. Under an I/E scheme, data is inspected at run time

to determine indirect memory access patterns that are not fully determined at compile time.

Based on these patterns, loop iterations are reordered. Full sparse tiling (FST) [55, 54, 40]

is an I/E optimization that improves temporal and spatial locality by placing the execution

of loop iterations that access the same data, even across different original loops, together

into a scheduling entity called a sparse tile. By carefully constructing the sparse tiles and

controlling their size, full sparse tiling can balance parallelism and locality as appropriate

for a specific hardware system. Special purpose implementations of full sparse tiling have

been written for particular codes and are described in Section 3.1, but these approaches

made specific assumptions and could not be reused to sparse tile a different application.

We discuss the challenges to reusing these codes in Section 3.2. To resolve these issues and

greatly improve the accessibility of full sparse tiling, we developed the generalized full sparse

tiling algorithm (gFST), which we present in Section 3.3. The validity of the algorithm is

discussed in Section 3.4.

3.1 Prior Single Purpose Approaches to Full Sparse

Tiling

Sparse tiling techniques were initially introduced by Douglas et al. [29] to parallelize

computations over unstructured meshes. They referred to their approach as unstructured

cache blocking. Unstructured cache blocking was applicable in a loop that iterated over an

unstructured mesh. The dependence pattern in these iterative computations were nearest-

neighbor, similar to those found in the Jacobi solver. The mesh was partitioned and that

37

partitioning was the tiling in the first iteration of the loop over the mesh. Tiles would then

shrink by one layer of vertices for each iteration of the loop. This shrinking represented what

parts of the mesh could be updated in later iterations of the loop without communicating

with processors doing other tiles. The unstructured cache blocking sparse tiling needed a

serial cleanup tile to complete all remaining work at the end of the computation.

Mark Adams [1] developed an algorithm that could be considered sparse tiling within a

loop to parallelize sparse Gauss-Seidel computations. The inspector phase would partition

the mesh and then create a partial ordering between partitions in the mesh. The partial

ordering was represented with a task graph and parallelism could be found in the level sets

of the task graph.

The term sparse tiling and an algorithm called full sparse tiling were introduced by Strout

et al. [54, 56] in the context of the Gauss-Seidel algorithm and in [53] in the context of the

moldyn benchmark. In [54, 56] the tiles extended across iterations of the outer loop as in

the Douglas work [29], but the tiles fully covered the iteration space thus avoiding a large

cleanup tile. This work originally focused on using sparse tiles to improve data locality, but

later was extended for parallelism by creating a task graph where each tile was a task and

parallelism was found in level sets as in the Adam’s work [1]. In addition to Gauss-Seidel,

these techniques were applied to a sparse Jacobi solver [41, 40, 39] and a molecular dynamics

benchmark [53].

Researchers at Imperial College of London, in conjunction with Rolls-Royce, have recently

begun implementing full sparse tiling within the Oxford Parallel Library Version 2 (OP2) [10,

11] framework. Their approach differs from other full sparse tiling work in that they initially

partition data, rather than iterations. They use a graph coloring approach to find work that

can execute in parallel and do not explicitly use a task graph. This work has led to the full

sparse tiling of a computational fluid dynamics benchmark [38].

Other sparse tiling techniques have also been investigated under the umbrella term com-

munication avoiding [25, 46]. The communication avoiding work describes an overlapping

sparse tiling approach that covers the full iteration space and due to the overlap is able to

38

start execution of all the tiles in parallel. The tradeoff here is that some computation is

done redundantly. In [46], the serial implicit technique is presented, which is equivalent to

full sparse tiling, but is specifically for the matrix powers kernel.

In summary, there have been a number of sparse tiling techniques employed to improve

the performance of specific applications. These approaches have been successful in delivering

improved performance. This dissertation builds on the foundation laid by this prior work

and generalizes it to any series of loops expressible using the loop chain abstraction.

3.2 Issues With Generalization of Full Sparse Tiling

In Section 3.1, in addition to other tiling techniques, we surveyed a number of existing full

sparse tiling algorithms. Each of these efforts has successfully applied the basic techniques

of full sparse tiling to specific problems or application domains. These applications include

a sparse Gauss-Seidel solver [54, 56], a molecular dynamics simulation [53], a sparse matrix

powers kernel [57, 58], and a Jacobi solver[41, 40, 39].

Each instantiation of full sparse tiling created to date has relied on specific properties

of the given problem to simplify the tiling process. This dissertation work has developed a

full sparse tiling algorithm that makes none of the simplifying assumptions of prior work.

This section highlights some of the challenges of full sparse tiling in a general fashion. These

challenges include the high algorithmic complexity of explicitly computing data dependency

relations and avoiding race conditions caused by executing reduction loops in parallel. Fur-

ther issues include the need to detect and respect data dependences between non-adjacent

loops and the problem of efficiently finding initial partitions that result in improved locality.

Our solutions to these issues are presented in the sections that follow.

3.2.1 Complexity of Data Dependency Computation

Any schedule generated by full sparse tiling must respect the flow, anti-, and output

dependences present in the original code. However, explicitly creating the dependence rela-

tions in the general case can be computationally expensive. In this section, we step through

39

the process of finding the data dependence relations for the example given in Figure 3.1 to

illustrate the complexity of the process.

Table 3.1 shows a tabular representation of the data access relations that are shown

pictorially in Figure 3.1 as black arrows. Because the number of elements of a data space

accessed by an iteration of a loop varies in the case of the Jacobi solver, the arity of the

relation may vary. In this simple example, some iterations access a single data element

and others access two elements. The general full sparse tiling algorithm developed in this

research can handle this difference in arity while some other sparse tiling algorithms, such

as that used in OP2 [38], cannot.

Once we have enumerated the data access relations, we must process them to find the

data dependence relations representing the flow, anti-, and output dependences. The flow

dependences for all pairs of loops Lx and Ly where x < y are

{~i→ ~j |~i ∈ Lx ∧~j ∈ Ly ∧WLx→Dd
(~i) ∩RLy→Dd

(~j) 6= ∅}.

The anti-dependences for all pairs of loops Lx and Ly where x < y are

{~i→ ~j |~i ∈ Lx ∧~j ∈ Ly ∧RLx→Dd
(~i) ∩WLy→Dd

(~j) 6= ∅}.

The output dependences for all pairs of loops Lx and Ly where x < y are

{~i→ ~j |~i ∈ Lx ∧~j ∈ Ly ∧WLx→Dd
(~i) ∩WLy→Dd

(~j) 6= ∅}.

In this simple example with only two loops, each dependence relation can only be between

iterations of the two loops. Each loop has 17 data accesses, ten of which are reads and 7 of

which are writes. To find the flow dependences requires that we compare each write of L1 with

each read of L2. This results in 70 comparisons. Likewise, the anti-dependence relation also

requires 70 comparisons and the output dependence relations requires (|WL1 | ∗ |WL2|) = 49.

There are a total of 189 comparisons needed to find the three dependence relations. The

relations are given in Table 3.2.

Within the context of general loop chains, finding the dependences has complexity

O((|RL∗| ∗ |WL∗|) + (|WL∗| ∗ |RL∗|) + (|WL∗ | ∗ |WL∗|)). To put this in perspective, for a

40

1 2

2 3 4 5 6 71

3 4 5 6 7

2 3 4 5 6 71

1 2 3 4 5 6 7

Uodd

Ueven

Loop 0

Loop 1

Figure 3.1: The data and iteration space view of the Jacobi code in Figure 1.1. This figure
is a duplicate of Figure 1.2, duplicated here for convenience.

Table 3.1: Enumeration of the data access relations for the example given in Figure 1.2.

DAR on Loop 0 Elements DAR on Loop 1 Elements
RL0→DUodd

(1) {2} RL1→DUeven
(1) {2}

WL0→DUeven
(1) {1} WL1→DUodd

(1) {1}
RL0→DUodd

(2) {1} RL1→DUeven
(2) {1}

WL0→DUeven
(2) {2} WL1→DUodd

(2) {2}
RL0→DUodd

(3) {4} RL1→DUeven
(3) {4}

WL0→DUeven
(3) {3} WL1→DUodd

(3) {3}
RL0→DUodd

(4) {2,3} RL1→DUeven
(4) {2,3}

WL0→DUeven
(4) {4} WL1→DUodd

(4) {4}
RL0→DUodd

(5) {4,6} RL1→DUeven
(5) {4,6}

WL0→DUeven
(5) {5} WL1→DUodd

(5) {5}
RL0→DUodd

(6) {7} RL1→DUeven
(6) {7}

WL0→DUeven
(6) {6} WL1→DUodd

(6) {6}
RL0→DUodd

(7) {5,6} RL1→DUeven
(7) {5,6}

WL0→DUeven
(7) {7} WL1→DUodd

(7) {7}

41

Table 3.2: Enumeration of the data dependence relations derived from the data access rela-
tions given in Table 3.1.

Relation (L0 to L1) Dependency Type Element Causing Dependency
[1]→ [2] Flow Ueven[1]
[1]→ [2] Anti Uodd[2]
[2]→ [1] Flow Ueven[2]
[2]→ [1] Anti Uodd[1]
[2]→ [4] Flow Ueven[2]
[3]→ [4] Flow Ueven[3]
[3]→ [4] Anti Uodd[4]
[4]→ [2] Anti Uodd[2]
[4]→ [3] Flow Ueven[4]
[4]→ [3] Anti Uodd[3]
[4]→ [5] Flow Ueven[4]
[5]→ [4] Anti Uodd[4]
[5]→ [6] Anti Uodd[6]
[5]→ [7] Flow Ueven[5]
[6]→ [5] Flow Ueven[6]
[6]→ [7] Flow Ueven[6]
[7]→ [5] Anti Uodd[5]
[7]→ [6] Flow Ueven[7]
[7]→ [6] Anti Uodd[6]

42

typical sparse matrix used in this work by the Jacobi solver, there are on the order of 1×107

read access relations and 1× 105 write access relations. The complexity of finding the data

dependences is therefore O(1×1012), which is prohibitively expensive to compute at inspector

time on most hardware available today.

Previously, special purpose full sparse tilers avoided this issue by using specific aspects

of the application to reduce the complexity. With many of the computations that have

been sparse tiled in the past, such as Jacobi, Gauss-Seidel, and the matrix powers kernel,

inspecting the dependences between loops was equivalent to traversing index arrays. For

example, in Jacobi, each iteration of a loop reads from a set of neighbors and writes to

exactly one location. If the sparse matrix is stored in compressed sparse row format then

the non-zero indices form a compact list of neighbor identifiers. By iterating over this list

the dependence relation can be efficiently inspected. In these cases, the flow dependence

relations can be reduced to

{[i]→ [j] | i ∈ neighbors(j)}

and the anti-dependence relations are reduced to

{[i]→ [j] | j ∈ neighbors(i)}.

The inspector can traverse the domain for the i or j iterations and inspect data depen-

dences by looking in the neighbor set. This can be done in linear time. Also note that if

a symmetric matrix is used, there is no need to find output dependences as they are fully

contained within the transitive closure of the flow and anti-dependences. Several special pur-

pose inspectors took advantage of this neighbor representation and dependence symmetry

to reduce the complexity of finding the dependence relations. However, in the general case,

these types of simplifications cannot be made, so a general methodology must address the

dependence complexity issue in a more universal fashion.

43

3.2.2 Handling Parallel Reductions

The loop chain abstraction can describe loops that are either doall parallel or are re-

ductions. The two types of loops can be scheduled in a similar manner when a serial tile

schedule is being generated, as was the case with early full sparse tiling work. When these

early tiling approaches were extended to support parallel execution [54], they relied on the

fact that their specific sequences of loops did not contain reductions.

In the case of a general loop chain, that assumption cannot be made. When generating

a parallel schedule in which multiple iterations of a single reduction loop may execute in

parallel, it is necessary to avoid race conditions. These races occur when two or more

processors read the same location in a reduction variable and modify it, oblivious to the

changes made by the other processors. In this case, the changes made by some of the

processors may be lost, resulting in data corruption. As was discussed in Section 1.4, full

sparse tiling can generate schedules permitting multiple tiles to execute in parallel on a

multicore machine. The partial ordering on tiles is expressed as a task graph. A general full

sparse tiling approach must ensure that the task graph presents two or more tiles that all

write to a single location in a reduction variable from executing in parallel.

3.2.3 Dependences Between Non-Adjacent Loops

One assumption made by previous single purpose full sparse tilers is that all data de-

pendences exist between consecutive loops in the loop chain. For example, the first loop

produces data that is consumed by the second loop and so forth. They do not support the

case where, for example, loop L2 produces data consumed by loop L5. This simplifying

assumption is made by the Jacobi, MolDyn, and OP2 full sparse tilers and holds true in all

of those cases. When this assumption is true, the inspector can be simplified by searching

pairwise between loops for data dependences, rather than having to search between all loops

in the chain. This is a linear operation rather than a quadratic operation, so it greatly

reduces algorithmic complexity.

44

To promote generality, there is nothing in the loop chain abstraction that restricts de-

pendences to exist only between adjacent loops. Therefore, the full sparse tiler presented in

this work does not rely on this assumption and has to directly address the O(N2) complexity

in a different way.

3.2.4 Complexity of Creating the Initial Partitions

Much of the success of a full sparse tiling depends on the quality of the initial assignment

of iterations from the seed iteration space to tiles. This assignment impacts the parallelism

and spatial and temporal locality of the final tiling. To achieve a high quality initial iteration

assignment, full sparse tilers attempt to assign iterations that access the same data to the

same tile. The loop chain abstraction’s data access relations express which iterations access

which data items. By capturing all the iterations that access each particular data item, these

access relations can used to create an adjacency graph with iterations as the vertices and

edges between vertices that share data. The adjacency graph can then be partitioned using

standard graph partitioning techniques to obtain initial tile assignments for the iterations in

the selected loop. This technique results in tiles that have good temporal locality and data

reuse.

In the general case, these adjacency graphs can be quite large, and the process of building

them has complexity O((NM)2), where N is the number of iterations and M is the number

of data elements. Previous approaches to full sparse tiling avoided the high asymptotic

complexity of building the adjacency graph by either using different, already available, graphs

in place of the adjacency graph. For example, the custom full sparse tiler for the Jacobi

solver used the non-zero pattern in the sparse matrix in lieu of the full adjacency graph.

Other full sparse tilers select a seed loop with a small constant number of data accesses

per iteration and a limited number of iterations accessing each data item. For example, full

sparse tilers working on irregular meshes [38] rely on the geometric properties of the mesh

to limit complexity. A given mesh may have, for example, edges with only two connected

vertices per edge and cells with only four edges.

45

A general full sparse tiler must find some way of creating initial partitions in a universal

and computationally tractable way. Some possible solutions include having the user cluster

the input data before starting the tiling process or using a more efficient algorithm for

creating the adjacency graph.

3.3 General Full Sparse Tiling Algorithm

The goal of full sparse tiling is to assign the iterations of each of the loops in a loop chain

to one of a group of scheduling entities called sparse tiles. A sparse tile simply contains a

list of iterations from each of the loops. When a sparse tile is executed, the iterations of

the first loop are executed, then those from the next loop, and so on. All the iterations

assigned to a sparse tile from one loop are completed before any assigned iterations of the

next loop start execution. The loop chain definition forbids any chained loop from having

ordering dependences between iterations of the same loop, so no ordering is necessary within

a loop. In addition, sparse tiles are atomic, meaning that once input data is ready, the tile

can execute to completion without any further communication or synchronization with other

tiles. Tiles are numbered and, in a serial execution model, are executed in order, starting

with tile number 0.

Iterations must be assigned to sparse tiles such that data dependences are respected. For

example, if an iteration of loop 1 writes to memory address A[5] and an iteration of loop

2 reads from that same address, the iteration that performs the read must execute after

the iteration that does the write. This is a basic read after write (RAW) flow dependence.

Figure 3.2 shows flow dependences, as well as write after read (WAR) anti-dependences and

write after write (WAW) output dependences. The dashed arrows in Figure 3.2 show the

ordering imposed on the execution of the iterations, shown as circles, due to the accesses to

the shared data element, depicted as a square.

Full sparse tiling attempts to create tiling assignments that are not just legal, but that

also exhibit good memory locality. It does this in two ways. First, it selects one loop to

function as the seed loop. Iterations of this loop are assigned to sparse tiles based on the

46

W

R

(a) Flow Dependence.

R

W

(b) Anti-Dependence

W

W

(c) Output Dependence

Figure 3.2: Data dependences impose an ordering on iterations. Loop iterations are shown
as circles and data elements are represented by squares. Accesses, shown as dark lines, are
labeled to indicate whether they are reads (R) or writes (W).

data that they access. Different iterations that touch the same data are assigned to the same

tile.

Next, iterations of other loops are added to tiles based on their sharing data with the

iterations previously assigned from the seed loop. This process continues as iterations of

more loops are added based on their having data accesses in common with iterations from

any of the already tiled loops.

The grouping of iterations for locality is accomplished as a side effect of satisfying the

data dependences. If an iteration of a loop reads from a location, it must be executed after

any write to that location in any preceding loop. This means that the reading iteration must

be assigned to a higher or equal numbered tile than any tile containing a write in a preceding

loop. If we choose to assign the read to the tile containing the last write to that memory

location, then both the write and the read will be within the same tile. As this process plays

out for all the iterations, those iterations that share data accesses will naturally migrate into

the same tile.

To parallelize the execution of full sparse tiles, the complete ordering given by tile number

can be relaxed to a partial ordering based on data dependences between tiles. If two tiles

have no data dependences, they can be executed in parallel. This partial ordering of tiles

can be expressed as a task graph with tiles as vertices or tasks and ordering dependences as

edges. Various task graph execution engines [3], including those developed as part of this

dissertation work [39, 40], can then be used to execute the tasks in the task graph.

47

In the following sections, we more completely present the top level general full sparse

tiling algorithm and then discuss each of the key elements in the general full sparse tiling

process in greater detail. In Section 3.3.1, we explain the overall approach at a conceptual

level and give an overview of the algorithm. We then cover how to initiate the full sparse

tiling process in Section 3.3.2. In Section 3.3.4, we discuss sparse tile generation. Finally,

in Section 3.3.5, we describe how a task graph is generated that captures inter-tile ordering

dependences and enables parallel execution.

3.3.1 The Top Level Full Sparse Tiling Algorithm

The generalized full sparse tiling algorithm assigns iterations of the loops in the loop

chain to sparse tiles. It then creates a partial ordering on the execution order of those sparse

tiles. The overall full sparse tiling algorithm is given in Algorithm 1. The notation used

throughout the algorithm is summarized in Table 3.3.

One change from earlier work in sparse tiling introduced in the general full sparse tiling

algorithm is the Ψ access table. This data structure holds lists of all tiles that read or write

a data element in a given loop. The list of tiles that read from data element ~j in data space

Dd in the loop l is given by ΨR(d,~j, l). Correspondingly, the list of tiles that write to data

element ~j in data space Dd in the loop l is given by ΨW (d,~j, l). The Ψ structure is discussed

further in Section 3.3.3.

The generalized full sparse tiling algorithm starts by selecting one loop in the loop chain

as the seed space or seed loop. This loop’s iterations are assigned to tiles as detailed in Section

3.3.2 and those assignments are stored in the θ tiling function. Once these tile assignments

are made, the updatePsi routine is called to capture the new tiling assignments and associate

them with the data elements that are accessed by the tiles.

The algorithm then uses these initial tile assignments to bootstrap the rest of the tiling

process. First the iterations of the loop immediately preceding the seed loop are assigned

to tiles using the backwardTile routine. Each of these tile assignments is made such that

all data dependences between each iteration of this loop and those of the seed space are

48

Table 3.3: A summary of the symbols used to represent input, state, and output data used
in the Full Sparse Tiling process.

Symbol Description
L A sequence of loops

(L0, L1, . . . , Ll, . . . , LN−1).
l An identifier for the lth loop in the

sequence.
Ll The iteration space associated

with the lth loop in the sequence.
~i A vector that identifies a specific

iteration within a loop.
D A set of data spaces

{D0, D1, . . . , Dd, . . . , DM−1}.
Dd A specific data space. For exam-

ple, D0 may correspond to a data
array X.

~j A vector that identifies a specific
element within a data space.

RLl→Dd
(~i) A relation between iterations and

the data they read.

WLl→Dd
(~i) A relation between iterations and

the data they write.

ΨR(d,~j, l) The set of tiles that read a specific
data element, ~j,of Dd in loop l.

ΨW (d,~j, l) The set of tiles that write a spe-
cific data element, ~j, of Dd in loop
l.

ΨFR(d,~j, l) The first (lowest numbered) tile
that reads a specific data element,
~j, of Dd in loop l.

ΨLR(d,~j, l) The last (highest numbered) tile
that reads a specific data element,
~j, of Dd in loop l.

ΨFW (d,~j, l) The first (lowest numbered) tile
that writes a specific data ele-
ment, ~j, of Dd in loop l.

ΨLW (d,~j, l) The last (highest numbered) tile
that writes a specific data ele-
ment, ~j, of Dd in loop l.

θ(l,~i) The tile assignment for iteration ~i
within loop l.

49

respected. The key idea behind backward tiling is to put iterations into tiles so that they

execute before dependent iterations in later loops. Flow dependences can be preserved by

putting iterations that write to a data location into tiles that execute before reads to that

location in later loops. Similarly, anti-dependences can be honored by putting reads before

writes to a particular memory location in a later loop. Likewise, output dependences are

respected by putting writes to a data location into tiles such they execute before other writes

to that location that occur in later loops. For example, if a data location is written by an

iteration of this loop and later read by an iteration of the seed loop, the iteration must

be assigned to a tile with an equal or lower tile number than the tile containing the seed

loop read. This ensures that the flow dependence between these two iterations is satisfied.

Information about what tile accesses each data element in each loop is readily available in

the Ψ data structure, greatly simplifying this process. After each loop Ll is tiled and the

tiling is stored in θ(Ll, ∗), the Ψ structure is updated using the updatePsi algorithm to reflect

the tiles accessing each data element .

Note that backwardTile and updatePsi could be integrated into a single algorithm. Since

backwardTile does not read from the Ψ table entries for the loop l that is currently being

tiled and to which writes are actively occurring, there are no ordering or synchronization

issues with combining the two steps. However, for performance reasons when the inspector

code is parallelized, we perform the tiling process as two distinct phases.

This backward tiling process is then repeated for each other loop that precedes the seed

space, moving from the loop immediately preceding the seed loop backward until the first

loop is tiled. At this point, the algorithm changes direction and begins tiling the loops that

succeed the seed loop. They are tiled using the forwardTile routine. Both the forward and

backward tiling algorithms are presented in Section 3.3.4. The forward tiling routine closely

resembles that used for backward tiling, but with one significant difference. The goal of the

forward tiling algorithm is not to place iterations before later accesses but rather to place

iterations into tiles after tiles containing earlier accesses. For example, if a data location is

read by an iteration of a post-seed loop and was written by an iteration of an earlier loop,

50

1 GeneralizedFullSparseTile
Input: Loop Chain LC=(L,D,R,W), seed loop index s
Output: θ,G
Data: Ψ

2

3 // Initialize all fields of Ψ to > or ∅
4

5 // Initialize the values in the tiling function, θ, to >
6

7 // Assign iterations of the seed space to tiles
8 θ(Ls, ∗) = PartitionSeedSpace(Ls, R,W)
9 UpdatePsi(Ψ, s)

10

11 // Assign iterations from loops before the seed loop to tiles
12 foreach Ll in Ls−1 to L0 do
13 BackwardTile(Ll, l, R,W, θ,Ψ))
14 UpdatePsi(Ψ, s)

15 end foreach
16

17 // Assign iterations from loops after the seed loop to tiles
18 foreach Ll in Ls+1 to LN−1 do
19 ForwardTile(Ll, l, R,W, θ,Ψ)
20 UpdatePsi(Ψ, s)

21 end foreach
22

23 // Create the parallel tile execution schedule as a task graph
24 G = BuildTaskGraph(Ψ)
25

26 return θ,G
27

Algorithm 1: The Generalized Full Sparse Tiling Algorithm

the iteration must be assigned to a tile with an equal or higher tile number than the tile

containing the earlier read so as to respect the flow dependence. The forward tiling process

begins with the loop immediately after the seed loop and continues loop by loop until the

last loop in the loop chain has been tiled. This completes the assignment of loop iterations

to tiles.

The tiling process consists of |L| − 1 calls to either forwardTile or backwardTile and a

like number of calls to updatePsi. All of these have complexity O(|RLl
|+ |WLl

|), where |RLl
|

and |WLl
| are the number of read and write access relations on loop l, respectively. The

51

seed space can be partitioned in different ways, but if we assume that that process also is

O(|Rl|+ |Wl|), then tiling a loop chain has overall complexity

O(

|L|−1∑
l=0

(|RLl
|+ |WLl

|)) = O(|R|+ |W |)

and is therefore linear with respect to the total number of data accesses in the loop chain.

Once all iterations have been assigned to tiles, the tiles themselves are analyzed to see if

the total tile ordering can be relaxed to a partial ordering. A task graph is used to capture

the partial ordering on tile execution. The process examines each data item and determines

if iterations in multiple tiles read or write the item. This is a straightforward process because

all tiles that read or write a specific data element ~j in data space Dd during loop l can be

pulled directly from ΨR|W (d,~j, l). The task graph creation process needs no information

beyond the Ψ structure. If two or more tiles read or write the data element, ordering edges

are added to the task graph between those tiles to ensure that the iterations in the tiles

respect all data dependences. This process is carried out by the BuildTaskGraph algorithm,

which is discussed in Section 3.3.5.

Upon completion of the full sparse tiling algorithm, the θ function holds tiling assign-

ments for all iterations in the loop chain. The G task graph holds the partial ordering on

tile execution. This information can then be passed on to an executor that runs the tiled

iterations using a parallel task graph execution engine.

3.3.2 Partitioning of the Seed Iteration Space

The entire full sparse tiling process begins by assigning iterations of the seed iteration

space to tiles. Since the loop chain abstraction only allows loops without intraloop ordering

constraints, any tiling of iterations is guaranteed to be valid. However, some tilings result

in greater temporal and spatial locality. These tilings group together iterations that access

data in common. If this concept is extended to iterations that access not just the same data

element, but rather any element in the same cache line, even greater spatial locality may be

achieved.

52

The quality of the seed space tiling has an impact on the quality of the tiling of the

other loops as well. Recall from Section 3.3.1 that while backward and forward tiling, tiling

assignments of other loops are all impacted by the assignments made for the seed iteration

space. If iterations of the seed space that access common data are all assigned to the same

tile, it is more likely that iterations of other loops that also access these data elements will

be assigned to a given tile. Therefore, the quality of the seed space tiling is critical to the

overall quality of the entire loop chain tiling.

There are many different approaches for creating high locality initial tilings. For a dis-

cussion of some of these possibilities, see Chapter 4. After researching different methods,

we concluded that the lowest overall loop chain execution times are achieved when the user

orders the data to align with the order of iteration execution. To preserve this correspon-

dence between data and iteration ordering, the seed iterations should be assigned to tiles in

a classic blocked fashion with a contiguous block of iterations assigned to tile 0, the next

block of iterations assigned to tile 1, and so forth. This simple approach preserves the user’s

initial ordering when full sparse tiling.

Therefore, the algorithm PartitionSeedSpace referenced in Algorithm 1 is a blocked parti-

tioner that assigns |Ls|
numtiles

iterations to each tile, where numtiles is the total number of tiles.

It updates the tiling function values for the seed space, θ(Ls, ∗), to reflect these assignments.

3.3.3 Tracking Data Reads and Writes

During the development of the generalized full sparse tiling technique, we observed that

much of the tiling and task graph building processes consist of placing an access to a data

element either before or after other accesses to that same element. This is unsurprising

because this is the essence of satisfying data dependences. We further observed that this

information is needed only at the tile level of granularity. In other words, the algorithm only

needs to know in which tile an access occurs, rather than the specific iteration that performs

the access.

53

These observations led to the creation of the data access table, Ψ. The Ψ data structure

holds lists of all tiles that read or write a data element in a given loop. The list of tiles that

read from data element ~j in data space Dd in the loop l is given by ΨR(d,~j, l). Correspond-

ingly, the list of tiles that write to data element ~j in data space Dd in the loop l is given by

ΨW (d,~j, l).

Because during full sparse tiling we frequently need to know the first or last tile that

reads or writes a data element in a specific loop, the Ψ structure also stores the tile number

of the first and last tile to read from or write to each data element in a given loop. The first

reading tile is referenced as ΨFR(d,~j, l), the last reading tile as ΨLR(d,~j, l), the first writing

tile as ΨFW (d,~j, l), and the last writing tile as ΨLW (d,~j, l).

The process for updating Ψ(∗, ∗, l) is presented in Algorithm 2. It first clears all entries

associated with the specified loop, Ll. It then visits each iteration~i of the loop and examines

the read data access relation RLl→Dd(~i)
on that iteration. The tile containing each read is

added to ΨR(d,~j, l). If a read was assigned to a tile earlier than the current value for

ΨFR(d,~j, l), that value is recorded as the new first reading tile. Similarly, if the tile number

is greater than the previous last tile reading from the data element ~j in the current loop l,

the entry for ΨLR(d,~j, l) is changed to the new higher tile number. This process is repeated

for the write relations in WLl→Dd(~i)
, updating ΨW (d,~j, l), ΨFW (d,~j, l) and ΨLW (d,~j, l) using

similar logic.

The work needed to update the Ψ structure entries for a loop Ll depends on the number of

accesses to data items in that loop. The asymptotic complexity is given by O(|RLl
|+ |WLl

|).

Therefore, each application of the updatePsi algorithm completes in linear time.

3.3.4 Backward and Forward Tiling Algorithms

The backward and forward tiling algorithms are the key to achieving the threefold goals

of full sparse tiling, namely validity, locality, and atomicity. The algorithms ensure that

iterations are assigned to tiles such that all data dependences are satisfied. They also tile

together iterations of different loops that access the same data, thereby improving temporal

54

1 UpdatePsi
Input: L, l, θ, R,W,Ψ
Output: Ψ

2

3 // Initialize the access tables of all data elements accessed
4 // by iterations of Ll

5 foreach ~i ∈ Ll do
6 foreach d ∈ D do

7 foreach ~j ∈ RLl→Dd
(~i) ∪WLl→Dd

(~i) do

8 ΨFR(d,~j, l) = ΨLR(d,~j, l) = >
9 ΨFW (d,~j, l) = ΨLW (d,~j, l) = >

10 ΨR(d,~j, l) = ΨW (d,~j, l) = ∅
11 end foreach

12 end foreach

13 end foreach
14 // Update the access tables to reflect the current tiling

15 foreach ~i ∈ Ll do
16 foreach d ∈ D do

17 foreach ~j ∈ RLl→Dd
(~i) do

18 ΨFR(d,~j, l) = MIN(ΨFR(d,~j, l), θ(l,~i))

19 ΨLR(d,~j, l) = MAX(ΨLR(d,~j, l), θ(l,~i))

20 ΨR(d,~j, l) = ΨR(d,~j, l) ∪ θ(l,~i)
21 end foreach

22 foreach ~j ∈ WLl→Dd
(~i) do

23 ΨFW (d,~j, l) = MIN(ΨFW (d,~j, l), θ(l,~i))

24 ΨLW (d,~j, l) = MAX(ΨLW (d,~j, l), θ(l,~i))

25 ΨW (d,~j, l) = ΨW (d,~j, l) ∪ θ(l,~i)
26 end foreach

27 end foreach

28 end foreach
29

30 return Ψ
31

Algorithm 2: Algorithm for Updating Ψ, the Data Element Access Table

55

1 BackwardTile
Input: L, k,R,W, θ,Ψ
Output: θ

2

3 Define: MIN(>,X) = X.

4 foreach ~i ∈ Ll do
5 foreach d ∈ D do

6 foreach ~j ∈ RLl→Dd
(~i) do

7 foreach Lk ∈ {Ll+1 to LN−1} do
8 // anti dependence - place iter so reads go before subsequent writes

9 θ(l,~i) = MIN(θ(l,~i),ΨFW (d,~j, k))

10 end foreach

11 end foreach

12 foreach ~j ∈ WLl→Dd
(~i) do

13 foreach Lk ∈ {Ll+1 to LN−1} do
14 // flow dependence - place iter so writes go before subsequent reads

15 θ(l,~i) = MIN(θ(l,~i),ΨFR(d,~j, k))
16 // output dependence - place iter so writes go before subsequent writes

17 θ(l,~i) = MIN(θ(l,~i),ΨFW (d,~j, k))

18 end foreach

19 end foreach

20 end foreach

21 end foreach
22

23

Algorithm 3: The Backward Tiling Algorithm

56

locality. Finally, they create tiles that are atomic, meaning that once initial external data

dependences are satisfied, the tile can begin execution and can execute all its iterations

completely without additional communication or synchronization.

The three goals are achieved simultaneously by the way the forward and backward tiling

algorithms assign loop iterations to tiles. The backward tiling process is shown in Algo-

rithm 3. We will discuss the backward algorithm first and then contrast it with the forward

tiling algorithm.

The backward algorithm primarily focuses on placing iterations of a specified loop in a

loop chain into tiles such that all three types of dependences, flow, anti, and output (see

Figure 3.2), are satisfied. It does this by first assigning a loop iteration to the highest

numbered tile. It then shifts the tile assignment lower and lower, to tiles that execute earlier

and earlier, as required to meet data dependences.

For each iteration ~i in the specified loop Ll, the algorithm on line 6 steps through all

the read access relations, RLl→D∗(~i). Each of these is a relation, [~i] → [~j], stating that this

iteration ~i accesses data element ~j. In order to respect anti-dependences between this read

to ~j and writes in iterations of later loops, this read must be placed before any such writes.

To determine what tile meets this requirement, on line 9 we simply retrieve ΨFW (d,~j, k)

for each k > l. This tells us the first tile containing a write to this data element in the

loop k. If that tile is less than the current tile assignment for iteration ~i, that assignment is

adjusted downward to match the writing tile. This is repeated for each loop k succeeding the

current loop l, each time moving the iteration to an earlier tile or leaving the tile assignment

untouched.

Satisfying flow and output dependences is accomplished in much the same way. The

algorithm steps through all the write access relations WLl→D∗(~i) on lines 12 through 18.

To satisfy flow dependences, each of these writes must occur before a read in a later loop.

Output dependences require the write to take place before a write in a later loop. Therefore,

we retrieve ΨFR(d,~j, k) on line 15 and ΨFW (d,~j, k) for each loop k > l. If any of these tiles

is lower numbered than the current tile assignment for iteration~i, the assignment is changed

57

to match the lower tile number. In this way, all data dependences are respected. The final

tile assignment is recorded in θ(l,~i).

This process is illustrated by Figure 3.3, which pictorially shows the backwardTile algo-

rithm tiling iterations of Loop 0. Loop 1 is the seed space and has already been tiled. A

single data space, D0 is present in the loop chain. Note that the order of the elements of the

data space has been shuffled to reduce clutter in the diagram.

Before Algorithm 3 begins, Iteration 0 of loop 0 is initially assigned to > or the highest

numbered tile. This initial placement is shown in Figure 3.3a. One line 6 of Algorithm 3, the

read relations are examined. This iteration has no read relations, so lines 6 through 10 are

not applicable. Iteration 0’s write access relations are visited by the loop on line 12 and it is

found that the iteration first writes to element 6. The ΨFR(0, 6, 1) entry is queried on line

15. This is done for every loop after loop 0, which in this case is only loop 1. ΨFR(0, 6, 1)

is tile 0. As the min of > and 0 is 0, iteration 0 is moved from tile 2 to tile 0, as shown in

Figure 3.3b.

Lines 12 through 18 are then repeated for element 8, which is also written by iteration

0. The value of ΨFR(0, 8, 1) is tile 2, but since 2 is greater than 0, the iteration remains in

tile 0. A simple check shows that elements 6 and 8 are now written in tile 0, before either

iteration 1 or 2 of loop 1 reads them. Iteration 0 of loop 0 precedes iteration 2 because

all iterations of a loop in a tile precede all iterations of later loops in that same tile. The

iteration precedes iteration 1 of loop 1 because tile 0 has a lower tile number than tile 2, the

tile that contains iteration 1.

The algorithm ForwardTile, presented as Algorithm 4, is the mirror image of Back-

wardTile and is used to tile loops after the seed loop. The key difference is that it first

places an iteration into the first tile, tile 0. It then assigns an iteration to later and later tiles

as necessary to satisfy dependences. In this way, it places iterations making data accesses

such that they will execute after iterations that access the same data elements in earlier

loops.

58

0 Loop 0

Loop 1

86 72 90

2 0 1

Tile 0 Tile 1 Tile 2

(a) Iteration 0 is initially assigned to tile 2

0 Loop 0

Loop 1

86 72 90

2 0 1

Tile 0 Tile 1 Tile 2

(b) Iteration 0 is forced into tile 0 to satisfy the flow dependence with
iteration 2 of loop 1

Figure 3.3: A loop chain as it is being full sparse tiled. Loop 1 is the seed loop and iterations
of loop 0 are being assigned to tiles by the backwardTile algorithm.

59

1 ForwardTile
Input: L, l, R,W, θ,Ψ
Output: θ

2

3 Define: MAX(>,X) = X.

4 foreach ~i ∈ Ll do
5 foreach d ∈ D do

6 foreach ~j ∈ RLl→Dd
(~i) do

7 foreach Lk ∈ {L0 to Ll−1} do
8 //flow dependence

9 θ(l,~i) = MAX(θ(l,~i),ΨLW (d,~j, k))

10 end foreach

11 end foreach

12 foreach ~j ∈ WLl→Dd
(~i) do

13 foreach Lk ∈ {L0 to Ll−1} do
14 // anti dependence

15 θ(l,~i) = MAX(θ(l,~i),ΨLR(d,~j, k))
16 // output dependence

17 θ(l,~i) = MAX(θ(l,~i),ΨLW (d,~j, k))

18 end foreach

19 end foreach

20 end foreach

21 end foreach
22

23

Algorithm 4: The Forward Tiling Algorithm

60

Observe that when backward tiling from the seed space, all loops after the seed loop will

be untiled and will initially have their Ψ entries set to >. This means that when backward

tiling the loops before the seed space, no information about the tiling of loops after the seed

space is available. Whenever comparing the current tile assignment with >, the current

assignment is preserved and the > value is ignored. At first glance, it may appear that

data dependences may be violated, since iterations before the seed space must be tiled so

as to precede iterations after the seed space, yet the tile placement of those iterations has

yet to be made. Valid tilings, however, are actually produced under this scheme. When the

loops after the seed space are later tiled using the ForwardTile algorithm, iterations will be

appropriately placed after any iteration in any preceding loop. Because loop chains are a

single sequence of loops without cycles, this approach always produces legal tilings.

The tiling assignments made by this algorithm also result in improved locality. An

iteration is assigned to a tile such that it will either access an item also accessed by an

earlier loop iteration in the tile or else access an item that will be accessed by an iteration

of a later loop in the tile. While this assignment is made to satisfy data dependences, it

also has the effect of improving temporal locality. One iteration will bring the data into the

cache, and, if the reuse distance is small enough, those data will still be in a cache when the

later iteration executes, resulting in improved performance.

The last quality of a sparse tile, that of atomicity, is also achieved by the tiling algorithm.

For example, an iteration of a loop that writes to a data element will be scheduled either

to the same tile as an iteration that reads from the element in a later loop or else placed

in an earlier tile. When a tile begins executing, all the data accesses that must precede the

execution of iterations in the tile either will have already executed or else will execute as

part of this tile. By explicit construction and virtue of tiling by data dependence, it is never

the case that a tile depends on data that is produced by a later tile.

61

1 BuildTaskGraph
Input: L, l,D,Ψ, numtiles
Output: G = (V,E)

2

3 V = {0, . . . , numtiles− 1}
4 E = ∅
5 foreach l | Ll ∈ L0 to LN−1 do
6 foreach d | Dd ∈ D0 to DM−1 do

7 foreach ~j ∈ Dd do
8 // Reductions

9 E = E ∪ {[v]→ [w] | v ∈ ΨW (d,~j, l) ∧ w ∈ ΨW (d,~j, l) ∧ v < w}
10 foreach k | Lk ∈ {Ll−1, . . . , L0} do
11 // Flow dependences

12 E = E ∪ {[v]→ [w] | v = ΨLW (d,~j, k) ∧ w ∈ ΨFR(d,~j, l) ∧ v < w}
13 end foreach
14 foreach k | Lk ∈ {Ll+1, . . . , LN−1} do
15 // Anti dependences

16 E = E ∪ {[v]→ [w] | v ∈ ΨLR(d,~j, l) ∧ w = ΨFW (d,~j, k) ∧ v < w}
17 // Output dependences

18 E = E ∪ {[v]→ [w] | v = ΨLW (d,~j, l) ∧ w = ΨFW (d,~j, k) ∧ v < w}
19 end foreach

20 end foreach

21 end foreach

22 end foreach
23 return G

Algorithm 5: Task Graph Generation Algorithm

3.3.5 Task Graph Generation

The tiling process described in Chapter 3 assigns iterations of loops to tiles under the

assumption that a lower numbered tile will execute completely before a higher numbered tile

begins executing. In other words, executing tiles in numeric order by tile number is a valid

schedule that satisfies all data dependences. However, it is often the case that tiles have no

data dependences between them. In this case, the tiles can execute concurrently without

violating data dependences.

Therefore, as part of the overall generalized full sparse tiling process, we examine the

tile assignments and determine what tiles can be legally executed concurrently. This partial

62

order on tile execution is represented by a task graph with tiles as vertices and ordering

dependences between tiles represented by edges.

The algorithm for building the task graph is shown in Algorithm 5. Note that it is able

to determine the dependences between tiles using only the Ψ structure and never queries the

θ tiling function. This highlights an advantage of tracking reads and writes in Ψ using tiles,

rather than individual iterations.

The algorithm begins by creating a vertex in the graph for every tile. It then walks

through the Ψ table, loop by loop and data element by data element. If at any point an

entry in the Ψ table is set to >, the comparison is recognized as invalid and no edge is added

to the graph.

The first type of dependences considered are reductions. For each data element ~j and

loop l, the algorithm examines ΨW (d,~j, l). If two or more distinct tiles write to the data

element in this loop, we must prevent a race condition by serializing the execution of the

tiles. Therefore, the algorithm adds a task graph edge from the lower to the higher numbered

tile for all tile pairs in ΨW (d,~j, l).

Next, the cross-loop flow, anti, and output dependences are evaluated. If the data element

under consideration was written in a loop prior to this loop and is read in this loop, a flow

dependence may exist. To enforce this dependence, an edge is added between the last tile to

write to the element in each previous loop and the first tile to read the element in this loop.

To address anti-dependences, an edge is added to the graph between the last tile to read

from the data element and the first tile to write to the element in each subsequent loop. To

resolve output dependences, an edge is added to the graph between the last tile to write to

this data item and the first tile to write to it in each later loop.

The process of building a task graph involves visiting each data element in the loop

chain and doing Ψ table lookups O(|L|2) times for the loop to loop dependences. There is

additional complexity of O(|L| ×
∑d=|D|−1

d=0 |Dd| × (number of tiles)2) to handle reductions.

63

Therefore, the overall algorithmic complexity is

O((|L| ×
d=|D|−1∑

d=0

|Dd|)× ((number of tiles)2 + |L|))

with the dominant term usually being the number of data elements accessed.

3.4 Validity of the General Full Sparse Tiling Algo-

rithm

The approach to satisfying data dependences taken by the generalized full sparse tiling

algorithm is that of correct by construction. Given the specification that all data and re-

duction dependences must be satisfied, the algorithm places iterations into tiles such that

these dependences are satisfied. Therefore, while the following assertions and justifications

are not formal proofs of correctness, they are sufficient to convey concisely how the general

full sparse tiling approach generates tilings that respect all dependences present in the loop

chain.

Assertion: If there is a flow, anti, or output data dependence between iteration ~i in loop

Lx and iteration ~j in loop Ly, then there is an edge in the task graph starting at θ(Lx,~i)

and ending at θ(Ly,~j), θ(Lx,~i) 6= θ(Ly,~j).

Justification: If there is a dependence that ends at a particular iteration ~j, then during

the forward growth phase, the iteration ~j will be put in the same tile or a later tile than the

iteration where the dependence starts, ~i, due to the MAX() functions used at lines 9, 15, and

17 in the forward tiling algorithm given in Algorithm 4. Alternatively, during the backward

growth phase, the iteration ~i will be placed in the same or an earlier tile than ~j due to the

MIN() functions at lines 9,15, and 17 of Algorithm 3.

If the two iterations that share a dependence are in the same tile, two properties ensure

proper ordering. First is the maintained sequencing between loops in a tile, meaning that

all iterations of loop Lx assigned to a tile complete before the execution of any iterations of

loop Ly, x < y, begin. The second property is the ordering independence of all iterations

64

within the same loop. This constraint is imposed by the loop chain abstraction. These two

properties result in the dependence being satisfied by the schedule.

If the two iterations are assigned to different tiles, Algorithm 5 that builds the task graph

will create an ordering edge from the earlier tile to the later tile by detecting that these two

tiles are both writing to or one is writing to and the other is reading from the same data

element.

Assertion: If there is a reduction dependence between iteration ~i and iteration ~j, both

in loop Lx, then there is an edge in the task graph starting at θ(Lx,~i) and ending at θ(Lx,~j),

θ(Lx,~i) < θ(Lx,~j).

Justification: Reductions present a special case in that they contain dependences not

between loops but within a single loop. If different iterations of the same loop read and

write from the same memory location, they must either be placed in the same tile or else in

two tiles that are prevented from executing at the same time. If not, a race condition will

potentially exist. This race is prevented by line 9 of Algorithm 5, which places an edge from

the lower numbered tile to the higher numbered tile for all pairs of tiles that write to the

same memory element within the same loop.

3.5 Other Parallelization Approaches Related to Full

Sparse Tiling

There is a large body of research related to full sparse tiling. In Section 2.6, we discussed

prior work related to loop chains and their specification. In Section 3.1 we surveyed prior

work on sparse tiling or related tiling efforts that directly led to the development of the

current generalized full sparse tiling approach. In this section, we review other, related,

solutions to the problem of automatic parallelization of sequences of loops.

Significant research on automatic parallelization of sequences of loops was done by Rav-

ishankar et al. [51]. This work identifies partitionable loops and schedules these loops for

execution on a distributed memory machine. It does not require a user to identify a loop

65

chain or declare which loops should be optimized. A hypergraph is generated with iterations

from all loops as vertices and data elements as hyperedges. This hypergraph is partitioned

to generate the iteration assignments to each processing node. In this approach, the tiles are

not atomic and must communicate with other nodes after each loop, but locality across loops

is improved. The system generates inspector and executor code using the ROSE source to

source compiler system. This technique has been evaluated on a sparse conjugate gradient

solver, similar to the sparse Jacobi solver used in our work, and achieved speedups of as

much as 80 times on a 256 node machine.

Another approach to parallelization of loop sequences was developed by Basumallik and

Eigenmann [7]. This work takes parallel loops identified by OpenMP pragmas and transforms

them for execution on distributed memory clusters. The iterations executed on each node are

reordered to maximize communication-computation overlap rather than to improve locality.

Here again, the work assigned to each node is not atomic and communication is necessary

during execution. This work is evaluated using the moldyn benchmark and a sparse conjugate

gradient solver. This system produces code that performs comparably to hand coded MPI

implementations at higher node counts.

The approach presented in this work differs from these techniques in three key ways.

First, they produce code and data distributions for distribute memory systems. Therefore,

a significant contribution of these efforts is related to data replication, distribution, and

ongoing communication. The full sparse tiling work presented in this dissertation is focused

solely on shared memory systems.

Second, these approaches generate a schedule in which each node or processing element

executes its assigned iterations of one loop, then communicates a subset of its results to other

partitions that are dependent on that data. After executing its iterations of a loop, each

processing element potentially waits to receive data from other partitions. The full sparse

tiling approach described here does not require any synchronization or communication during

the execution of a tile due to the atomicity of the tile. Atomic tiles are better able to exploit

the locality available across the sequence of loops.

66

Lastly, our approach optimizes sequences of loops that have been represented using the

loop chain abstraction. These other approaches either rely on automatic identification of

candidate loop sequences or else process loops identified by OpenMP pragmas. Either of

these methods could be used to produce loop chain abstractions internally, as discussed in

Section 2.3. Conversely, the systems overviewed here could be modified to work on the loop

chain abstraction.

67

Chapter 4

Locality Considerations For Full Sparse
Tiling

Locality of reference, or simply locality, is a property of a system or computer pro-

gram [26]. This property indicates that future data accesses by the system can be inferred

from an examination of the system’s recent reference trace or list of memory locations previ-

ously referenced. Locality is sometimes divided into two kinds, temporal and spatial. A sys-

tem exhibiting temporal locality will repeatedly access the same data element during a time

interval. For example, the system may reference a sequence of data elements (1,6,3,1,4,6,5,1).

Observe the repeated references to data elements 1 and 6. Systems with spatial locality will

access data elements located near another in memory during a time interval. For example,

consider a system that references data elements (1,7,2,9,3,4,10) sequentially. While no item

is accessed repeatedly, within the reference trace are the patterns (1,2,3,4) and (7,9,10), runs

that access nearby elements.

Most modern computer hardware has been architected to exploit the locality property

through the use of a cache, or small, fast memory system that stores recently used data

under the premise that the data or nearby data will be accessed soon [34]. Because the

cache is small relative to main memory, it can only hold a limited number of recently used

data elements. If the number of data elements accessed between two accesses to the same

or nearby data, called the reuse distance, is less than the capacity of the cache, the later

memory access will be serviced by the fast cache and will have lower access time than an

access to main memory.

One of the primary objectives of general full sparse tiling is to reduce the execution

time of a loop chain. It attempts to achieve this by placing repeated accesses to the same

data element closer together in time by putting them into the same tile. This increases the

68

likelihood that subsequent accesses to the element will pull the data from lower latency cache

memory. How this is accomplished and some challenges to improving locality through full

sparse tiling are detailed in Section 4.1.

The full sparse tiling algorithm is also sensitive to how iterations of the seed space are

assigned to tiles, so in Section 4.2 we discuss methods for improving seed space partitioning.

Data reordering is a method for improving spatial locality that is largely orthogonal to full

sparse tiling. At present, the generalized full sparse tiling algorithm does not alter the

placement of data in memory. In Section 4.3, we present methods for reordering data that

are complementary to full sparse tiling.

4.1 Interaction Between Locality and Full Sparse Tiling

Improving locality and converting that improved locality into better performance is at

the core of generalized full sparse tiling. Iterations are assigned to tiles such that they share

data with other iterations in the tile. This improves locality and will improve performance

if the data accessed within a tile, known as its data footprint, is less than a cache level. In

Section 4.1.2, we discuss what data contributes to the relevant data footprint of a full sparse

tile. These footprints are not consistent across all tiles, so in Section 4.1.3, we discuss the

statistical distributions of tile data footprints as generated by generalized full sparse tiling.

4.1.1 Iteration Placement To Improve Locality

The gFST algorithm increases temporal locality by placing references to the same data

element into the same tile. This is a natural consequence of the way iterations are tiled.

During the backwardTile step in the generalized full sparse tiling algorithm, an iteration

that writes to a data element will be placed in the same tile as the earliest reader of that

element in subsequent loops. An example of this behavior can be seen in Figure 4.1. In this

example, iteration 0 of loop 0 is assigned to tile 0 in order to satisfy the flow dependence on

element 6, read in iteration 2 of loop 1. This tiling assignment is driven by data dependences,

but also results in placing the iteration into a tile where it shares at least one data element

69

0 Loop 0

Loop 1

86

2

72

1

90

2 0 1

Tile 0 Tile 1 Tile 2

Figure 4.1: A full sparse tiling of a trivial loop chain. Loop 1 is the seed space. This example
is a continuation of the example in Figure 3.3.

with an iteration of another loop. Under this tiling, iteration 0 of loop 0 and iteration 2 of

loop 1 both access element 6 in tile 0. Likewise, iteration 2 of loop 0 and iteration 2 of loop

1 both access element 7 in tile 0 and iteration 1 of loop 0 and iteration 0 of loop 1 share

element 0 within tile 1.

While full sparse tiling using the backwardTile and forwardTile algorithms can improve

locality, an examination of Figure 4.1 reveals some apparent missed opportunities to place

iterations sharing data into the same tile. For example, iteration 0 of loop 0 and iteration

1 of loop 1 share two elements, both 6 and 8. However, they are placed in two different

tiles. This is because the placement of an iteration is dictated exclusively by its earliest

dependence. In the case of iteration 0, the assignment is determined by the flow dependence

with iteration 2 of loop 1. Any dependences with iterations assigned to later tiles, such as

those with iteration 1 of loop 1 in tile 2, have no impact on the tiling assignment. This leads

to a phenomenon called locality dilution, in which two or more tiles access the same data

element, diluting the locality that would otherwise be contained within a single tile.

70

0	

2000	

4000	

6000	

8000	

10000	

12000	

pwtk	 nd24k	 ldoor	 xenon2	 thermal2	 kim2r	

Ti
le
	 D
at
a	
Fo
ot
pr
in
t	 (
kB

yt
es
)	

Total	 Tile	 Data	 Footprint	

Figure 4.2: The total tile footprint of tiles yielding best performance. Results from the
Jacobi solver with the optimal number of tiles are shown for 6 distinct sparse matrices.

4.1.2 Relationships Between Tile Footprints and Cache Sizes

We have found that minimum runtime is not achieved when the total tile footprint is

equal to the size of the cache. Figure 4.2 shows the average tile footprint of optimally sized

tiles from the Jacobi solver for six sparse matrices when run on a machine with a 32kB first

level cache, a 256kB mid-level cache, and an 8 MB last level cache. Many of these tiles exceed

the size of the mid level cache by more than an order of magnitude. The tile footprints for

the different matrices also vary by more than a factor of eight from one another. The tile

footprints are also not correlated with the total size of the working set for the Jacobi solver.

For example, the ldoor matrix is 1.7 times larger than the nd24k matrix, yet its optimal tile

size is less than half that of the nd24k matrix. This suggests that the optimal tile size is not

strongly correlated with the total tile footprint.

Further examination of the memory usage of a Jacobi tile reveals that some data is

accessed in a regular fashion while other data elements are accessed in an irregular fashion.

If the tile footprint of only the irregular data is considered, a reasonable relationship between

tile footprint and cache sizes emerges. Figure 4.3 shows the footprint of data accessed

irregularly by an average tile for the same 6 sparse matrices used in Figure 4.2. Figure 4.3

shows that optimal performance is achieved when the irregularly accessed data fits within

71

0	

50	

100	

150	

200	

250	

300	

pwtk	 nd24k	 ldoor	 xenon2	 thermal2	 kim2r	

Si
ze
	 o
f	 I
rr
eg
ul
ar
	 D
at
a	
(k
By

te
s)
	

Tile	 Irregular	 Data	 Footprint	

Figure 4.3: The size of irregular data per tile compared to the 256kB size of the mid level
cache on a Xeon E3-1230 processor, as indicated by a red horizontal line. Results from the
Jacobi solver with the optimal number of tiles are shown for 6 distinct sparse matrices.

roughy one fifth to one half of the mid level cache. This ratio between irregular data accessed

by a tile and the mid level cache size is reasonable because regularly accessed data will

consume some portion of the cache, leaving less than the full cache available for irregular

data.

4.1.3 Distributions of Tile Memory Footprints

Because the tile growth process assigns different numbers of iterations to each tile and

because the amount of data accessed by each iteration potentially varies, the data footprint

will also vary from tile to tile. This variation leads to a statistical distribution of tile data

footprints. The histograms of tile irregular data footprints for four sparse matrices are

given in Figures 4.4 and 4.5. None of the distributions neatly matches a common statistical

distribution such as a normal, bimodal, or uniform distribution. Instead, they all have some

clustering near the mean, but a significant number of outliers as well. The histogram in

Figure 4.5b has a long tail to the right containing a significant number of tiles. For this

reason, it is difficult to characterize tile size with a single metric such as mean or median.

Often, the context when discussing tile footprint relates to finding a tile footprint that will

fit in a particular cache. In this case, the cache size presents an upper bound on tile size.

72

0	

2	

4	

6	

8	

10	

12	

14	

16	
14
7	

14
9	

15
1	

15
3	

15
5	

15
7	

15
9	

16
1	

16
3	

16
5	

16
7	

16
9	

17
1	

17
3	

17
5	

17
7	

17
9	

18
1	

18
3	

18
5	

18
7	

18
9	

19
1	

19
3	

19
5	

19
7	

19
9	

20
1	

20
3	

20
5	

Ti
le
	 C
ou

nt
	

Tile	 Irregular	 Data	 (kBytes)	

Irregular	 Data	 Tile	 Footprint	 Distribu9on	
thermal2	 matrix,	 60	 9les	
Mean:	 164	 StdDev:	 6.73	

(a) Irregular data footprint distribution for the thermal2 matrix.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	 40	 41	 42	 43	 44	 45	 46	 47	 48	 49	 50	 51	 52	 53	 54	 55	

Ti
le
	 C
ou

nt
	

Tile	 Irregular	 Data	 (kBytes)	

Irregular	 Data	 Tile	 Footprint	 Distribu9on	
pwtk	 matrix,	 60	 9les	

Mean:	 35.3	 	 StdDev:	 4.35	

(b) Irregular data footprint distribution for the pwtk matrix.

Figure 4.4: Distributions of tile irregular data footprints. The tile count shown gave the best
performance for the particular matrix.

73

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	
29
	

32
	

35
	

38
	

41
	

44
	

47
	

50
	

53
	

56
	

59
	

62
	

65
	

68
	

71
	

74
	

77
	

80
	

83
	

86
	

89
	

92
	

95
	

98
	

10
1	

10
4	

10
7	

11
0	

11
3	

11
6	

Ti
le
	 C
ou

nt
	

Tile	 Irregular	 Data	 (kBytes)	

Irregular	 Data	 Tile	 Footprint	 Distribu9on	
audikw_1	 matrix,	 360	 9les	
Mean:	 49.7	 	 StdDev:	 15.6	

(a) Irregular data footprint distribution for the audikw 1 matrix.

0	

5	

10	

15	

20	

25	

30	

15
	

18
	

21
	

24
	

27
	

30
	

33
	

36
	

39
	

42
	

45
	

48
	

51
	

54
	

57
	

60
	

63
	

66
	

69
	

72
	

75
	

78
	

81
	

84
	

87
	

90
	

93
	

96
	

99
	

10
2	

Ti
le
	 C
ou

nt
	

Tile	 Irregular	 Data	 (kBytes)	

Irregular	 Data	 Tile	 Footprint	 Distribu9on	
nd24k	 matrix,	 110	 9les	
Mean:	 27.3	 	 StdDev:	 15.2	

(b) Irregular data footprint distribution for the nd24k matrix.

Figure 4.5: Additional distributions of tile irregular data footprints. The tile count shown
gave the best performance for the particular matrix.

74

If tiles are below the bound, they will fit in the cache. However, if there are other tradeoffs

that reward larger tiles, there is a penalty to simply representing the distribution by its

maximum. Doing so would place the majority of tile footprints far below the cache size.

Placing the median tile footprint at the cache size would mean that half of the tiles fit in

the cache and half do not. Observing histograms like those found in Figures 4.4 and 4.5, we

notice that there tends to be either a tail to the right of the mean as seen in Figure 4.5 or

else a small number of outliers to the far right of the histogram, as seen in Figure 4.4. To size

the majority of tiles below a target size without creating many very small tiles, these large

outlying tiles need to be ignored. The metric that captures most of the tiles, yet ignores the

large outliers, is the 75th percentile. For these reasons, when capturing the distribution of

tile footprints with a single number in this dissertation, the 75th percentile value is used.

4.2 Partitioning the Seed Space to Improve Temporal

Locality

Recall that the backwardTile algorithm, Algorithm 3, and forwardTile algorithm, Algo-

rithm 4, rely on the tile assignments of iterations from previously tiled loops to select tiles

for iterations of the loop being tiled. Therefore, they are unable to make tile assignments

until at least one loop has already been tiled. The initial loop, known as the seed loop or

seed iteration space, must be tiled using a different approach.

When tiling the seed loop, improving temporal locality is the goal, just as it is when

tiling other loops. To increase locality, iterations of the seed space that access data elements

in common are assigned to the same tile. To accomplish this, two distinct steps are needed.

First, information about what iterations access data in common is compiled. An adjacency

hypergraph can be used to store this information. Then, based on that hypergraph, iterations

of the seed loop that access data in common can be assigned to the same tile as much as

possible. This can be achieved using a hypergraph partitioner.

The adjacency hypergraph is a hypergraph, H = (V,E), in which the vertices V are

iterations of the seed iteration space and the hyperedges, E, represent data elements. Unlike

75

the ordered pairs that serve as edges of a simple graph, a hypergraph’s hyperedges are subsets

of V . These sets are unordered and can vary in cardinality.

The process of building the complete adjacency hypergraph for an iteration space is

straightforward. The vertices are simply the iterations in the seed iteration space. The hy-

peredges are completely defined by the data access relations on the seed space. Building the

adjacency hypergraph is a direct process of adding a pin, or vertex-to-hyperedge connection,

for each member of the relation. The algorithmic complexity is O(|R|+ |W |).

Once the adjacency hypergraph is constructed, it can be used to assign seed space iter-

ations to tiles. This is accomplished by k-way partitioning the adjacency hypergraph. The

aim of k-way partitioning is to divide the vertices of the hypergraph into k distinct subsets

such that a cost function is minimized. In the case of adjacency hypergraph partitioning, the

cost function is the edge cut, or number of hyperedges that connect to vertices in different

partitions. The number of partitions, k, is the number of tiles used by full sparse tiling.

Unfortunately, at the present time, there are no freely available parallel hypergraph

partitioners for shared memory. There are several serial hypergraph partitioners, including

PaToH [14, 13] and hMETIS [36]. As an alternative, all hypergraphs can be converted to

graphs and then partitioned. However, the complexity of converting a hypergraph to a graph

is O(V × E × V), making conversion an unattractive option.

To partition the adjacency hypergraph, we developed a shared memory parallel hyper-

graph partitioner, hyperParCubed, that is based on our previous parallel graph partitioner,

ParCubed [41]. HyperParCubed uses OpenMP to parallelize the process of assigning hyper-

graph vertices to partitions.

Before the hypergraph partitioning process begins, the data access relations on the seed

iteration space are converted into a hypergraph with iterations as vertices and data elements

as hyperedges. This hypergraph is then transposed to create a second hypergraph with data

elements as the vertices and loop iterations as the hyperedges.

The hyperParCubed algorithm proceeds as follows. First, the seed iteration space is split

into equally sized blocks of iterations, each of size |Ls|
t

, where t is the number of threads

76

to be used for partitioning. Each thread takes the chunk of data edges assigned to it and

processes each edge in turn by passing it to the per hyperedge partitioning algorithm. This

algorithm then takes the hyperedge and adds it to a work list.

As long as there are hyperedges in the work list, the algorithm processes them as follows.

First, it pops a hyperedge off the work list. For each vertex connected to the hyperedge, it

considers whether or not to add the vertex to the current partition. The decision is based

on whether the vertex has already been assigned to a partition, and if so, the size of that

partition. If the vertex has not yet been assigned to a partition, it is added to the current

partition and all hyperedges to which it is connected are added to the work list. Finding

the connected hyperedges is straightforward using the transposed hypergraph. Otherwise, if

the vertex in question is already in a partition, and that partition is small enough such that

merging it with the current partition would not exceed the maximum partition size, the two

partitions are merged. This process continues until either the work list is empty or the size

of the current partition meets or exceeds the maximum size.

Commonly, the partitioning process produces more partitions than are desired, so an

additional step is used to trim the number of partitions. During this folding step, the

partitions are ordered by partition size from smallest to largest. If k partitions are desired,

then the adopting partition Pk and extra partition Pk−1 are merged, Pk+1 and Pk−2 are

merged, and so forth. This combines increasingly smaller extra partitions with increasingly

larger adopting partitions. If more than twice the desired number of partitions was originally

found, the folding process functions in a modulo fashion, wrapping as needed.

Extra and adopting partitions are matched solely based on size. Due to this fact, uncon-

nected partitions can be created. Also note that during folding, the maximum partition size

is ignored, so partitions that exceed the desired size can be produced.

The hyperParCubed partitioning approach creates partitions in which iterations in a

partition share at least one data element with another iteration in the partition. This

improves temporal locality when executing iterations of the seed iteration space.

77

4.3 Data Reordering and Generalized Full Sparse

Tiling

In Figure 4.1, one can observed that the spatial locality within the tiles can be improved.

Looking at tile 0, we see it accesses elements {2,6,7,8}. If element 2 were moved to location

5, all the accesses would be contiguous as {5,6,7,8}. Similarly, tile 1 accesses elements {0,9}.

If element 9 were moved to location 1, tile 1 would access contiguous elements as {0,1}.

Because the generalized full sparse tiling algorithm does not reorder data, it is not able to

improve spatial locality in this way.

Improving the spatial locality of the data access pattern of a loop chain is not an intrinsic

feature of the full sparse tiling process. Two iterations that access data elements that are

stored in adjacent memory locations are not automatically placed into the same tile, as they

do not share a producer-consumer relationship. Compilers cannot reorder the data in many

cases because data is being accessed irregularly based on other data read at run time.

Ding and Kennedy have done work on dynamic data reordering using an inspector/ex-

ecutor approach. In [28], they apply several reordering techniques to data from the moldyn

benchmark. Wood studied the benefit of applying partitioner based reordering [57] to data

used in a sparse matrix powers kernel application. This prior work shows that there can

be a clear benefit to data reordering in the types of applications that also benefit from full

sparse tiling.

As part of this dissertation, we examined the impact data reordering had on the Jacobi

solver. In particular, we wanted to know if data reordering techniques used to improve

performance of the blocked Jacobi solver would also benefit a full sparse tiled version. For

this study, we reordered 6 sparse matrices from the University of Florida Matrix Market [24].

For each matrix, the ReorderMM tool from [57] was used to reorder the data. This tool

takes a partition based reordering approach in which data is broken into partitions. Data is

then reordered such that elements in a partition are placed together in the data ordering.

We created partition sizes ranging from 32 kilobytes of data up to 16 megabytes in steps

78

0.0%	
2.0%	
4.0%	
6.0%	
8.0%	

10.0%	
12.0%	
14.0%	
16.0%	
18.0%	
20.0%	

pwtk	 nd24k	 ldoor	 xenon2	 thermal2	 kim2r	

%
	 C
ha

ng
e	
in
	 E
xe
cu
.o

n	
Ti
m
e	

Sl
ow

es
t	 t
o	
Fa
st
es
t	 R

eo
rd
er
in
g	

Jacobi	 Sensi.vity	 to	 Data	 Reordering	

Blocked	 gFST	

Figure 4.6: Sensitivity to data ordering of both the blocked and full sparse tiled Jacobi
solvers. The percent change shown is between the ordering yielding the highest performance
and the ordering giving the lowest performance.

increasing by a power of two. These 10 matrix reorderings, along with the original data

ordering, were sent to both the simple blocked version of the Jacobi solver as well as the

full sparse tiled version. Figure 4.6 shows the percent change in execution time between the

data orderings delivering the best and worst performance. The performance varies between

1.2% and 18.7% and on average the delta was 8.3% and 10.2% for the blocked and full sparse

tiled solvers, respectively. This indicates that data reordering can be a significant factor in

performance. Also note that for some matrices, the blocked solver showed greater sensitivity

to data reordering than the gFST solver, while for others the opposite was true.

Figure 4.7 shows the partition sizes that resulted in the best performance for each of the

matrices for the blocked and full sparse tiled Jacobi implementations. In most cases, the

same data reordering that lead to the best performance for the blocked solver also resulted in

the best performance for the full sparse tiled solver. In cases where the two solvers performed

best with different data reordering, the difference in reorderings was never more than a single

step in partition size. This indicates that data reordering done to improve the performance

of a blocked implementation also benefits the same loop chain after full sparse tiling.

79

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

pwtk	 nd24k	 ldoor	 xenon2	 thermal2	 kim2r	

Re
or
de

rin
g	
Pa

r,
,o

n	
Si
ze
	

Data	 Reordering	 Sizes	 Yielding	 Best	 Jacobi	 Performance	

Blocked	 gFST	

Figure 4.7: Partition sizes resulting in the best performance for the blocked and full sparse
tiled Jacobi solvers. In general, both solvers benefit from similar data orderings.

80

Chapter 5

Parallelism Considerations for Full
Sparse Tiling

One of the major aims of the generalized full sparse tiling approach is to parallelize the

execution of a loop chain. After tiling together iterations to improve locality, the generalized

full sparse tiling algorithm concludes by building a task graph that expresses the parallelism

available in the tiled schedule. If there is sufficient parallelism in the task graph to fully

utilize the available hardware resources, good performance will be achieved.

During the generalized full sparse tiling process, iterations of the seed space are assigned

to tiles so that they share data accesses. This is achieved through partitioning, as described

in Section 4.2. The tile numbers of these initial partitions are treated as a partial ordering

on tile execution. Tiles with lower tile numbers execute before tiles with higher tile numbers.

If tile numbers are assigned to the initial partitions such that consecutively numbered tiles

share data dependences, the task graph will be highly serialized. In Section 5.1, we discuss

a method for mitigating this effect to significantly increase the parallelism of the task graph.

It is important to realize that simple metrics such as average parallelism are inadequate

to capture the intricacies of a task graph. In Section 5.2, we discuss different metrics and

techniques for evaluating the parallelism of a task graph. Using these metrics, in Section 5.3,

we present a study of how much median parallelism is needed to achieve high performance

on multicore machines.

5.1 Coloring Seed Partitions To Improve Parallelism

When executing a full sparse tiled loop chain, the amount of parallelism available is

dictated by the shape of the task graph. Graphs that are wide and shallow, rather than

narrow and deep, better utilize multicore hardware resources. The generalized full sparse

81

tiling approach numbers seed partitions in a fashion that promotes the development of task

graphs with this broader shape.

During the seed space partitioning process, described in Section 4.2, the iterations of

the seed space are assigned to tiles. These tiles are assigned an ordering by the partitioner

such that tiles that share data are frequently assigned adjacent numbers. A consequence of

this ordering is that, in many cases, two consecutively numbered tiles contain iterations that

have a data dependence between them. This results in the two tiles being strictly ordered.

This leads to a task graph that is narrow and deep with little parallelism.

To resolve this issue, a different tile numbering scheme is used in generalized full sparse

tiling. This approach is drawn from work presented in [54]. Rather than assign consecutive

numbers to tiles that share data, tiles are assigned numbers such that, to the degree possible,

consecutively numbered tiles do not share data. This is accomplished by creating a partition

graph [54]. This graph has the initial tiles as the vertices and has edges between vertices that

share data. This graph is then colored using a standard graph coloring algorithm such that

adjacent tiles are assigned different colors [22]. Tiles that share a color will not share data.

Tiles of the first color are then assigned consecutive tile numbers. This is repeated in turn

for each of the colors. Under this scheme, the tile numbering contains runs of same-colored

tiles that have no dependences. The length of these runs, or equivalently, the cardinality of

a color set, is an indicator of the amount of parallelism that will be present in a level set of

the final task graph.

While coloring the graph is a fast and straightforward process, building up the partition

graph is algorithmically complex. Building the partition graph is O(|Ls|2), the square of

the number of iterations in the seed iteration space. This complexity means that generating

the partition graph can take longer than creating the initial seed partitions and coloring the

graph combined.

Note that this coloring step is done purely to increase the parallelism of the final task

graph. It is not necessary to guarantee the correctness of the parallel task graph. This

is in contrast to the approach used by the OP2 full sparse tiling researchers [38]. Their

82

0	

5	

10	

15	

20	

1	 2	 3	 4	 5	 6	

Ti
le
s	 I
n	
Le
ve
l	 S
et
	

Level	 Set	 Depth	

Parallelism	 Profile	
kim2r,	 60	 ;les	

Parallelism	 Average:	 10,	 Median:	 12.5,	 StdDev:	 2.61	

Figure 5.1: Parallel profile for a 60 tile full sparse tiling of the Jacobi solver on the kim2r
sparse matrix.

methodology relies completely on graph coloring to discover what tiles can execute in parallel.

This is similar to the multi-coloring technique used by Barrett et al. in [5]. The work

presented in this dissertation uses Algorithm 5 to determine the dependences between tiles.

This distinction is important because it allows us to color an approximation of the true

partition graph without encountering any correctness issues. As the hypergraph partitioner

is creating the initial seed space partitions, it keeps track of each time it encounters an

iteration that would be assigned to a tile but cannot because it has already been assigned

to a different tile. These conflicts indicate that two different tiles are accessing the same

data element and so the conflicts are logged as they are discovered. After partitioning is

complete, the logged conflicts can be converted into an approximate partition graph in O(N)

time, where N is the number of conflicts. This reduction in graph construction complexity

allows graph coloring for improved parallelism to be completed in a timely manner.

83

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Ti
le
s	 I
n	
Le
ve
l	 S
et
	

Level	 Set	 Depth	

Parallelism	 Profile	
nd24k,	 60	 =les	

Parallelism	 Average:	 3.75,	 Median:	 2,	 StdDev:	 3.84	

Figure 5.2: Parallel profile for a 60 tile full sparse tiling of the Jacobi solver on the nd24k
sparse matrix.

5.2 Issues with Measuring and Controlling Task Graph

Parallelism

5.2.1 Statistics for Measuring Parallelism

When striving to understand the parallelism available in a task graph, it is often necessary

to understand how the available parallelism varies over the execution of the task graph. This

can be illustrated using a parallel profile. A parallel profile breaks the task graph into level

sets. A level set consists of all the tasks that can execute at a specific depth in the task

graph. Level set n contains those tasks whose predecessors are all elements of the union of

level sets 0 through n−1. For example, the first level set contains those tasks in entry nodes

of the task graph. The second level set contains those tasks whose predecessors are a subset

of the tasks in the first level set, and so on for deeper level sets.

Observe the parallel profile shown in Figure 5.1. This is the parallel profile of a 60 tile full

sparse tiling of the Jacobi solver on the kim2r sparse matrix. It has an average parallelism of

10 and a median parallelism of 10 and has good parallelism across all level sets. The average

84

and median parallelism in this case are both a good indicator of how many processors could

be effectively used.

Contrast that parallel profile with Figure 5.2 that shows the parallel profile for a 60 tile

full sparse tiling of the Jacobi solver on the nd24k sparse matrix. The task graph has an

average parallelism of 3.75. Considering only the average parallelism, it would seem that

the task graph could consistently utilize the cores in a 4 core system. However, the parallel

profile shows that only 5 of the 16 level sets contain 4 or more tasks. The large level sets

found at depths 12 through 14 and 16 lift the average and obscure the fact that during the

majority of the task graph level sets, there is not enough parallelism to keep more than

two cores engaged. The median parallelism value of 2 is a better indicator of how much

parallelism is present in the task graph. However, there is still a benefit to provisioning more

cores than the median or mean parallelism indicates. Figure 5.2 shows that, for one quarter

of the level sets, there is enough parallelism to benefit from the use of additional cores.

The incompleteness of the mean or median width of the task graph to fully represent

parallelism highlights the limitations of using a single statistic to represent a distribution

or function. When summarizing parallelism, in this work, we use the median parallelism.

However, we acknowledge that significant information is lost in doing so and rely on full

parallel profiles when median or mean values are inadequate.

5.2.2 Using Tile Count to Control Parallelism

Techniques that attempt to control task graph parallelism through the use of tile count

rely on knowing the relationship between tile count and median parallelism. Using this

relationship, a given median parallelism target can be reached by setting the tile count to the

corresponding value. Unfortunately, there is not a simple or well-defined relationship between

tile count and parallelism. In some cases, the relationship is roughly linear. For example,

Figure 5.3 shows a well-behaved relationship between tile count and median parallelism.

There is nearly a linear relationship with a slope of approximately 0.04. This indicates that

increasing the tile count by 25 tiles will in general increase the median parallelism by one.

85

0	

10	

20	

30	

40	

50	

10
	

60
	

11
0	

16
0	

21
0	

26
0	

31
0	

36
0	

41
0	

46
0	

51
0	

56
0	

61
0	

66
0	

71
0	

76
0	

81
0	

86
0	

91
0	

96
0	

M
ed

ia
n	
Pa

ra
lle
lis
m
	

Tile	 Count	

Median	 Parallelism	 Related	 to	 Tile	 Count	
audikw_1	 matrix	

Figure 5.3: Relationship between median parallelism and tile count for a tiling of the au-
dikw 1 matrix

0	
2	
4	
6	
8	

10	
12	
14	
16	

10
	

60
	

11
0	

16
0	

21
0	

26
0	

31
0	

36
0	

41
0	

46
0	

51
0	

56
0	

61
0	

66
0	

71
0	

76
0	

81
0	

86
0	

91
0	

96
0	

M
ed

ia
n	
Pa

ra
lle
lis
m
	

Tile	 Count	

Median	 Parallelism	 Related	 to	 Tile	 Count	
nd24k	 matrix	

Figure 5.4: Relationship between median parallelism and tile count for a tiling of the nd24k
matrix.

86

However, this slope is specific to the Jacobi solver on this particular sparse matrix and does

not generalize to other applications or matrices. It is not clear what factors influence the

relationship between tile count and median parallelism. It appears that the data access

pattern of a tile, among potentially other factors, impacts how many tiles are needed, but

what specific aspects of that pattern are unclear.

Even in this well-behaved case, note that the line in Figure 5.3 is not monotonically

increasing. Increasing the tile count from 460 to 510 tiles actually results in a reduction of

median parallelism. There is a similar dip in median parallelism going to 760 tiles from 710

tiles.

In other cases, the relationship is not linear at all. In Figure 5.4, the relationship between

median parallelism and tile count is shown for the nd24k sparse matrix. Here the median

parallelism does not follow a linear trend and both increases and decreases with increased

tile count. Depending on the type of optimization being performed, such as gradient descent,

functions like that shown in Figure 5.4 can cause the optimizer to become trapped in local

minima rather than to find the global minimum.

5.3 Determining the Optimal Amount of Parallelism

Determining the optimal amount of parallelism is an important aspect of executing a task

graph. Intuitively, the parallelism present should equal or exceed the number of processing

elements. However, increasing parallelism usually entails increasing the number of tiles. This

in turn increases scheduling overhead and reduces the size of each tile, potentially shifting

the tile size away from a desired memory footprint such as a cache size. Therefore, increasing

the tile count to increase the parallelism comes at a cost.

To determine how much parallelism results in optimal performance, we conducted exper-

iments on three multicore machines. The first machine has a single four core Xeon E3123

processor. The second machine has eight cores using 2 Intel Xeon E5450 quad-core proces-

sors while the last is a 24 core node on the ISTeC Cray XT6m supercomputer using two

87

AMD Magny-Cours 12 core processors. These experiments sweep the tile count from 10 to

960 and the core count from one to the maximum number of cores.

The results of these experiments are shown in Figures 5.5 through 5.11. Each of the

graphs plots the execution time of 1000 convergence iterations of the Jacobi solver against

the median parallelism in the task graph. This same experiment is conducted for seven

different sparse matrices on each of the three hardware platforms. Figure 5.6 shows the

basic pattern seen across the data sets. The execution time of the solver initially is high,

but quickly drops as median parallelism is slightly increased. This is true for single core

execution as well as parallel execution and is due to the tile size shrinking such that it fits

in the cache. This occurs at a median parallelism between 15 and 20 for the pwtk matrix.

As median parallelism is increased beyond this point, execution time decreases slightly until

median parallelism reaches approximately 40. Beyond this point, execution time is flat to

slightly higher as parallelism is increased.

Surprisingly, this same pattern holds for almost all the matrices and machines. Across

Figures 5.5 through 5.11, the lowest parallel execution time always occurs with a median

parallelism between 30 and 40. This is true regardless of the number of cores, size of input

data, total machine bandwidth, or any other machine or matrix characteristic. In particular,

it is independent of the number of tiles needed to reach that degree of parallelism. The one

exception to this rule is the nd24k matrix, whose results are given in Figure 5.7. Its results

vary widely with the degree of parallelism. Figure 5.4 shows the relationship between tile

count and parallelism and shows that the same median parallelism is achieved with different

tile counts. This leads to multiple execution times assigned to the same median parallelism.

Additional variability stems from load imbalance and is discussed in Section 6.4. This same

phenomenon is seen to a lesser degree in Figures 5.5 and 5.10.

Within the range of tile counts used for these experiments, nd24k never reached a median

parallelism higher than 14. Because its parallelism increases so slowly with tile count, it is

the one case where the basic tenant that parallelism should exceed core count can be seen.

Figure 5.7a shows that execution time decreases as median parallelism increases to four, the

88

number of cores present in that system. In Figures 5.7b and 5.7c, the trend is less clear due

to noise, but increasing parallelism to match the core count again improves performance.

This significant finding that parallel performance requires a fixed range of median par-

allelism greatly simplifies the process of selecting the correct amount of median parallelism.

Any optimization or parallelism selection algorithm need only drive the parallelism into

the 30 to 40 range to achieve good results. Within that range, additional tuning may be

accomplished through trial and error or exhaustive search to achieve peak results.

89

0	

20	

40	

60	

80	

100	

120	

140	

0	 5	 10	 15	 20	 25	 30	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 audikw_1	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 audikw_1	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	
50	

100	
150	
200	
250	
300	
350	
400	
450	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 audikw_1	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	 15	 Core	

(c) Results from a Cray 24 core node

Figure 5.5: Median parallelism yielding the best performance for the Jacobi solver using
matrix audikw 1 on different machines.

90

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 pwtk	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

10	

20	

30	

40	

50	

60	

0	 20	 40	 60	 80	 100	 120	 140	 160	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 pwtk	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	

10	

20	

30	

40	

50	

60	

0	 20	 40	 60	 80	 100	 120	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 pwtk	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	 15	 Core	

(c) Results from a Cray 24 core node

Figure 5.6: Median parallelism yielding the best performance for the Jacobi solver using
matrix pwtk on different machines.

91

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	

0	 2	 4	 6	 8	 10	 12	 14	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 nd24k	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

20	

40	

60	

80	

100	

120	

140	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 nd24k	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	

20	

40	

60	

80	

100	

120	

140	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 nd24k	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	 15	 Core	

(c) Results from a Cray 24 core node

Figure 5.7: Median parallelism yielding the best performance for the Jacobi solver using
matrix nd24k on different machines.

92

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 kim2r	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

10	

20	

30	

40	

50	

60	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 kim2r	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	

10	

20	

30	

40	

50	

60	

70	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 kim2r	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	 15	 Core	

(c) Results from a Cray 24 core node

Figure 5.8: Median parallelism yielding the best performance for the Jacobi solver using
matrix kim2r on different machines.

93

0	
10	
20	
30	
40	
50	
60	
70	
80	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 ldoor	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

50	

100	

150	

200	

250	

0	 20	 40	 60	 80	 100	 120	 140	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 ldoor	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	

50	

100	

150	

200	

250	

0	 20	 40	 60	 80	 100	 120	 140	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 ldoor	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	

(c) Results from a Cray 24 core node

Figure 5.9: Median parallelism yielding the best performance for the Jacobi solver using
matrix ldoor on different machines.

94

0	

2	

4	

6	

8	

10	

0	 5	 10	 15	 20	 25	 30	 35	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 xenon2	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

5	

10	

15	

20	

25	

30	

0	 10	 20	 30	 40	 50	 60	 70	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 xenon2	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	

5	

10	

15	

20	

25	

30	

35	

0	 10	 20	 30	 40	 50	 60	 70	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 xenon2	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	 15	 Core	

(c) Results from a Cray 24 core node

Figure 5.10: Median parallelism yielding the best performance for the Jacobi solver using
matrix xenon2 on different machines.

95

0	

5	

10	

15	

20	

25	

30	

0	 10	 20	 30	 40	 50	 60	 70	 80	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
4	 core	 Xeon	 E3123	 system,	 thermal2	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	

(a) Results from a Xeon E3123 4 core machine.

0	

10	

20	

30	

40	

50	

60	

70	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
8	 core	 Xeon	 E5450	 system,	 thermal2	 matrix	

1	 Core	 2	 Core	 3	 Core	 4	 Core	 5	 Core	 6	 Core	 7	 Core	 8	 Core	

(b) Results from a Xeon E5450 8 core machine.

0	

20	

40	

60	

80	

100	

120	

0	 20	 40	 60	 80	 100	 120	 140	 160	

Ex
ec
u&

on
	 T
im

e	

Median	 Parallelism	

Median	 Parallelism	 vs	 Execu&on	 Time	
24	 core	 cray,	 thermal2	 matrix	

1	 Core	 3	 Core	 5	 Core	 7	 Core	 9	 Core	 11	 Core	 13	 Core	

(c) Results from a Cray 24 core node

Figure 5.11: Median parallelism yielding the best performance for the Jacobi solver using
matrix thermal2 on different machines. 96

Chapter 6

Competing Forces In Optimization
of Generalized Full Sparse Tiling

Achieving optimal performance of code using the generalized full sparse tiling algorithm

involves careful tradeoffs between competing forces. In this chapter, we identify five different

forces that influence the optimal tile count for a given loop chain and generalized full sparse

tiling. These forces are depicted in Figure 6.1. Two forces, overhead and locality dilution,

exert a force encouraging the use of fewer tiles. These are discussed in Sections 6.1 and 6.2.

The other three forces, irregular tile footprint, load balancing, and parallelism, promote a

higher tile count and are discussed in Sections 6.3 and 6.4. A discussion of the interaction

of these forces is presented in Section 6.5.

6.1 Impact of Scheduling Overhead

One force that influences the optimal choice of tile count is the overhead of scheduling and

launching each task. As the number of tasks in the task graph increases, the amount of time

spent determining if a task is ready, assigning the task to a thread, setting up the context

for the execution of the new task, and commencing the execution of the task increases. If

the number of tasks is small and the length of each task is sufficiently long, this overhead is

a small part of the overall execution time. However, as the number of tasks increases, the

amount of work per task decreases. These effects combine to increase the cost of overhead

time relative to useful work time.

To characterize this effect, we executed a task graph in which the task was a simple test

kernel. The kernel does basic floating point computation in a loop. It makes no memory

accesses. By varying the number of iterations of this computation loop, we are able to control

the amount of time spent in a task. Each task was designed to take the same amount of time.

97

Locality

Parallelism

Overhead

Tile Count

Ex
ec

ut
io

n
Ti

m
e

Load Balancing

Locality Dilution

Figure 6.1: A conceptual diagram showing the different forces acting on optimal tile count.

Because different runtime systems may have different amounts of overhead, we conducted

this experiment using the five different parallel execution models presented in [40].

Figure 6.2 shows the results of executing the task graph. The length of each task is

decreased from 256µs to 1 µs and the percentage of unproductive, non-computation time is

plotted on the vertical axis. We calculate the unproductive time by first directly measuring

the total execution time using calls to a high precision hardware counter. We then multiply

this time by the number of threads used. This yields the total amount of processor seconds

that were available during the computation. Next, we measure the time spent in the compu-

tation portion of each task and sum that across all tasks to compute the total time actually

spent doing test kernel work. The unproductive time is the difference between these two

values.

At the right side of each graph there is essentially no work being done, so the non-useful

work approaches 100%. As the test work length is increased, the graph execution overhead

is amortized over an increasingly lengthy total execution time. Therefore, the non-useful

work becomes an increasingly smaller percentage until it reaches a floor. The floor is due

to some minimal overhead and load imbalance. The load imbalance increases proportionally

with the test task size and thus contributes a roughly constant percentage of total execution

time.

98

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	 200	 210	 220	 230	 240	 250	 260	 %
	 N
on

-‐C
om

pu
ta
-o

n	
Pr
oc
es
so
r	 T

im
e	

Task	 Length	 (µsec)	

Moldyn	 Task	 Graph	 Executed	 With	 Varying	 Task	 Lengths	
20	 Threads,	 40	 Cores	

TBB	 pThreads	 OMP	 Task	 OMP	 Fron=er	 Cilk	 Plus	

Figure 6.2: Processor time spent on unproductive work while executing a task graph. The
task is simple math operations that do not access data from memory. The number of
operations is varied to change the task length.

Figure 6.2 shows the graph when the experiment is run using only 20 threads on a 40

core system. The overhead for Cilk Plus takes longer to amortize, while the other engines

behave similarly to one another. When the test task length reaches between 10 and 30 µs,

the overhead has reached its minimum value for all engines except Cilk Plus, which requires a

test task length of almost 150 µs before converging on its minimum. Notice that the floor of

the graph is approximately 10%. This indicates that load imbalance contributes significantly

to the overall runtime. We can also observe that if tasks execute in less than 50µs, overhead

costs dominate the total runtime. While the exact percentages will vary with task graph

and hardware platform, this study substantiates that overhead can be a significant force on

performance and must be considered when optimizing tile count or size.

99

6.2 Impact of Locality Dilution

In Section 4.1, we introduced the concept of locality dilution. Locality dilution occurs

when, due to data dependences, an iteration that accesses a data element is forced into a

different tile than other iterations also accessing that element. This decreases the locality of

a tiling and forces the processor to access data in main memory more frequently, decreasing

performance.

To better visualize the effect of locality dilution, we measured the number of unique data

elements accessed by all tiles in a full sparse tiling. Multiple accesses to the same element

from the same tile are only counted once. Accesses to the same element from different tiles

are counted once per accessing tile. Under this accounting scheme, a tiling with a single

tile would have the minimum number of unique data accesses and would have no locality

dilution. As the tile count increases, the probability of locality dilution increases.

Figure 6.3 shows the number of unique memory elements in a tiling of the Jacobi solver

on the thermal2 sparse matrix as the tile count is increased from 1 to 200, normalized to

the value found for one tile. The optimal performance of thermal2 occurs when 110 tiles are

used, near the middle of the chosen range of tile counts.

If all accesses to a specific data element were confined to a single tile under each tiling,

which would minimize locality dilution, then this line would remain flat at 1.0. However,

we observe that the number of unique elements accessed increases as more tiles are added,

indicating that locality dilution becomes increasingly worse as tile count increases. At 200

tiles, the number of unique elements accessed has increased to 1.13 times that seen when a

single tile was used, indicating that elements are being accessed from multiple tiles.

Because the number of memory accesses is monotonically increasing with tile count, the

number of memory accesses can be reduced simply by decreasing the number of tiles used.

This finding argues in favor of minimizing the number of tiles used in a full sparse tiled loop

chain.

100

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	 10	 20	 30	 40	 60	 80	 100	 110	 120	 140	 160	 180	 200	

N
or
m
al
iz
ed

	 U
ni
qu

e	
M
em

or
y	
El
em

en
ts
	

Tiles	

Locality	 Is	 Decreased	
As	 Tile	 Count	 Increases	

Figure 6.3: Unique memory elements accessed by a tiling as a function of tile count. This
graph is from a generalized full sparse tiling of the Jacobi solver on the thermal2 sparse
matrix. As the number of tiles increases, locality dilution increases, increasing the total
number of memory accesses for the tiling as a whole.

6.3 Impact of Tile Irregular Data Footprint

Perhaps the most significant force driving tile count is locality. Satisfying the require-

ments of locality takes the form of sizing the tile irregular data footprint to fit in the appro-

priate level of cache. Determining the appropriate level of cache, or combination of caches,

is not a simple exercise.

Most recent microprocessor designs include multiple levels of cache memory. For example,

the Xeon E3-1230 microprocessor used for many of the experiments in this dissertation

includes three levels of cache. The first level data cache is 32 kilobytes in size. The mid-

level cache is 256 kilobytes in size and holds both data and program instructions. Both of

these caches are present in each of the four cores found on the processor. A third, final

level of cache is shared by all four cores. It is 8 megabytes in size and holds both data and

instructions.

We focused on the mid-level cache as the target of our tile sizing experiments. This choice

is driven by the results shown in Figure 6.4. Figure 6.4a shows the normalized execution

time of the Jacobi solver plotted against the footprint of the irregularly accessed data in a

101

tile. As the tile footprint increases from zero, the execution time decreases. This continues

until the 32 kilobyte size of the first level data cache is reached. As the tile’s irregular data

exceeds the size of the first level data cache, execution time jumps up. It then begins to

decrease again until the irregular footprint approaches the 256 kilobyte size of the mid level

cache. As the effective size of the mid level cache is exceeded, execution time increases and

continues to increase as the footprint increases.

Further confirmation of the importance of the mid-level cache is shown in Figure 6.4b.

This figure shows the number of mid-level cache misses plotted against the irregular tile

footprint. The misses are measured using the hardware performance monitoring unit and

the PAPI L3 DCR event from the PAPI performance tool [12]. This event measures data

reads that miss in the mid level cache and are then passed on to the last level cache for

servicing. There is a remarkable correspondence between the performance of the loop chain

and the number of mid-level cache misses. As cache misses, and therefore data requests

serviced by slower memory, decrease, the execution time of the loop chain decreases.

Figure 6.4 indicates that the best performance is reached when the footprint of irregular

data in each tile fits into the mid level cache. While there is a performance benefit to fitting

into the first level cache size of 32 kilobytes, doing so requires a high tile count. This brings

with it increased overhead due to higher locality dilution, increased scheduling overhead, and

time lost to the runtime system as it launches a larger number of tiles. This overhead slows

down execution more than fitting into the first level cache benefits performance, so the net

effect of many tiles that fit into the first level data cache is worse performance than if fewer

tiles are used but irregular data footprints still fit within the mid level cache.

6.4 Impact of Parallelism and Load Imbalance

The needs of parallelism have to be considered when optimizing parallel execution time.

Parallelism requirements were discussed in Section 5.3. The conclusion drawn there is that

median parallelism should equal or exceed the number of cores used to execute the task

102

99%	

100%	

101%	

102%	

103%	

104%	

105%	

0	
10
0	

20
0	

30
0	

40
0	

50
0	

60
0	

70
0	

80
0	

Ex
ec
u&

on
	 T
im

e	
As
	 %
	 o
f	 F
as
te
st
	

(L
ow

er
	 is
	 B
e9

er
)	

Irregular	 Tile	 Footprint	 (kBytes)	

Execu&on	 Time	 Versus	 Irregular	 Tile	 Footprint	
thermal2,	 500	 itera&ons,	 normalized	 to	 best	 performance	

(a) Execution time versus irregular tile size.

100%	

110%	

120%	

130%	

140%	

150%	

160%	

0	
10
0	

20
0	

30
0	

40
0	

50
0	

60
0	

70
0	

80
0	

M
id
	 L
ev
el
	 C
ac
he

	 M
is
se
s	 A

s	 %
	 o
f	 F
as
te
st
	

(L
ow

er
	 is
	 B
e8

er
)	

Irregular	 Tile	 Footprint	 (kBytes)	

Mid	 Level	 Cache	 Misses	 Versus	 Irregular	 Tile	 Footprint	
thermal2,	 500	 iteraHons,	 normalized	 to	 best	 performance	

15	 Tiles	

160	 Tiles	

460	 Tiles	

40	 Tiles	

(b) Mid level cache misses versus irregular tile size.

Figure 6.4: Execution time and mid level cache misses versus irregularly accessed bytes per
tile. Values have been normalized against those yielding the best execution time. Cache
sizes are indicated by red vertical lines.

103

A B C

D E F

(a) Imbalance due to work variance within tiles.

A B C

D E F G

(b) Load imbalance due to modulo effects.

Figure 6.5: Different full sparse tilings yield different amounts of parallelism and locality.

graph. If this basic requirement is not met, cores will sit idle and optimal performance will

not be reached.

Load imbalance occurs when some processing elements are assigned more work than

other processing elements. This results in increased execution time if some processors are

idle that could be doing useful work. Load imbalance is often seen in parallel programming

models in which some work is performed followed by a synchronization barrier. No processor

can continue working until all processors reach the barrier, creating inefficiencies if some

processors take much longer than others to reach the barrier.

In the context of generalized full sparse tiling, load imbalance occurs when the number

of tasks able to execute is less than the number of cores. This can be due to insufficient

parallelism in the task graph and was discussed in Section 5.3. It can also be caused by

cases where there is sufficient median parallelism, but not all tiles in a level set can execute.

Consider the cases in Figure 6.5. In both Figures 6.5a and 6.5b, the median parallelism is

three. In Figure 6.5a, tiles A, B, and C can execute in parallel. Tiles E and F can begin as

soon as tiles B and C finish, respectively. However, tile D cannot begin execution until tiles

104

A, B, and C have completed. If tile A completes before either tile B or C, then a processor

will sit idle.

This type of imbalance can be avoided if tasks execute in nearly the same amount of time.

Table 6.1 shows the average coefficient of variation for the irregular tile footprints found in

the test matrices used in this work. The coefficient of variation used here is computed as the

standard deviation divided by the median. This value is then averaged across tilings with

tile counts from 10 to 960.

From the table, we see that there is significant variation in the amount of data accessed

between tiles. For xenon2 and audikw 1, tile sizes vary by more than 20% and for nd24k

they vary by nearly two thirds. Because the amount of work is proportional to the amount

of data accessed, this variation tracks with variation in work and therefore in tile execution

time. If the task graph contains topologies such as those depicted in Figure 6.5a, efficiency

will be lost due to load imbalance.

Now consider the task graph shown in Figure 6.5b. Assume that all tasks require exactly

one unit of time to complete and that three processors are being used. If this task graph

executes on a machine with three cores, it will take three time units to complete. During

time step one, A, B, and C will execute. During time step two, D, E, and F will execute, for

example. Then, tile G will execute by itself during time step three and two processors will

sit idle.

The task graph execution engines will execute the task graph in an asynchronous manner,

launching tasks as soon as their predecessors are complete. This helps reduce some of the

imbalance effects, but cannot completely resolve the two cases given here. One way to

mitigate these issues is through the use of additional tiles. As the tile size decreases, the

absolute amount of variance also decreases. Smaller tiles also reduce the cost of modulo

effects. In addition, as the task graph has a higher median parallelism, there are more tasks

available at any given moment, providing the scheduler with more work per core. All of

these effects cause load balance and parallelism to improve with more tiles and exert a force

for increasing tile count.

105

Table 6.1: Average coefficient of variation of irregular tile footprints for different sparse
matrices. Average is taken over coefficient of variation as tile counts are swept from 10 to
960 tiles.

Matrix Average Coefficient of Variation
thermal2 5.10%

pwtk 11.30%
kim2r 13.72%
ldoor 17.41%

xenon2 22.60%
audikw 1 27.65%

nd24k 64.46%

6.5 Interaction of Forces

We have identified five different factors that influence the optimal tile count. Specifi-

cally, these forces are locality dilution, overhead, irregular tile footprint, load balancing and

parallelism. Each of these forces either drives the tile count higher or lower within certain

bounds. The interaction between these forces is shown conceptually in Figure 6.1.

Two of the forces, locality dilution and irregular tile footprint, work in opposition to one

another and are directly concerned with tile footprint. An effort to reduce locality dilution

would increase the tile footprint. This is in opposition to efforts to reduce the tile footprint

so that it fits within a cache. The other three forces, overhead, parallelism, and load balance,

consider the tile count directly. As the tile count increases, so does the amount of work spent

on overhead. This drives the optimal tile count down. Parallelism and load balance, on the

other hand, drive the tile count up until enough parallelism is available to occupy the cores

in a multicore system.

Locality dilution and overhead are minimized by setting the tile count to one. Tile size

relative to cache size and the ideal amount of parallelism do not have such a well defined

limit. In Section 6.3, we discussed the complexity in choosing the irregular data footprint

that provides the best performance. No clear formula has emerged that universally identifies

106

the best tile size relative to the cache system on a given processor. However, as explored in

Section 5.3, it is fairly clear how much parallelism will lead to the best performance on a

multicore system.

The two key issues that remain in setting the tile count stem from knowing how many

tiles will result in tiles with an irregular data footprint distribution around a set size and

knowing how many tiles will produce a task graph with enough parallelism. Because of these

complexities, ultimately an autotuning approach is necessary to find the optimal tile count.

However, the understanding developed in this work provides some heuristics for these tuning

systems. In Section 4.1.3, we suggest that aligning the 75th percentile point of the irregular

data footprint distribution with the cache size is a good starting point. We also suggest a

median parallelism of approximately 30 to 40. Given these recommendations, an autotuning

system can select a tile count and determine the median parallelism and tile footprint. Based

on the forces discussed in this section, it can then decide to increase or decrease the tile count

to reach the objective.

107

Chapter 7

The Generalized Reordering Optimizer
for Ubiquitous Tiling (GROUT)
Library and Programming Interface

The Generalized Reordering Optimizer for Ubiquitous Tiling (GROUT) is a code library

consisting of an extensible set of C++ classes. These classes implement the loop chain

abstraction presented in Chapter 2 and provide basic inspectors and executors. GROUT

also includes a complete implementation of the general full sparse tiling algorithm described

in Chapters 3 through 6.

In the remainder of this chapter, we present in detail the GROUT user interface and

demonstrate its use in full sparse tiling the Jacobi solver explained in Section 1.3.

7.1 Specifying the Elements of a Loop Chain

Using the GROUT programming interface, a programmer specifies the elements of a loop

chain present in his or her original code using objects, such as loops, data spaces, and data

access relations, that represent the parts of the loop chain abstraction. Typically, application

programmers only need to construct these objects and combine them into a complete loop

chain. A simple interface exists for this purpose. The programmer then passes the loop

chain to inspector and executor code for processing and execution. As inspector code and

runtimes may need to query loop chain elements, for example, by visiting each element in

a data or iteration space, the GROUT programming interface includes additional accessor

methods for use within inspectors and executors.

108

1 c l a s s I t e rSpace
2 {
3 pub l i c :
4 I t e rSpace () { }
5 v i r t u a l ˜ I t e rSpace () { }
6
7 // d i r e c t i n t e r f a c e
8 v i r t u a l int i t e r a t i o n (int) const = 0 ;
9 v i r t u a l int s i z e () const = 0 ;

10
11 // i t e r a t o r i n t e r f a c e
12 v i r t u a l I t e r a t i o nSpa c e I t e r a t o r begin () const =0;
13 v i r t u a l I t e r a t i o nSpa c e I t e r a t o r end () const =0;
14
15 . . .
16 } ;
17
18 c l a s s Cont iguousIterSpace : pub l i c I t e rSpace
19 {
20 pub l i c :
21 Cont iguousIterSpace (int s t a r t , int i n c l u s i v e e nd) ;
22 . . .
23 } ;
24
25 c l a s s Exp l i c i t I t e r Spa c e : pub l i c I t e rSpace
26 {
27 pub l i c :
28 Exp l i c i t I t e r Spa c e (const std : : vector<int>& i t e r s) ;
29 Exp l i c i t I t e r Spa c e (const int∗ i t e r s , int l ength) ;
30 . . .
31 } ;

Figure 7.1: The GROUT Iteration Space Interface

109

7.1.1 Iteration Spaces

The IterSpace class in GROUT, shown in Figure 7.1, represents a loop chain iteration

space. In addition to the abstract base class, GROUT supports two concrete types of itera-

tion spaces. A programmer can use either type to represent the iteration values of loops in

a loop chain. The first, ContiguousIterSpace, represents a one dimensional, integral tuple

space with contiguous values between an inclusive lower and upper bound. This represents

the iteration space of many simple for loops commonly found in code. The other type of

iteration space is ExplicitIterSpace, which represents a one dimensional, integral tuple

space of potentially discontiguous values such as {[0], [1], [44], [150]}. The constructor for

explicit iteration spaces takes a vector or array of integers containing each of the iteration

values.

When analyzing a loop, an inspector may need the iteration values within an iteration

space. To facilitate this, each iteration space can be accessed in two different ways. First, the

nth iteration tuple in an iteration space is returned by a call to the iteration(n) method.

This method enables direct individual queries into the iteration space. This approach is

facilitated by the size() call that returns the number of iterations in the iteration space.

The second way to access the iteration space is through IterationSpaceIterator ob-

jects such as are returned by the begin() and end() methods. It is important to dis-

tinguish between two definitions of the term “iteration” under consideration here. The

IterationSpaceIterator provides a means for iterating over each index tuple of a loop’s

iteration space.

7.1.2 Data Spaces

In GROUT, data spaces are represented by the DataSpace class. This simple class can

adequately express only array data spaces that have a one dimensional integral index space.

This representation of data spaces covers only a small portion of the theoretical data spaces

expressible by the loop chain abstraction, which, for example, includes multidimensional

110

1 c l a s s DataSpace
2 {
3 pub l i c :
4 DataSpace () ;
5 DataSpace (int numElements , int s i zeElement=8,
6 const std : : s t r i n g& name = std : : s t r i n g (”Data Space”)) ;
7 v i r t u a l ˜DataSpace () ;
8
9 int s i z e () const ;

10 const std : : s t r i n g& getName () const ;
11 int getElementSize () const ;
12 } ;

Figure 7.2: The GROUT Data Space Interface

arrays and associative arrays. However, in practice, this class has proven sufficient to imple-

ment all loop chains found in scientific codes we have encountered so far in this research.

A DataSpace has a simple constructor for use by application programmers. The con-

structor requires a name, an element size expressed in bytes, and the number of elements in

the data space. Inspectors can retrieve this information from a DataSpace with calls to the

getName(), getElementSize, or size methods, respectively. The name is primarily used for

reporting and debugging purposes and would typically be set to the name of the represented

array. The size of an element and the number of elements can be used by inspectors and

runtimes to determine data bandwidth or footprint.

7.1.3 Data Access Relations

In the loop chain abstraction, data access relations are mappings between iteration spaces

and data spaces. The GROUT library includes a base class, AccessRelation, that provides

the basic functionality of an access relation. It can represent read, write, or combination

read and write accesses used for reductions. The number of data elements in the data

space that are accessed by an iteration, i, is returned by a call to the numAccesses(i)

method. Knowing the number of accessed elements, code can make repeated calls to the

relation(i,d) method to obtain the dth element accessed by the ith iteration. In addition,

an iterator interface is also provided. The iterator iterates over each data element accessed

by a specific iteration. For example, accessRelation.begin(i) is an iterator pointing to

111

1 c l a s s AccessRe lat ion
2 {
3 pub l i c :
4
5 enum c l a s s AccessType
6 {
7 READ, WRITE, READWRITE
8 } ;
9

10 AccessRe lat ion (I t e rSpace& i t e r spa c e ,
11 DataSpace& dataspace ,
12 AccessType type=AccessType : :READ) ;
13 v i r t u a l ˜AccessRe lat ion () ;
14
15 // i t e r a t o r i n t e r f a c e
16 v i r t u a l Ac c e s sRe l a t i on I t e r a t o r begin (int i s i) const = 0 ;
17 v i r t u a l Ac c e s sRe l a t i on I t e r a t o r end (int i s i) const = 0 ;
18
19 // return the number o f acce s se s from a given i t e r a t i o n to a g iven data space
20 v i r t u a l int numAccesses (int i) const = 0 ;
21
22 // i s t h i s a read , a wri te , or readwr i t e
23 AccessType getType () const ;
24
25 // return the d s i ’ th r e l a t i o n fo r i t e r a t i o n i s i
26 v i r t u a l int r e l a t i o n (int i s i , int d s i) const = 0 ;
27
28 // acces sor s
29 const DataSpace& getDataSpace () const ;
30 const I t e rSpace& ge t I t e rSpace () const ;
31
32 } ;
33
34 c l a s s Exp l i c i tAcc e s sRe l a t i on : pub l i c Acces sRe lat ion
35 {
36 pub l i c :
37 // the map goes from i t e r a t i o n to data item index
38 typedef std : : vector< std : : vector<int> > RelationMap ;
39
40 Exp l i c i tAcc e s sRe l a t i on (I t e rSpace& i t e r spa c e ,
41 DataSpace& dataspace ,
42 const RelationMap& r e l a t i on ,
43 AccessType type=AccessType : :READ) ;
44 . . .
45 } ;
46
47 c l a s s CSRAccessRelation : pub l i c Acces sRe lat ion
48 {
49 pub l i c :
50 CSRAccessRelation (I t e rSpace& i t e r spa c e ,
51 DataSpace& dataspace ,
52 SparseMatrix ∗ matrix ,
53 AccessType type=AccessType : :READ) ;
54 . . .
55 } ;
56
57 c l a s s Id en t i t yAcce s sRe l a t i on : pub l i c Acces sRe lat ion
58 {
59 pub l i c :
60 Iden t i t yAcce s sRe l a t i on (I t e rSpace& i t e r spa c e , DataSpace& dataspace ,
61 AccessType type=AccessType : :READ) ;
62 . . .
63 } ;

Figure 7.3: The GROUT Access Relation Interface

112

the first data element accessed by the ith iteration, while accessRelation.end(i) points

to one element beyond the last element accessed by iteration i.

Within the GROUT library are three specific subclasses of the basic AccessRelation

class. The first, ExplicitAccessRelation, is used to represent arbitrary mappings between

iteration spaces and data spaces. At the time of construction, a data structure is passed that

contains a list of data element indices accessed by each iteration. The elements in the list

can be in any order and the lists are not required to have the same arity between different

iterations.

The second specific access relation is the CSRAccessRelation. This is a specialized access

relation wrapper over a sparse matrix stored in Compressed Sparse Row (CSR) format. The

data elements accessed by an iteration are identified by the presence of non-zeros in the sparse

matrix. This access relation class can greatly lighten the programmer’s burden when creating

GROUT loop chains for sparse linear algebra applications. It is also useful in other sparse

applications because a CSR like structure is frequently used to store adjacency lists. Uses of

a CSR index structure include representing the vertices of a mesh, storing an interactivity

list for atoms in a molecular dynamics simulation, or specifying neighboring linked cells in

an N-body simulation.

The final class of access relation in GROUT is the IdentityAccessRelation. This

specialization allows a programmer to specify an identity relation between iterations and

data elements. Specifically, this relation is [i]→ [i] for all iterations i in the iteration space

and all elements i in the identically sized data space. Identity relations occur frequently in

the scientific codes we have examined. Having a specific class for this relation is a convenience

for programmers and also provides a more efficient implementation than could be achieved

by storing an identity relation in an ExplicitAccessRelation.

7.1.4 Loop Bodies

For the programmer, perhaps the most intrusive part of converting code to use the loop

chain abstraction and the GROUT library is creating the loop body functions. These body

113

1 for (int i =0; i<numrows ; i++) {
2 double diag = 1 . 0 ;
3 (∗mU) [i] = 0 . 0 ;
4 // loop through nonzeros f o r row i
5 int s t a r t Index = IA [i] ;
6 int endIndex = IA [i +1] ;
7
8 for (int p=sta r t Index ; p<endIndex ; p++) {
9 int j = JA [p] ; // ge t column index

10 i f (j==i) {
11 diag = A[p] ;
12 }
13 else {
14 (∗mU) [i] += A[p] ∗ (∗mUprime) [j] ;
15 }
16 }
17 (∗mU) [i] = ((∗mF) [i] − (∗mU) [i]) / diag ;
18 } // end loop ing through unknowns , second loop

Figure 7.4: Loop body from the Jacobi solver as found in the original code.

1 void
2 Jacobi : : updateUOddBody(const vector<int>& i t e r s)
3 {
4 Schedu l e I t e r a t o r begin = Schedu l e I t e r a t o r (i t e r s , i t e r s . begin ()) ;
5 S chedu l e I t e r a t o r end = Schedu l e I t e r a t o r (i t e r s , i t e r s . end ()) ;
6 for (S chedu l e I t e r a t o r s = begin ; s != end ; ++s)
7 {
8 int i=∗s ;
9 double diag = 1 . 0 ;

10 (∗mUOdd) [i] = 0 . 0 ;
11
12 // loop through nonzeros f o r row i
13 // i = row , j = col , p = ptr in CSR s t ru c t u r e
14 int s t a r t Index = IA [i] ;
15 int startIndexOfNext = IA [i +1] ;
16
17 for (int p=sta r t Index ; p < startIndexOfNext ; p++) {
18 int j = JA [p] ; // ge t column index
19 i f (j==i) {
20 diag = A[p] ;
21 }
22 else {
23 (∗mUOdd) [i] += A[p] ∗ (∗mUEven) [j] ;
24 }
25 } // end fo r loop over non zeros
26
27 (∗mUOdd) [i] = ((∗mF) [i] − (∗mUOdd) [i]) / diag ;
28 } // end hand l ing one row from one un ro l l i n g
29 } // end fo r loop over i t e r a t i o n s in schedu l e
30 } // end body func t i on

Figure 7.5: Loop body from the Jacobi solver modified for use with GROUT. Modifications
are shown in red.

114

functions encapsulate the original loops as found in the loop chained code, but with two

modifications. The first is that the loop body code must be wrapped in a C++ function

that accepts a partial schedule as its argument. This function contains a few lines that

expand the passed compressed partial schedule. Each entry in the expanded schedule is used

as the loop index for the one original loop contained in the function. That loop otherwise

matches the original loop body.

Figure 7.4 shows the original code for one of the loops in the Jacobi solver. Figure 7.5

shows the same loop after it has been modified for use with GROUT. Note that line 1 in

Figure 7.4 has been expanded to lines 1-8 in Figure 7.5 to enable non-sequential iteration

over the loop.

GROUT takes advantage of the std::function class introduced in the C++11 standard

to define the loop body functions. Any value that can be assigned to an object of type

std::function<void(const std::vector<int>&)> can be used as a loop body. This in-

cludes functions, class methods, lambda functions, and functors. This offers the programmer

significant flexibility in defining loop bodies. For example, unlike typical function pointers,

a class method defined within an object can be used. This allows a programmer to encap-

sulate the data needed by a loop chain within an object and code loop bodies as member

functions in that class. Alternatively, the loop body can be directly specified in the code

using a lambda function such as std::function<void(const std::vector<int>&)> body

= [](const std::vector<int>& iters) { ... } . Because lambda functions act as clo-

sures, they can capture the value of variables in the defining context and later make those

values available to the loop body.

The use of the std::function class for loop bodies also has the advantage that loop

bodies can be dynamically replaced between executions of a loop chain. This allows a

runtime system or just-in-time compiler to dynamically optimize the loop body and replace

it with more efficient code.

115

1 c l a s s Loop
2 {
3 pub l i c :
4 Loop (std : : funct ion<void (const std : : vector<int>&)> body , const I t e rSpace& i t e r s) ;
5 v i r t u a l ˜Loop () ;
6
7 // access r e l a t i o n s
8 int addAccessRelat ion (const AccessRe lat ion ∗ r e l) ;
9 int getNumAccessRelations () const ;

10 const AccessRe lat ion ∗ getAcce s sRe la t i on (int relNum) const ;
11
12 // loop body
13 std : : funct ion<void (const std : : vector<int>&)> getLoopBody () const ;
14
15 // i t e r a t i o n space
16 const I t e rSpace& ge t I t e rSpace () const ;
17
18 } ;
19
20 c l a s s LoopChain
21 {
22 pub l i c :
23 LoopChain () ;
24 v i r t u a l ˜LoopChain () ;
25
26 int addLoop (const Loop& newloop) ;
27 int getNumLoops () const ;
28 const Loop& getLoop (int loop) const ;
29
30 } ;

Figure 7.6: The GROUT Loop and LoopChain Interface

7.1.5 Loops and Loop Chains

Once all of the pieces of a loop chain have been instantiated using GROUT, they must

be assembled into individual loop abstractions and finally into a complete loop chain. Loops

are represented in GROUT by objects of the class Loop. The constructor requires a loop

body and an iteration space. Once a Loop object is instantiated, AccessRelations can be

added to it via calls to the addAccessRelation method. The remainder of the methods,

getAccessRelation, getLoopBody, and getIterSpace are used to retrieve the elements of

the loop abstraction.

A LoopChain object is used to encapsulate all the loops in a loop chain. Each loop is

added to the chain using the addLoop method. The order loops are added is their relative

order in the chain, with the first loop added being the first loop in the chain and so forth.

Loops in the chain can be extracted using the getNumLoops and getLoop methods.

116

1 c l a s s In spe c to r
2 {
3
4 pub l i c :
5 In spec to r (const LoopChain& chain) ;
6 v i r t u a l ˜ In spec to r () ;
7
8 // execute the in spec t o r
9 v i r t u a l void i n sp e c t () =0;

10
11 // s e t the
12 void setExecutionTask (const Task& task) ;
13
14 // ge t in format ion used by execu tor s
15 const Schedule& getSchedule () const ;
16 const TaskGraph& getTaskGraph () const ;
17
18 } ;

Figure 7.7: The GROUT Inspector Interface

7.2 Applying Optimizations Using Inspectors

The GROUT library supports run time optimizations that take an inspector/executor

approach [8]. In this scheme, a loop chain is passed to the inspector, which examines it

and performs some type of optimization such as data or iteration reordering. The GROUT

library includes an abstract class, Inspector, that defines the interface for all inspectors.

Figure 7.7 shows this interface.

An Inspector is used as follows. First, an inspector object is constructed from informa-

tion provided in a supplied LoopChain object. Next, when that LoopChain is fully defined

and the programmer is ready to have it inspected, a call to the inspect method is made.

This call performs any necessary analysis and may populate a Schedule object containing

a new ordering for the loop iterations in the loop chain. It may also store in a task graph

structure a partial ordering on task execution. The schedule and task graph may later be

used by an Executor that runs the loop chain following the reordered schedule.

The principal inspector included in GROUT is the FullSparseTiler. This implements

the generalized full sparse tiling algorithm described in Chapter 3. The constructor takes

in a LoopChain object, but also requires the number of tiles that should be used for tiling,

the number of threads that the parallel inspector should use when running, the type of

117

1 c l a s s Executor : pub l i c Algorithm
2 {
3 pub l i c :
4 Executor (const LoopChain& chain , const In spec to r& insp , int numThreads) ;
5 v i r t u a l ˜Executor () ;
6
7 v i r t u a l int i n i t i a l i z e () ;
8 v i r t u a l int execute () ;
9

10 } ;

Figure 7.8: The GROUT Executor Interface

partitioner that should be employed, and the loop number that should be used for seed

partitioning. If the number of threads is set to negative one, the code will use one thread

per virtual processor in the system. If the seed space is set to negative one, a heuristic will

be used to select an appropriate seed space.

7.3 Executing Loop Chains Using Executors

Executor objects are used in GROUT to execute in parallel the schedules generated by

Inspector objects. The interface is quite simple and consists of only two functions beyond

the constructors and destructor, as shown in Figure 7.8. The constructor takes the loop chain

and inspector objects as well as the number of threads that should be used for executing the

loop chain. Note that a different number of threads can be used for execution than was used

for inspection. The Executor queries the Inspector to obtain the schedule and task graph,

which the executor uses to determine the execution order of iterations.

Before the loop chain is executed, the Executor must be initialized. This call sets up the

parallel execution engine and integrates the engine with the task graph to be executed. The

executor should be initialized only after the inspector has completed its inspection and has

generated the final task graph. The initialize method need only be called once, regardless

of the number of times the loop chain is executed. To execute the loop chain, the programmer

calls the execute method one time per execution of the loop chain. No additional code or

parameters are needed.

118

1 . . .
2 for (int i =0; i<numrows ; i++) {
3 double diag = 1 . 0 ;
4 Ueven [i] = 0 . 0 ;
5 for (int p=IA [i] ; p < IA [i +1; p++) {
6 int j = JA [p] ;
7 i f (j==i) { diag = A[p] ; }
8 else { Ueven [i] += A[p] ∗ Uodd [j] ; }
9 }

10 Ueven [i] = (F [i] − Ueven [i]) / diag ;
11 }
12
13 . . .

Figure 7.9: The first inner loop of the sparse Jacobi solver kernel for CSR sparse matrices.

1 // Declare a loop chain
2 LoopChain jacobiChain ;
3
4 // Create the i t e r a t i o n space
5 int numberOfRows = matrix−>getNumRows () ;
6 ContiguousIterSpace i t e rAl lRows (0 , numberOfRows−1) ;
7
8 // Create the data spaces
9 DataSpace UOdd(numberOfRows) ;

10 DataSpace UEven(numberOfRows) ;
11
12 // Create the access r e l a t i o n s
13 CSRAccessRelation relReadUOdd (iterAl lRows , UOdd, matrix , AccessType : :READ) ;
14 IdentityAccessRelation relWriteUEven (iterAl lRows , UEven , AccessType : :WRITE) ;
15
16 // Create and de f ine the Loop o b j e c t
17 Loop loopUpdateUEven (bodyJacobiUpdateUEven , i te rAl lRows) ;
18 loopUpdateUEven . addAccessRelat ion(&relReadUOdd) ;
19 loopUpdateUEven . addAccessRelat ion(&relWriteUEven) ;
20
21 // Add the Loop to the LoopChain
22 jacobiChain . addLoop (loopUpdateUEven) ;

Figure 7.10: The Jacobi solver loop from Figure 7.9 specified using the GROUT API.

7.4 A Complete Example Using GROUT

In the section, we present an example using the GROUT library on the Jacobi solver

first introduced in Section 1.3. This example illustrates the entire loop chain definition and

full sparse tiling processes. Each of the individual loop chain components was described in

Sections 7.1, while the inspector and executor were described in Section 7.2 and Section 7.3.

Figure 7.9 contains the original Jacobi kernel code for the first of the two unrolled loops

shown in Figure 1.1. Figure 7.10 shows the same code implemented using the GROUT API.

Line 2 declares the overall LoopChain object. Next, the various parts of the loop definition

119

1
2 // Create the Fu l l Spar s eT i l e r in spec t o r and perform the in spec t i on
3 FullSparseTiler f s t (chain , numTiles , numThreads , par t i t i one rType) ;
4 f s t . i n sp e c t () ;
5
6 // Create the Executor
7 Executor∗ executor = new Executor (jacobiChain , f s t , numThreads) ;
8 executor−> i n i t i a l i z e () ;
9

10 // c a l l the loop chain executor once fo r each two outer loop i t e r a t i o n s
11 for (int i =0; i < numIters ; i += step)
12 {
13 executor−>execute () ;
14 }

Figure 7.11: The Full Sparse Tiling Inspector and Executor for the Jacobi solver.

are created. Line 6 declares the iteration space, a ContiguousIterSpace, containing one

iteration for each of the rows in the sparse matrix. The data spaces, UEven and UOdd, are

declared on lines 9 and 10, each having one element per row in the sparse matrix. Lines 13

and 14 create the access relations using the data spaces. The first, a CSRAccessRelation,

defines the read access relation between the iteration space and the UOdd data space. The

second access relation, anIdentityAccessRelation, maps between the same iteration space

and writes to the UEven data space. In lines 17 through 19, the Loop object is created and

the access relations are added to it. Finally, the loop is added to the LoopChain in line 22.

Figure 7.11 shows the code to create and use the inspector and executor for the Jacobi

example. Lines 3 and 4 create the FullSparseTiler inspector and call it to perform the

inspection. Lines 7 and 8 create the executor and initialize it for use with the schedule

and task graph produced by the inspector. Finally, lines 11 through 13 call the executor’s

execute method once for each two iterations of the original outer loop.

This example serves to illustrate the strengths and weaknesses of using a library based

approach such as GROUT. A programmer with a basic knowledge of loop chains can make

the required code changes and GROUT library calls. No knowledge of data dependency

analysis or full sparse tiling is required. The process of generating the library calls shown

here can be largely automated by a compiler. In particular, the iteration spaces and loop

bodies can be automatically identified in much the same way parallel loops are discovered by

120

OpenMP aware compilers. Even in the case that these elements are automatically identified,

the responsibility of defining data access relations will remain with the programmer.

121

Chapter 8

Conclusions And Future Research

In this chapter, we review the most significant conclusions reached by this dissertation

effort. These findings relate both to loop chains and to generalized full sparse tiling. We

also briefly outline some related future research that naturally extends this body of work.

8.1 Conclusions

A significant contribution of this research is the formal definition of a new programming

abstraction, the loop chain. The ubiquity of the loop chain code pattern, a sequence of paral-

lel loops with no intervening code, underscores the importance of the loop chain abstraction.

Loop chains have been identified in computational fluid dynamics applications such as the

OP2 airfoil benchmark and the HYDRA code used by Rolls-Royce. Loop chains are also

present in molecular dynamics programs such as the CoMD molecular dynamics benchmark

for materials science and the miniMD molecular dynamics benchmark from Sandia National

Laboratory. Sparse linear algebra applications, such as the Jacobi solver studied in this work

and the matrix powers kernel, also contain loop chains.

The loop chain abstraction provides advantages over existing approaches for both the

application programmer and the run-time optimizer. Loop chains enable application pro-

grammers to express that a sequence of loops has certain properties. In Section 2.3, we

present several possible methods for a programmer to express a loop chain. These different

methods vary in how much of a burden they place on the programmer, but all are simple

enough to be used by programmers in practice.

A key portion of the loop chain specification are data access relations. These relations

stem directly from memory references in the source code. Because of this, access relations can

122

be more easily understood and identified by programmers than more abstract and decoupled

data dependence relations between loop iterations.

Loop chains also provide a clean abstraction from the perspective of the run-time opti-

mizer as well. Different run-time optimizers can be written to schedule iterations of loop

chains without having to directly interact with source code. Likewise, these tools do not

require abstract syntax trees or other compiler intermediate representations that typically

are not available during program execution. All of the information needed is available from

the loop chain abstraction once program data has been read into memory. This makes loop

chains a good abstraction for use at inspector time.

Because inspectors can be written that rely only on information provided by the loop

chain abstraction, these inspectors can be much more general than implementations that re-

lied on a specific loop and data dependence structure. This property of loop chains facilitated

the development of the generalized full sparse tiling algorithm. The generalized full sparse

tiling algorithm can reschedule the iterations of any loop chain using only the information

provided within the loop chain abstraction. All previous full sparse tiling implementations

were written for a specific application and could not be easily applied to other applications.

The GROUT library further lowers the barrier to entry for full sparse tiling usage. This

C++ library provides a reference implementation for both loop chains and generalized full

sparse tiling. It also includes runtime engines to execute task graphs using a variety of shared

memory parallel programming models.

We have examined the performance of generalized full sparse tiled code on a range of

shared memory multicore systems. From this study, we have found that five forces impact

the selection of tile size. These forces are overhead, locality dilution, locality, parallelism,

and load balancing. Balancing these forces is accomplished by selecting a tile size with an

irregular tile footprint that fits within the effective size of the cache, then increasing the tile

count until sufficient tiles are available to satisfy the requirements of parallelism and load

balancing.

123

8.2 Areas Identified for Further Research

This work could be extended in many different ways, but three key directions are out-

lined here. First, the generalized full sparse tiling algorithm could be extended to support

execution of loop chains on distributed memory systems. Second, additional research could

be conducted regarding how to express loop chains using domain specific languages. Fi-

nally, there are several points within the full sparse tiling process at which locality could be

improved even further than it currently is.

8.2.1 Full Sparse Tiling for Distributed Memory Systems

Another future research effort would be to extend the general full sparse tiling algorithm

and the task graph execution engines to distributed memory hardware. If done in a general

way, this work could support accelerators such as graphic processing units (GPUs) or many

integrate core (MIC) architectures such as Intel’s Xeon Phi as well as traditional clusters of

multicore processors.

Under one possible approach, executing a task graph on a distributed memory system

would involve partitioning the task graph between nodes or memory domains. This could

be done statically, using an algorithm to balance the load appropriately. Within each node,

the portion of the task graph assigned to the node could be executed using the existing

task graph execution engines that exploit asynchronous parallelism and dynamically load

balance. This approach also naturally provides nested or hybrid parallelism, as tasks are

assigned first to a node and then execute using all the processors available within the node.

Assuming a task partitioning with specific tasks assigned to each memory domain, com-

munication and data distribution assignments could be made. For loop chain invariant data,

a näıve implementation could simply duplicate all static data in all memory domains. More

sophisticated implementations could duplicate only the necessary data needed per domain,

thereby reducing the memory footprint and initial communication volume. Copying data

to distributed memory domains introduces the opportunity to compress or reorder the data

124

as part of the duplication process. These schemes would then have to modify the memory

references in the loop bodies to properly access the relocated data.

Communication of data modified during the course of loop chain execution would also

have to be addressed. This task is simplified somewhat because the task graph contains edges

between any tasks that share data. If the full sparse tiling process were modified to decorate

those edges with references to specific data items, the inter-node communication pattern

could be read from the task graph directly. For communication between memory domains,

a communication proxy node could be added to the task graphs assigned to the sending and

receiving memory domains. This task could communicate using MPI calls. On the sending

side, this proxy task would be a successor to tasks producing needed data. It would wait

until the results were ready, then gather the results and send them to the remote domain. On

the receiving side, the receiving proxy node would receive the data, place it into the memory

image of that memory domain, and then signal the task graph engine on the receiving side

that the predecessor task had completed. In this way both data and synchronization could

be handled with a single mechanism and the majority of the task graph execution engine

would be oblivious to its running on a distributed memory system.

Open research questions in this area include how best to partition the task graph and

distribute pieces over the different nodes in the distributed memory system. Work is also

needed to discover the most efficient way to remap memory accesses to point to the data

duplicated on each node. There are also opportunities for communication aggregation that

should be explored.

8.2.2 Extending Domain Specific Languages To Define Loop
Chains

There are a number of ways that a programmer can express a loop chain. These different

approaches were discussed in Section 2.3. For this dissertation, the GROUT library based

approach to specifying loop chains was developed. A natural continuation to that work

would be to implement loop chains as part of a domain specific language. The DSL compiler

125

could ascertain the loop chain properties either through inspection or from loop chain specific

language extensions. These properties could then be emitted as calls to the GROUT library.

Existing DSLs for the specification of computation over meshes, such as OP2 [11],

Chombo [21], and Liszt [27], already require the programmer to specify computation as

traversals over mesh elements. Any of these DSLs would make a good starting point for

evaluating loop chain identification within the context of an established domain specific

language.

8.2.3 Locality Improvements to the Generalized Full Sparse Tiling
Algorithm

A few areas for potentially improving the generalized full sparse tiling algorithm have

been identified. These ideas center around ways to further improve both the temporal and

spatial locality seen when executing full sparse tiles.

As presently constituted, the general full sparse tiling algorithm does not tile together

loop iterations based on input dependences. Only flow, anti, or output dependences are

considered by the algorithm, as they impose constraints on iteration ordering. Therefore, if

iterations of two different loops read from data that is not written during the loop chain,

they will not be grouped together. The impact of considering input dependences during

tiling remains an open research question.

The potential benefits of reordering the iterations of a loop assigned to a tile should also

be explored. The task graph abstraction ensures that any ordering of loop iterations within

a single loop is valid. At present, iterations of a loop assigned to a tile are executed in

ascending order. However, there may be performance benefits to executing the iterations

in a different, optimization order. It may improve locality if iterations within a loop were

sorted by data items accessed in the iterations, as this may reduce the reuse distance between

accesses to less than that of the lowest level cache. It may also improve spatial locality.

Likewise, sorting iterations by the data elements they access may also improve temporal

locality between loop iterations of different loops in a tile. For example, there are relatively

126

fewer memory accesses between the first executed iteration of loop L0 and the first executed

iteration of loop L1 than there are between the first iteration of L0 and the last iteration of

L1. If the iterations of each loop were sorted by data accessed, then the first iterations of

each loop would access similar data as would the last iterations of the two loops. In theory,

this would reduce the reuse distance between accesses to the same data elements and may

lead to a higher cache hit rate.

8.3 Summary

The loop chain programming abstraction is a new abstraction that bridges the gap be-

tween a programmer’s conception of a sequence of loops and the data structures needed by

a run-time inspector or optimizer. One of its key benefits is that it enables the generaliza-

tion of optimizer code. In this work, this was demonstrated by the generalization of the

full sparse tiling algorithm. In the course of generalizing the full sparse tiling algorithm,

various supporting algorithms and codes were developed. These supporting efforts include

a fast shared memory parallel graph and hypergraph partitioner and a collection of task

graph execution engines built on top of a wide variety of parallel programming models. A

reference implementation of all these elements, including the loop chain abstraction, the gen-

eralized full sparse tiling algorithm, the partitioners, and the task graph execution engines,

is available as part of the GROUT C++ library. Using a Jacobi sparse linear equation solver

optimized using the GROUT library, we conducted a series of experiments to understand

the interplay between forces that impact parallel performance. These experiments led to

an improved comprehension of the full sparse tiling algorithm and how it can be tuned to

achieve maximum performance.

127

References

[1] M. F. Adams and J. Demmel. Parallel multigrid solver algorithms and implementations
for 3D unstructured finite element problem. In Proceedings of SC99: High Performance
Networking and Computing, Portland, Oregon, November 1999.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley, Reading, MA, second edition, 2007.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput. :
Pract. Exper., 23(2):187–198, Feb. 2011.

[4] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program paral-
lelization. Proceedings of the IEEE, 81(2):211–243, 1993.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. V. D. Vorst. Templates for the solution of linear systems:
Building blocks for iterative methods, 1994.

[6] F. Bassetti, K. Davis, and D. Quinlan. Optimizing transformations of stencil operations
for parallel object-oriented scientific frameworks on cache-based architectures. Lecture
Notes in Computer Science, 1505, 1998.

[7] A. Basumallik and R. Eigenmann. Optimizing irregular shared-memory applications
for distributed-memory systems. In Proceedings of the Eleventh ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 119–128, New York,
NY, USA, 2006. ACM Press.

[8] D. Baxter, R. Mirchandaney, and J. H. Saltz. Run-time parallelization and scheduling
of loops. In Proceedings of the first annual ACM symposium on Parallel algorithms
and architectures, SPAA ’89, pages 303–312, New York, NY, USA, 1989. ACM.

[9] G. Belter, E. Jessup, I. Karlin, and J. G. Siek. Automating the generation of com-
posed linear algebra kernels. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC), pages 1–12, New
York, NY, USA, 2009. ACM.

[10] C. Bertolli, A. Betts, N. Loriant, G. Mudalige, D. Radford, D. Ham, M. B. Giles, and
P. Kelly. Compiler optimizations for industrial unstructured mesh cfd applications on
gpus. In Accepted for publication at Languages and Compilers for Parallel Computing
Workshop, 2012.

[11] C. Bertolli, A. Betts, G. Mudalige, M. Giles, and P. Kelly. Design and performance
of the OP2 library for unstructured mesh applications. In Euro-Par 2011: Parallel
Processing Workshops, volume 7155 of Lecture Notes in Computer Science, pages 191–
200. Springer, 2012.

128

[12] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors,. The International Journal
of High Performance Computing Applications, 14(3):189–204, Fall 2000.

[13] U. Catalyurek and C. Aykanat. A fine-grain hypergraph model for 2d decomposition
of sparse matrices. In Proceedings of the 15th International Parallel & Distributed
Processing Symposium, IPDPS ’01, pages 118–, Washington, DC, USA, 2001. IEEE
Computer Society.

[14] U. V. Catalyurek and C. Aykanat. Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. on Parallel and Distributed
Computing, 10:673–693, 1999.

[15] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl., 21(3):291–312, 2007.

[16] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Orti, G. Quintana-Orti,
and R. van de Geijn. Supermatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks. In Proceedings of the 13th ACM SIGPLAN Symposium on Prin-
ciples and practice of parallel programming, PPoPP ’08, pages 123–132, New York, NY,
USA, 2008. ACM.

[17] A. Chandramowlishwaran, K. Knobe, and R. W. Vuduc. Performance evaluation of
concurrent collections on high-performance multicore computing systems. In Pro-
ceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2010.

[18] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster com-
puting. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 519–538,
New York, NY, USA, 2005. ACM.

[19] L. Chen, Z.-Q. Zhang, and X.-B. Feng. Redundant computation partition on
distributed-memory systems. In Algorithms and Architectures for Parallel Processing,
2002. Proceedings. Fifth International Conference on, pages 252 –260, oct. 2002.

[20] P. Cicotti and S. Baden. Latency hiding and performance tuning with graph-based
execution. In Data-Flow Execution Models for Extreme Scale Computing (DFM), 2011
First Workshop on, pages 28 –37, oct. 2011.

[21] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and B. V.
Straalen. Chombo software package for AMR applications: design document. http:

//davis.lbl.gov/apdec/designdocuments/chombodesign.pdf.

[22] J. Culberson. Graph coloring programs. http://webdocs.cs.ualberta.ca/˜joe/coloring/.

[23] L. Dagum and R. Menon. OpenMP: An industry-standard api for shared-memory
programming. IEEE Computational Science & Engineering, 5(1):46–55, 1998.

129

http://davis.lbl.gov/apdec/designdocuments/chombodesign.pdf
http://davis.lbl.gov/apdec/designdocuments/chombodesign.pdf

[24] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1):1:1 – 1:25, 2011.

[25] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in
sparse matrix computations. In Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS), Los Alamitos, CA, USA, 2008. IEEE Computer So-
ciety.

[26] P. J. Denning. The locality principle. Commun. ACM, 48(7):19–24, July 2005.

[27] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,
F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. Liszt: a do-
main specific language for building portable mesh-based pde solvers. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 9:1–9:12, New York, NY, USA, 2011. ACM.

[28] C. Ding and K. Kennedy. Improving cache performance in dynamic applications
through data and computation reorganization at run time. In Proceedings of the
ACM SIGPLAN 1999 conference on Programming language design and implementa-
tion, PLDI ’99, pages 229–241, New York, NY, USA, 1999. ACM.

[29] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache Optimization
for Structured and Unstructured Grid Multigrid. Electronic Transaction on Numerical
Analysis, pages 21–40, February 2000.

[30] A. Duran, J. M. Perez, E. Ayguadé, R. M. Badia, and J. Labarta. Extending the
openmp tasking model to allow dependent tasks. In Proceedings of the 4th international
conference on OpenMP in a new era of parallelism, IWOMP’08, pages 111–122, Berlin,
Heidelberg, 2008. Springer-Verlag.

[31] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared
Memory Programming. John Wiley & Sons Inc., New York, 2005.

[32] P. Feautrier. Automatic parallelization in the polytope model. In The Data Parallel
Programming Model, pages 79–103, 1996.

[33] M. Forum. MPI : A message - passing interface standard. The International Journal
of Supercomputing and High Performance Computing, 8(3-4):159–416, 1994.

[34] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 2007.

[35] Intel Corporation. Intel Threading Building Blocks Reference Manual, 2009.

[36] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of
the 36th annual ACM/IEEE Design Automation Conference, DAC ’99, pages 343–348,
New York, NY, USA, 1999. ACM.

130

[37] P. H. J. Kelly, O. Beckmann, T. Field, and S. B. Baden. Themis: Component
dependence metadata in adaptive parallel applications. Parallel Processing Letters,
11(4):455–470, 2001.

[38] C. D. Krieger, F. Luporini, C. Bertolli, G. teodor Bercea, C. Olschanowsky, M. M.
Strout, and P. H. J. Kelly. Tiling loop chains in unstructured mesh applications. 2014.

[39] C. D. Krieger and M. M. Strout. Executing scientific task graphs using Concurrent
Collections. In The Third Annual Concurrent Collections Workshop (CnC), September
2011.

[40] C. D. Krieger and M. M. Strout. Executing optimized irregular applications using
task graphs within existing parallel models. In Proceedings of the Second Workshop on
Irregular Applications: Architectures and Algorithms (IA3) held in conjunction with
SC12, November 11, 2012.

[41] C. D. Krieger and M. M. Strout. A fast parallel graph partitioner for shared-memory
inspector/executor strategies. In Proceedings of the 25th International Workshop on
Languages and Compilers for Parallel Computing (LCPC), September 2012.

[42] C. D. Krieger, M. M. Strout, C. Olschanowsky, A. Stone, S. Guzik, X. Gao, C. Bertolli,
P. Kelly, G. Mudalige, B. Van Straalen, and S. Williams. Loop chaining: A program-
ming abstraction for balancing locality and parallelism. In Proceedings of the 18th
International Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS), Boston, Massachusetts, USA, May 2013 (Under Submission).

[43] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and
P. Sadayappan. Effective automatic parallelization of stencil computations. In Pro-
ceedings of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’07, pages 235–244, New York, NY, USA, 2007. ACM.

[44] J. Meng and K. Skadron. Performance modeling and automatic ghost zone optimiza-
tion for iterative stencil loops on gpus. In Proceedings of the 23rd international con-
ference on Supercomputing, ICS ’09, pages 256–265, New York, NY, USA, 2009. ACM.

[45] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. Principles
of runtime support for parallel processors. In Proceedings of the 2nd International
Conference on Supercomputing, pages 140–152, 1988.

[46] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication
in sparse matrix solvers. In Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, SC ’09, pages 36:1–36:12, New York, NY,
USA, 2009. ACM.

[47] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. ACM SIG-
PLAN Fortran Forum, 17(2):1–31, 1998.

131

[48] W. Pugh and E. Rosser. Iteration space slicing and its application to communication
optimization. In Proceedings of the 11th international conference on Supercomputing,
pages 221–228. ACM Press, 1997.

[49] W. Pugh and E. Rosser. Iteration space slicing for locality. In Proceedings of the 12th
International Workshop on Languages and Compilers for Parallel Computing, volume
LNCS 1863, pages 164–184, London, UK, August 1999. Springer-Verlag.

[50] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. Code generation for parallel execution of a class of irregular loops on dis-
tributed memory systems. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages 72:1–72:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[51] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. Code generation for parallel execution of a class of irregular loops on dis-
tributed memory systems. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages 72:1–72:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[52] J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization and scheduling
of loops. IEEE Transactions on Computers, 40(5):603–612, 1991.

[53] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition of run-time
data and iteration reorderings. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), New York, NY, USA,
June 2003. ACM.

[54] M. M. Strout, L. Carter, J. Ferrante, J. Freeman, and B. Kreaseck. Combining per-
formance aspects of irregular Gauss-Seidel via sparse tiling. In Proceedings of the 15th
Workshop on Languages and Compilers for Parallel Computing (LCPC), College Park,
Maryland, July 2002.

[55] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck. Sparse tiling for stationary
iterative methods. Int. J. High Perform. Comput. Appl., 18(1):95–113, 2004.

[56] M. M. Strout, L. Carter, J. Ferrante, and B. Kreaseck. Sparse tiling for stationary it-
erative methods. International Journal of High Performance Computing Applications,
18(1):95–114, February 2004.

[57] S. Wood. Smores: Sparse matrix omens of reordering success, 2010.

[58] S. Wood. Sparse matrix power kernel and matrix reorderings. In Grace Hopper Cele-
bration of Women in Computing, 2010.

[59] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and D. Padua. Hierar-
chical overlapped tiling. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, pages 207–218, New York, NY, USA, 2012.
ACM.

132

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	Introduction
	Balancing Parallelism and Locality in Scientific Codes
	Existing Approaches to Balancing Parallelism and Locality
	Introduction to Loop Chains
	Introduction to Full Sparse Tiling
	Problems with Single Purpose Approaches to Full Sparse Tiling
	Generalized Full Sparse Tiling
	99993em.5Understanding the Impact of Tile Size and Parallelism Under Generalized Full Sparse Tiling
	Summary of Contributions

	Loop Chain Programming Abstraction
	Motivation for the Loop Chain Abstraction
	Formal Definition of the Loop Chain Abstraction
	Iteration Spaces
	Data Spaces
	Data Access Relations

	Methods for Specifying Loop Chains
	Application Programming Interfaces
	Pragmas
	Domain Specific Languages

	Optimizations Enabled by Loop Chains
	Examples of Loop Chains Present in Existing Scientific Codes
	Prior Work Related to Loop Chains
	Programming Models Using User Defined Tasks
	Automatic Approaches for Task Detection
	Communication Avoidance

	Limitations of Loop Chains

	Generalized Full Sparse Tiling
	Prior Single Purpose Approaches to Full Sparse Tiling
	Issues With Generalization of Full Sparse Tiling
	Complexity of Data Dependency Computation
	Handling Parallel Reductions
	Dependences Between Non-Adjacent Loops
	Complexity of Creating the Initial Partitions

	General Full Sparse Tiling Algorithm
	The Top Level Full Sparse Tiling Algorithm
	Partitioning of the Seed Iteration Space
	Tracking Data Reads and Writes
	Backward and Forward Tiling Algorithms
	Task Graph Generation

	Validity of the General Full Sparse Tiling Algorithm
	Other Parallelization Approaches Related to Full Sparse Tiling

	Locality Considerations For Full Sparse Tiling
	Interaction Between Locality and Full Sparse Tiling
	Iteration Placement To Improve Locality
	Relationships Between Tile Footprints and Cache Sizes
	Distributions of Tile Memory Footprints

	Partitioning the Seed Space to Improve Temporal Locality
	99993em.5Data Reordering and Generalized Full Sparse Tiling

	Parallelism Considerations for Full Sparse Tiling
	Coloring Seed Partitions To Improve Parallelism
	Issues with Measuring and Controlling Task Graph Parallelism
	Statistics for Measuring Parallelism
	Using Tile Count to Control Parallelism

	Determining the Optimal Amount of Parallelism

	Competing Forces In Optimization of Generalized Full Sparse Tiling
	Impact of Scheduling Overhead
	Impact of Locality Dilution
	Impact of Tile Irregular Data Footprint
	Impact of Parallelism and Load Imbalance
	Interaction of Forces

	The Generalized Reordering Optimizer for Ubiquitous Tiling (GROUT) Library and Programming Interface
	Specifying the Elements of a Loop Chain
	Iteration Spaces
	Data Spaces
	Data Access Relations
	Loop Bodies
	Loops and Loop Chains

	Applying Optimizations Using Inspectors
	Executing Loop Chains Using Executors
	A Complete Example Using GROUT

	Conclusions And Future Research
	Conclusions
	Areas Identified for Further Research
	Full Sparse Tiling for Distributed Memory Systems
	Extending Domain Specific Languages To Define Loop Chains
	Locality Improvements to the Generalized Full Sparse Tiling Algorithm

	Summary

