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ABSTRACT

Dynamic task-parallel programming models are popular on
shared-memory systems, promising enhanced scalability, load
balancing and locality. These promises, however, are under-
mined by non-uniform memory access (NUMA). We show
that using NUMA-aware task and data placement, it is pos-
sible to preserve the uniform hardware abstraction of con-
temporary task-parallel programming models for both com-
puting and memory resources with high data locality. Our
data placement scheme guarantees that all accesses to task
output data target the local memory of the accessing core.
The complementary task placement heuristic improves the
locality of accesses to task input data on a best effort ba-
sis. Our algorithms take advantage of data-flow style task
parallelism, where the privatization of task data enhances
scalability by eliminating false dependences and enabling
fine-grained dynamic control over data placement. The algo-
rithms are fully automatic, application-independent, perfor-
mance-portable across NUMA machines, and adapt to dy-
namic changes. Placement decisions use information about
inter-task data dependences readily available in the run-time
system, and placement information from the operating sys-
tem. On a 192-core system with 24 NUMA nodes, our opti-
mizations achieve above 94% locality (fraction of local mem-
ory accesses), up to 5x better performance than NUMA-
aware hierarchical work-stealing, and even 5.6x compared
to static interleaved allocation. Finally, we show that state-
of-the-art dynamic page migration by the operating system
cannot catch up with frequent affinity changes between cores
and data and thus fails to accelerate task-parallel applica-
tions.
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1. INTRODUCTION

High-performance systems are composed of hundreds of
general-purpose computing units and dozens of memory con-
trollers to satisfy the ever-increasing need for computing
power and memory bandwidth. Shared memory program-
ming models with fine-grained concurrency have success-
fully harnessed the computational resources of such archi-
tectures [3, 33, 28, 30, 31, 10, 19, 8, 9, 7, 35]. In these
models, parallelism is exposed by the programmer through
the creation of fine-grained units of work, called tasks, and
the specification of synchronization that constrains the order
of their execution. A run-time system manages execution of
the task-parallel application and acts as an abstraction layer
between the program and the underlying hardware and soft-
ware environment. That is, the run-time is responsible for
bookkeeping activities necessary for the correctness of the
execution (e.g., the creation and destruction of tasks and
their synchronization), interfacing with the operating sys-
tem for resource management (e.g., allocation of data and
meta-data for tasks, scheduling tasks to cores) and efficient
exploitation of the hardware.

This concept relieves the programmer from dealing with
details of the target platform and thus greatly improves pro-
ductivity. Yet it leaves issues related to efficient interac-
tion with system software, efficient exploitation of the hard-
ware, and performance portability to the run-time. On to-
day’s systems with non-uniform memory access (NUMA),
in which memory latency depends on the distance between
the requesting cores and the targeted memory controllers,
efficient resource usage through task scheduling needs to
go hand in hand with the optimization of memory accesses
through the placement of physical pages. That is, memory
accesses must be kept local in order to reduce latency and
data must be distributed across memory controllers to avoid
contention.



The alternative of abstracting computing resources only
and leaving NUMA-specific optimization to the application
is far less attractive. The programmer would have to take
into account the different characteristics of all target sys-
tems (e.g., the number of NUMA nodes, their associated
amount of memory and access latencies), to partition appli-
cation data properly and to place the data explicitly us-
ing operating system-specific interfaces. For applications
with dynamic, data-dependent behavior, the programmer
would also have to provide mechanisms that constantly re-
act to changes throughout the execution as an initial place-
ment with high data locality at the beginning might have
to be revised later on. Such changes would have to be co-
ordinated with the run-time system to prevent destructive
performance interference, introducing a tight and undesired
coupling between the run-time and the application.

On the operating system side, optimizations are compelled
to place tasks and data conservatively [13, 24], unless pro-
vided with detailed affinity information by the application [5,
6], high-level libraries [26] or domain specific languages [20].
Nevertheless, as task-parallel run-times operate in user-space,
a separate kernel component would add additional complex-
ity to the solution; this advocates for a user-space approach.

This paper shows that it is possible to efficiently and por-
tably exploit dynamic task parallelism on NUMA machines
without exposing programmers to the complexity of these sys-
tems, preserving a simple, uniform abstract view for both
memory and computations, yet achieving high locality of mem-
ory accesses. Qur solution exploits the “task-private” or
data-flow programming style of advanced task-parallel frame-
works, allowing the run-time to determine a task’s working
set and enabling transparent, fine-grained control over task
and data placement.

Based on the properties of task-private data, we propose
a dynamic task and data placement algorithm to ensure
that input and output data are local, and that interacts
constructively with work-stealing to provide load-balancing
both across cores and memory controllers:

e Our mechanism for memory allocation, called deferred
allocation, avoids making early placement decisions that
could later harm performance. In particular, the mem-
ory to store task output data is not allocated until the
task placement is known. The mechanism hands over
this responsibility to the producer task, on its local
NUMA node. This scheme provides a guarantee for lo-
cal accesses to all task output data. Control over data
placement is made possible through the privatization
of task output data.

e To enhance the locality of read memory accesses, we
propose enhanced work-pushing, a work-sharing mech-
anism building on earlier work [14] and that interacts
constructively with deferred allocation. Since the in-
puts of a task are outputs of another task, the location
of input data is determined by deferred allocation when
the producer tasks execute. Enhanced work-pushing is
a best-effort mechanism that places a task according to
these locations before task execution and thus before
allocating memory for the task’s outputs.

This combination of enhanced work-pushing and deferred al-
location is fully automatic, application-independent, portable

across NUMA machines and transparently adapts to dy-
namic changes at run time. The detailed information about
the affinities between tasks and data required by these tech-
niques is either readily available or can be obtained automat-
ically in the run-times of recent task-parallel programming
models, such as StarSs [30], OpenMP 4 [28], SWAN [33]
and OpenStream [31], which allow the programmer to make
inter-task data dependences explicit. While specifying the
precise task-level data-flow rather than synchronization con-
straints alone requires more initial work for programmers,
this effort is more than offset by the resulting benefits in
terms of performance and performance portability.

The paper is organized as follows. Section 2 presents the
principles of enhanced work-pushing. For a more complete
discussion of our solutions, we propose multiple heuristics
taking into account the placement of input data, output
data or both. Section 3 introduces deferred allocation, in-
cluding a brief outline of the technical solutions employed for
fine-grained data placement. Sections 4 and 5 present the
experimental methodology and results. A comparison with
dynamic page migration is presented in Section 6. Section 7
discusses the most closely related work, before we conclude
in Section 8.

2. TASKSCHEDULING WITH ENHANCED
WORK-PUSHING

Let us start with terminology and hypotheses about the
programming and execution models.

2.1 An abstract model for task parallelism

Our solutions are based on shared memory task-parallel
programming models with data dependences. Each task is
associated with a set of incoming data dependences and a
set of outgoing data dependences, as illustrated by Figure 1.
Each dependence is associated with a contiguous region of
memory, called input buffer and output buffer for incoming
and outgoing dependences, respectively. The addresses of
these buffers are collected in the task’s frame, akin to the
activation frame storing a function’s arguments and local
variables in the call stack. While the frame is unique and
allocated at the task’s creation time, its input and output
buffers may be placed on different NUMA nodes and allo-
cated later in the life cycle of the task, but no later than
the beginning of the execution of the task, reading from
input buffers and writing into output buffers. Buffer place-
ment and allocation time have a direct influence on locality
and task-data affinity. Since we ought to offer a uniform
abstraction of NUMA resources, we assume input and out-
put buffers are managed by the run-time system rather than
explicitly allocated by the application. This is the case of
programming models such as OpenStream [31] and CnC [8],
but not of StarSs [30] and OpenMP 4.0; see Section 7 for
further discussion. We say that a task t. depends on an-
other task ¢, if ¢, has an outgoing dependence associated to
a buffer b and if ¢, has an incoming dependence associated
to b. In this scenario ¢, is referred to as the producer and t.
is the consumer.

Although this is not a fundamental requirement in our
work, we will assume for simplicity that a task executes
from beginning to end without interruption. A task be-
comes ready for execution when all of its dependences have
been satisfied, i.e., when its producers of input data have



Figure 1: Most general case for a task ¢: n inputs of size
8., 5?71, m outputs of size §2,...,8™ !, data placed on
n 4+ m NUMA nodes N?,..., N1 N2, ... Nt

completed and when its consumers have been created with
the addresses of their frames communicated to the task. The
working set of a task is defined as the union of all memory
addresses that are accessed during its execution. Note that
the working set does not have to be identical with the union
of a task’s input and output buffers (e.g., if a task accesses
globally shared data structures). However, since our algo-
rithms require accurate communication volume information,
we assume that the bulk of the working set of each task is
constituted by its input and output data. This is the case
for all of the benchmarks studied in the experimental eval-
uation.

A worker thread is responsible for the execution of tasks
on its associated core. Each worker is provided with a queue
of tasks ready for execution from which it pops and executes
tasks. When the queue is empty, the worker may obtain a
task from another one through work-stealing [4]. A task
is pushed to the queue by the worker that satisfies its last
remaining dependence. We say that this worker activates
the task and becomes its owner.

The execution of a task-parallel program starts with a
root task derived from the main function of a sequential
process. New tasks are created dynamically. The part of the
program involved in creating new tasks is called the control
program. If only the root task creates other tasks we speak of
a sequential control program, otherwise of a parallel control
program.

2.2 Weaknesses of task parallelism on NUMA
systems

Whether memory accesses during the execution of a task
target the local memory controller of the executing core or
some remote memory controller depends on the placement
of the input and output buffers and on the worker executing
the task. These affinities are highly dynamic and can depend
on many factors, such as:

e the order of task creations by the control program;
e the execution order of producers;
e the duration of each task;

e work-stealing events;

e or resource availability (e.g., available memory per node).

In earlier work [14], we showed that some of these issues
can be mitigated by using work-pushing. Similar to the ab-
stract model discussed above, the approach assumes that
tasks communicate through task-private buffers. However,
it also assumes that all input data of a task is stored in a
single, contiguous memory region rather than multiple input
buffers. As a consequence, the task’s input data is entirely

located on a single node. This property is used by the work-
pushing technique, in which the worker activating a task
only becomes its owner if the task’s input data is stored on
the worker’s node. If the input data is located on another
node, the task is transferred to a random worker associated
to a core on that node. The approach remains limited how-
ever: (1) as it assumes that all inputs are located on the same
node it is ill-suited for input data located on multiple nodes,
and (2) it does not optimize for outgoing dependences.

Below, we first present enhanced work-pushing, a general-
ization of work-pushing, capable of dealing with input data
distributed over multiple input buffers potentially placed on
different nodes. This technique serves as a basis for the com-
plementary deferred allocation technique, presented in the
next section, that allows the run-time to improve the place-
ment of output buffers. We introduce three work-pushing
heuristics that schedule a task according to the placement
of its input or output data or both. This complements the
study of the effects of work-pushing on data locality and
experimentally underpins the limitations of NUMA-aware
scheduling alone, limited to passive reactions to a given data
placement in Section 5.

2.3 Enhanced work-pushing

The names of the three heuristics for enhanced work-
pushing are input-only, output-only and weighted. The first
two heuristics take into account incoming and outgoing de-
pendences only, respectively. The weighted heuristic takes
into account all dependences, but associates different weights
to incoming and outgoing dependences to honor the fact that
read and write accesses usually do not have the same latency.

Algorithm 1 shows how the heuristics above are used by
the function activate, which is called when a worker w acti-
vates a task t (i.e., when the task becomes ready). Lines 1
to 3 define variables uin, and uout, indicating which types
of dependences should be taken into account according to
the heuristic h. The variables used to determine whether
the newly activated task needs to be transferred to a remote
node are initialized in lines 5 to 8: the data array stores
the cumulated size of input and output buffers of ¢ for each
of the N nodes of the system, Di, stands for the incoming
dependences of t and Doyt for its outgoing dependences.

The for loop starting in Line 10 iterates over a list of triples
with a set of dependences Dcur, a variable ucy, indicating
whether the set should be taken into account, and a weight
Weur associated to each type of dependence. During the first
iteration, Dcyr is identical with Di, and during the second
iteration identical with Doy;. For each dependence in Dy
a second loop in Line 12 determines the buffer b used by the
dependence, the size sy, of the buffer as well as the node ny,
containing the buffer. The node on which a buffer is placed
might be unknown if the buffer has not yet been placed by
the operating system, e.g., if it has been allocated using
the first-touch mechanism and has not yet been written. If
this is the case, its size is added to the total size siot, but
not included into the per-node statistics. Otherwise, the
data array is updated accordingly by multiplying sy with
the weight weur.

Once the total size and the weighted number of bytes per
node have been determined, the procedure checks whether
the task should be pushed to a remote node. Tasks whose
overall size of dependences is below a threshold are added
to the local queue (Line 24) to avoid cases in which the



Algorithm 1: activate(w, t)

if h = input only then (uin, uout) < (true, false)
else if h = output only then (uin, uout) < (false, true)
else if h = weighted then (uin, uout) <+ (true, true)

datal0,... N —1] < (0,...,0)
Din + in_deps(t)

Doyt + out_deps(t)

Stot < 0

© 00N O kW N

-
(=]

for (Dcur, Ucur, Weur) in

<(Dzn7 Uin,, win)y (Dout7 Uout, wnut)> do
11 if ucyr = true then

12 for d € D.., do

13 sp < size_of (buffer_of (d))
14 np < node_of (buffer_of (d))
15 Stot < Stot + Sb

16 if np # unknown then

17 | data[ny] < data[np] + weur - Sp
18 end

19 end

20 end

21 end

22

23 if s;0¢ < threshold then

24 | add_to_local_queue(w, t)

25 else

26 Nmin < node_with_min_access_cost(data)
27

28 if nin # local_node_of worker(w) then
20 wast < random_worker_on_node (N min)
30 res < transfer_task(t, wast)

31 if res = failure then

32 | add_to_local_queue(w, t)

33 end

34 else

35 | add to_local_queue(w, t)

36 end

37 end

overhead of a remote push cannot be compensated by the
improvement on execution time. For tasks with larger de-
pendences, the run-time determines the node 7nmin with the
minimal overall access cost (Line 29). The access cost for
a node N; is estimated by summing up the access costs to
each node N; containing at least one of the buffers, which
in turn can be estimated by multiplying the average latency
between N; and N. j.l If Nmin is different from the local node
nia of the activating worker, the run-time tries to transfer
t to a random worker on nmin. If this fails, e.g., if the data
structure of the targeted worker receiving remotely pushed
tasks is full, the task is added to the local queue (Line 32).

2.4 Limitations of enhanced work-pushing

The major limitation of enhanced work-pushing is that,
regardless of the heuristic, it can only react passively to
a given data placement. This implies that data must al-
ready be well-distributed across memory controllers if all
tasks should take advantage of this scheduling strategy. For
poorly distributed data, e.g., if all data is placed on a sin-
gle node, a subset of the workers receives a significantly
higher amount of tasks than others. Work-stealing redis-

"We estimated the latencies based on the distance between
each pair of nodes reported by the NUMACTL tool provided
by LIBNUMA [21].

tributes tasks among the remaining workers and thus pre-
vents the system from load imbalance, but cannot improve
overall data locality if the initial data distribution was poor.
Classical task parallel run-times allocate buffers during task
creation [8, 33, 31]; hence data distribution mainly depends
on the control program. A sequential control program leads
to poorly placed data, while a parallel control program lets
work-stealing evenly distribute task creation and buffer al-
location. However, writing a parallel control program is al-
ready challenging in itself, even for programs with regularly-
structured task graphs. Additionally ensuring an equal dis-
tribution of data across NUMA nodes through the control
program is even more challenging or infeasible, especially for
applications with less regularly-structured task graphs (e.g.,
if the structure of the graph depends on input data). Such
optimizations also reject efficient exploitation of NUMA to
the programmer and are thus contrary to the idea of ab-
straction from the hardware by the run-time.

In the following section, we introduce a NUMA-aware allo-
cator that complements the input only work-pushing heuris-
tic and that decouples data locality from the control pro-
gram, leaving efficient exploitation to the run-time.

3. DEFERRED ALLOCATION

NUMA-aware allocation controls the placement of data on
specific nodes. Our proposed scheme to make these decisions
transparent relies on per-node memory pools to control the
placement of task buffers.

3.1 Per-node memory pools

Per-node memory pools combine a mechanism for efficient
reuse of blocks of memory with the ability to determine on
which nodes blocks are placed. Each NUMA node has a
memory pool that is composed of k free lists Lo to Li_1,
where L; contains blocks of size 25mint? bytes. When a
worker allocates a block of size s, it determines the corre-
sponding list L; with 25minti—1 < 5 < 2mintJ apd removes
the first block of that list. If the list is empty, it allocates a
larger chunk of memory from the operating system, removes
the first block from the chunk and adds the remaining parts
to the free list.

A common allocation strategy of operating systems is first-
touch allocation, composed of two steps. The first step re-
ferred to as logical allocation is triggered by the system call
used by the application to request additional memory and
only extends the application’s address space. The actual
physical allocation is triggered upon the first write to the
memory region and places the corresponding page on the
same node as the writing core. Hence, a block that origi-
nates from a newly allocated chunk is not necessarily placed
on any node.

However, when a block is freed, it has been written by a
producer and it is thus safe to assume that the block has
been placed through physical allocation. The identifier of
the containing node can be obtained through a system call,
which enables the run-time to return the block to the cor-
rect memory pool. To avoid the overhead of a system call
each time a block is freed, information on the NUMA node
containing a block is cached in a small meta-data section
associated to the block. This memory pooling mechanism
provides three fundamental properties for deferred allocation
presented below. First, it ensures that allocating a block
from a memory pool always returns a block that has not



been placed yet or a block that is known to be placed on the
node associated to the memory pool. Second, data can be
placed on a specific node with very low overhead. Finally,
the granularity for data placement is decoupled from the
usual page granularity as a block may be sized arbitrarily.

3.2 Principles of deferred allocation

The key idea of deferred allocation is to delay the alloca-
tion and thus the placement of each task buffer until the
node executing the producer that writes to the buffer is
known in order to guarantee that accesses to output buffers
are always local. The classical approach in run-times for de-
pendent tasks is to allocate input buffers upon the creation
of a task [8, 33, 31] or earlier [30]. Instead, we propose to
let each input buffer for a consumer task t. to be allocated
by the producer task ¢, writing into it, immediately before
task t. starts execution. Since the input buffer of ¢. is an
output buffer of ¢,, the location of input data in t. is effec-
tively determined by its producer(s). In the following, we
use the term immediate allocation to distinguish the default
allocation scheme in which input buffers are allocated upon
creation from deferred allocation.

Figure 2a shows the implications of immediate allocation
on data locality for a task ¢. All input buffers of ¢ are al-
located on the node N. on which the creator of ¢ operates.
The same scheme applies to the creators tg,o to tey 1 caus-
ing the input buffers of the tasks t2 to t™ ! to be allocated
on nodes N2 to N~ respectively. In the worst case for
data locality, t is stolen by a worker operating on neither
N. nor N2 to N ! and all memory accesses of ¢ target
memory on remote nodes.

When using deferred allocation, the input buffers of ¢ are
not allocated before its producers start execution and the
output buffers of ¢ are not allocated before t is activated
(Figure 2b). When ¢ becomes ready, all of its input buffers
have received input data from the producers of ¢t and have
been placed on up to n different nodes N to N~ (Fig-
ure 2¢). The data locality impact of deferred allocation
is illustrated in Figure 2d, showing the placement at the
moment when the worker executing ¢ has been determined.
Regardless of any possible placement of ¢, all of its output
buffers are placed on the same node as the worker executing
the task. Hence, using deferred allocation, write accesses are
guaranteed to target local memory. Furthermore, this prop-
erty is independent from the placement of the creating tasks
t. and t(c),o to teo L which effectively decouples data local-
ity from the control program. Even for a sequential control
program data is distributed over the different nodes of the
machine according to work-stealing. This way, work-stealing
does not only take the role of a mechanism responsible for
computational load balancing, but also the role as a mecha-
nism for load balancing across memory controllers.

An important side effect of deferred allocation is a signif-
icant reduction of the memory footprint. With a sequential
control program, all tasks are created by a single “root” task.
This causes a large number of input buffers to be allocated
early on, while the actual working set of live buffers might
be much smaller. A parallel control program can mitigate
the effects of early allocation, e.g., by manually throttling
task creation as shown in Figure 3b. However, this requires
significant programmer effort and hurts the separation of
concerns that led to the delegation of task management to
the run-time.

Thanks to deferred allocation, buffers allocated for early
tasks can be reused at a later stage. The difference is shown
in Figures 3a and 3c. In the first case, all three buffers b;,
bi+1 and b;42 are allocated before the dependent tasks t¢; to
ti+3 are executed. In the latter case, the buffer used by t;
and ;41 can be reused as the input buffer of ¢;,43. Parallel
control programs also benefit from deferred allocation as the
minimal number of buffers along a path of dependent tasks
can be decreased by one (e.g., in Figure 3b only b; and b1
are simultaneously live and b; can be reused for b;+2 when
using deferred allocation).

3.3 Compatibility with work-pushing

Deferred allocation guarantees local write accesses, but it
does not influence the locality of read accesses. By com-
bining deferred allocation with the input-only heuristic of
enhanced work-pushing, it is possible to optimize for both
read and write accesses.

It is important to note that neither the output-only heuris-
tic nor the weighted heuristic can be used since the output
buffers of a task are not determined upon task activation
when the work-pushing decision is taken.

4. EXPERIMENTAL SETUP

For the experimental evaluation we implemented enhanced
work-pushing and deferred allocation in the run-time system
of the OpenStream project [29]. We start with an overview
of the software and hardware environment used in our ex-
periments, followed by a presentation of the selected bench-
marks.

4.1 Software environment

OpenStream [31] is a task-parallel, data-flow program-
ming model implemented as an extension to OpenMP. Ar-
bitrary dependence patterns can be used to exploit task,
pipeline and data parallelism. Each data-flow dependence
is semantically equivalent to a communication and synchro-
nization event within an unbounded FIFO queue referred to
as a stream. Pragmatically, this is implemented by compil-
ing dependences as accesses to task buffers dynamically allo-
cated at execution time: writes to streams result in writes to
the buffers of the tasks consuming the data, while read ac-
cesses to streams by consumer tasks are translated to reads
from their own, task-private buffers.

We implemented the optimizations presented in this pa-
per into the publicly available run-time of OpenStream [29].
Crucially, we rely on the fact that OpenStream programs are
written with programmer annotations explicitly describing
the flow of data between tasks. This precise data-flow infor-
mation is preserved during compilation and made available
to the run-time library. We leverage this essential seman-
tic information to determine, at run-time, and before task
execution, how much data is exchanged by any given task.

OpenStream programs are dynamically load-balanced, wor-
ker threads use hierarchical work-stealing to acquire and
execute tasks whose dependences have been satisfied. If
work-pushing is enabled, workers can also receive tasks in
a dedicated multi-producer single-consumer queue [14]. Our
experiments use one worker thread per core.

4.2 Hardware environment

The experiments were conducted on two many-core sys-
tems.
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Figure 2: Allocation schemes

Opteron-64 is a quad-socket system with four AMD Op-
teron 6282 SE processors running at 2.6GHz, using Scientific
Linux 6.2 with kernel 3.10.1. The machine is composed of 4
physical packages, with 2 dies per package, each die contain-
ing 8 cores organized in pairs. Each pair shares the first-level
instruction cache as well as a 2MiB L2 cache. An L3 cache
of 6MiB and the memory controller are shared by the 8 cores
on the same die. The 16KiB L1 cache is private to each core.
Main memory is 64GiB, equally divided into 8 NUMA do-
mains. For each NUMA node, 4 neighbors are at a distance
of 1 hop and 3 neighbors are at 2 hops.

SGI-192 is an SGI UV2000 with 192 cores and 756GiB
RAM, distributed over 24 NUMA nodes, and running SUSE
Linux Enterprise Server 11 SP3 with kernel 3.0.101-0.46-
default. The system is organized in blades, each of which
contains two Intel Xeon E5-4640 CPUs running at 2.4GHz.
Each CPU has 8 cores with direct access to a memory con-
troller. The cache hierarchy consists of 3 levels: a core-
private L1 with separate instruction and data cache, each
with a capacity of 32KiB; a core-private, unified L2 cache
of 256KiB; and a unified L3 cache of 20MiB, shared among
all 8 cores of the CPU. Hyperthreading was disabled for our
experiments. Each blade has a direct connection to a set
of other blades and indirect connections to the remaining
ones. From a core’s perspective, a memory controller can
be either local if associated to the same CPU, at 1 hop if
on the same blade, at 2 hops if on a different blade that is
connected directly to the core’s blade or at 3 hops if on a
remote blade with an indirect connection.

Latency of memory accesses and NUMA factors.

We used a synthetic benchmark to measure the latency
of memory accesses as a function of the distance in hops
between a requesting core and the memory controller that
satisfies the request. It allocates a buffer on a given node
using LIBNUMA, initializes it and measures execution time
for a sequence of memory accesses to this buffer from a core
on a specific node. Each sequence traverses the whole buffer
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Figure 3: Allocation and reuse

Read accesses Write accesses Factor R/W

Local 1288.5 £ 1.22ms 2256.9 £ 14.06ms 1.00 / 1.00
1 hop (on-package) 2328.4 £+ 0.49ms 2717.6 £+ 12.16ms 1.81 / 1.20
1 hop (off-package) 2781.4 £ 0.56ms 3934.6 + 00.56ms 2.16 / 1.74
2 hops 5601.6 & 0.57ms 5601.3 &= 00.55ms 4.34 / 2.48

Table 1: Average latency of accesses on Opteron-64

Read accesses Write accesses Factor R/W

Local 934.82+5.74ms 1307.4 £ 2.95ms 1.00 / 1.00
1 hop = 4563.1 & 3.02ms 5282.38 & 1.56ms 4.88 / 4.04
2 hops 5820.48 £ 2.11ms 6473.38 &= 1.16ms 6.23 / 4.95
3 hops 6991.24 +2.71ms 7673.14 + 0.92ms 7.48 / 5.87

Table 2: Average latency of accesses on SGI-192

from beginning to end in steps of 64 bytes, such that each
cache line is only accessed once. The buffer size was set to
1GiB to ensure data is evicted from the cache before it is
reused and thus to measure only memory accesses that are
satisfied by the memory controller and not by the hierarchy
of caches.

Tables 1 and 2 indicate the total execution time as a func-
tion of the number of hops and the access mode of the syn-
thetic benchmark for both systems. The results show that
latency increases with the distance between the requesting
core and the targeted memory controller and that writes
are significantly slower than reads. The rightmost column
of each table shows the access time normalized to accesses
targeting local memory. For reads on the Opteron-64 sys-
tem, these values range from 1.81 for on-package accesses
to a memory controller at a distance of one hop to a factor
of 4.34 for off-package accesses at a distance of two hops.
For writes, these values are lower—1.2 to 2.48—due to the
higher baseline latency of local writes. Not surprisingly, the
factors for both reads and writes are significantly higher on
the larger SGI-192 system (up to 7.48 for reads at three
hops). This suggests that locality optimizations will have
a higher impact on SGI-192 and that the locality of writes
will have the greatest impact.

4.3 Benchmarks



We evaluate the impact of our techniques on nine bench-
marks, each of which is available in an optimized sequential
implementation and two tuned parallel implementations us-
ing OpenStream.

The first parallel implementation uses task-private input
and output buffers as described in Section 2.1 and thus en-
ables enhanced work-pushing and deferred allocation. Data
from input buffers is only read and never written, while data
in output buffers is only written and never read. Hence,
tasks cannot perform in-place updates and results are writ-
ten to a different location than the input data. We refer to
this implementation as DSA (dynamic single assignment).

The second parallel implementation, which we refer to as
SHM, uses globally shared data structures and thus does
not expose information on memory accesses to the run-time.
However, the pages of the data structures are distributed
across all NUMA nodes in a round-robin fashion using in-
terleaved allocation. We use this implementation to compare
our solutions to classical static NUMA-aware optimizations
that require only minimal changes to the application. The
benchmarks are the following.

e Jacobi-1d, jacobi-2d and jacobi-3d are the usual one-,
two- and three-dimensional Jacobi stencils iterating
over arrays of double precision floating point elements.
At each iteration, the algorithm averages for each ma-
trix element the values of the elements in its Von Neu-
mann neighborhood using the values from the previous
iteration.

e Seidel-1d, seidel-2d and seidel-8d employ a similar sten-
cil pattern but use values from the previous and the
current iteration for updates.

e Kmeans is a data-mining benchmark that partitions a
set of n d-dimensional points into k clusters using the
K-means clustering algorithm. Each vector is repre-
sented by d single precision floating point values.

e Blur-roberts applies two successive image filters on dou-
ble precision floating point elements [22]: a Gaussian
blur filter on each pixel’s Moore neighborhood followed
by the Roberts Cross Operator for edge detection.

e Bitonic implements a bitonic sorting network [1], ap-
plied to a sequence of arbitrary 64-bit integers.

Table 3 summarizes the parameters for the different bench-
marks and machines. The size of input data was chosen to be
significantly higher than the total amount of cache memory
and low enough to prevent the system from swapping. This
size is identical on both machines, except for blur-roberts,
whose execution time for images of size 2'°x2'5 is too short
on SGI-192 and which starts swapping for size 2'x2'® on
Opteron-64. To amortize the execution of auxiliary tasks
at the beginning and the end of execution of the stencils,
we set the number of iterations to 60. The block size has
been tuned to minimize the execution time for the paral-
lel implementation with task-private input and output data
(DSA) on each machine. To avoid any bias in favor of our
optimizations, enhanced work-pushing and deferred alloca-
tion have been disabled during this tuning phase. In this
configuration, the run-time only relies on optimized work-
stealing [23] extended with hierarchical work-stealing [14]

Block size Block size

Matrix / Vector size (Opteron-64) (SGI-192) Iterations

Jacobi-1d 228 P P 60
Jacobi-2d 2 x 214 21026 28 %28 60
Jacobi-8d 210 x 29 %29 25%x26x25  24%26x26 60
Seidel-1d 228 216 216 60
Seidel-2d 2'4x 214 28 %28 27 %29 60
Seidel-3d 210x29 x 29 26x25%25  24x28x2% 60
Blur- 215 %215 (Opteron-64) 29 %26 -
roberts  216x216 (SGI-192) 05509
Bitonic 228 216 217 -
K-means 40.96M pts, 10 dims., 11 clust. 10* 104 -

Table 3: Benchmark parameters

for computational load balancing. We refer to this baseline
for our experiments as DSA-BASE. Identical parameters for
the block size and run-time have been used for the experi-
ments with the shared memory versions of the benchmarks
(SHM), which we refer to as SHM-BASE.

All benchmarks were compiled using the OpenStream com-
piler based on GCC 4.7.0. The compilation flags for blur-
roberts as well as the jacobi and seidel benchmarks were -03
-ffast-math, while kmeans uses -03 and bitonic uses -02.

The parallel implementations are provided with a paral-
lel control program to prevent sequential task creation from
becoming a performance bottleneck. To avoid memory con-
troller contention, the initial and final data are stored in
global data structures allocated using interleaved allocation
across all NUMA nodes.

Data dependence patterns.

The relevant producer-consumer patterns shown in Fig-
ure 4 can be divided into three groups with different impli-
cations for our optimizations: unbalanced dependences (e.g.,
one input buffer accounting for more than 90% of the in-
put data) with long dependence paths (jacobi-1d, jacobi-
2d, jacobi-3d, seidel-1d, seidel-2d, seidel-8d, kmeans), un-
balanced dependences with short dependence paths (blur-
roberts) and balanced dependences (bitonic). The behavior
of our heuristics on these patterns is referenced in the exper-
imental evaluation. All of the benchmarks have non-trivial,
connected task graphs, i.e., none of the benchmarks repre-
sents an embarrassingly parallel workload.

Characterization of memory accesses.

The benchmarks were carefully tuned (block sizes and
tiling) to take advantage of caches. However, the efficiency
of the cache hierarchy also depends on the pattern, the fre-
quency and the timing of memory accesses during the execu-
tion of a benchmark, leading to more or fewer cache misses
for a given block size. Figure 5 shows the cache miss rates
at the last level of cache (LLC) on SGI-192 of DSA-BASE,
which is a good proxy for the rate of requests to main mem-
ory for each benchmark. For all bar graphs in this paper,
error bars indicate standard deviation. As the focus of our
optimizations is on the locality of memory accesses, we ex-
pect a higher impact for benchmarks exhibiting higher LL.C
miss rates. For this reason, seidel and blur-roberts are ex-
pected to benefit the most from our optimizations, followed
by the jacobi benchmarks and bitonic. Kmeans has a very
low LLC miss rate and is not expected to show significant
improvement.

4.4 Experimental baseline

To demonstrate the effectiveness of our optimizations, our



b,z S,z

o5 / S 70 Sz ¢
Shy  Sby Shy  Sby f Sb.x \ f Sh.q
Sha N /Jsb.x Spa J\ /Jsb.x S-Sz \) //’
X\ & SpaShy N d -} .
LN 7ls o I 7! R — ->- - \S s s
I = i - Sb..r’/ \\5@.,- Sha ’/ \\Sh.., / \\ b, bg /f \\ b,z
7 S| 17 | Sb,y Sb.y Sy Sb.y

(a) Jacobi-1d / seidel-1d

Shp Sh.p Shp Shp
d-k d-k d-k d-k
N RN 2,
ALK ALK
1 1 1 1
\k \k

(d) Kmeans

(c) Jacobi-3d / seidel-3d

1 1

w0

b

Sh,a S,z
// Sb,2+Sb.y \*\* /
\S by S, { Sy S;,\

(e) Blur-roberts (f) Bitonic

Figure 4: Main tasks and types of dependences of the benchmarks. The amount of data exchanged between tasks is indicated

by the width of arrows. Symbols: Sp 2, Sb,y, Sb,-:

number of elements per block in z, y and z direction; Sy p:

number of

points per block, d: number of dimensions, k: number of clusters in kmeans; Sy: number of elements per block in bitonic.

LLC misses per Kinst.

jacobi1d  jaco0i 29 jaoobi3d  goidel1d  geidel2d  eidel3d  ymeanS . roperts  pitonic
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principal point of comparison is DSA-BASE. We validate
the soundness of this baseline by comparing its performance
on Cholesky factorization against the two state-of-the-art
linear algebra libraries PLASMA/QUARK [35] and Intel’s
MKL [18]. Figure 6 shows the execution times of Cholesky
factorization on a matrix of size 8192 x 8192 running on the
Opteron-64 platform with four configurations: DSA-BASE,
Intel MKL, PLASMA and finally optimized OpenStream
(DSA-OPT), the latter using our run-time implementing
the optimizations presented in this paper. This validates
the soundness of our baseline, which achieves similar per-
formance to Intel MKL, while also showcasing the effective-
ness of our optimizations, automatically and transparently
matching the performance of PLASMA without any change
in the benchmark’s source code.

S. RESULTS

We now evaluate enhanced work-pushing and deferred al-
location, starting with the impact on memory access locality,
and following on with the actual performance results.

5.1 Impact on the locality of memory accesses

On the Opteron platform, we use two hardware perfor-
mance counters to count the requests to node-local memory2
and to a remote node®, respectively. We consider the locality
metric RELY | defined as the ratio of local memory accesses
to total memory accesses, shown in Figure 7. We could not
provide the corresponding figures for the SGI system due to
missing support in the kernel. However, the OpenStream
run-time contains precise information on the working set of
tasks and on the placement of input buffers, which can be
used to provide a second locality metric RY that precisely

2 CPU_IO_REQUESTS_-TO_MEMORY_IO:LOCAL_CPU_-TO_LOCAL_MEM
3 CPU_IO_REQUESTS_-TO_MEMORY_IO:LOCAL_CPU_-TO_REMOTE_MEM

2.0

Execution time [s]
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Figure 6: Cholesky factorization on Opteron-64.

accounts for accesses to data managed by the run-time, i.e.,
associated to task dependences.

Figure 7 shows the locality of requests to main memory
RIW on Opteron-64. Data, locality is consistently improved
by our optimizations across all benchmarks. The combi-
nation of enhanced work-pushing and deferred allocation
(DSA-OPT) is comparable to the output only and weighted
heuristics of work-pushing, but yields significantly better re-
sults than enhanced work-pushing only for benchmarks with
balanced dependences. For all jacobi and seidel benchmarks
as well as kmeans the locality was improved above 88% and
for bitonic above 81%. Blur-roberts does not benefit as much
from our optimizations as the other benchmarks. As the
run-time system only manages the placement of privatized
data associated with dependences, short dependence paths,
such as in Blur-roberts, only allow the run-time to optimize
placement for a fraction of the execution. As a result, the
overall impact is diluted proportionately. We further note
that the input only heuristic of work-pushing—closest to
the original heuristic in prior work [14]—does not improve
memory locality as much as weighted work-pushing or the
combination of deferred allocation with work-pushing. Fig-
ure 8 shows RfiT on SGI-192, highlighting the effectiveness of
our optimizations on data under the control of the run-time.
Not accounting for unmanaged data, we achieve almost per-
fect locality (up to 99.8%) across all benchmarks, except for
bitonic, where balanced dependences imply that whenever
input data is on multiple nodes, only half of the input data
can be accessed locally.

5.2 Impact on performance

Figure 9 shows the speedup achieved over DSA-BASE.
The best performance is achieved by combining work-pushing
and deferred allocation, with a global maximum of 2.5X on
Opteron-64 and 5.0x on SGI-192. Generally, the speedups
are higher on SGI-192, showing that our optimizations have
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a higher impact on machines with higher penalties for re-
mote accesses. These improvements result from better local-
ity as well as from the memory footprint reduction induced
by deferred allocation. Note that the input-only heuristic
did not perform well with jacobi, highlighting the impor-
tance of considering both input and output flows, and of
proactively distributing buffers through deferred allocation
rather than reactively adapting the schedule only.

5.3 Comparison with interleaved allocation

Figure 10 shows the speedup of the parallel baseline over
the implementations using globally shared data structures
distributed over all NUMA nodes using interleaved alloca-
tion (SHM-BASE). The optimizations achieve up to 3.1x
speedup on Opteron-64 and 5.6x on SGI-192. The best per-
formance is systematically obtained by the combined work-
pushing and deferred allocation strategy. These results clearly
indicate that taking advantage of the dynamic data-flow in-
formation provided in modern task-dependent languages al-
lows for more precise control over the placement of data
leading to improved performance over static schemes unable
to react to dynamic behavior at execution time. In the case
of interleaved allocation, the uniform access pattern of the
benchmarks evaluated in this work yields good load balanc-
ing across memory controllers, but poor data locality.

6. COMPARISON WITH DYNAMIC PAGE
MIGRATION

While our study focused on the application- and run-time,
the reader may wonder how kernel-level optimizations fare
in our context. Recent versions of Linux comprise the bal-
ancenuma patchset [12] for dynamic page migration and a
transparent policy migrating pages during the execution of
a process based on its memory accesses. The kernel peri-
odically scans the address space of the process and changes
the protection flags of the scanned pages such that an ac-
cess causes an exception. Upon an access to such a page,
the exception handler checks whether the page is misplaced
with respect to NUMA and migrates it towards the node of
the accessing CPU.

We first evaluate the influence of page migration on a
synthetic benchmark to determine under which conditions
the mechanism is beneficial, and show that these conditions
do not meet the requirements for task-parallel programs.
We then study the impact of dynamic page migration on
the parallel baseline with globally shared data structures
(SHM-BASE).

6.1 Parametrization of page migration

For all experiments, we used version 4.3.0 of the Linux
Kernel. As the SGI test platform requires specific kernel
patches and is shared among many users, we conducted these
experiments on Opteron-64 only. The migration mechanism
is configured through the procfs pseudo filesystem, as fol-
lows:

e Migration can be globally enabled or disabled by set-
ting numa_balancing to 1 or 0, respectively.

e The parameter numa_balancing_scan_delay-ms indica-
tes the minimum execution time of a process before
page migration starts. In our experiments, we have
set this value to 0 to enable migration as soon as pos-
sible. Page migration during initialization is prevented
using appropriate calls to mbind, temporarily impos-
ing static placement.

e The minimum / maximum duration between two scans
is controlled by numa_balancing_scan_period_min_ms /
numa_balancing_scan_period_max_ms. We have set the
minimal period to 0 and the maximum period to 100000
to allow for constant re-evaluation of the mapping.

e How much of the address space is examined in one
scan is defined by numa_balancing scan_size_mb. In
the experiments, this parameter has been set to 100000
to prevent the system from scanning only a subset of
the pages.

In the following evaluation, we calculate the ratio of the
median wall clock execution time with dynamic migration
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Figure 10: Speedup over the implementations with globally shared data structures and interleaving on all nodes (SHM-BASE)

(numa_balancing set to 1) divided by the median time with-
out migration (numa_balancing set to 0) for 10 runs of a
synthetic benchmark.

6.2 Evaluation of a synthetic benchmark

The synthetic benchmark has been designed specifically to
evaluate the potential of dynamic page migration for scenar-
ios with clear relationships between data and computations
and without interference. It is composed of the following
steps:

1. Allocate S sets of T' 64MiB buffers, distributed in a
round-robin fashion on the machine’s NUMA node.
That is, the i-th buffer of each set is allocated on
NUMA node (i mod N), with N being the total num-
ber of NUMA nodes.

Create T threads and pin the i-th thread on the i-th
core.

. Assign exactly one buffer of the current set to each
thread, with thread i being the owner of the i-th buffer.

. Synchronize all threads using a barrier and let each
thread traverse its buffer I times linearly by adding a
constant to the first 8-byte integer of every cache line
of the buffer.

. Change the affinity A times by repeating steps 3 and 4
a total of A times.

. Synchronize all threads with a barrier and print the
time elapsed between the moments in which the first
thread passed the first and the last barrier, respec-
tively.

On Opteron-64, the number of 8 cores per NUMA node is
equal to the total number of nodes. Thus, the allocation
scheme above causes every NUMA node to access every node
of the system at the beginning of each affinity change, which



allows for load-balancing on the system’s memory controllers
and thus factors out contention arising from the initial dis-
tribution. We have set the total number of affinity changes
A to 8.

Figure 11 shows the speedup for a varying number of it-
erations I before each affinity change. We found that the
preferred page size for the buffers has a strong influence on
migration overhead. Therefore, we evaluate three configu-
rations: default does not impose any specific page size and
leaves the choice to the operating system, while small and
huge force the use of 4KiB and 2MiB pages, respectively.

In order to match the performance of the baseline with
static placement, at least 12 iterations are necessary for de-
fault and huge. For small pages, at least 70 iterations must
be performed. In our benchmarks with task-private input
and output buffers, the bulk of the input data of each task
is accessed only up to 7 times. The temporal data locality
is thus far below these thresholds, which lets us expect that
dynamic page migration cannot improve performance.

6.3 Evaluation of OpenStream benchmarks

Let us now study the impact of page migration on the
second parallel baseline with globally shared data structures
(SHM-BASE). In contrast to task-private buffers, in which
each input buffer at each iteration potentially uses a dif-
ferent set of addresses, each block of data of the globally
shared data structures is associated to a fixed set of ad-
dresses for all iterations with very high temporal locality.
As in the previous experiments, we used hierarchical work-
stealing, initial interleaved allocation and the parameters for
the benchmarks described in Table 3.

Figure 12 shows the speedup of dynamic page migration
over the median execution time without migration. For
none of the benchmarks does page migration improve per-
formance. In the best case (jacobi-8d, seidel-2d, seidel-5d,
kmeans, and blur-roberts) performance is almost identical
with small variations. In many other cases performance
degrades substantially (jacobi-1d, jacobi-2d, seidel-1d, and
bitonic).

The first reason for this degradation is that dynamic page

migration is not able to catch up with frequent affinity changes

between cores and data. Second, in contrast to task-private
buffers, data blocks of the shared data structures do not nec-
essarily represent contiguous portions of the address space
and a single huge page might contain data of more than one
block, accessed by different cores. In conclusion, page mi-
gration only reacts to changes in the task-data affinity while
our scheme proactively binds them together, and page gran-
ularity may also not be appropriate for data placement in
task-parallel applications.

7. RELATED WORK

Combined NUMA-aware scheduling and data placement
can be split into general methods operating at the thread
level—usually implemented in the operating system at page
granularity, and task-oriented methods operating at the task
level in parallel programming languages—typically in user-
land.

Starting with userland methods, it is possible to statically
place arrays and computations to bring NUMA awareness
to OpenMP programs [27, 2, 34, 32] or applications using
TBB [26]. Such approaches are well suited to regular data
structures and involve target-specific optimizations by the

programmer. This is viable in some application areas, but
generally not consistent with the performance portability
and dynamic concurrency of task-parallel models.

ForestGOMP [5, 6] is an OpenMP run-time with a resource-
aware scheduler and a NUMA-aware allocator. It introduces
three concepts: grouping of OpenMP threads into bubbles,
scheduling of threads and bubbles using a hierarchy of run-
queues, and migrating data dynamically upon load balanc-
ing. Although the affinity between computations and data
remains implicit, ForestGOMP performs best when these
affinities are stable over time, and when the locality of unsta-
ble affinities can be restored through scheduling without mi-
gration. LAWS [11] brings NUMA awareness to Cilk tasks.
It specializes into divide-and-conquer algorithms, assuming
a one-to-one mapping between task trees and the memory
regions accessed during task execution. LAWS put together
a NUMA-aware memory allocator and a task tree parti-
tioning heuristic to steer a three-level work-stealing sched-
uler, exploiting implicit information on the structure of data
accesses and computation. While both ForestGOMP and
LAWS show that such information can be exploited to in-
crease locality, their limitations suggest that NUMA aware-
ness is more natural and effective to achieve with the explicit
task-data association we consider.

Among dependent task models, one of the most popu-
lar is the StarSs project [30], whose OMPSs variant led to
dependent tasks in OpenMP 4.0. This model does pro-
vide an explicit task-data association. Yet we preferred
OpenStream as it facilitates the privatization of data blocks
communicated across tasks, and its first-class streams ex-
pressing dependences across concurrently created tasks, ac-
celerating the creation of complex graphs on large scale
NUMA systems. Our analysis of NUMA-aware placement
and scheduling and the proposed algorithms would most
likely fit other models with similar properties such as CnC [8]
or KAAPI [16].

In earlier work [14], we introduced the work-pushing tech-
nique for task-parallel application that we extended in this
paper. Furthermore, we proposed dependence-aware allo-
cation, a NUMA-aware memory allocation technique that
examines inter-task data dependences and speculatively al-
locates memory for the input data of a task on the node
whose cores are likely to execute its producers. However,
the techniques presented in this paper achieve better local-
ity and performance since in some cases the prediction might
fail and work-stealing might lead to remote write accesses.

Alternatively, one could argue that the operating system
should be in charge of providing a NUMA-oblivious abstrac-
tion for parallel programs. Operating systems typically fol-
low a first-touch strategy by default, in which a page of
physical memory is allocated on the node associated to the
core that first writes to the page. A common optimization
is to migrate a page dynamically to the node performing
the next write access. This strategy, referred to as affinity-
or migrate-on-next-touch can be transparent [17] or con-
trolled through system calls [25]. Dashti et al. proposed Car-
refour [13], a kernel-level solution whose primary goal is to
avoid congestion on memory controllers and interconnects.
Carrefour detects affinities between computations and pages
dynamically using hardware performance counters. Based
on these affinities it combines allocation of pages near the
accessing node, interleaved allocation and page replication
for read-only data. However, the solution is suited for long-
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Figure 11:

running processes as it uses sampling hardware counters [15]
to determine data affinities, requiring high reuse of data for
statistical confidence without high overhead [24]. Similar to
Carrefour, AsymSched [24]—a combined user-space-kernel
solution for data and thread placement—focuses on band-
width rather than locality, taking into account the asym-
metry of interconnects on recent NUMA systems. However,
despite a highly efficient migration mechanism, the place-
ment granularity is bound to a page and may not meet the
requirements of task-parallel applications.

8. CONCLUSION

We showed that parallel languages with dependent tasks
can achieve excellent, scalable performance on large scale
NUMA machines without exposing programmers to the com-
plexity of these systems. One key element of the solution
is to implement communications through task-private data
buffers. This allows for the preservation of a simple, uni-
form abstract view for both memory and computations, yet
achieving high data locality. Inter-task data dependences
provide precise information about affinities between tasks
and data in the run-time, improving the accuracy of NUMA-
aware scheduling. We proposed two complementary tech-
niques to exploit this information and to manage task-private
buffers: enhanced work-pushing and deferred allocation. De-
ferred allocation guarantees that all accesses to task output
data are local, while enhanced work-pushing improves the
locality of accesses to task input data. By combining hier-
archical work-stealing with enhanced work-pushing, we en-
sure that no processor remains idle, unless no task is ready
to execute. Deferred allocation provides an additional level
of load-balancing, addressing contention on memory con-
trollers. We showed that our techniques achieve up to 5x
speedup over state of the art NUMA-aware solutions, in
presence of dynamic task creation and changing dependence
patterns. In a comparison with transparent static and dy-
namic allocation techniques by the operating system, we
showed that our solution is up to 5.6x faster than inter-
leaved allocation and that dynamic page migration is unable
to cope with the fine-grained concurrency and communica-
tion of task-parallel applications.
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