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Chapter 1

Introduction

Data Parallelism is a well known form of parallelization, which is based on
partitioning the data across different parallel computing nodes. Its relevance
will increase in the near future because of two joint factors. The first factor
is the industry switch to parallel microprocessors. The second factor is the
subtle and constant transition from control intensive computations to data
intensive computations driven by the massive amount of information gener-
ated today[4]. One of the most challenging open problems is the optimization
of such computations in order to ensure the desired performance and hope-
fully, portability of performance, among the diverse set of future computer
architectures. In order to investigate the difficulties of optimization, we se-
lected a subset of all data parallel computations known as structured grid
computations[4]. As we will see in the next section, structured grids are cen-
tral for many simulation codes; therefore, they were studied extensively in
the high performance computing community. Although they are relatively
simple computations in terms of structure, their optimization is a difficult
process and many different solutions were proposed in literature. Because of
these complications, no standard libraries or frameworks exist for structured
grid computations while almost standard solutions exist for dense linear alge-
bra (ATLAS[43]), sparse linear algebra (OSKI[42]) and spectral (FFTW[19])
computations.

1.1 Structured Grid Computations

Partial differential equation (PDE) solvers constitute a large portion of all
scientific applications. PDE solvers are at the heart of simulation codes for
many areas, from physical phenomena[27] to financial market stock pricing[22].
In order to solve partial differential equations, one possible approach is the

1



Chapter 1. Introduction

finite difference method[28]. In this method, the differential operators are
approximated by truncated Taylor expansions of their derivatives and the
continuous domain where PDEs are defined is discretized. This results in
a very sparse matrix equation with predictable entries that can be solved
efficiently by using iterative methods. Iterative methods find the solution by
repeatedly updating an initial guess until numerical convergence is achieved.
Each point is updated with a weighted contributions of its neighbours. Con-
sider as an example a two dimensional poisson equation: ∆u = f where f
is a known function. After applying the finite difference method its solution
can be found by updating an initial guess with the Jacobi iterative method
until the error is below a given threshold. The pseudocode of a single jacobi
update is shown in Listing 1.1.

for i = 1 .. n
for j = 1 .. n

unew[i][j] = (f [ i ][ j ] − uold[i−1][j] − uold[i+1][j] − uold[i][j+1] −
uold[i][j+1])/4

Listing 1.1: Pseudocode of a Jacobi update for the resolution of a two dimensional
poisson equation.

These solvers can be easily implemented in a data parallel fashion where
different workers update different portions of the result for the next time
step.

Given the regularity of these computations, they are called structured
grid computations. Computations in this class range from very simple
Jacobi iterations (Listing 1.1) to multigrid[9] or adaptive mesh refinement
methods[7]. We chose structured grids computations as a benchmark for
optimization methods for data parallel computations because of two factors:

1. They are fundamental for a wide set of simulation codes in multiple
disciplines.

2. Although they are very simple, these computations usually achieve a
fraction of their theoretical peak performance on modern architectures[25].

Therefore, the optimization of these computations has been the subject of
much investigation. In particular, previous research has shown that mem-
ory transfers constitute the main bottleneck for this class of computations.
Therefore, research focused primarily on tiling optimizations that attempt to
reduce the memory traffic by increasing the temporal locality (reuse) of the
computation. Tiling optimizations constitute a subset of the class of loop
reordering transformations. Loop reordering transformations modify the

2



Chapter 1. Introduction

order in which updates are executed. Assuming a row order storage of data,
we could reorder the computation in Listing 1.1 in the following way:

for jj = 1,B,n
for i = 1 .. n

for j = jj .. jj + B − 1
unew[i][j] = (f [ i ][ j ] − uold[i−1][j] − uold[i+1][j] − uold[i][j+1] −

uold[i][j+1])/4

Listing 1.2: Pseudocode of reordered Jacobi update for the resolution of a two
dimensional poisson equation.

Since the updates of the Jacobi method can be performed in any order, the
transformed program will produce the same result. Moreover, by selecting a
good parameter B we can reduce the number of cache miss. A formalization
of this method, together with a rigorous analysis, is presented in Chapter 5.

Initial research focused on tiling only the spatial dimension[34] (Listing
1.2). However, reuse in structured grids computations is relatively limited
compared to classic methods for dense linear algebra. In fact, further research
has shown that tiling also in the time dimension (time skewing) gives the
best results[24]. A comprehensive analysis of different tiling techniques was
presented in [14].

The effectiveness of tiling is strictly related to an optimal selection of
the tile sizes. Sophisticated models were introduced in order to solve this
problem[25]. However, peculiarities of modern architectures makes formal
modelling of this problem difficult. In fact, research has focused on auto-
tuning techniques in order to select an optimal set of parameters without
having to derive a formal model[15, 13]. Another possible approach is to
use cache oblivious algorithms. A cache oblivious time skewed algorithm for
d-dimensional structured grids was presented in [20, 21]. The idea behind
cache oblivious algorithms is to recursively divide the working domain so
that almost optimal tile sizes are selected for a given level of recursion thus,
making the algorithm oblivious to the problem size or the specifications of
the cache hierarchy. Recently, a compiler for stencil computations using a
cache oblivious approach was presented[38].

Some optimizations methods, specific to structured grid computations
were recently developed in our HPC lab[29, 31]. Unlike other methods present
in literature, these methods attempt to reduce the overhead of communica-
tions between processors by slightly modifying the computation. As a exam-
ple consider the code in Listing 1.1 which can be graphically represented as
in Figure 1.1a. The Q trasformation presented in [31] modifies the functional
dependencies of the computation and produces the shape in Figure 1.1b.

3



Chapter 1. Introduction

(1, 0)

(−1, 0)

(0, 1)(0,−1)

(a)

(1, 0)

(0, 1)
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(1, 2)

(b)

Figure 1.1: Graphical representations of the functional dependencies of respec-
tively Jacobi and Jacobi with applied Q trasformation stencils

These optimizations are presented in Chapter 4. Unfortunately, research
on specific methods for parallel stencil codes on distributed memory ma-
chines is very limited[35]. Some methods were presented in order to reduce
the number of communications among parallel executors[17, 33]. Overall,
the work of Meneghin[31] is the most comprehensive in this specific context.
In particular, it presents transformations for structured grids that ensure a
minimal number of communications and occupation of memory among all
techniques found in literature. We present them, together with standard
methods found in literature, in a structured model extended from [31]. A
cost model is used to derive theoretically the performance gain of different
optimizations. In particular, for tiling optimizations, we show that it is pos-
sible to reduce the number of memory accesses to the order of the theoretical
lower bound. Moreover, their interaction with transformations presented in
[31] is analyzed in detail and solutions are presented in order to maintain the
benefits of both classes of optimizations.

Methodology We claim that a structured model is necessary to study the
interaction of different optimizations. Optimizations are often presented in
a non-structured way where benefits are elucidated in an intuitive way and
then experimental results are used to prove the optimization’s suitability.
Instead, we selected a simple cost model derived from [40]. The cost for
a program is the maximum between the cost of communication and com-
putation TC = max(Tcalc, Tcomm). We are assuming that we can overlap
completely computation and communication. Tcalc is the maximum of the
number of memory access among different processes in an external memory
model. Tcomm is derived by associating a fixed cost to every communication
Tsetup and a variable cost that depends on the message size, Ttrasm. So a com-
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munication of m elements between two workers will have an associated cost
of Tsetup +m ∗Ttrasm. By using such model, it is possible to show the perfor-
mance gain of optimizations without meddling with peculiarities of modern
architectures. Moreover, we are able to study the interaction of the different
methods, which were analyzed individually.

1.2 Thesis Outline

Data parallel computations are presented in Chapter 2. Structured grids are
examined in detail in the same chapter. Their relevance is demonstrated
with real world examples and typical properties of a structured grid compu-
tations are described. The structural model that we used to present different
optimizations is introduced in Chapter 3. This model is general in order
to represent any framework for a class of computations. Moreover, a spe-
cific instance of the model for structured grids computations, along with
a concretion and optimization examples, are illustrated. Optimizations for
a parallel implementation of structured grids are introduced in Chapter 4.
Most of the methods presented were developed by Meneghin in his doctoral
thesis[31]. Chapter 5 briefly explains optimizations implemented by modern
compilers. Among all possible optimizations, the class of loop reordering
transformations is analyzed in great detail because most optimizations rel-
evant to structured grids computations found in literature belongs to this
class ( tiling optimizations belongs to this class). Specific optimization ex-
amples are presented for structured grids and their impact on performance is
validated using the model introduced in Chapter 3. Our analysis concludes
in Chapter 6 where we study the combination of optimization methods for
parallel execution (Chapter 4) and loop reordering (Chapter 5).
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Chapter 2

Data Parallel with Stencil
Computations

In this chapter, we introduce data parallel with stencil computations. Data
parallel is a well known parallel programming paradigm which is based on
the replication of functions and partitioning of data [40, 41]. Data paral-
lel with stencil computations (we will from now on refer to them as stencil
computations for simplicity) constitutes a subset of data parallel computa-
tions, which have functional dependencies between executors. In fact, the
term stencil indicates the communication pattern among workers, which is
necessary to perform the computation.

2.1 Map Computations

Firstly, we analyze the simplest class of data parallel computations known
as map. In such paradigm, data is partitioned among workers (or execu-
tors) which all perform the same function F on the partitioned data. This
is usually repeated for a series of time steps ( four time steps for the map
computation presented in Listing 2.1). As an example, we consider an image
processing application which reduces luminosity of every pixel of a grayscale
image represented as a MxM matrix. Pseudo-code of a generic map compu-
tation is presented in Figure 2.1.

for s = 0 .. 4
forall i , j = 0 .. M−1 do As+1

i,j = F(Asi,j)

Listing 2.1: Pseudocode of a generic map computation. The computation is
defined over 4 time steps.
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At the highest level of abstraction, there is no reference either to parti-
tions or to data structures. Conceptually s+1 matrices exist and the update
of every element is performed in parallel1. At an underlying (concrete) level,
there is a fixed number of real processors and concrete data structures. There-
fore, multiple elements will be stored in real data structures and assigned to
a single real processor (executor), which will sequentially perform the given
function on every point of its partition2.

for s = 0 .. 4
for i = 0 .. M−1

for j = 0 .. M−1
B[i , j ] = F(A[i,j])

for i = 0 .. M−1
for j = 0 .. M−1

A[i , j ] = B[i, j ]

Listing 2.2: Pseudocode of the implementation of the map computation presented
in Listing 2.1. Two real data structures are used and elements are updated
sequentially.

We need to formally define the relationship between ownership and up-
date of an element:

Definition 2.1 (Owner Computes Rule). The processor that owns the left-
hand side element will perform the calculation.

In other words, this rule states that the owner of the Ai,j element is
the only one allowed to modify it. After the data distribution phase, each
process takes ownership of the distributed data that it is storing; this means
that it is the only one that can modify that data. Consequences of the owner
computes rule are that the elements in the right hand side have to be sent to
the worker performing the update. Notice that this is not the only possibil-
ity, because the computation may take place on a different worker and the
final result could be sent to the owner of the left hand side for assignment.
However, since every element As+1

i,j needs only its predecessor Asi,j , no in-
teraction is necessary between executors. Therefore, map computations can
be easily translated from a high level representation to a concrete implemen-
tation; elements can be grouped together either statically (at compile time)
or dynamically (at runtime) in any possible combination without affecting
correctness.

1Conceptually, this is equivalent to the Virtual Processors presented in [39]
2We will use the notation Ai,j to indicate an element at the highest level of abstraction

and A[i,j] to indicate a concrete element stored in a data structure.
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2.2 Data Parallel with Stencil Computations

As anticipated at the beginning of this chapter, stencil computations require
a pattern of communications between workers. We need to formally define
this concept.

Definition 2.2 (Stencil computation). A stencil computation is a data par-
allel computation where functional dependencies exist between different ele-
ments.

Definition 2.3 (Functional Dependency). A functional dependency is a re-
lationship between two elements: i→ j meaning that element j need elements
i in order to be updated.

Notice that functional dependencies for map computations are always
from an element to itself (Listing 2.1). To introduce stencil computations,
we consider the Laplace equation solver (Figure 2.3).

for s = 0.. N
forall i , j = 0 .. M−1 do

As+1
i,j = F(Asi,j ,Asi−1,j ,Asi+1,j ,Asi,j−1,Asi,j+1)

Listing 2.3: Pseudocode of Laplacian Operator.

From the pseudo-code is evident that As+1
i,j has the following functional

dependencies: Asi,j+1, A
s
i+1,j, A

s
i−1,j ,Asi,j−1. The set of all functional depen-

dencies of an element is called the shape of the stencil. The element that
is updated is called the application point. The function performed on the
input data is the stencil kernel. When the Ai,j elements are assigned to
a real partition the owner computes rule is applied; therefore, a pattern of
interaction between workers is derived.

2.2.1 Classification of Stencil Computations

At this point, a taxonomy of data parallel computations is at this point nec-
essary. Firstly, we classify these computations depending on the presence or
absence of functional dependencies. If no functional dependencies are present
between different elements, then we turn to map computations (Section 2.1).
If there are functional dependencies, we define the following four classes based
on the properties of functional dependencies of the computation3:

3This classification was introduced in a more mathematical rigorous way in [31] as the
HUA model.
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• Fixed vs Variable: In a Fixed stencil, the functional dependencies do
not change over different time steps. Otherwise the stencil computation
is Variable.

• Dynamic vs Static: In a Static stencil, the functional dependencies over
different time steps can be derived at compile time. Otherwise, if the
dependencies are based on the value of the elements of the domain, the
stencil is dynamic.

The class of fixed static computations is the simplest to analyze. Many
problems in this class happen to have regular functional dependencies4, that
are fixed not only with respect to the time steps, but also with respect to the
spatial position (Notice that the Laplace equation solver presented in Figure
2.3 belongs to this class).

Static fixed stencil computations can be found at the heart of Partial
Differential Equations (PDE) solvers. PDE solvers are fundamental for al-
most any simulation codes, from the heat equation [28] to stock market
pricing[22] and computer vision [23]. Stencil codes are also used in BioIn-
formatics algorithms for RNA prediction[3, 11] usually on monodimensional
arrays while PDE solvers are usually performed on multidimensional grids
[7, 28, 9, 30, 44, 6, 18]. All these computations have a pattern of interaction
which is limited to neighbouring elements. Moreover, they are fixed with
respect to time and space; therefore, they are usually cited as Structured
Grids computations.

2.3 Structured Grids in the Real World

In this section, we present how structured grids computations arise from the
finite difference method for partial differential equations. Although this is
outside the actual scope of this thesis, we wanted to explain why such class
is so important and how it arises from real world problems. Otherwise, it
would seem that we are studying a synthetic benchmark.

The process of finding an approximate solution to PDE via the Finite Dif-
ference Method can be summarized as follows.

1. For a given PDE, we firstly approximate differential operators using a
finite difference approximation of the partial derivatives at some
point x.

4With the exception of the borders of the domain where boundary conditions arise.
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2. PDEs are defined over continuous domains. Therefore, we discretize
the domain of the PDE by dividing it into small subintervals. In each
subinterval i, we apply the finite difference approximation of Step 1
and thus, arrive at a linear system of difference equations.

3. We solve the linear systems with iterative methods such as Jacobi or
Gauss Seidel.

Figure 2.1: The process of finding an approximate solution to the PDE via the
Finite Difference Method.

2.3.1 Finite Difference Method

The finite difference method is based on local approximations of the partial
derivatives in a Partial Differential Equation, which are derived from low or-
der Taylor series expansion [36]. By the Taylor series expansion of a function
u in the neighborhood of x, we have that

u(x+ h) = u(x) + h
du

dx
+
h2

2

d2u

dx2
+
h3

6

d3u

dx3
+
h4

24

d4u

dx4
+O(h5) (2.1)

u(x− h) = u(x)− hdu
dx

+
h2

2

d2u

dx2
− h3

6

d3u

dx3
+
h4

24

d4u

dx4
+O(h5) (2.2)

where h is a value close to zero such that x + h and x− h are in the neigh-
borhood of x. If we add Equation 2.1 and 2.2 and divide by h2, we arrive at
the following approximation of the second order derivative.

d2u(x)

dx2
=
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2) (2.3)

The above expression is called the centered difference approximation of the
second order derivative. The dependence of this derivative on the values
of u at the points involved in the approximation is represented by a stencil
[36]. The figure below shows the three-point stencil of the centered difference
approximation to the second order derivative.
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-1 1
-2

Figure 2.2: Three-point stencil of centered difference approximation to the second
order derivative. This stencil represents Equation 2.3.

2.3.2 Discretization of Partial Differential Equations

Consider now a very simple differential equation:

−u′′
(x) = f(x) for x ∈ (0, 1) (2.4)

u(0) = u(1) = 0

The value of u
′′
(x) is known and we want to compute an approximation of

u(x). Boundaries conditions are: u(0) = u(1) = 0. If we want to approximate
the solution of a PDE over its domain of definition, we discretize the domain
by dividing it into smaller regions.
The interval [0,1] of equation 2.4 is divided into n+1 subintervals of uniform
spacing h = 1/(n+1). The discrete set of points that divide the interval are:

xi = i · h where i = 0, ..., n+ 1 (2.5)

This set of points, derived by the discretization of the real continous domain
is called the mesh[36].

By applying equation 2.3 to equation 2.4, we have that

−ui−1 + 2ui − ui+1 = h2fi (2.6)

where ui is the numerical approximation of u(xi) and fi ≡ f(xi). Note that
for i = 1 and i = n, the equation will involve u0 and un+1 which are known
quantities, both equal to zero in this case. Thus, we have a set of n linear
equations which we represent by the following matrix equation Au = f .




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2



·




u1

u2
...

un−1

un




=




h2f1 + u0

h2f2
...

h2fn−1

h2fn + un+1




(2.7)

This linear system can be solved by direct methods such as LU or QR fac-
torization. However, these methods require to explicitly modify the matrix
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2.7 which is bigger than the discretization domain. Moreover, this matrix
is very sparse and very regular; storing it explicitly is inefficient and stan-
dard factorization methods would destroy its structure. Therefore, iterative
methods are the best solution for these kind of problems.

2.3.3 Iterative Methods to Solve PDE

Now, we elucidate three iterative methods in order to solve the linear system,
Au = f . These three iterative methods, applied to a sparse and regular
matrix, such as the one in Equation 2.7 will produce stencil computations.

Jacobi Method

The Jacobi method is the simplest approach. The ith equation of a system
of n linear equations is:

Σn
j=1ai,juj = fi (2.8)

where uj is the jth entry of the vector u. The idea (beyond the Jacobi
method) is to solve independently for every vector component ui while as-
suming the other entries of u remain fixed. This results in the iteration:

u
(k)
i =

fi − Σj 6=iai,ju
(k−1)
j

aii
(2.9)

Since this method treats each equation independently, all the u
(k)
i compo-

nents can be computed in parallel. Moreover, notice how it is not necessary
to explicitly store the matrix A (Equation 2.7). The implementation of the
Jacobi Method is presented in Listing 2.4.

for t = 1..T
forall i = 1 .. n

unew[i] = (f[i] − uold[i−1] − uold[i+1])/2
forall i = 1 .. n

uold[i] = unew[i]

Listing 2.4: Pseudocode of a Jacobi Iteration for matrix equation 2.7.

Notice that the element f[i] does not belong to the shape of the stencil
since it is a constant. Since the array f is never updated its elements are
conceptually shared among all the workers.
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Gauss Seidel method

A faster version of the Jacobi method is the Gauss-Seidel method. The idea
is to reuse values updated in the current timestep. More precisely,

u
(k)
i =

fi − Σj<iu
(k)
j − Σj>iu

(k−1)
j

aii
(2.10)

Since each component of the new iterate depends upon all previously com-
puted components, the updates cannot be done simultaneously as in the
Jacobi method. On the other hand, the Gauss-Seidel Iterations uses less
memory and it is faster to converge. Its implementation for linear system
(2.7) is presented in Figure 2.5:

for t = 1 .. T
for i = 1 .. n

u[ i]=(f [ i ] − u[i+1] − u[i−1] )/2

Listing 2.5: Pseudocode of a Gauss Seidel Iteration for matrix equation 2.7.

The Gauss Seidel iteration depends upon the order in which the equa-
tions (2.8) are examined. In particular, the Gauss Seidel iteration updates
the elements of array u in a linear scan. If this ordering is changed, the
components of the new iterates will also change. Different orderings of the
Gauss Seidel iteration are cited in literature as Multicolor Orderings and are
usually employed to find a compromise between the Jacobi and the Gauss
Seidel iterative scheme.

Red and Black Gauss Seidel

The Red and Black Gauss-Seidel method changes the ordering of the standard
Gauss-Seidel method. The standard Gauss-Seidel method follows the natural
ordering while the Red and Black Gauss Seidel method follows an ordering
that can be represented by a checker board pattern made of red and black
dots. More precisely, in a monodimensional mesh, a gridpoint i is colored red
if it is even and is colored black otherwise. The method updates the solution
in two passes: first the red dots are calculated from the black dots and then
the black dots are calculated from the new red dots. This method not only
has faster convergence than Gauss-Seidel, but also allows parallel updates
since there is no interdependences within a single sweep.

The implementation of the Red and Black method for the matrix (2.7) is
presented in Figure 2.6.
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for t = 1 .. T
forall i = 1 .. n

// red sweep
if mod(i,2) == 0

b[ i]= (f [ i ] − a[i−1] − a[i+1])/2
forall i = 1 .. n

// black sweep
if mod(i,2) == 1

a[ i]= (f [ i ] − b[i−1] − b[i+1])/2

Listing 2.6: Pseudocode of a Red Black Gauss Seidel Iteration for matrix equation
2.7. Notice that the u vector is replicated in two vector a and b which are updated
in a alternated fashion.

2.3.4 Heat Equation

We are now going to present the two dimensional heat equation as an example
of a more complex, real world application of structured grids computations.
The heat equation describes the distribution of heat (variation of temper-
ature) in a given region over time. Consider a flat surface with a given
distribution of temperature. It can be discretized as a two dimensional array
u where u[i][j] contains the discretized value of temperature in the spatial
domain (Figure 2.3).

The heat equation states:

∂u

∂t
= α∆u (2.11)

where ∆ is the laplacian operator and α is a positive constant related to
the physical properties of the surface material (thermal diffusivity). In our
two dimensional mesh the laplacian operator corresponds to the following:

∆u =
∂2u

∂x2
+
∂2u

∂y2
(2.12)

We can utilize the two variable version of the finite difference approx-
imation shown in Equation (2.3) in order to obtain the discrete laplacian
operator:

∆u ≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
+ (2.13)

u(x, y + k)− 2u(x, y) + u(x, y − k)

k2
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Figure 2.3: Discretization of temperature over a flat surface. The domain is
divided into rectangles of width h and height k.

If we let h = k, i.e., discretization has the same precision over the two axis,
we have the following simplification:

∆u(x) ≈ 1

h2
[u(x+h, y)+u(x−h, y)+u(x, y+h)+u(x, y−h)−4u(x, y)] (2.14)

The above equation is called the five-point centered approximation to the
Laplacian[36] and its corresponding stencil is shown in Figure 2.4.

1

1

1

1
-4

Figure 2.4: Five-point stencil for the centered difference approximation to
Laplacean.

Consider now the case that ∂u
∂t

is known over domain Ω and boundary
values are known on the domain boundary τ . We want to compute the
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distribution of temperature u at a given time instant t0. By substituting
equation (2.13) in (2.11) we obtain the following Discrete Poisson Equation:

u(x+ h, y) + u(x− h, y) + u(x, y + h) (2.15)

+u(x, y − h)− 4u(x, y) = h2f(x, y) on Ω

u = 0 on τ

where function f(x, y) represents the known values of ∂u
∂t

over domain Ω.
Similarly to Section 2.3.2, we can derive a matrix equation from this system
of equations. In order to do so, we take the lexicographical column ordering
of u, meaning

u = ((u1,1, u2,1..., un,1), (u1,2, u2,2, ...un,2), ..., (u1,nu2,n...un,n)). (2.16)

and we will indicate the various column as:

u1 =(u1,1, u2,1..., un,1)

u2 =(u1,2, u2,2..., un,2)

...

un =(u1,n, u2,n..., un,n)

(2.17)

We obtain the follow matrix equation:




T −I 0 . . . 0

−I T −I . . .
...

0
. . . . . . . . . 0

...
. . . −I T −I

0 . . . 0 −I T



·




u1

u2
...

un−1

un




=




f1

f2
...

fn−1

fn




(2.18)

where I is the nxn identity matrix and T is the nxn tridiagonal matrix:




4 −1 0 . . . 0

−1 4 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 4 −1

0 . . . 0 −1 4




(2.19)

Applying the Jacobi method to the matrix equation (2.18) we obtain the
following code:
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for t = 1..T
forall i = 1 .. n

forall j = 1 .. n
unew[i][j] = (f [ i ][ j ] − uold[i−1][j] − uold[i+1][j] − uold[i][j+1] −

uold[i][j+1])/4
forall i = 1 .. n

uold[i][j] = unew[i][j]

Listing 2.7: Pseudocode of Jacobi method for the linear system 2.18.

Simulation

The previous example assumed that the derivative of temperature at a given
time was known. The final value computed is the distribution of temperature
at a given time instant (steady state). Consider the more interesting case
where we know the distribution of temperature at a given time t0 and by
using the heat equation (2.11) we want to simulate how the system evolves
in time. In order to do so we introduce another approximation by discretizing
∂u
∂t

using the fist order forward time difference:

∂u

∂t
≈ u(t+ k)− u(t)

k
(2.20)

We then apply this approximation (2.20) (discretized with respect of time)
to the heat equation (2.11) obtaining:

u(t+ 1)− u(t)

k
= α∆u (2.21)

then we discretize over the spatial domain using the discrete laplacian
operator (2.13) obtaining.

u(t+ 1, x, y)− u(t, x, y)

k
= α

1

h2
[u(t, x+ h, y) + u(t, x− h, y) (2.22)

+u(t, x, y + h) + u(t, x, y − h)− 4u(t, x, y)]

We let r = αk/h2 and rewrite equation 2.22:

u(t+ 1, x, y) = u(t, x, y) + r ∗ (u(t, x+ 1, y), u(t, x− 1, y),

u(t, x, y + 1), u(t, x, y − 1)− 4u(t, x, y))

(2.23)
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which is the five point stencil presented in Figure 2.4, only with different
coefficients.

The importance of Structured Grid computations should be clear now.
Partial differential equations are fundamental in order to model almost any
physical phenomena. Moreover, PDE solvers based on the finite difference
method require the execution of a structured grid computation. The two
dimensional heat equation presented here is probably one of the simpler
problems to solve. Other models, e.g., hydrodynamic models involve multiple
discretized domains of higher dimensionality[13]. Moreover, it should be
clear that the size of a stencil shape and the size of the discretized domain
are both a function of the required precision. Therefore, structured grids,
although a fairly narrow class of data parallel computations, are fundamental
for many simulation codes and exhibit remarkable differences depending on
the modelled phenomena.

2.4 Properties of Structured Grid Computa-

tions

Now that we have introduced some simple real world examples of structured
grids computations, we can further explore their properties. We have seen
that they perform sweeps5 over multidimensional data structures. The size
and number of spatial dimensions of these data structures are related to
the type of problems and the required precision. For a “typical” stencil
computation, the following usually applies:

1. The size of accessed (and updated) data structures exceed the capacity
of available data caches.

2. The number of shape points is small, e.g. five points for the laplacian
operator.

A consequence of 1 is that elements have to be fetched from the memory mul-
tiple times during a time step. Moreover, because of 2, the number of floating
point operations per point is relatively low, which suggests that transfers of
data from the memory are the limiting factor for performances. Therefore,
most of the research on optimizations for stencil computations has focused on
the full exploitation of the memory hierarchy in order to avoid stalling caused
by memory transfers; most notably by using tiling optimizations[34]. Tiling

5With the term sweeps we denote the update of a data structure, touching every point.
The ordering is not relevant.
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optimizations modify the order in which updates are performed in order to
reduce the distance between accesses to the same location in memory. This
effectively reduces the number of cache miss and increases the computation
performance. Tiling is not only utilized for structured grids computation, but
also in scientific computing applications6. Its efficiency is strictly dependent
on:

1. The computation type.

2. The data size.

3. The underlying concrete machine where the program will be executed.

We will now concentrate on the first point: the peculiarities of structured
grids computations that may affect optimizations techniques. We will expand
on the latter two topics in the following chapters.

Now we can analyze the three methods introduced in the previous section.
The Jacobi, Gauss-Seidel and Red & Black examples presented in Section 2.3
are all possible solutions to the same computational problem. The Jacobi
method is the most promising in terms of performances because:

• There are no functional dependencies between elements inside the loop.
Therefore the update of different elements can be performed in par-
allel. On the other hand, the Gauss-Seidel method has dependencies
between elements during the same time step, e.g., As+1

i,j has the fol-

lowing functional dependencies Asi,j+1 , Asi+1,j , As+1
i−1,j , As+1

i,j−1 .

• During a time step, Jacobi performs a single sweep over all elements
while the Red & Black version requires two sweeps.

However, it is clear that the result obtained by these three algorithms
is different after a timestep. Therefore, we have to consider their numerical
properties in order to determine which one performs best.

2.4.1 Convergence

While numerical convergence properties of iterative methods are outside the
scope of this thesis, they are fundamental for achieving the best performance
in real world applications. The Jacobi method is without doubt the most

6Tiling can be beneficial for any computation accessing data structures (bigger than
the size of available data caches) multiple times. These conditions usually arise in scientific
computing applications.
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Figure 2.5: In (a), we show a 3×3 grid with surrounding ghost cells (marked with a
“G”) that are used to store boundary conditions. In (b), we show a 3×3 grid which
does not require ghost cells because it has periodic boundary conditions.

Constant Boundaries

There are two main types of constant boundary conditions. In the first case, the

points along the boundary do not change with time, but do change depending on

position. In this case, we can use ghost cells (like in Figure 2.5(a)) to store these

values before any stencil computations begin. Once the ghost cells are initialized,

they do not need to be altered for the rest of the problem. In this thesis, all three

3D stencil kernels have this type of boundary condition. However, the ghost cells

consume a non-trivial amount of memory for 3D grids. Suppose that we have an N3

grid that is surrounded by ghost cells. Then, the resulting grid has (N + 2)3 cells. If

N = 16, then ghost cells represent an astounding 30% of all grid cells. However, if

N = 32, then the percentage drops to 17%.

The second case is if the boundary value does not change with time or position.

In this case, the entire boundary can be represented by a single constant scalar

throughout the course of the problem. Consequently, we no longer need to have

individual ghost cells like the previous case.

Periodic Boundaries

Another common boundary condition is to have periodic boundaries, as shown in

Figure 2.5(b). For points along the boundary, this means that they have additional

neighbors that wrap around the grid. For example, the left neighbor of the upper left
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neighbors that wrap around the grid. For example, the left neighbor of the upper left

(b)

Figure 2.5: Graphical depiction of periodic boundary conditions( Figure 2.5a )
and constant boundary conditions ( Figure 2.5b ) of a 3x3 mesh.

efficient, but it is very often the slowest to converge to a solution [13]. More-
over, it is not possible to determine a priori which of the three methods will
converge the fastest although heuristics exist. As an example, for problems
arising from finite difference approximations, the Red & Black algorithm
gives the best results [16].

Consider now a more subtle problem related to numerical convergence.
Numerical convergence has to be tested periodically, i.e., at the end of each
time step ( or a sequence of time steps ). These tests obviously take some
time therefore increasing the total running time of the computations. Even if
their contribution can be negligible, they modify the computation structure,
reducing its regularity and therefore excluding some optimization techniques.
Intuitively, we can understand that if the computation during different time
steps is always the same, then we could take advantage of this property, e.g.,
by collapsing the execution of different time steps.

2.4.2 Boundary Conditions

In the examples in Section 2.3, we selected very simple boundary conditions.
Since finite difference methods are used to discretize real world problems,
complex boundary conditions may arise. Boundary conditions can be classi-
fied in a similar way as stencil computations:

• Constant Boundaries: Boundary values do not change over time. In
this case, we have a halo around the boundaries of the grid where values
are never updated. These elements are often called ghost cells.

• Variable Boundaries: Boundary values change over time. A common
case is periodic boundary conditions where the domain is toroidal;
therefore, functional dependencies that exceed the domain boundaries
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are wrapped around the computation domain. As an example, consider
a two dimensional domain, where the right neighbour of an element in
the right border is the left most element lying in the same horizontal
axis.

The case of ghost cells is the easiest to implement and does not affect per-
formance. It will be necessary to have slightly bigger data structures in order
to contain the ghost cells. Ghost cells will be only read and never updated;
therefore, the computation performed for every element is the same. In the
case of periodic boundary conditions, additional modulo and conditional op-
erations should be introduced in order to distinguish boundary and external
elements and to wrap around spatial coordinates on the toroidal domain. In
some cases, the handling of boundary conditions can dominate the runtime
of a stencil computation[38].

2.4.3 Stencil Coefficients

The matrix presented in equation (2.7) has a very regular structure. However,
there are matrices where the non zero elements are not predictable. Thus,
it will be necessary to store additional grids of coefficients, increasing the
memory transfer per element update. This is true for lattice boltzmann
methods (LBM) for computational hydrodynamics[13].

2.4.4 Notable Examples and Conclusions

Other notable examples of widely used stencil computation that are hard to
classify are:

• Multigrid methods: Used as PDE solvers, they utilize a hierarchy of
discretizations [9]. This approach is based on the fact that the conver-
gence of the finite elements methods can be accelerated by varying the
domain discretization over time.

• Adaptive Mesh Refinement (AMR) methods: In this class of compu-
tations, the discretization is varied over time depending on the actual
phenomena that is modelled. As an example consider a physical model
with collisions, where we want to dynamically increase the precision of
the simulation in the part of the domain where the collision take place.
These methods are used when a higher precision on all the domain at
all time would make the simulation infeasible[7].

22



Chapter 2. Data Parallel with Stencil Computations

Notice that AMR methods, although very similar to structured grid com-
putations, are dynamic variable stencil computations.

In conclusion, structured grids are a subset of data parallel computations
which exhibit a pattern of interaction only between neighbour elements. They
usually stem from numerical algorithms for the resolution of partial differen-
tial equations, which are in turn at the heart of most simulation codes.
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Chapter 3

A Hierarchical Model for
Optimization Techniques

In this chapter, we introduce a formal model for optimization methods. The
process of concretion from a high level abstraction to an executable pro-
gram for stencil computations was presented by Meneghin in his doctoral
thesis[31]. Specifically, at the highest level, the stencil computation is ex-
pressed in a domain specific language while at the lowest level, an executable
file is produced. This process of concretion is performed by a framework
for a class of computations.

We claim that optimizations conceptually work at different levels of ab-
straction; therefore, they can be added to the concretion hierarchical model.
Moreover, their effect can be estimated by defining a cost model at every
different level of abstraction, thus providing a tool to analyze program trans-
formations. The two biggest difficulties of optimization are:

1. Determining if a transformation is safe. Enforcing a semantic equiva-
lence that is too strict will reduce the number of applicable transfor-
mations. “Unfortunately, compiler without high level knowledge about
the application, can only preserve the semantics of the original algo-
rithm” [2]. Therefore, it is necessary to gather domain specific knowl-
edge about the application that has to be optimized and render this
information usable by a compiler.

2. Determining if a transformation is beneficial for performances.

3. Determining the optimal configuration, i.e. the best parameters, for
a large set of different optimizations which have complex interaction
patterns.
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The benefits of a framework are obvious for a programmer since it provides
high level mechanisms to express a computation. These high level mecha-
nisms are implemented in a hierarchical way; therefore, the framework is also
extensible. On the other hand, the benefits of optimizations are determined
with certainty only by executing the computation. However, it is fundamen-
tal to have a structured model to analyze optimizations and estimate their
impact using a cost model of the real architecture. Therefore, we claim
that by using a single hierarchical model we can represent and analyze both
the implementation and the optimization of a class of computations.

3.1 Optimization in a Hierarchical Model

In this section, we introduce the notion of a framework for a generic class
of computations[31]. We will assume that we have a domain specific lan-
guage for this class of computations. By domain specific language, we refer
to a language tailored explicitly to express a subset of all possible computa-
tions. Domain specific languages trade generality for expressiveness and for
a high level of abstraction, thus resulting in higher productivity[32]. A com-
putation expressed with such language features a high degree of abstraction
with respect to an executable program described at firmware level. In fact,
a high level language has the primary objective of preventing programmers
from managing low level mechanisms. However, since the computation is ex-
ecuted on a real architecture, there is a gap between the level of abstraction
desired by a programmer and the execution of the computation. A frame-
work fills this gap between the high level representation and the firmware
level executable by implementing the concretion process. This process con-
sists in the transformation of a program described at the highest level into its
equivalent version at the lowest level. The process is structured in a hierar-
chical way, meaning that it is defined on multiple steps. Every level i in this
process has a set of instruction (or mechanisms) Ii and a specific language
Li. Moreover, every mechanism of a level i is implemented at a lower level j
using mechanisms defined in the language Lj.

Now, we have to define a concretion step between two levels.

Definition 3.1 (Concretion Function). Given two adjacent levels of abstrac-
tion, the concretion function Ci

j is a mapping from the higher level i to the
lower level j which is always defined for every semantically correct program.

We are implicitly stating that there always exists a naive way to translate
a program from a high level of abstraction down to an executable one. If we
only consider the definition of the concretion function and define the language
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of every level, we have a model for the concretion of a class of computations.
However, we enrich this model in order to account for optimizations. Intu-
itively, an optimization transforms an input program into an equivalent one,
which performs better on a given architecture. Aho et al.[2] introduce the
concept of optimization as “Elimination of unnecessary instructions in object
code, or the replacement of one sequence of instructions by a faster sequence
of instructions that does the same thing”. Although it is very clear, this is
not a formal definition.

Definition 3.2 (Program Transformation). Let the space of well formed pro-
grams at level i be L∗i . A program transformation is a function of L∗i in itself.

Therefore, given a program a ∈ L∗i , a transformed program b ∈ L∗i is
produced. Notice that a transformation is defined on a specific level. It is
obvious that a program transformation is relevant only if it preserves the
meaning of the program; in that case, the transformation is legal (or safe).
The explicit definition of legal transformation was debated extensively in the
compiler research field. Bacon et al.[5] give many possible definitions of a
legal transformation and conclude that the following is the most reasonable:
“A transformation is legal if the original and the transformed programs pro-
duce exactly the same output for all identical executions”. However, we will
provide a more abstract definition that better suits our needs. More pre-
cisely, in order to formally define a legal transformation, we need to define
the concept of equivalence of two programs.

Definition 3.3 (Equivalence). For every level i, there exists a formal seman-
tic associated to every well formed program expressed in Li. Two programs
a and b will be equivalent at level i if their semantic is equal: JaKi = JbKi.
Therefore, the space of well formed programs at level i will be partitioned into
disjoint groups of equivalent programs.

Now we can define:

Definition 3.4 (Legal Transformation). A transformation f defined at level
i is legal if ∀a ∈ L∗i f(a) = b =⇒ JaKi = JbKi

In other words, a transformation is legal if for every input program, it
produces an equivalent one. There could be an infinite number of legal
transformation which can be trivially obtained from a given input program
a. As an example, consider a sample piece of code defined in a general
purpose language:

B[i , j ] = A[i,j ] + 1

27



Chapter 3. A Hierarchical Model for Optimization Techniques

An equivalent program is:

B[i , j ] = A[i,j ] +3 −2

The semantic of the right hand side of both statements is obviously the same
and countless other legal transformation can be made in a similar trivial way.
Until now, we have only defined a program transformation and a legal trans-
formation. An optimization is a legal transformation which introduces some
benefits in terms of performance. Performance is evident when executing the
application on a real architecture. Therefore, we need to formally introduce
the concept of performance in our model. In order to do so, we assign a cost
model to every level.

Definition 3.5 (Cost Model). Given the space L∗i of well formed programs
at level i, cost model Ci for level i is a function of L∗i to R+.

This is a very general definition because it states that for every level, there
exists a function that associates every program to its cost, which cannot
be negative. Since our model is hierarchical, the cost model should also
be hierarchical. Therefore, the cost model at the highest level features a
high level of abstraction and it does not consider peculiarities of specific
architectures. On the other hand, the cost model of lower levels should be
closer to the actual execution of the application on the given architecture.
Next, we formally define an optimization.

Definition 3.6 (Optimization). Given a hierarchical model which corre-
sponds to the execution of a computation on a target architecture, a legal
transformation f , defined at level i, is an optimization if ∃P1 ∈ L∗i . f(P1) =
P2 and at an underlying level j ≤ i, the cost of the transformed program
Cj(P2) is less than the cost of the original program Cj(P1)

1.

In other words, an optimization for a program corresponds to the applica-
tion of a legal transformation such that the cost of the transformed program
is lower at an underlying (or at the same) level of abstraction. We are not
imposing that the cost should be lower at the same level of abstraction where
the transformation is applied. This is because the cost model at an higher
level might be too abstract to capture the advantage of the optimization (
this is the case of many optimizations described in Chapter 4). Notice that
we are also not implying that the cost of the transformed will be lower at
the firmware level, where it corresponds to the actual completion time of
the computation. Otherwise, we would have that an optimization, in order

1When considering the cost of a program Cj(P1) where P1 is defined at a higher level
of abstraction i > j we are indeed considering Cj(Ci

j(P1))
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to be labelled so, has to increase performances on any possible real archi-
tecture which is generally infeasible. The extreme consequence is that we
could only define optimizations at the firmware level (therefore only for a
specific architectures). Instead, we want to define and analyze optimizations
using abstractions that are oblivious to architecture peculiarities. It would
be compiler’s responsibility to decide when to apply a given optimization
after knowing the real architecture where the program has to be executed.

This definition of optimization in a hierarchical model, although fairly ab-
stract, expounds many real practices in compilation techniques. The equiva-
lence classes of a program at a given level correspond to the space of possible
optimizations (optimization space). A heuristic serves to prune this space
and eliminate choices that are known to be inefficient. After space pruning,
the compiler will make a choice among all candidate programs. Notice that
this type of optimization problems are usually NP, e.g., selecting the best
partitioning[15]. Defining the process on multiple levels reflects the fact that
optimizations works at different levels of abstraction. Therefore, an opti-
mization working at higher level of abstraction, where the semantics of the
language is as close as possible to the intended semantics of the program,
will manage different mechanisms with respect to a peephole optimization2

working on the object code of the application.

3.2 The Reference Architecture

In this section, we introduce the notion of a framework for the class of stencil
computations developed in[31]. Similarly to Section 3.1, we will assume that
we have a domain specific language[32] for the class of stencil computations.
We will use these computations as an example throughout all this thesis, but
note that the formalization presented in the previous section is valid for any
generic computation. A stencil representation, defined with a domain specific
language, features a high degree of abstraction with respect to an executable
program described at firmware level. The model presented in this section
will give an idea of the whole process of concretion. In [31], the concretion
process was defined on four separate levels:

1. Functional Dependencies.

2. Partition Level.

2In compiler theory, peephole optimization is a kind of optimization performed over
a very small set of instructions in a segment of generated code, e.g., removing duplicate
instructions.
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4. Firmware Level.
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Figure 3.1: Framework for stencil computations as presented in [31].

I The stencil computation is defined at the highest level of Functional
Dependencies.

II The stencil computation, defined at the functional dependencies level
is then translated in the underlying Partition Level where functional
dependencies become dependencies among partitions.

III At the Concurrent Level, the partitions are associated to different
processes and the dependencies between partition become communica-
tions among processes. Therefore, we assume that a message passage
paradigm is used.

IV Finally, we compile an executable program by means of a standard com-
piler.

We briefly explain these steps showing the concretion process for a struc-
tured grid computation: the Laplace operator of Figure 2.3. At every step,
we will indicate language, equivalence class, and cost model of every level.
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3.2.1 Functional Dependencies

The visual representation of functional dependencies of the laplace stencil
is presented in Figure 3.2a. This is a very intuitive representation as it
graphically depicts the application point and the shape of the stencil. Since
structured grids computations are static fixed stencils, every element has
the same shape relative to its application point. Therefore, such a simple
representation is sufficient to characterize the whole computation. The cost
model is very simple at this level. The cost is proportional to the numbers of
application points that have to be updated. The semantic of the computation
is given by the shape of the stencil.

F

(a)

Pu

P

P
rP l

Pd

(b)

Figure 3.2: Graphical depiction of the functional dependencies of Laplace sten-
cil computation ( Figure 3.2a ) and its partition dependencies ( Figure 3.2b ).
White external cells represent the Incoming Dependency Set of P. Grey cells rep-
resent elements in the Incoming Dependent Region while cells in the central zone,
delineated by the black box, contain elements of the Incoming Independent Re-
gion. Since this particular shape is symmetric, outgoing and incoming sets overlap.
However, this is not always the case because some stencil’s shapes might not be
symmetric.

3.2.2 Partition Dependencies

When passing from the functional dependencies level to the partition de-
pendencies level, the elements will be divided into different partitions. A
partition P will have a set of neighbour partitions and will interact with
some of them. Functional dependencies between elements that cross the par-
tition boundaries will be translated as dependencies between partitions. We
can divide the partition in different regions depending on the functional
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dependencies with the neighbouring partitions. Consider the elements whose
dependencies extend outside the partition borders; we can define:

• Incoming Dependent Region: composed by elements which shape
extend outside the partition borders.

• Incoming Independent Region: composed by all elements of parti-
tion P not included in the incoming dependent region.

• Incoming Dependency Set: all elements outside the partition P
which are needed to perform the computation.

Then, we consider all elements which belong to the partition P and are
needed by a neighbor partition.

• Outgoing Dependent Region: contains all elements which belong
to the shape of some external element.

• Outgoing Independent Region: composed by elements which are
not contained in any external element shape.

• Outgoing Dependency Set: all elements outside the partition P
which need elements from P .

Figure 3.2 shows the concretion process from the functional dependencies
level to the partition dependencies level for the Laplace stencil. These de-
pendencies contain the set of all functional dependencies among elements of
the given partition and the elements in the neighbour partitions.

Notice that in order to represent computations at this level we can use
a graphical representation. Moreover, equivalent computations at this level
will produce the same output partition given the same input.

As anticipated in Section 3.1, the cost model at this level should be less
abstract with respect to the model at the highest level. We define the cost
at the partition dependencies level proportional to the number of application
point to be updated and the size of the outgoing dependent region.

Heuristics at the level of Partition Dependencies After, having de-
fined the first two levels of our hierarchy, we can introduce the first optimiza-
tion by selecting an optimal partition strategy. Conceptually, we can group
together elements in any possible way. However, we use the cost model of
the partition dependencies level in order to define an heuristic to select a
good partitioning strategy. Since there is cost associated to every element
that has to be updated, we would want to have partition with the same
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size. Therefore, we can rule out any non regular partitioning that would
produce an unbalanced amount of work between partitions. Three suitable
candidates in order to divide the working domain in equal parts for a two
dimensional computations are: row, column and block partitioning. Since
we are considering structured grids computations, we know that partition
dependencies can only arise on the surface of a partition. Therefore, the sur-
face of a partition is an upper bound on the size of partition dependencies.
We can conclude that block partitioning is obviously the most effective as
the surface to volume ratio is lower with respect to the other two partitioning
strategies (Figure 3.3). Notice also how the number of partition dependen-
cies are invariant with respect of the parallelism degree for row (or column)
partitioning (Figure 3.4).
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Figure 3.3: Perimeter of a partition with respect to partition area for row and
block partitioning in a 2 dimensional working domain. If we consider a square
working domain, row and column partitioning will produce the same results.
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Figure 3.4: Dependencies between partitions with respect to parallelism degree
for row or block partitioning in a two dimensional working domain.

By selecting block partitioning among all possible partition techniques,
we have defined a heuristic for the class of structured grids computations.
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Notice that heuristics, in general, are guided by a deep knowledge of the
underlying concrete levels while the heuristic that we introduced is based
on the codification of the domain specific knowledge associated with the
application domain. Similarly to domain specific language, space pruning
guided by high level knowledge is very effective, but it lacks generality since
it applies only to a narrow class of computations.

3.2.3 Concurrent Level

When translating from the partition dependencies level to the concurrent
level, the output is a program defined in a generic purpose programming lan-
guage with additional mechanism to handle inter-process communications.
We assume that a message passing paradigm is used. Therefore, the com-
piler implementing this phase of the concretion process has to determine
the pattern of communications from the partition dependencies and generate
code. Outgoing regions will be translated as send buffers while incoming
regions will be translated as receive buffers. Communication primitives will
be used to exchange this data. All data structures are instantiated at the
concurrent level. More precisely, every partition is divided into sections. Sec-
tions are buffers which implement the regions defined at the partition level.
Every section, which implements a portion of the dependent and independent
regions, handles the communication with a neighbouring process.

At this level, we have a more detailed cost model. We assume that com-
munication Tcom and computation Tcalc can overlap and define a cost model
for both. Moreover, we define the cost of a communication of a message as
Tsetup + m ∗ Ttrasm where the Tsetup and Ttrasm parameters depend on the
target architecture[40]. Tcalc is instead proportional to the number of the
instructions executed.

Applying the concretion function to the Laplace stencil, defined at the
partition dependencies level, will produce the concurrent level code shown in
Figure 3.5.

Notice that we are not taking advantage of overlapping communications
and computation. All communications are performed at the beginning of a
time step and subsequently all the elements of the partition are updated. We
can optimize the concretion function in order to produce the concurrent code
shown in Figure 3.6. By applying definition 3.6, this optimization is defined
at the concurrent level and the reduction in cost can also be demonstrated
at the concurrent level.

As we can see, the first phase consists of sending data to all adjacent
partitions while computing the Independent Incoming Region. Sent elements
belong to the Outgoing Dependent Region and are stored in buffers ( sections
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double Jin[512][512], Jout[512][512];
load partition values (Jin);
for(istep = 0 ; istep < num step; istep + +){

SEND(P(−1,0)); SEND(P(0,−1));
SEND(P(0,1)); SEND(P(+1,0));
RECV(P(−1,0)); RECV(P(0,−1));
RECV(P(0,1)); RECV(P(+1,0));

COMPUTE( partition );

swap(Jin, Jout);
}
return partition (Jout);

Figure 3.5: Pseudocode representation of the Laplace stencil at the concurrent
level. Partitions (or processes) are labelled by means of the coordinates with
respect to the actual partition.

) specific to every neighbour. Then, elements of the Incoming Dependency
Set are received from adjacent partitions and the Incoming Dependent Re-
gion is computed. In both cases, two matrices are used in order to preserve
correctness of the algorithm. This algorithm will constitute the baseline for
the optimizations presented in next chapters. Notice that a similar algo-
rithm is used in [12] as a baseline MPI implementation for structured grid
computations.
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double Jin[512][512], Jout[512][512];
load partition values (Jin);
for(istep = 0 ; istep < num step; istep + +){

SEND(P(−1,0)); SEND(P(0,−1));
SEND(P(0,1)); SEND(P(+1,0));

COMPUTE( incoming independent region );

RECV(P(−1,0)); RECV(P(0,−1));
RECV(P(0,1)); RECV(P(+1,0));

COMPUTE( incoming dependent region );

swap(Jin, Jout);
}
return partition (Jout);

Figure 3.6: Pseudocode representation of the Laplace stencil at the concurrent
level. With respect to concurrent code shown in Figure 3.5, we have that commu-
nication and computation overlaps.

3.2.4 Firmware Level

The language at the firmware level is object code (assembler). Therefore, it
is strictly dependent on the architecture where the program is executed.

Since the language employed at the concurrent level is a normal program-
ming language, translation from the upper level to this level is performed by
a standard compiler. Therefore, we will not analyze in detail this last step of
concretion. There are many optimization techniques which can be used when
translating from the concurrent level to the firmware level. These are com-
piler optimizations in a classical sense[2] since their objective is to produce
more efficient object code by:

• Exploiting the memory hierarchy on modern architectures.

• Modifying program structure in order to substitute inefficient pieces of
code with more efficient ones.

A classification of these standard techniques is presented in Section 5.3.
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3.3 Conclusions

We formally defined an hierarchical model to analyze the implementation
and optimization of a generic class of computations (Section 3.1). We pre-
sented an instantiation of this model for the class of stencil computations
and presented two simple examples of a heuristic (Section 3.2.2) and of an
optimization (Section 3.2.3). In the following chapters, we will present more
interesting examples of optimizations and their effects on structured grid
computations.

38



Chapter 4

Optimizations for Structured
Grids on Distributed Memory
Architectures

In this chapter, we present a comprehensive review of optimizations tech-
niques for structured grids computations on distributed memory architec-
tures. In section 3.2, we have shown the process of concretion for a stencil
computation. We described how elements are grouped together and conse-
quently how functional dependencies become communications between work-
ers. The final output of the concretion process is an executable file. For-
tunately, in order to describe the class of optimizations presented in this
chapter, it is sufficient to only consider the concretion process up to the
concurrent level. In other words, the benefits from the optimizations here
presented are evident at the concurrent level so there is no need to consider
the whole concretion process.

4.1 Q transformations

Q transformations are a family of transformations, which performs a rigid
translation of the stencil’s shape. In section 2.2, we defined the shape of a
stencil as the set of all functional dependencies of an element. Given the
regularity of structured grids computations, the shape is the same for every
element. Therefore, the shape of a d-dimensional stencil can be represented
as a set of d-dimensional points which are displacements of the functional
dependencies with respect to the application point. Consider as an example
the 2 dimensional Laplace stencil in Figure 3.2a; its shape can be represented
as {(0,−1), (0, 0), (+1, 0), (+1, 0), (0,+1)}.
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Figure 4.1: Graphical depiction of a time step of a mono dimensional jacobi stencil
on a toroidal grid (Figure 4.1a) and a positive Q trasformation of the same stencil
( Figure 4.1b). The stencil kernel is the weighted average of the two elements of
the shape.

Definition 4.1 (Q transformations). A Q transformation is a rigid transla-
tion of a stencil shape. Given a d-dimensional shape S = {p1, p2, p3, · · · , pi}
and a d-dimensional vector q, the Q transformation of S given q is Qq(S) =
{p1 + q, p2 + q, p3 + q, · · · , pi + q}.

Firstly, consider thatQ transformations are defined over Structured Grids.
Since the shape of every element is modified in the exact same way, the re-
sulting computation also belongs to the structured grids class.

The original and the modified programs are not equivalent in a classic
sense. Many definitions of computational equivalence exist. By Allen and
Kennedy[26], a transformed program is computationally equivalent to the
original program if the original and transformed programs produce exactly
the same output in the same order. This is obviously not the case for the
family of Q transformations. However, since the transformations correspond
to a rigid translation of the application point, the output values are indeed
correct, but their position is altered with respect to the original version (Fig-
ure 4.1).

Therefore, it is still possible to recover the correct output grid by sim-
ply translating elements in the output data structures with vector −q by
the number of time steps of the computation. In order to formally define
this property, it is necessary to introduce a new concept of computational
equivalence[31].

Definition 4.2 (Relaxed Computational Equivalence). A transformed pro-
gram is relaxed equivalent to the original one if it is legal in the classical sense
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F

Figure 4.2: Graphical depiction of the incoming functional dependencies of
Laplace stencil computation with positive Q Transformation applied.

except for a spatial rearrangement of the values in the output data structures.

Now we will claim, without proof (which can be found in [31]) that Q
transformations are relaxed safe for Structured Grids computations which
do not have functional dependencies between the same time step. The defini-
tion of relaxed safe follows from the previous definition of relaxed equivalence:

Definition 4.3 (Relaxed Safe Transformation). A transformation T is re-
laxed safe if for every transformed program Pb such that T (Pa) = Pb, Pb and
the original program Pa are relaxed equivalent.

4.1.1 Positive and Negative Q transformations

We have defined Q transformations and we have shown that they produce
the same results of the naive version. It is still unclear how they can be used
to increase performances of a stencil computation, especially because in order
to retrieve the final result, additional steps must be performed. Therefore,
we introduce a particular class of Q transformations.

Definition 4.4 (PositiveQ trasformation ). A Q transformation is a positive
Q trasformation if the resulting shape contains only non negative coordinates.

In the same way, we can define:

Definition 4.5 (Negative Q trasformation ). A Q transformation is a neg-
ative Q trasformation if the resulting shape contains only non positive coor-
dinates.

The positive Q trasformation for the Laplace stencil presented in Figure
3.2a is shown in Figure 4.2. Notice how every coordinate of the shape is
positive with respect to the new application point. We can analyze the effect
of this transformation on the Laplace stencil with the hierarchical model
presented in Section 3.2.
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1. Functional Dependencies level: It is clear that Q transformations work
at the functional dependencies level. In this case, the naive shape of
Figure 3.2a is translated into the shape of Figure 4.2.

2. Partition Dependencies level: We can see from Figure 4.3a and 4.3b
that since the points of the transformed shape are all positive, we have
that outgoing and incoming dependent regions do not overlap anymore.
More precisely, by using either positive or negative Q transformations,
the resulting outgoing and incoming dependent regions are the reflec-
tion of one another with respect to the center of the partition.

3. Concurrent Level: At this level, the advantage of positive (or negative)
Q trasformations is evident because the number of communications
between workers is reduced. By comparing Figure 4.3c and 4.3d, we
can see that the number of send operation goes from 4 to 3. The same
holds for receive operations. Generally, the maximum number of com-
munications (incoming or outgoing) in a structured grid computation
in n dimension is reduced from 3n − 1 to 2n − 1[31] by using positive
(or negative) Q transformations.

Notice, that the size of transferred data is unaffected by the transforma-
tion and only the number of communications is reduced.

The family of Q trasformations works by manipulating the stencil shape
defined at the functional dependencies level but the effects of this transfor-
mations are evident only at the underlying concurrent level. At this point, we
can introduce an additional optimization. By alternating positive and neg-
ative Q transformations, there is no need to translate values in the output
data structures if the number of time steps is even (Figure 4.4b).

42



Chapter 4. Optimizations for Structured Grids on Distributed Memory
Architectures

Pu

P
P

rP l

Pd

(a)

Pu

P

P
r

Pur

(b)

P

PdPdl

P l

(c)

Pu

P

P
r

Pur

Pu

P

P
r

Pur

Pu

P

P
r

Pur

Pur

(d)

Figure 4.3: Graphical depiction of Partition dependencies in the case of the
Laplace stencil (Figure 4.3a) and Laplace stencil with applied Q trasformation
(Figure 4.3b). The region at the center of P, surrounded by the thicker black box
is the incoming independent region. The grey elements belong to the incoming
dependent region, while the white elements belong to the incoming dependency
set. Incoming (Figure 4.3d) and outgoing (Figura 4.3c) communications at the
concurrent level with respective regions are also shown. Notice how outgoing and
incoming regions overlap completely in the original version, but only partially in
the transformed one.
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Figure 4.4: Graphical depiction of two time steps of a mono dimensional jacobi
stencil on a toroidal grid (Figure 4.4a) and the same computations with a positive
Q trasformation applied in the first time step and a negative Q trasformation
applied at the second step ( Figure 4.4b). The stencil kernel is the sum of the
two elements of the shape. Notice that the final displacement of output values is
correct.
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4.1.2 QM and QW transformations

We now introduce two optimizations that belongs to the Family of Q trans-
formations and are used to reduce memory occupation in stencil applications.
If we consider a general stencil program, with no dependencies inside a time
step, implemented at the concurrent level (Figure 3.6), it requires two data
structures1 to store the working domain. One data structure will contain
elements at time step t while the other will be used to store element of time
step t + 1 when they are computed. In other words, one data structure will
store elements at even time steps while the other will store elements at odd
time steps. It is indeed possible to map these two data structures to a single
one. This requires to modify both the stencil’s shape and the access pat-
tern. Both modifications can be computed by analyzing the shape of the
computation.

We can define both positive and negative QM transformations.

Definition 4.6 (Positive QM trasformation). A positive QM trasforma-
tionis a rigid translation of a stencil shape which is performed along a given
axis. Given stencil shape in a d-dimensional space: S = {p1, p2, p3, · · · , pi},
there exists a minimum integer i such that S1 = {p1 + [i, 0, · · · , 0], p2 +
[i, 0, · · · , 0], p3 + [i, 0, · · · , 0], · · · , pi + [i, 0, · · · , 0]} has only positive values in
the first coordinate of its shape points.

We can also define a negative QM trasformationby enforcing that the
first coordinate of resulting shape points are negative. Notice the difference
between positive Q trasformation s, which enforce that every coordinate of
every point of the shape should be non negative and positive QM trasforma-
tions which requires only one coordinate of every point to be strictly positive.
Similarly to what we did in Section 4.1 we will analyze this optimization in
the hierarchical model (Section 3.2). For simplicity, we will consider the
sequential case (no partition dependencies level) and periodic boundary con-
ditions.

1. Functional Dependencies level: It is clear that Q transformations work
at the functional dependencies level. Consider as an example the mono
dimensional Jacobi update that we presented in Section 2.3.3. Figure
4.5 shows the original (4.5a) and modified shape (4.5b).

2. Concurrent Level: At this level, the advantage of positive (or negative)
QM trasformations is evident. Consider the modified shape in Figure

1We are using the generic term data structure instead other more specific terms, e.g.
matrix, because the working domain of a stencil is generally defined on a d-dimensional
space.
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Figure 4.5: Graphical depiction of functional dependencies in the case of naive ja-
cobi stencil (Figure 4.5a) and the Jacobi stencil with applied positive QM trasfor-
mation(Figure 4.5b).

4.5b. It is possible to update the domain elements using a single data
structure, by storing results from the bottom up (Figure 4.6). How-
ever, because of periodic boundary conditions, it is necessary to use an
additional buffer to store elements at the boundary of the domain that
are updated first. It has been proven[31] that the size of the additional
space for buffering is negligible with respect of the size of the working
domain.
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Figure 4.6: QM transformation of the one dimensional jacobi stencil computation
presented in Figure 4.5. Operation are labeled as F1 · · · Fn in the order in which
they must be executed. The two array in the figure are logical since the imple-
mentation will utilize a single data structure. The ghost cells in the upper left
corner has to be updated at the beginning of every time step in order to preserve
correctness.
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Consider now a distributed architecture. We cannot overlap computation
and communication anymore since the modifications made at the concurrent
level by QM trasformations enforces the update of elements in a given order.
At the concurrent level, the sections of data structures that correspond to the
outgoing dependency set are sent before the computation starts. Similarly,
elements of the incoming dependency set have to be received before starting
the computation. A complete example of a positive QM trasformationis
presented for the Laplace Stencil (Figure 4.7).
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Figure 4.7: Figure 4.7a shows a graphical depiction of the incoming communi-
cations of Laplace stencil computation. The grey cells represent elements in the
Incoming Dependent Region while cells in the central zone, surrounded by the
black box, contain elements of the Incoming Independent Region. Figure 4.7b
shows a graphical depiction of the outgoing communications ( Figure 4.7b ) with
QM trasformation applied. The grey cells represent elements in the Outgoing
Dependent Region while cells in the central zone, surrounded by the black box,
contains element of the Outgoing Independent Region.

QW trasformations

Moreover, we realized that positive (and negative) Q trasformations also
allows updates on a single data structure. Some modifications are necessary
at the concurrent level in order to have Q transformed programs on a single
data structure. This new class of optimizations is called QW trasformations.

1. Elements of the outgoing dependency set must be sent before update
starts.
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2. Elements of the incoming dependency set has to be received before
starting the computation.

3. A wavefront update of elements is enforced.

Wavefront computations are well known in literature and the Gauss Sei-
del method presented in Section 2.3.3 belongs to this class. In wavefront
computations, the dependency between the elements of the domain requires
that the computation starts at a singular point at a corner of the plane and
propagates its effect diagonally to other elements. In the two dimensional
case, using a positive Q trasformation , we can see that the computation
should start on the lower left corner and every element update allows the
update of its right and upper neighbour (Figure 4.8b). At the concurrent
level, it is clear that by using QW trasformations we must first synchro-
nize with neighbouring processes and then update local elements. We have
successfully combined the positive effects of positive Q trasformations and
QM trasformations. Similarly to Q trasformation we can alternate positive
and negative transformations in order to restore the correct position of every
output element.

Hybrid Programming Model Until now, we only considered a distributed
environment where message passing primitives are used to communicate be-
tween processes. We briefly analyze the effects of the Q trasformation when a
hybrid programming model is used. By hybrid programming model we mean
that message passing is used between processing nodes and shared memory
mechanisms are used inside a node. Positive Q trasformation allows us to
split the update of partition points in a time step in any possible combination
without affecting the correctness. On the other hand, QW trasformations
and QM trasformations introduce some data dependencies that have to be
conserved. Notice that these are not functional dependencies (as in the case
of Gauss Seidel) since they are not present at the functional dependencies
level. At the functional dependencies level, two logical data structures exist.
Data dependencies arise at the concurrent level as a consequence of the imple-
mentation of logical data structures with real data structures. From Figure
4.8, we can see that QM trasformations preserve some usable parallelism at
a finer grain2 with respect to Q trasformations . On the other hand, QW
trasformations have no readily available parallelism. Only elements lying on
the same diagonal can be updated in parallel, ( similarly to the Gauss Seidel
computation ).

2By finer grain we mean that synchronizations are more frequent.
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Figure 4.8: Execution of transformed Laplace Stencil with QM trasforma-
tion(Figure 4.8a). The application point has been shifted by one position along
the vertical axis. Therefore points in the same horizontal plane can be updated in
parallel. Execution of transformed Laplace Stencil with QW trasformation(Figure
4.8b). Notice that the shape is exactly the same of the Q trasformation version.
The first element that has to be updated is shown in the lower left corner. A
generic element is also shown; the two arrows points to the elements that cannot
be updated before him. Therefore the updates must be executed in a waveform
pattern. Different axis (1,2 and 3 in the figure) represents set of elements that can
be updated in parallel if loop skewing is used.

4.2 Shift Method

The shift method (SH method ) is an optimization of the communication
patterns and it was presented by Plimpton on [33]. It works on the concur-
rent level aggregating together communications. This is done by modifying
the parallel program structure and grouping communications with diagonal
neighbours along the main axis. Therefore, unlike transformations of the Q
family, the Shift Method works entirely at the concurrent level. Consider that
this method gives no performance gain if there are no diagonal dependencies,
such as in the case of the Laplace stencil ( Figure 3.2a). Shift method be-
comes very useful if applied together with Q trasformation in order to further
reduce the number of communications. More precisely, consider the case of
the Laplace stencil where diagonal dependencies appear after having applied
the Q trasformation (Figure 4.2). By applying a positive Q trasformation ,
the number of required communications goes from four to three. By further
applying the shift method, we can reduce the number of communications
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from three to two. It has been proved in [31] that the combination of pos-
itive Q trasformations and shift method gives the lowest theoretical bound
on the number of communications which is equal to the number of spatial
dimensions.

We present now the application of the shift method on the nine point
stencil. The nine point stencil is an higher precision approximation of the
Laplace stencil[28]. We can see from Figures 4.10a and 4.10b, that communi-
cations are first performed on the vertical axes (1). Then, some of the ghost
cells elements received have to be copied on the send buffers (2). Matching
send and receive operations are performed on the horizontal axis (3), (4).

Figure 4.1 shows the structure of the concurrent code for a shifted stencil
computation. It can be compared with the baseline code presented in Figure
3.6.

It is evident that this method requires more complex concurrent code.
A time step has to be divided into d small steps where d is the number
of spatial dimensions of the stencil computation. Therefore, if we want to
overlap communication and computation, the incoming independent region
has to be updated in d separate phases. We can summarize these additional
difficulties as:

• Buffers size vary depending on their position on the working domain.

• More synchronization among processes is required.

• Superposition of computation and communication is more complex.
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double Jin[512][512], Jout[512][512];
load partition values (Jin);
for(istep = 0 ; istep < num step; istep + +){

SEND(P(−1,0)); SEND(P(+1,0));

COMPUTE( half independent incoming region );

RECV(P(−1,0)); RECV(P(+1,0));

copy(border elements of receive buffer into send buffers )

SEND(P(0,−1)); SEND(P(0,+1));

COMPUTE( remaining half of independent incoming region );

RECV(P(0,−1)); RECV(P(0,+1));

COMPUTE( dependent incoming region );

swap(Jin, Jout);
}
return partition (Jout);

Listing 4.1: Pseudocode representation of a two dimensional nine point stencil,
which has dependencies with every surrounding partition. Partitions (or processes)
are labeled by means of coordinates with respect to the examined partition.
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Figure 4.9: Graphical representation of incoming communications (fig. 4.9a) and
outgoing communications (fig. 4.9b) of the nine point stencil.
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Figure 4.10: Graphical representation of the incoming communication pattern (fig.
4.10a) and outgoing communication pattern (fig. 4.10b) of the nine point stencil
with shift method applied. Numbering reflects the order of the communications
needed to preserve correctness.
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4.3 Step Fusion

The step fusion method was developed by Meneghin[31] and it is strongly
influenced from the ghost cell expansion method presented in [17]. The ghost
cell expansion method (also called oversending in literature) is based on
sending more data less frequently between partitions. Therefore, we have
more loosely coupled processes and a reduction of the number of communi-
cations necessary to perform the computation.

4.3.1 Ghost Cell Expansion

In [17], it was proposed to group together elements needed by a neighbour
processes in more than one step, or in other words to expand the ghost cells
of every partition. This produces an interesting balance among computation
and communication time spent by each process to perform the computation.
The communication pattern obtained, using this method to group two con-
secutive steps, is presented in Figure 4.11. For simplicity, a two dimensional
stencil featuring functional dependencies only on the vertical axis is used.
We can compare the naive and oversend version of this simplified stencil:

1. On timestep 0, the oversend version transfers twice the necessary data
size and so, the receive buffer (ghost cells) has to be doubled in size.

2. While communications are performed, both the naive and oversend
version compute the incoming independent region.

3. When communications terminate, both versions update the incoming
dependent region. The oversend version also updates a portion of its
ghost cells.

4. The oversending version can complete timestep 1 without communicat-
ing with neighbouring processes.

It is now clear that this method work at the concurrent level. Similarly for
the shift method, computation and communication patterns are altered, but
the overlying representation of the stencil remains unchanged. The ghost
cell expansion can be applied multiple times. Its effects on the number of
communications are dramatic since they are reduced linearly with respect of
the level of expansion. By expanding ghost cells by a factor of two (Figure
4.11), we have half the communications of the naive version. A factor of
three of expansion would produce one third of the communications, and so
on. However, this reduction in the number of communications comes at a
cost:
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1. Every level of ghost cell expansion requires that an additional set of
ghost cells have to be added, thus increasing the memory footprint of
the computation. The size of the ghost cells is proportional to the
surface of the partition. Depending on the surface/volume ratio of the
partition, the increase in memory requirements can be substantial.

2. Additional ghost cells have to be updated. The previous consideration
about the surface/volume ratio holds also for the amount of additional
updates to perform. Moreover, the relationship between the level of
expansion and number of updates is quadratic. Given the original size
of ghost cells is g, the number of updates for n level of expansions are
Σn
i=1i ∗ g = g ∗ Σn

i=1i = Θ(n2)

3. Communications can only overlap with the update of the incoming
independent region at the first timestep.

From this analysis, we say, without loss of generality, that this method is
beneficial only when communications are the bottleneck of the computation.

The structure of the concurrent code for a single ghost cell expansion is
shown in Figure 4.2.

Interaction with Q trasformations Notice that we can combine Q
trasformations and the ghost cell expansion method since they work at dif-
ferent levels. Firstly, the shape is modified by a Q trasformation at the
functional dependencies level. Then, the implementation at the concurrent
level is modified by the ghost cell expansion method. The positive effects of
both class of optimizations are therefore combined and an example is pre-
sented in Figure 4.11.
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double Jin[512][512], Jout[512][512];
load partition values (Jin);
for(istep = 0 ; istep < num step/2; istep+ = 2){

SEND(P(−1,0));
SEND(P(0,−1));
SEND(P(0,1));

SEND(P(+1,0));

COMPUTE( independent incoming region );

RECV(P(−1,0));
RECV(P(0,−1));
RECV(P(0,1));
RECV(P(+1,0));

COMPUTE( incoming dependent region);

COMPUTE( external elements ∈ dependency set );

//Next Step

swap(Jin, Jout);

COMPUTE( partition );

swap(Jin, Jout);
}
return partition (Jout);

Listing 4.2: Pseudocode representation of a two dimensional laplace stencil with
oversending method applied.
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Figure 4.11: Communication patterns of a generic stencil computation (left) com-
pared with the same computation with oversending method applied (center) and
with a Q trasformation applied (right).
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4.3.2 Collapsing Time Steps

In [31], the Step Fusion method (SF ) is proposed as an alternate version
of the ghost cell expansion with additional positive effects on the memory
hierarchy. The step fusion method is performed directly on the functional
dependencies layer by grouping together two ( or more ) consecutive steps.
Notice that this is possible only if the computation kernel of the stencil is a
linear function. As an example consider the jacobi stencil:

forall i , j = 0 .. M−1 do B[i,j] = 0.25∗( A[i−1,j] + A[i,j−1] +
A[i+1,j] + A[i,j+1] )

and its transformed version with two fused time steps:

forall i , j = 0 .. M−1 do B[i,j] = 0.0625∗( A[i−2,j] + 2∗A[i−1,j−1] +
2∗A[i−1,j+1] + A[i,j+2] + 4∗A[i,j] + A[i,j−2] +
2∗A[i+1,j+1] +2∗A[i+1,j−1] + A[i+1,j] )

It has been proven that the communications between processes for ap-
plications with SF applied are the same for applications with oversending.
Similarly to the oversending method, it is possible to apply step fusion mul-
tiple times . Figure 4.12 shows multiple levels of step fusion and highlights
the relationship between SF and functional dependencies. We can see how
different levels of step fusion can be defined recursively. Every shape at level
i of step fusion is obtained by adding all functional dependencies of shape
points at level i− 1.
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Figure 4.12: Step Fusion method applied to the two dimensional Jacobi stencil
computation.

Since this transformation is performed at the level of functional depen-
dencies,we do not have the overhead of updating the ghost cells. However, the
two stencil performs a fairly different computation. When defining the cost
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model of the concurrent level, we said that the Tcalc was proportional to the
number of executed statements. However, both updates can be expressed as
a single statement although it is evident that they perform a different number
of floating point operations and access a different number of elements. There-
fore, in order to asses the effect on performances of the SF trasformation ,
we could modify the cost model of Tcalc at the concurrent level. On the other
hand, Tcalc was defined in such a naive way because, at the concurrent level,
we are primarily considering the effects of interactions between processes. In
other words, the optimization of the parallel implementations is at a higher
level of abstraction ( and importance ) with respect to the optimization of
the sequential version. We can not even analyze such modifications at the
firmware level because its cost model is strictly dependent on the architec-
ture and features no abstraction whatsoever. Therefore, in order to present
optimizations of the sequential program, it is convenient to add an inter-
mediate level of abstraction between the concurrent level and the firmware
level. In particular, since sequential performances of stencil computations
are primarily related to the efficiency of the memory system ( Section 2.4),
we will present a new level tailored to consider a generic memory hierarchy
in the next chapter.

4.4 Conclusions

In this section, we have shown a comprehensive list of optimizations for struc-
tured grids computations on distributed architectures. We omitted proofs
of correctness and preferred to show the effects of the different techniques
mostly in a graphical way which we believe is the best to explain how these
methods work and why they are beneficial for performances. The reader can
find all formal proofs in [31].

Consistently with the model presented in Section 3.2, we have shown how
we can join optimizations at different levels of abstraction. We have shown
that by combining positive (or negative) Q trasformation s with the SH
method , we obtain the minimum number of communications which is equal
to d for a d−dimensional stencil (both for receive and send operations). By
also applying the ghost cell expansion method we can further reduce the
number of communications linearly with respect to the level of expansion.
However, unlike Q trasformation s and the SH method , the ghost cell ex-
pansion method has negative effects on the Tcalc of the computation since
more elements have to be updated.

We also presented an extension to the ghost cell expansion method called
the SF trasformation [31]. In this case, we have all the positive effects of
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ghost cell expansion, without the drawback of updating external elements.
However, we could not perform a comprehensive analysis for this method.
In fact, the cost model at the concurrent level is not suited for the analysis
of the impact of this transformation on the memory hierarchy and the cost
model at the firmware level is too concrete to perform a reasonable analysis.
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Chapter 5

Optimizing for Locality on
Structured Grids Computations

In this chapter, we present optimizations that exploit the memory hierarchy
of modern architectures. Optimizations described here (except SF trasfor-
mation ) are used in general for many computations; however, we will con-
sider primarily their effects on structured grids computations. In order to
present these optimizations in a structured way, we have to extend the model
explained in Section 3.2. The effects of SF trasformation on the memory
hierarchy are presented as an introduction to the problems that stem from
deriving an accurate cost model for memory optimizations. A brief overview
of the classic optimizations methods used by compilers is presented in Sec-
tion 5.3. The class of loop reordering techniques is analyzed in Section 5.4.
Finally, the application of such techniques on structured grids computations
is shown in Section 5.5.

5.1 Extended Model

Drawing from the analysis of the previous chapter, we will now extend the
model described in Section 3.2 in order to represent a wider set of optimiza-
tions with respect to what was presented in [31]. The model has an abrupt
jump between the concurrent level and the firmware level. Thus, to fill this
gap, we are going to introduce an important addition to the model: memory
hierarchies.

In section 4.3.2, we introduced the SF trasformation . We concluded
that, when applicable, the SF trasformation can decrease the number of
communications among workers linearly with respect to the fusion level, thus
reducing the Tcomm of the computation. These effects derive from the fact
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that the SF trasformation collapses together different time steps. However,
we could not assess in a definitive way the overall impact of this optimization.
In fact, the dimensionality of the stencil shape, i.e., the number of functional
dependencies, is increased sensibly. Therefore, we have to consider that the
cost for a single update is higher and we have to determine what is the impact
on the final Tcalc of the computation. We analyze these concepts for the two
dimensional Jacobi stencil:

for t = 1..T
for i = 0 .. M−1 do

for j = 0 .. M−1 do
B[i , j ] = 0.25∗( A[i−1,j] + A[i,j−1] + A[i+1,j] + A[i,j+1] )

swap(A,B)

Listing 5.1: Pseudocode of naive 2d Jacobi stencil.

and its transformed version with two fused time steps:

for t = 1..T/2
for i = 0 .. M−1 do

for j = 0 .. M−1 do
B[i , j ] = 0.0625∗( A[i−2,j] + 2∗A[i−1,j−1] +
2∗A[i−1,j+1] + A[i,j+2] + 4∗A[i,j] + A[i,j−2] +
2∗A[i+1,j+1] +2∗A[i+1,j−1] + A[i+1,j] )

swap(A,B)

Listing 5.2: Pseudocode of 2d Jacobi stencil with applied SF method.

It is clear that the number of sweeps over the data structures is halved;
therefore, the number of updates to perform is also halved. If a single update
in the SF version costs at most two times the naive version update, then we
have a clear performance benefit. Thus, we need to decide what cost should
be associated to every statement.

We could consider the number of floating point operations performed.
Since the naive version executes 4 flops per update while the SF version
performs 13 flops per update, we can conclude that T naivecalc = T ∗ i ∗ j ∗ 4
flops while T SFcalc = T

2
∗ i ∗ j ∗ 13. Therefore the Tcalc of the SF version is

substantially higher.
On the other hand, we could consider the number of memory accesses M

using a very simple RAM machine model where every access has a unitary
cost. Since the naive version needs 4 array elements per update while the
SF version uses 9 array elements per update, we can conclude that T naivecalc =
T ∗ i ∗ j ∗ 4 while T SFcalc = T

2
∗ i ∗ j ∗ 9. Using this RAM model, the Tcalc of the

SF version is still higher, but not as much as using the flop model.
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None of these two models are suitable for our purposes since they are
both too simple. As we anticipated in Section 2.4, arithmetic intensity1 for
structured grids is usually too low to be influential. Therefore, the first model
is not representative for structured grids computations. The second model is
probably more accurate, but it completely neglects the effect of the memory
hierarchy.

An accurate cost model for our needs is the external memory model [1].
Every node has an unbounded memory M and a cache of limited size C.
Data is transferred from the Memory to the Cache in Blocks of size B. The
cache is completely associative and an optimal replacement strategy is im-
plemented. By varying the parameters C and B, we can effectively model
every level of the memory hierarchy and the Tcalc corresponds to the number
of memory accesses. The equivalence classes at this level are the same as the
Concurrent Level. We could change the language from a generic language
to one where load and store operations are explicit (they are fundamental at
this level). Nonetheless we believe that this would render the exposition too
cumbersome since the pattern of load and store operations can be derived
from pseudocode.

Functional Dependencies

Partition Dependencies

Concurrent Language

Assembler - Firmware

Same language and 
equivalence classes.
Different Cost Model

External Memory Model

Figure 5.1: Extended reference model.

In conclusion, in this extended model (Figure 5.1), we can analyze at the
concurrent level the effects of different parallelization schemes assuming the
Tcalc is fixed for the given computation and using the cost model Tcomm for

1The number of floating point operations per update.
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communications among workers. By utilizing such methodology, we analyzed
different partitioning schemes (Section 3.2.2) and many optimizations that
reduce of the number of communications (Chapther 4). At the level of the
external memory model, we have a more complex definition of the Tcalc while
the Tcomm is unchanged from the level above. We can analyze at the external
memory model level, the impact of optimizations on the exploitation of the
memory hierarchy and finally derive a more concrete estimate on the effects
of the SF trasformation .

5.2 Analysis of the Impact of the Step Fusion

Method on Memory Hierarchies

In this section, we derive the Tcalc of a program after applying SF with
respect to the original one. Because of memory hierarchies, we cannot assign
a cost to every statement per se, but for a given piece of code, we have
to determine what is its working set and if it has temporal and/or spatial
locality[41]. In both cases, the naive (Listing 5.1) and SF version (Listing
5.2), the working set corresponds to the matrices A and B accessed in a unit
stride (maximal spatial locality). We have substantial reuse since matrix A
is read T times in the naive case and T/2 times in the SF version of the
algorithm.

The working set of the computation corresponds to the working set of the
i indexed loop. The first distinction is to determine if the entire working set
( of size 2 ∗M2 ) fits in memory. If this is the case, the two algorithms have
equal performances on an external memory model because they produce the
same number of faults 2 ∗M2/B. In fact, matrices are fetched from memory
and they are never evicted from the caches. Moreover, we should expect the
first algorithm to be faster since it performs less floating point operations.
However, typical problems’ grids cannot be stored in cache, at least for the
lower levels of the memory hierarchy.

Now, under the hypothesis that the entire working set of the computation
does not fit in cache, we consider the working set of the innermost loop. The
innermost loop updates a row of the matrix A, composed of M elements in
a unit stride fashion.

Since elements of the output matrix are updated without reading their
values, they will not produce a cache miss when referenced. On the other
hand, the number of elements to read depends on the shape of the stencil
(Figure 5.2). Since stencil kernels access only a limited number of points close
in space, the working set of the innermost loop corresponds to a horizontal
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“strip” of the matrices (Figure 5.4).

Definition 5.1 (Extent of a shape). Given a shape of a d-dimensional stencil
S = (s0

0, · · · s0
d), · · · , (sn0 , · · · snd) composed by n points, its extent ψ is equal to

max(s0
0, · · · , sn0 )−min(s0

0, · · · , sn0 ).

The extent corresponds to the distance, along the outermost dimension,
between the trailing and leading point of the stencil. As an example, the
naive version (Listing 5.1) requires to read three rows of the matrix in order
to update a single one (extent equal to three). The SF version (Listing 5.2)
requires five rows of the matrix in order to update one row. Generalizing for
a level of fusion i ( where i = 1 indicates no step fusion ) the innermost loop
accesses (2∗ i+1)∗M elements. In other words, the working set corresponds
to ψ which is the vertical extent of the shape. We face two possibilities:

I The working set can be held in cache; therefore, the whole matrix is
loaded from memory only once during a single time step which implies
M2/B faults occur at every time step. The step fusion version performs
half the time steps of the naive version; therefore, the number of faults
is also halved.

II The working set cannot be held in cache; therefore, during the update of
different rows, the whole working set is loaded in cache yielding a final
number of faults of T

i
∗ ψ ∗M2.

Jacobi SF2[Jacobi] SF3[Jacobi]
Figure 5.2: Memory accesses with increasing step fusion factor in Jacobi compu-
tation.

From the information that we have gathered, we derive an analytical
model for the number of faults for an arbitrary level of step fusion. Results
are presented in Figure 5.3
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Figure 5.3: Number of cache miss (normalized with respect of the number of time
steps) for different size of the data matrix and a fixed number of cache locations
(1k).

We can see there is a significant reduction of cache miss for small sized
matrices (case I: working set of innermost loop fit in cache) because the SF
reduces the number of faults by a factor i equal to the SF factor. For higher
dimensionality of the matrix (case II: working set of innermost loop does not
fit in cache), the gain is reduced because the number of cache miss decreases
only by a factor ψ

3i
= 2i+1

3i
which can be easily derived from the previous

analysis. Notice that for intermediate values of cache size, the step fusion
method performs worse than the naive version. This is because the working
set of the SF version is bigger; therefore, for some matrices, it does not fit
in the cache while the working set of the naive version does (Figure 5.4).
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Figure 5.4: Elements accessed by the naive and the SF version of the jacobi 2d
stencil. Red elements are updated by the naive version. Blue elements are updated
by the SF version.
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The SF trasformation is “representative” of the difficulties of the analysis
of optimizations:

A. It is defined at the highest level of abstraction for a limited subset of
computations; therefore, it cannot be automatically applied by a general
purpose compiler.

B. Its effects are estimated only by considering multiple levels of the hierar-
chical model.

C. It affects both parallelism ( reducing the time spent in communications
throughout the entire computations ) and sequential performances ( re-
ducing, in most cases, the number of cache misses ).

D. The benefits for the sequential version depends on the problem size.

In conclusion, we have a complex trade off among different factors which
concur to performance. By using the step fusion, we diminish communication
among processes ( also with oversending ) and exploit more the memory
hierarchy, but the number of operations performed for every single element
is increased. For both oversending and SF methods, there exists an optimum
number of time steps to be merged depending on the stencil properties and
the model parameters (which in turn represent the real architecture).

5.3 Classic Optimization Methods

In this section, we analyze the optimizations methods usually exploited by
compilers. We are excluding optimizations on the object code, which are
strictly specific of the target architecture, and we concentrate on high level
optimizations. More specifically, we will analyze optimizations that targets
loop nests since they are the typical part of a computation where most of
the time is spent (this is obviously the case for structured grid computa-
tions). Following the taxonomy presented in[5, 2], we identified three classes
of optimizations:

1. Data Flow optimizations

2. Loop restructuring

3. Loop reordering
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The class of Data Flow optimizations analyzes the “history” of the vari-
ables in order to substitute some piece of code with more efficient ones. Con-
ceptually, the code is executed at compile time and the compiler eliminates
unreachable code and substitutes pieces of code with less costly ones.

for i =1..n
a[ i ] = a[i ] + c∗i

Listing: Original code

T = c
for i = 1..n

a[ i ] = a[i ] + T
T = T +c

Listing: Code after data flow
analysis

This particular optimization, for variables which are updated with func-
tions of loop indices, is called loop-based strength reduction. Another very
simple example is the following:

for i =1..n
if (j>0)
a[ i ] = a[i ] + c

Listing: Original code

if (j>0)
for i = 1..n

a[ i ] = a[i ] + c

Listing: Code after data flow
analysis

This class of optimizations may modify to a great extent the structure
of the code and it is used widely by compilers. However, for the case of
structured grids, it is probably ineffective. It might modify the assignment
of temporal variables and the order of arithmetic instructions, but it cannot
prevent cache misses. Given the peculiarities of structured grids computa-
tions, we will concentrate on optimizations intended to reduce the burden on
the memory system.

The next class of optimization is loop restructuring, which is a general-
ization of loop unrolling. The loop structure is extensively modified in order
to reduce loop overhead by decreasing the number of branch instructions.
Moreover, by enforcing the reuse of the cpu registers inside a loop, it di-
minishes load and store overhead. Nonetheless, the order of instructions is
unaffected. Even though the number of load and store instructions is re-
duced, the same number of elements has to be fetched from memory in the
same order. The application of loop unrolling to a mono dimensional laplace
operator is presented in Figure 5.4. Branch conditionals are executed half
of the time in the unrolled loop. The number of load and store operations
is 4 in the first loop and only 6 in the second one. If there is a sufficient
number of cpu registers, it is possible to increase the level of expansion and
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eventually unroll multiple nested loops (unroll and jam[2]). However, this
does not reduce cache miss since the elements accessed by the two versions
are the same and are in the same order.

for i =1..n
b[ i ] = a[i ] + a[i−1] + a[i+1]

Listing 5.3: Code of a mono
dimensional laplace operator

for i = 1 .. n ,2
b[ i ] = a[i ] + a[i−1] + a[i+1]
b[ i+1] = a[i+1] + a[i] + a[i+2]

Listing 5.4: Code unrolled

Therefore, the class of loop reordering transformations is the only valid
candidate for our needs. In fact, the contribution of other methods is not
tangible at the abstraction level of the external memory model.

5.4 Loop Reordering Optimizations

Loop reordering techniques are an important class of optimizations that
change the relative order of execution of the iterations of loop nests[5]. This
class contains the optimizations that tries to exploit the temporal locality of
the computation. In order to do so, statements that access the same memory
locations are moved closer to one another so that the required values are al-
most certainly in the lower levels of the memory hierarchy. This reduces the
number of cache miss throughout the execution of the whole computation
and obviously increases performances.

In order to better explain these techniques, we will present some examples:

for j = 1 .. N
for i = 1 .. N

total [ j ] += A[i,j]

Listing 5.5: Pseudocode that computes the sum of the columns in a matrix. We
are assuming that the matrix A is stored in memory in row order.

Notice that accesses to the array total do not cause cache misses. On
the other hand, the matrix A is accessed in a stride N pattern2. Thereby,
if the cache cannot store N different blocks at the same time, the whole
computation will incur in N2 faults. In this case, the following version is
more efficient:

for i = 1 .. N
for j = 1 .. N

total [ j ] += A[i,j]

2There is a distance N between two elements accessed consecutively.
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Listing 5.6: Pseudocode of the Loop Interchanged version of the algorithm shown
in Listing 5.5

The number of faults caused by matrix A is reduced from N2 to N2/B.
Notice that the vector total has to be loaded from memory, leading to a
maximum of N2/B additional cache misses. The technique here presented
is called Loop Interchange. When applicable, it is typically used to exploit
spatial locality of an algorithm which is hidden by an unfavourable ordering of
the loop nests. Similarly to the SF trasformation , its effectiveness depends
on the size of the data structures.

Consider now the matrix vector multiplication:

int A[M][M], B[M],C[M];
for ( i=0; i<M; i++){

for( j=0; j<M; j++){
C[i ] += A[i][j] + B[j]

Listing 5.7: Pseudocode of the matrix vector multiplication

By analyzing its memory access pattern, we realize that this algorithm
has a high spatial locality that cannot be improved since A,B,C are accessed
in a unit stride. This algorithm also has substantial reuse because every
element of array B is accessed M times. If B fits in cache, then the number
of memory accesses is minimal since every block of matrices A,B and C is
accessed only once. Otherwise, at every iteration of the outermost loop, the
array B has to be accessed from memory leading to M2/B faults. Since the
statements in the innermost loop can be performed in any order, we could
try to rearrange them so accesses to the same location of B are less spread
apart in time.

int A[M][M], B[M],C[M];
for ( jj = 0; jj < M/b; jj++) {

for ( i=0; i<M; i++){
for( j= b∗jj; j<(jj+1)∗b−1; jj++){

C[i ] = A[i][ j ] + B[j]

Listing 5.8: Pseudocode of the matrix vector multiplication with innermost loop
tiled. b is a multiple of block size B.

Notice that B is now accessed one block at a time and completely used
before moving to the next block. Faults from accesses to vector B are reduced
from M2/B to M/B. However, now we have to explicitly load vector C from
memory and incur in M2/(B ∗ b) faults. Applying again the same technique
on the other loop we obtain:
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int A[M][M], B[M],C[M];
for ( ii = 0; ii < M/b1; ii++) {

for ( jj = 0; jj < M/b2; jj++) {
for ( i=ii∗b1; i<(ii+1)∗b1−1; i++){

for( j= jj∗b2; j<(jj+1)∗b2−1; j++){
C[i ] = A[i][ j ] + B[j];

Listing 5.9: Pseudocode of the matrix vector multiplication with both loops
“tiled”.

For simplicity we assume that b1 = b2. Both array B and C produce
M2/B ∗ b faults. Notice that the accesses to the A matrix over time are
grouped in small squares, which is where the name tiling comes from.

X

BA

=

C

4

1 2

3 4

1 3

2 4

1

3

2

Figure 5.5: Pattern of accesses to matrix A of Listing 5.9

However, this is obviously not a formal definition. Moreover, the term
tiling is misleading since a formal definition for tiling alone does not actually
exist. Tiling is a particular pattern of access to data structures which is
a consequence of a loop reordering transformation. In order to define loop
reordering transformations, we need to define some concepts first:

Definition 5.2 (Perfect Loop Nest). A perfect loop nest is a set of nested
for loops where there are statements only in the innermost loop.
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Figure 5.6: Convex polyhedron which represent the iteration space of Listing 5.10

The nested loops of the matrix vector multiplication in Listing 5.7 are a
perfect loop nest.

Definition 5.3 (Iteration Space). Given a perfect loop nest composed by d
nested loops, the iteration space of the loop nest is the set of all d-dimensional
points (i1, · · · , id) corresponding to all possible combinations of values of the
loop indices during execution.

In a perfect loop nest of d loops, if all loop bounds are affine functions of
outer loop indices, and if all loop variables are incremented by one at each
iteration, then the iteration space can be represented by a convex polyhedron.
Consider as an example the following code in Listing 5.10.

for ( i = 0; i <= 5; i++) {
for ( j = i; j <= 7; j++) {

A[i ][ j ] = 0;

Listing 5.10: Generic for loop with loop conditional as affine functions.

Every loop bound is an affine function of outer loop indices (bounds based
on constant, e.g., i <= 5, are obviously affine) and every loop index is incre-
mented by one at every iteration. Therefore, the loop nest can be represented
in a two dimensional space. Every loop bound divides the space in two half
spaces of which one can be discarded. The intersection of valid half spaces
produces the convex polyhedron shown in Figure 5.6. Such representation of
perfect loop nests is called the polyhedral model.

By visiting the lattice of the polyhedron (Figure 5.6) in a lexicographic
order we obtain the sequence of execution of points in the iterations spaces
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of Listing 5.10. This sequence of points:

(0, 0), (0, 1), · · · , (0, 7), (1, 1), (1, 2), · · · , (1, 7), (2, 2), · · · , (5, 5), (5, 6), (5, 7)

that represents the execution of the program is called the schedule of the
program.

Definition 5.4 (Loop Reordering Transformation). A loop reordering trans-
formation of a program P is a permutation of its schedule.

After having formally defined the concept of schedule and iteration space,
it was easy to define a loop reordering transformation. Notice that loop inter-
change and loop tiling optimizations are a specific instance of loop reordering.
Other optimizations in this class are: loop fission, loop fusion, loop reversal,
loop coalescing and loop collapsing[10, 5]. They are all specific case of loop
reordering.

Similarly to Section 3.1, we want to find transformations that preserve the
semantics of the program and increase performance. Therefore, the compiler
should acquire the following information in order to apply loop reordering
transformations:

1. Data reuse: sets of iterations that access the same data.

2. Data dependencies: if two statements in the iteration space access the
same memory location and one of the two is a store operation, then
their relative order cannot be changed.

This information is stored by the compiler as a set of affine functions
that associate points in the iteration space (the polyhedron lattice) to the
coordinates of accessed data structures.

As an example consider the matrix vector multiplication in Listing 5.7.
The affine array accesses of the inner most statement are:

〈
C,
(
1 0

)
;A,

(
1 0
0 1

)
;B,

(
0 1

)〉
(5.1)

The first affine function indicates the element that has to be updated. More

precisely, at iteration

(
i
j

)
the element

(
1 0

)
∗
(
i
j

)
of matrix C has to be

updated. In the 2d jacobi stencil, the affine array indexes (of vector A) are:

〈(
1 0
0 1

)
+

(
1
0

)
,

(
1 0
0 1

)
+

(
−1
0

)
,

(
1 0
0 1

)
+

(
0
1

)
,

(
1 0
0 1

)
+

(
0
−1

)〉
(5.2)
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A polyhedral compiler3 conceptually test all possible schedules, i.e., all
possible permutations of the iteration space. Firstly, it checks that all data
dependencies are preserved. If this fails, the schedule is discarded. If the
schedule preserves the data dependencies, then a cost is associated to the
schedule. The cost of every admissible schedule is computed as a function of
the distance between memory accesses to the same location. Finally, the less
costly schedule is chosen. In a real compiler, it is obviously impossible to test
all the possible schedules so heuristics are used to derive admissible schedules
and to choose the best one. We will not discuss further the difficulties of
automating this process. The theory is well established and most of the
research is related to produce good heuristics. However, it is interesting to
note that no mainstream compiler utilizes the polyhedral model because of
its numerous limitations:

I. Perfect loop nests.

II. All functions must be pure functions with no side effects.

III. All loop indexes must have unit stride.

IV. Loop bounds must be affine functions of outer loop indexes.

We will now concentrate on how loop reordering techniques can be applied
to structured grids computations. Consistent with the concepts in Chapter
3, we will see that restricting the scope to a subclass of computations allows
us to define very efficient transformations that could not have been derived
by an automatic approach for generic computations.

5.5 Loop Reordering for Structured Grids Com-

putations

In order to exploit loop reordering techniques, we study the data reuse and
data dependencies of structured grid computations. Firstly, consider that
there are no data dependencies inside a time step for a structured grid com-
putation. Therefore, any schedule that does not alter the relative order of
updates of different time steps is legal. In other words, the iteration space
of a single time step can be permutated in any possible order. On the other
hand, reuse inside a time step is quite limited since it is proportional to the
number of shape points. Consider a generic element of a two dimensional
mesh where the jacobi stencil is executed. This element is will be used only
four times (the cardinality of the shape) in a single time step (Figure 5.7).

3A compiler able to reconstruct a polyhedral model out of loop nests.
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Figure 5.7: Reuse of a generic element of the mesh in a jacobi 2d stencil.

Compared to the matrix vector multiplication, where each element is ac-
cessed a number of times proportional to the size of the vector, there are lim-
ited opportunities for cache reuse in structured grid computations. Nonethe-
less, it is possible to exploit this reuse by reordering the loop and modifying
the order in which updates inside a time step are performed (Section 5.5.1).

A more aggressive strategy is to reorder all the loops including the out-
ermost loop of the time steps. Therefore, updates of different elements of
the data matrix are skewed with respect to time steps. For example, it is
possible to update elements at time step s+ 4 when there are still elements
that need to be updated at time step s. The rationale behind this method is
to reuse updated elements as soon as possible[45] thus reducing sensibly the
number of faults with respect to the non skewed reordering (Section 5.5.2).
Notice that skewing is not always possible for real world stencil computa-
tions. Multigrid computations (Section 2.3) do not perform the exact same
operation on all time steps; therefore, skewing cannot be applied[34].

5.5.1 Loop Tiling

In this section, we analyze the effects of loop reordering inside a time step. We
already examined the two dimensional jacobi stencil by deriving the impact
of the SF trasformation for a memory hierarchy. We have shown that in
order to update a row of the matrix (Listing 5.1), multiple rows are loaded
in cache; the number of rows is proportional to the extent of the shape. If a
single row can not fit in cache, the entire working set (consisting of multiple
rows) has to be loaded in cache at every iteration even though part of it was
present in cache at the previous iteration. Therefore, we update only portions
of one row so that the whole working set can fit in cache. Then we move
to the next row and update it. This is repeated until we have completely
updated a column-wise portion of the matrix(Figure 5.8).

Unlike matrix vector multiplication that featured reuse of the same ele-
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Figure 5.8: Graphical depiction of the optimized schedule of the two dimensional
jacobi stencil. Notice how elements used to compute the next row are already
present in cache. Notice also the “halo” of elements around the examined tile
which are loaded from memory twice.

ments throughout the entire computations, here reuse is limited to a small
portion of the matrix. Therefore, once a row is updated, we proceed column-
wise since some elements of the working set of this iteration can be reused
at the next iteration. By doing so, we also limit the number of “tiles” that
has to be computed. If we analyze the performance of the algorithm on
the external memory model for a generic stencil of extent ψ, we have that
faults are reduced from ψ∗M2/B to approximately M2/B. In practice every
element is loaded from memory only once (which is optimal) except for ele-
ments around tiles that are loaded twice. Notice that, although reuse is very
limited, we are able to reduce cache miss up to a value really close to the
theoretical lower bound. This technique can be generalized in d dimensions
and was presented in[34] for three dimensional stencils. In the case of three
dimensional stencils, e.g. the three dimensional Laplace operator (Figure
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5.9a), sub planes that fit in cache are updated and then we move to the sub
plane above it until an entire column has been updated (Figure 5.9b).
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Figure 2.3: A visual representation of the 3D 7-point and 27-point stencils, both of
which are shown as three adjacent planes. These stencils are applied to each point
of a 3D grid (not shown), where the result of each stencil calculation is written to
the red center point. Note: the color of each stencil point represents the weighting
factor applied to that point.

tuning, they are heavily bandwidth-bound and typically do not benefit from cache

tiling. As a result, the achievable speedup is fairly constrained compared to 3D

stencils. In this thesis, we do not tune 1D and 2D stencils.

3D Stencils

The focus of this thesis is on 3D stencils, two of which are shown in Figure 2.3.

The 7-point stencil, shown in Figure 2.3(a), weights the center point by some constant

α and the sum of its six neighbors (two in each dimension) by a second constant β.

Näıvely, a 7-point stencil sweep can expressed as a triply nested ijk loop over the

following computation:

Bi,j,k = αAi,j,k + β(Ai−1,j,k + Ai,j−1,k + Ai,j,k−1 + Ai+1,j,k + Ai,j+1,k + Ai,j,k+1) (2.1)

where each subscript represents the 3D index into array A or B.

The 27-point 3D stencil, as shown in Figure 2.3(b), is similar to the 7-point stencil,

but with additional points to include the edge and corner points of a 3×3×3 cube

surrounding the center grid point. It also introduces two additional constants– γ, to

weight the sum of the edge points, and δ, to weight the sum of the corner points.

do JJ=2,N-1,TJ
do II=2,N-1,TI
do K=2,N-1
do J=JJ,min(JJ+TJ-1,N-1)
do I=II,min(II+TI-1,N-1)
A(I,J,K) = C*(B(I-1,J,K)+B(I+1,J,K) +

B(I,J-1,K)+B(I,J+1,K) +
B(I,J,K-1)+B(I,J,K+1))

Figure 6 Tiled 3D Jacobi iteration
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Figure 7 Access pattern of tiled 3D Jacobi

are executed in order along the K dimension. Thus, unlike
many linear algebra codes, for which we also tile only two
loops, 3D stencil codes require that the cache hold array
tiles with three (not 2) dimensions to preserve reuse.

Existing tiling algorithms such as that of Wolf and
Lam [33] will tile all three loops because reuse is carried
across all the loops in 3D stencils. However, we have
shown that tiling only two loops is sufficient for preserving
reuse across all three loops. This follows from the fact
that in 3D stencils we merely need to preserve group reuse
with a distance of three. In contrast, preserving the self-
temporal reuse common in linear algebra codes requires
tiles with the same dimensionality as the arrays. Unlike
tiling only two loops in 3D stencils, tiling three loops
has the effect of increasing the number of tiles executed,
leading to an additional loss of reuse along expanded tile
boundaries.

Another approach introduced by Song and Li [29] pre-
serves reuse across the time step loops which enclose the

stencil loops in iterative PDE solvers. However, their
technique does not extend to the 3D stencils which form
the computational core of multigrid solvers, since these
applications use a succession of grid sizes to speed up
convergence. In contrast, we can apply the basic tiling
transformation introduced here to multigrid solvers since
only the 3D stencil loop is affected.

2.3 Cost function
As stated in the previous section, the dimensions of the
iteration tile (tile size) must be selected in order for the
array tile (e.g., 3 TI TJ planes) to fit in cache. In this
section we see that even among tile sizes which meet
this constraint, some lead to better reuse than others. To
determine the tile size (TI, TJ) which best preserves reuse,
we estimate the number of cache misses that arises from
a tile size, favoring tile sizes which result in fewer cache
misses. We compute the number of cache misses simply
as the number of distinct cache lines accessed in each
TI TJ (N-2) block of iterations. To accomplish this, we
first make the reasonable assumption that data accessed
in each block is not initially in cache. Another critical
assumption is that all given tile sizes lead to a non self-
interfering array tile. Later in Section 3, we discuss how
to obtain such non self-interfering tile sizes.

We use the example in Figure 6 to motivate a formula
for the numberof cachemisses. During eachTI TJ (N-2)
block of iterations,weaccessapproximately (TI+2)(TJ+2)N
elements of array B. While this formula depends on the
particular access pattern, loop nests in 3DPDEsolverswill
generally access about (TI+m)(TJ+n)N elements where
and merely depend on the particular stencil pattern (set
by the magnitude of the largest differences between sub-
scripts in each dimension).

Since the iteration space is partitioned into approxi-
matelyN2 (TI TJ) blocks of sizeTI TJ (N-2), wemul-
tiply to obtain the total number of elements brought into
cache across the whole loop: N3(TI+2)(TJ+2)/(TI TJ).
We can then divide by the cache line size to esti-
mate the number of cache lines fetched. However, since
N3/ is invariant under different tiled sizes, we divide
out this constant, resulting in the function (TI,TJ) =
(TI+2)(TJ+2)/(TI TJ). Note that given multiple tile sizes
with equal values of TI TJ, this function is minimal when
TI and TJ have the smallest difference. The cost function
thus favors square tiles.

Using such techniques, compilers can derive such a
cost function directly from the loop nest to model the loss
of reuse (i.e., the cost) for each tile size. In Section 3
we present tiling transformations which select the tile size
based on this cost function.

4

Figure 5.9: Figure 5.9b shows a graphical depiction of the pattern of updates in
a optimized schedule for the 3d Laplace stencil shown in Figure 5.9a.

5.5.2 Time Skewing

In the previous section, we presented a loop reordering technique that reduces
the number of cache misses by a factor proportional to the shape extent.
This experimentally proved our claims that there are limited opportunities
for cache reuse in stencil computations. Therefore, we now present an opti-
mization technique that sensibly decreases the number of faults by reordering
the schedule not only on the spatial dimension, but also along the temporal
dimension. As we anticipated in Section 5.5, the idea beyond time skewing
is to reuse values in cache as often as possible[24]. Therefore, consider a

monodimensional laplace stencil. If the elements of the grid A
(k)
i−1,A

(k)
i ,A

(k)
i+1

have been updated the next element updated will be A
(k+1)
i instead of A

(k)
i+2.

In order to have the maximum reduction of cache misses, portions of the time
space (cache blocks) are isolated. No additional data structures are needed
to store the values of the working domain at different time steps ( Figure
5.10).

The execution of different cache block has to be performed in the order
specified in Figure 5.10. Notice that the steepness of the slope depends on
the order of the shape.
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user to specify a cache block size. In the absence of a per-
formance model, we typically do not know which block size
will execute fastest. Therefore, for each platform where time
skewing is run, we perform a search to determine the opti-
mal block size. While the cache block’s x- and y-dimensions
(both non-contiguous in memory) are allowed to vary, the
z-dimension (the unit stride dimension) is left uncut to allow
for longer unit-stride memory streams.

5.1 Algorithm Description
Time skewing is a type of cache tiling, that attempts re-

duce main memory traffic by reusing values in cache as of-
ten as possible. Figure 5 shows a simplified diagram of time
skewing for a 3-point stencil. The grid is divided into cache
blocks by several skewed cuts, similar to the space cuts from
the cache oblivious algorithm (see Figure 2(b)). These cuts
are skewed in order to preserve the data dependencies of the
stencil. For example, the cut between the first and second
cache blocks allows the first cache block to be fully calcu-
lated before starting on the second cache block. In general,
this holds true between the nth and (n + 1)th cache blocks.
As long as the blocks are executed in the proper order, the
algorithm respects the stencil dependencies.
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Figure 5: A simplified two-dimensional spacetime
diagram of time skewing with a 3-point stencil. The
cache blocks need to be executed in the order shown
to preserve dependencies. The X’s and O’s indicate
which of two arrays is being written to.

However, the blocks generated from time skewing do not
all perform the same amount of work, despite being equally
partitioned initially. For instance, the points in Figure 5
are equally divided for the first time step. However, as time
progresses, the shifting causes the cache blocks at the bound-
aries to perform unequal work. The number of points per
iteration slowly decreases for the first cache block, while it
slowly increases for the final cache block. For interior cache
blocks, the shifting does not change the number of points
per iteration, and so they all perform the same number of
stencil operations.

There are two major points of concern caused by this shift-
ing. The first is that extra cache misses may be incurred,
thereby hindering our efforts to minimize memory traffic.
Fortunately, this shift is always towards the completed por-
tion of the grid, so the needed points are often already res-
ident in cache. This helps in mitigating, if not eliminating,
the extra memory traffic.

The second concern is that the shifting limits the number
of iterations that can be performed. Specifically, some of the
cache blocks along the boundary can be shifted off the grid
as time progresses. Once a cache block is off the grid, any
further iterations will cause dependency violations. This is
seen in Figure 5, where the first cache block shifts completely

over the boundary after the third iteration. In these cases,
we can perform a time cut (as explained in Figure 2(c)) to
“restart” the algorithm. After the time cut, we can either
execute the remaining number of iterations or, if needed,
perform another time cut. Of course, this problem can also
be addressed by simply using a larger cache block.

A closer representation to our actual 3D time skewing
code is illustrated in Figure 6. By showing how the num-
ber of stencil operations performed varies within each cache
block, the diagram sheds light on how time skewing works
in higher dimensions.

Figure 6: Color coded plots of the number of stencils
operations performed on a 103 grid using four itera-
tion time skewing with 5x5x10 cache blocks. There
is one plot for each cache block. Blue halos represent
only a single stencil operation for that region, where
red blocks show the cores where the full four sten-
cils operations were performed. When processed in
order, the full 103 has completed four iterations—
i.e. a blue cell in four different cache blocks implies
one stencil performed in each cache block or four
total.

5.2 Performance
We first verified, on our Itanium 2 test machine, that per-

iteration memory traffic does in fact decrease with more it-
erations. Figure 7(a) confirms that for small block sizes,
overall memory traffic decreases drastically from the first it-
eration to the fourth. More importantly, during the fourth
iteration the memory traffic for the smaller cache blocks is
much lower than for the näıve case (the upper right corner of
the graph). Assuming the code is memory-bound, this sug-
gests that some of these block sizes will have lower running
times than the näıve case.

Figure 5.10: Graphical depiction of time skewing applied to a monodimensional
laplace stencil. The circles and crosses indicate in which data structure the values
are saved.

Definition 5.5 (Order of a Stencil). Given a shape of a d-dimensional stencil
S = (s0

0, · · · s0
d), · · · , (sn0 , · · · snd) composed by n points,

η = max(|s0
0|, · · · , |s0

d|, · · · , |sn0 |, · · · , |snd |)

.

In Figure 5.4, the order of Jacobi is 1 while the order of the Jacobi SF
version is 2. Therefore, the amount of time steps that can be executed inside
a cache block depends both on the characteristics of the stencil shape and
the space tiling. An analysis on the theoretical reduction of cache miss can
be found in [20, 38]. The conclusions are that the number of faults, for

a generic d-dimensional stencil are reduced by a factor proportional to C
1
d

where C is the size of the cache. The best result obtained with Tiling, for
an arbitrary number of time steps T , was Θ(TMd/B) while time skewing

can ensure Θ(TMd/(B ∗C
1
d )). The proof in [20] is elegant, but also overly

complex and it provides asymptotic results. We will give an alternate (still
rigorous) proof that explains how this reduction of cache misses is obtained
and presents a more accurate (instead of asymptotic ) estimate of the number
of faults.
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Figure 5.11: Area of a trapezoid (cache block) for a generic mono dimensional
stencil (in green). The memory requirements of the stencil are the light green
points under the projection of the trapezoid. η equals one for this particular
stencil.

Theorem 5.1 (Reduction of cache misses in time skewing codes). Consider a
d dimensional structural grid computation defined on a d dimensional domain
of size Md. Assume that both the number of time steps T and the subsection of
the domain of size Md−1 are greater than the size of the cache C ( T = Ω(C)).

Then, the number of cache miss of the time skewed version is (2η)/(C
2

)
1
d

times the number of cache miss of the naive version and so the gain is Θ(C
1
d ).

Proof. We first consider the mono dimensional case (see Figure 5.11). We
want to reuse as much data as possible, so we divide the space-time in a
series of trapezoids that fit precisely in cache and have maximum height.
These“optimal” trapezoids have a base of length S and a height of length
S/η. We could erroneously conclude that the space required in cache by a
trapezoid corresponds to its area; however, the number of cache locations
equals to four times S (its base). This is because the working domain (at
different time steps) is stored using only two vectors; therefore, only the
projection of trapezoid of size equal to two times S is stored.

(1) A trapezoid repeatedly updates a portion of these two vectors of size
equal to two times S (Figure 5.11). By doing so, it loads in cache S
elements while S elements are written back in memory.

(2) By imposing that the whole trapezoid must fit in cache, we obtain C =
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4S.

(3) The number of time steps T where the trapezoid is defined corresponds
to S/η.

By combining (1),(2),(3) we have that a single sweep using trapezoids pro-
duces M/B faults and writes back M/B blocks, exactly as for the tiled ver-
sion. However, S/η time steps are fused together, thus linearly reducing the
number of faults by a factor S/η throughout the entire computation. More-
over, S/η can be rewritten as C/(4 ∗ η), giving the linear relation between
reduction of faults and size of the cache.

We can generalize the above proof for the d dimensional case. The area
of a trapezoid in d dimension, assuming the space is divided in equal blocks,
is Sd ∗ S/η where S/η is the height of the trapezoid and it corresponds to
the performance gain. Now we have that 2 ∗ (2S)d = C therefore S =
1
2
(C

2
)

1
d . Moreover, S/η = (C

2
)

1
d/(2η) which obviously implies that the gain is

Θ(C
1
d ).

Notice that assumption of T = Ω(C) and M = Ω(C) were made in order
to ensure that the optimal trapezoid fits in cache. The upper bound on
the memory requirements of a trapezoid is 2 ∗ (2S)d because we have two
replicated data structures and the projection of a d dimensional trapezoid is
less than or equal to (2S)d ( Figure 5.12). Figure 5.12 shows that different
trapezoids update different points in a 3d space time lattice for a generic two
dimensional stencil with η equal to one (projected on the two dimensional
spatial grid). An example of a three dimensional stencil is presented in [24].
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Figure 5.12: Projection of a 3d space time lattice for a skewed 2 dimensional
stencil with order equal to one. Different colors corresponds to different trape-
zoids. Different frames corresponds to different planes at different time steps. The
numbering shows the order in which trapezoids has to be executed while the grey
area indicates portions of space time that has to updated by other trapezoids.

Comparison of Tiling and Skewing

In conclusion, we analyzed both tiling and skewing under the assumption
that the entire working set can not fit in cache. We have shown that tiling
can reduce cache misses by a factor ψ where ψ is the extent of the shape thus,
producing a number of cache misses inside a time step close to the optimal
value of Md/B. Including the write back of elements in memory, we have a
total of 2 ∗Md/B.

Skewing is far more efficient theoretically since it reduce cache misses
by an additional factor C

1
d . We have shown that this gain is obtained by

executing optimal portions of the space time domain. We assumed, not only
that the number of grid points does not fit in cache, but also the number
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of time steps is greater than the size of the caches. If this is not the case
(Figure 5.13) a “time cut” is necessary. All time steps can be computed with

�

time

space

than cache size
trapezoids smaller

optimal trapezoid

TIME CUT

T

Figure 5.13: Time skewing that has to be reduced because the number of time
steps is not sufficient. The optimal trapezoid (dotted) would have been substan-
tially bigger than the actual trapezoids (shaded)

a single sweep of the data structures, yielding 2 ∗Md/B cache miss which
is optimal. However, not all structured grids computations are amenable to
skewing, e.g. multigrid computations[34].

5.5.3 Cache Oblivious Algorithms for Structured Grids
Computations

It is evident the importance of the size of the cache C for both tiling and
skewing optimizations. However, caches of a real machine are not as ideal as
the cache of the model:

1. Caches might not be private.

2. An optimal replacement strategy is not used.

3. Caches are not completely associative.

Therefore, when tuning the algorithm with respect to the cache size C,
it is better to be conservative. In fact, degradation of performance caused
by an incorrectly guessed parameter might render optimizations counter pro-
ductive. Also a real memory system is hierarchical so we should also apply
these optimizations multiple times in order to optimize every level. There-
fore, we need to choose a good parameter for the size of the available cache
at every step.
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Cache oblivious algorithms take advantage of cpu caches without having
the size (or other details) of the cache as a parameter. Cache oblivious algo-
rithms for stencil computations are presented in [20, 37]. These algorithms
utilize time skewing so it is applicable only to stencil computations that allow
time skewing.

Similarly to Section 5.5.2, When using the time skewing optimization,
the space time is divided in trapezoids . The idea behind the cache oblivi-
ous algorithm is the following: Given a generic trapezoid T that has to be
computed (Figure 5.14) we divide it in two trapezoids T1 and T2 to then
recursively iterate the process over T1 and then T2. When the examined
trapezoid has a height of only one time step, it is executed. A trapezoid can
be divided in two ways:

1. A space cut if the width is at least twice the height (Figure 5.15a).

2. A time cut otherwise (Figure 5.15b).

Figure 3: Performance of the initial cache oblivious implementation for a 2563 periodic problem on our
Itanium 2 test system. The algorithm reduces cache misses but performs worse.
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Figure 2: (a) 2D trapezoid space-time region con-
sisting of a 1D space component and 1D time com-
ponent, and an example of cache oblivious recursive
(b) space cut and (c) time cut.

dimension, as show in Figure 2(c). Because the time depen-
dencies are simpler, the cut divides the time region (t0, t1)
into (t0, tn) and (tn, t1) regions which are then operated on
recursively. Again, recall that no point in the T1 compu-
tational domain depends on a point in T2. Note, however,
that cutting in time does not in itself improve cache be-
havior; instead, it allows the algorithm to continue cutting
in the space dimension by creating two trapezoids that are
shaped amenably for space cutting. The recursion calls the
function on smaller and smaller trapezoids until there is only
one timestep in the calculation, which is done in the usual
fashion (using a loop from x0 to x1). The multidimensional
algorithm is similar, but attempts to cut in each space di-
mension before cutting in time.

4.1 Periodic Performance
First, we compare performance between the implementa-

tion of the cache oblivious code given in [4] and the näıve
non-recursive version (consisting of four simple loops), using
the 3D heat equation within the Stencil Probe as described

in Section 2, both using periodic boundaries, because the
cache oblivious algorithm as originally designed uses peri-
odic boundaries. Figure 3 shows the raw performance (in
cycles) and measured cache misses for a 2563 problem on
our Itanium 2 test system.

Observe that the runtime of the cache oblivious approach
is substantially poorer than that of the näıve algorithm (this
is actually the case on all three cache-based platforms).
However, the cache oblivious approach is indeed effective
in dramatically improving cache efficiency compared with
the näıve implementation, as can be seen in the measured
number of cache misses in Figure 3. In fact, the cache miss
model developed in [4] accurately predicts the volume of
misses measured for the cache oblivious algorithm on the
Itanium 2, while the volume of misses for the näıve version is
exactly what is to be expected from the simple algorithm. It
is therefore critical to gain insight into the seemingly contra-
dictory trend of improving caching efficiency and worsening
performance, as much algorithmic effort has been invested
over several decades to improve program performance by
reducing cache misses.

In order to understand the performance potential of the
cache oblivious methodology, we explore a series of optimiza-
tions, building on those that successfully result in reduced
time-to-solution:

Speedup over Näıve
Optimization IA64 AMD64 Pwr5

Original 0.26 0.13 0.30
Inline Kernel 0.50 0.14 0.61
Inline Kernel + Explicit Stack 0.46 0.14 0.57
Inline Kernel + Early Cutoff 1.23 0.19 0.96
Inline Kernel + No Modulo 1.23 0.68 2.00
Inline Kernel + Early Cutoff
+ No Modulo 1.52 1.25 3.85
Inline Kernel + Early Cutoff
+ No Modulo + Preserve Stride-1 1.67 1.56 4.17
All Opts + Exhaustive Cutoff 1.69 1.59 4.17

Table 3: Summary of all attempted optimizations.

• Explicit inlining of the kernel. The original cache obliv-
ious algorithm in [4] performed a function call per
point. Instead, we inline the function.

• Using an explicit stack instead of recursion. Because

Figure 5.14: A generic trapezoid. As usual, the two slopes are derived from the
data dependencies of the computation.
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Figure 3: Illustration of a space cut. When the space dimen-
sion is “large enough” (see text), procedure walk1 cuts the
trapezoid along the line of slope −1 through its center.

recursively into smaller trapezoids, according to the fol-
lowing rules.

Base case: If the height is 1, then the trapezoid con-
sists of the line of spacetime points (t0, x) with
x0 ≤ x < x1. The procedure visits all these points,
calling the application-specific procedure kernel.
The traversal order is not important because these
points do not depend on each other.

Space cut: If the width is at least twice the height,
then we cut the trapezoid along the line with
slope −1 through the center of the trapezoid,
cf. Fig. 3. The recursion first traverses trapezoid
T1 = T (t0, t1, x0, ẋ0, xm,−1), and then trapezoid
T2 = T (t0, t1, xm,−1, x1, ẋ1). This traversal order
is valid because no point in T1 depends upon any
point in T2.

From Fig. 3, we obtain

xm =
1
2
(x0 + x1) +

1
4
(ẋ0 + ẋ1)∆t +

1
2
∆t .

Time cut: Otherwise, we cut the trapezoid along the
horizontal line through the center, cf. Fig. 4. The
recursion first traverses trapezoid T1 = T (t0, t0 +
s, x0, ẋ0, x1, ẋ1), and then trapezoid T2 = T (t0 +
s, t1, x0 + ẋ0s, ẋ0, x1 + ẋ1s, ẋ1), where s = ∆t/2.
The order of these traversals is valid because no
point in T1 depends on any point in T2.

In the two recursive cases, even though the computa-
tion of xm or s is based on integer divisions with trun-
cation or rounding, one can prove that both T1 and T2

are well-defined and nonempty no matter how the quo-
tient is truncated or rounded. Thus, procedure walk1 is
guaranteed to terminate because it reduces the original
problem to strictly smaller subproblems.

Procedure walk1 traverses the rectangular region
T (0, T, 0, 0, N, 0) as a special case. Perhaps surpris-
ingly, the same procedure also works for cylindrical
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Figure 4: Illustration of a time cut : procedure walk1 cuts
the trapezoid along the horizontal line through its center.

regions in which point (t + 1, x) depends on points
(t, (x − 1) mod N), (t, x), and (t, (x + 1) mod N). To
use walk1 in this fashion, invoke it on T (0, T, 0, 1, N, 1)
and interpret all indices (modN) in the kernel. Fig. 5
illustrates how this scheme works for N = T = 10.
In the left part of the figure, we mark each spacetime
point with consecutive integers in the order in which
the point is visited. Thus, point (t, x) = (0, 0) is visited
first, point (0, 1) second, etc. The right part of the fig-
ure shows the recursively nested trapezoids produced by
walk1. Procedure walk1 traverses the spacetime region
in the black trapezoid rather than the grey spacetime
rectangle, but the traversal order is consistent with a
cylindrical stencil problem if all indices are interpreted
(modN) in the kernel.

3 Multi-dimensional Algorithm

In this section, we generalize procedure walk1 from Sec-
tion 2 in two ways. First, we relax the restriction to the
3-point stencil and allow arbitrary stencils. In partic-
ular, we allow spacetime point (t + 1, x) to depend on
all points (t, x + k), where |k| ≤ σ.2 Second, we gen-
eralize our procedure for arbitrary-dimensional space-
time. Fig. 6 shows a C implementation of the multi-
dimensional walk procedure.

We first extend procedure walk1 to work for |ẋ0| ≤ σ
and |ẋ1| ≤ σ, for an arbitrary slope σ. In the “space
cut” case, we cut along a line of slope dx/dt = −σ
through the center. This cut guarantees that no point
in the left trapezoid T1 depends upon any point in the
right trapezoid T2. Therefore, the modified algorithm
traverses spacetime in an order consistent with the sten-
cil dependencies. The expression for xm (see Fig. 3) for
arbitrary slope σ becomes

xm =
1
2
(x0 + x1) +

1
4
(ẋ0 + ẋ1)∆t +

1
2
σ∆t .

2The generalization of the stencil with respect to dependencies
of time steps t, t− 1, . . . , t− j for j > 1 follows by induction, and
by choosing slope σ = maxj(σj), where σj is the slope between
time steps t + 1− j and t− j.
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Figure 3: Illustration of a space cut. When the space dimen-
sion is “large enough” (see text), procedure walk1 cuts the
trapezoid along the line of slope −1 through its center.

recursively into smaller trapezoids, according to the fol-
lowing rules.

Base case: If the height is 1, then the trapezoid con-
sists of the line of spacetime points (t0, x) with
x0 ≤ x < x1. The procedure visits all these points,
calling the application-specific procedure kernel.
The traversal order is not important because these
points do not depend on each other.

Space cut: If the width is at least twice the height,
then we cut the trapezoid along the line with
slope −1 through the center of the trapezoid,
cf. Fig. 3. The recursion first traverses trapezoid
T1 = T (t0, t1, x0, ẋ0, xm,−1), and then trapezoid
T2 = T (t0, t1, xm,−1, x1, ẋ1). This traversal order
is valid because no point in T1 depends upon any
point in T2.

From Fig. 3, we obtain

xm =
1
2
(x0 + x1) +

1
4
(ẋ0 + ẋ1)∆t +

1
2
∆t .

Time cut: Otherwise, we cut the trapezoid along the
horizontal line through the center, cf. Fig. 4. The
recursion first traverses trapezoid T1 = T (t0, t0 +
s, x0, ẋ0, x1, ẋ1), and then trapezoid T2 = T (t0 +
s, t1, x0 + ẋ0s, ẋ0, x1 + ẋ1s, ẋ1), where s = ∆t/2.
The order of these traversals is valid because no
point in T1 depends on any point in T2.

In the two recursive cases, even though the computa-
tion of xm or s is based on integer divisions with trun-
cation or rounding, one can prove that both T1 and T2

are well-defined and nonempty no matter how the quo-
tient is truncated or rounded. Thus, procedure walk1 is
guaranteed to terminate because it reduces the original
problem to strictly smaller subproblems.

Procedure walk1 traverses the rectangular region
T (0, T, 0, 0, N, 0) as a special case. Perhaps surpris-
ingly, the same procedure also works for cylindrical
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regions in which point (t + 1, x) depends on points
(t, (x − 1) mod N), (t, x), and (t, (x + 1) mod N). To
use walk1 in this fashion, invoke it on T (0, T, 0, 1, N, 1)
and interpret all indices (modN) in the kernel. Fig. 5
illustrates how this scheme works for N = T = 10.
In the left part of the figure, we mark each spacetime
point with consecutive integers in the order in which
the point is visited. Thus, point (t, x) = (0, 0) is visited
first, point (0, 1) second, etc. The right part of the fig-
ure shows the recursively nested trapezoids produced by
walk1. Procedure walk1 traverses the spacetime region
in the black trapezoid rather than the grey spacetime
rectangle, but the traversal order is consistent with a
cylindrical stencil problem if all indices are interpreted
(modN) in the kernel.

3 Multi-dimensional Algorithm

In this section, we generalize procedure walk1 from Sec-
tion 2 in two ways. First, we relax the restriction to the
3-point stencil and allow arbitrary stencils. In partic-
ular, we allow spacetime point (t + 1, x) to depend on
all points (t, x + k), where |k| ≤ σ.2 Second, we gen-
eralize our procedure for arbitrary-dimensional space-
time. Fig. 6 shows a C implementation of the multi-
dimensional walk procedure.

We first extend procedure walk1 to work for |ẋ0| ≤ σ
and |ẋ1| ≤ σ, for an arbitrary slope σ. In the “space
cut” case, we cut along a line of slope dx/dt = −σ
through the center. This cut guarantees that no point
in the left trapezoid T1 depends upon any point in the
right trapezoid T2. Therefore, the modified algorithm
traverses spacetime in an order consistent with the sten-
cil dependencies. The expression for xm (see Fig. 3) for
arbitrary slope σ becomes

xm =
1
2
(x0 + x1) +

1
4
(ẋ0 + ẋ1)∆t +

1
2
σ∆t .

2The generalization of the stencil with respect to dependencies
of time steps t, t− 1, . . . , t− j for j > 1 follows by induction, and
by choosing slope σ = maxj(σj), where σj is the slope between
time steps t + 1− j and t− j.

Figure 5.15: Figure 5.15a shows a graphical depiction of a space cut. Figure 5.15b
shows a graphical depiction of a time cut.
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The n dimensional version is simply obtained by dividing first in any
spatial dimension and then in the time dimension. The idea beyond this
algorithm is quite simple: by recursively dividing the trapezoid, we will ob-
tain (for a given level of recursion) trapezoids whose size is almost optimal.
Moreover, we can mitigate the negative effects due to shared caches and op-
timize for all the levels of the hierarchy. It has been proved in [20, 38] that

this algorithm asymptotically incur in Θ(Md/C
1
d ), which is the same result

that we obtained for the time skewing algorithm. In practice, the number
of cache miss of this algorithm is higher than the number of cache miss of a
time skewed stencil code, finely tuned for a specific architecture and a spe-
cific data size. However, this algorithm should consistently deliver almost
theoretical peak performances on any architecture and data size without any
specific tuning.
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Chapter 6

Combining Locality and
Distributed Memory
Optimizations

In this chapter, we compare the optimization methods presented in Chapter 4
and 3. Moreover, we explain how these methods can be applied together. We
already discussed how optimization methods defined at the level of functional
dependencies (Q trasformations and SF ) can be combined with methods de-
fined at the concurrent level (Chapter 4). Now we can also add optimizations
for locality presented in the previous Chapter. Since optimizations described
in Chapter 4 are defined specifically for structured grids computations, we
will limit our discussion to this class of computations.

6.1 Combining SF and Loop Reordering

In this section, we analyze the interaction of SF and loop reordering trans-
formations. Similarly to Chapter 4, SF and loop reordering can be combined
freely since they work at different levels of abstraction. Firstly, SF is applied
producing a modified shape, then when the computation has been translated
at the concurrent level, Loop Reordering is applied.

6.1.1 SF and Tiling

In order to discuss the effects of combining SF and loop reordering transfor-
mation, we firstly have to define the final output of the combination of the
two optimization methods. Consider the structure of a generic structured
grid code defined at the concurrent level (Figure 6.1).
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double Jin[M ][M ], Jout[M ][M ];
load partition values (Jin);
for(istep = 0 ; istep < num step; istep + +){

SEND(P(−1,0)); SEND(P(0,−1));
SEND(P(0,1)); SEND(P(+1,0));
SEND(P(−1,−1)); SEND(P(+1,−1));
SEND(P(−1,+1)); SEND(P(+1,+1));

COMPUTE( incoming independent region );

RECV(P(−1,0)); RECV(P(0,−1));
RECV(P(0,1)); RECV(P(+1,0));
RECV(P(−1,−1)); RECV(P(+1,−1));
RECV(P(−1,+1)); RECV(P(+1,+1));

COMPUTE( incoming dependent region );

swap(Jin, Jout);
}
return partition (Jout);

Listing 6.1: Pseudocode representation of a generic structured grid computation
defined at the concurrent level. The working domain is defined in two dimension
and has size MxM . Depending on the stencil shape some of the SEND and RECV
operations might not be necessary.
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The part labelled as COMPUTE( incoming independent region ) is in
fact a generic d-nested loop where d is the dimensionality of the compu-
tation. For the Jacobi Stencil (or a generic two dimensional stencil of order
1), the following nested loops compute the Incoming Independent region of
a working domain of size N :

for i = 1 .. N−2 do
for j = 1 .. N−2 do

B[i , j ] = 0.25∗( A[i−1,j] + A[i,j−1] + A[i+1,j] + A[i,j+1] )

Listing 6.2: Nested loops for the update of the incoming independent region of a
two dimensional Jacobi stencil.

This is a perfectly nested loop therefore loop reordering can be applied.
Since the structure of the concurrent level code is always the same (Listing
6.1), unregarding of the actual shape, we can apply loop reordering to any
structured grid computation. In fact, consider the code for the incoming
independent region of the SF version of Listing 6.2 (Listing 6.3). The struc-
ture is exactly the same. Notice that the only difference is the size of the
incoming independent region which is reduced because the SF shape has a
larger order.

for i = 2 .. N−3 do
for j = 2 .. N−3 do

B[i , j ] = 0.0625∗( A[i−2,j] + 2∗A[i−1,j−1] +
2∗A[i−1,j+1] + A[i,j+2] + 4∗A[i,j] + A[i,j−2] +
2∗A[i+1,j+1] +2∗A[i+1,j−1] + A[i+1,j] )

Listing 6.3: Nested loops for the update of the incoming independent region of a
two dimensional Jacobi stencil with SF applied.

This loop does not contain the time step so we are actually performing
the tiling strategy. Moreover, there are no advantages in tiling the incoming
dependent region because it has a limited size that will almost always fit in
cache.

We will now analyze the impact of this additional modification on the
memory hierarchy. We will consider the more general case where Md−1 ele-
ments do not fit in cache. In Section 5.5.1, we have shown that the number
of cache misses is reduced by a factor proportional to the extent ψ of the
stencil’s shape. Therefore, tiling can be very beneficial in computations with
applied SF since their ψ is bigger than normal. However, a comparison
should not be made between the tiled SF version and the original SF ver-
sion because instead we should compare the naive and SF version when both
are tiled. Since tiling ensures that the number of cache misses is reduced to
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a number close to the theoretical optimum of Md/B per time step, the SF i
version should perform i times better because it reduces the number of time
steps by a factor i.

Consider that, for high levels of SF , some factors concur to step fusion
overhead:

I. The halo of a tile increases linearly with respect to the extent of the
shape and therefore with respect to the level of step fusion (Figure 5.8).
The assumption, made in Section 5.5.1, that the overhead introduced by
halo elements is negligible for normal stencil’s shape, might not apply
anymore.

II. The size of a tile is reduced because the working set is increased, which
in turn increases the number of tiles and exacerbates the problem in I.

III. The number of floating point operations also increases with respect to
the level of step fusion.

If we consider I. and II. only (Figure 6.1), the number of cache miss is
indeed higher than the optimal value but not substantially.

We can not address III. in a external memory model; however, experi-
mental results[31] show that step fusion above a level of three is infeasible.
In fact, the arithmetic intensity grows quadratically with respect to the step
fusion level and thus dominates the computation time.

6.1.2 Comparison of SF and Time Skewing

Notice that SF and time skewing can be theoretically combined since they
work on different levels; however, they both try to reduce the number of
cache miss by collapsing the execution of different time steps. If we compare
the two methods, we have that time skewing is far more efficient because
it can collapse the execution of a number of time steps proportional to the
cache size; therefore, reducing cache misses by the same factor. Step fusion
can only merge effectively few time step but can also reduce the number
of communications among workers. Therefore, the best method to apply
depends on the peculiarities of the underlying architecture.

6.2 Combining Q trasformations and Loop Re-

ordering

Similarly to Section 6.1, we discuss how we can combine Q trasformations
and loop reordering techniques.
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Figure 6.1: Number of cache miss with respect to step fusion level. The optimal
value corresponds to M2/B. Matrix has a size of 2048x2048 and the cache has a
size of 1024 elements.

6.2.1 Q trasformations and Tiling

We will use the same argument of Section 6.1 and consider the structure of the
code in Listing 6.1. The nested loop associated to the incoming independent
region can be tiled as described in Section 5.5.1. Since Q trasformations
have no impact on the memory hierarchy, the analysis of Section 5.5.1 is
valid. Tiling will improve performance if the size of the cache is smaller than
ψ ∗Md−1. If this is the case, cache misses will be reduced by a factor equal
to the extent of the shape ψ.

SH method and Ghost Cell Expansion Both methods operate at the
concurrent level and modify the concurrent code produced. For convenience,
we reproduce here the concurrent code of a generic structured grid compu-
tation with SH (Listing 6.4) or ghost cell expansion (Listing 6.5) that were
introduced in Chapter 4.

For the shift method, we can easily apply tiling without causing any
problems. Since the Incoming Independent region is divided in multiple
parts equal to the number of spatial dimensions, it is sufficient to tile all the
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double Jin[512][512], Jout[512][512];
load partition values (Jin);
for(istep = 0 ; istep < num step; istep + +){

SEND(P(−1,0)); SEND(P(+1,0));

//update of first half of the Incoming Independent Region
for i = 1 .. N−2 do

for j = 1 .. N/2 − 1 do
B[i , j ] = 0.25∗( A[i−1,j] + A[i,j−1] + A[i+1,j] + A[i,j+1] )

RECV(P(−1,0)); RECV(P(+1,0));

copy(border elements of receive buffer into send buffers )

SEND(P(0,−1)); SEND(P(0,+1));

//update of second half of the Incoming Independent Region
for i = 1 .. N−2 do

for j = N/2 .. N − 2 do
B[i , j ] = 0.25∗( A[i−1,j] + A[i,j−1] + A[i+1,j] + A[i,j+1] )

RECV(P(0,−1)); RECV(P(0,+1));

COMPUTE( dependent incoming region );

swap(Jin, Jout);
}
return partition (Jout);

Listing 6.4: Pseudocode representation of a generic two dimensional stencil (η = 1)
with shift method applied. Not all SEND and RECV operation might be necessary
depending on the stencil’s shape.
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double A[512][512], B[512][512];
load partition values (Jin);
for(istep = 0 ; istep < num step/2; istep+ = 2){

SEND(P(−1,0)); SEND(P(0,−1));
SEND(P(0,1)); SEND(P(+1,0));
SEND(P(−1,−1)); SEND(P(+1,−1));
SEND(P(−1,+1)); SEND(P(+1,+1));

for i = 1 .. N−2 do
for j = 1 .. N − 2 do

B[i , j ] = 0.25∗( A[i−1,j] + A[i,j−1] + A[i+1,j] + A[i,j+1] )

RECV(P(−1,0)); RECV(P(0,−1));
RECV(P(0,1)); RECV(P(+1,0));
RECV(P(−1,−1)); RECV(P(+1,−1));
RECV(P(−1,+1)); RECV(P(+1,+1));

COMPUTE( incoming dependent region);

COMPUTE( external elements ∈ dependency set );

//Second Step

swap(A,B);

for i = 0 .. N−1 do
for j = 0 .. N − 1 do

B[i , j ] = 0.25∗( A[i−1,j] + A[i,j−1] + A[i+1,j] + A[i,j+1] )

swap(A,B);
}
return partition (A);

Listing 6.5: Pseudocode representation of a generic two dimensional stencil (η = 1)
with oversending method applied. Not all SEND and RECV operation might be
necessary depending on the stencil’s shape.
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resulting nested loops. However, in order to implement the tiling strategy
presented in Section 5.5.1, we cannot divide the dimension of maximum stride
of the Incoming Independent region. For the oversending method, we can also
easily apply tiling. At the second step, the entire partition can be computed
so the only difference is that the lower and upper bounds of the nested loops
are bigger.

6.2.2 Q trasformations and Skewing

Using skewing in combination with the optimization methods presented in
Chapter 4 is more complex. This is because of two factors:

1. The time skewing algorithm is strictly sequential; different trapezoids are
updated in a wavefront pattern (Figure 5.12).

2. If we consider the loop over time steps in Listing 6.1, we do not have a
perfect loop nest.

Therefore, we can not rely on automatic methods and we have to in-
vestigate how time skewing can be performed in parallel over a partitioned
domain. Given a mono-dimensional domain, the execution of a time skewed
algorithm can be represented as in Figure 6.2. Trapezoids must be executed
in a given sequential order to preserve the correctness of the computation. It
is possible to isolate trapezoids that can be executed in parallel as in Figure
6.3[21, 38]. We can force a trapezoid to have the base (spatial domain) equal
to a partition in order to map it to a processing node. Then, the processing
node can further divide the assigned trapezoid in order to exploit locality.
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Figure 10.1: A visual depiction of three grid traversal algorithms performing multiple
iterations of a 1D three-point stencil (with constant boundaries at each edge of the
grid). Each colored tile is performed consecutively going from left to right, but in the
case of (a) and (c), the colored tiles can be processed in parallel safely. In addition,
the points within each colored tile are performed a single iteration at a time.

We note that the following algorithms can be used in conjunction with barriers.

For example, instead of having a barrier after each iteration, we can perform n

iterations with one of the following algorithms, execute a barrier, and then perform

another n iterations. In this way, a barrier becomes a part of the overall tuning

space.

10.1.1 Näıve Tiling

Näıve tiling, where we decompose the grid into blocks spatially (but not tem-

porally), is the simplest approach to improving the memory access pattern when

performing multiple iterations. An example of this algorithm is shown for a simple

Figure 6.2: Graphical depiction of time skewing on a mono-dimensional stencil.
Different trapezoids should be executed from left to right.

It is clear that different trapezoids can be updated in parallel: the base
of a trapezoid will correspond to the Incoming Independent region and the
number of time steps will be reduced by a constant factor which is tun-
able. However the portion of the Figure 6.3 labelled as clean up work should
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Figure 10.1: A visual depiction of three grid traversal algorithms performing multiple
iterations of a 1D three-point stencil (with constant boundaries at each edge of the
grid). Each colored tile is performed consecutively going from left to right, but in the
case of (a) and (c), the colored tiles can be processed in parallel safely. In addition,
the points within each colored tile are performed a single iteration at a time.

We note that the following algorithms can be used in conjunction with barriers.

For example, instead of having a barrier after each iteration, we can perform n

iterations with one of the following algorithms, execute a barrier, and then perform

another n iterations. In this way, a barrier becomes a part of the overall tuning

space.

10.1.1 Näıve Tiling

Näıve tiling, where we decompose the grid into blocks spatially (but not tem-

porally), is the simplest approach to improving the memory access pattern when

performing multiple iterations. An example of this algorithm is shown for a simple

Figure 6.3: Graphical depiction of parallel time skewing. Different trapezoids
belongs to different workers. The space-time portions labelled as “clean up work”
should be updated after the adjacent trapezoids.

be computed concurrently by both processors who own the adjacent trape-
zoids. In order to do so, the borders (outgoing dependent region) should
be sent for every collapsed time step (as in the naive version). Therefore,
we have greatly reduced cache misses but the number of communications is
unchanged. Obviously we can use the Q trasformation to reduce the number
of communications and ameliorate the problem. Moreover, by using QW
trasformation , we can use a single data structure to store all the data thus
reducing the memory requirements of a trapezoid.

However, we should try to reduce the number of communications. Figure
6.4 shows a possible solution to this problem. In this case, partitions partially
overlap in such a way that after performing communications two adjacent
processing nodes can proceed without further synchronizations. This solution
was proposed in [24, 14] as the circular queue method. However this is
equivalent to the ghost cell expansion method[17]. Computation is divided in
supersteps composed of previous time steps. The amount of data transferred
among processes is unchanged but the number of communications is not
proportional anymore to the number of collapsed time steps. Unfortunately,
additional work has to be performed by every node (as in the oversending
method).
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Figure 10.1: A visual depiction of three grid traversal algorithms performing multiple
iterations of a 1D three-point stencil (with constant boundaries at each edge of the
grid). Each colored tile is performed consecutively going from left to right, but in the
case of (a) and (c), the colored tiles can be processed in parallel safely. In addition,
the points within each colored tile are performed a single iteration at a time.

We note that the following algorithms can be used in conjunction with barriers.

For example, instead of having a barrier after each iteration, we can perform n

iterations with one of the following algorithms, execute a barrier, and then perform

another n iterations. In this way, a barrier becomes a part of the overall tuning

space.

10.1.1 Näıve Tiling

Näıve tiling, where we decompose the grid into blocks spatially (but not tem-

porally), is the simplest approach to improving the memory access pattern when

performing multiple iterations. An example of this algorithm is shown for a simple

Figure 6.4: Circular Queue optimization of a time skewed mono dimensional
stencil.
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iterations of a 1D three-point stencil (with constant boundaries at each edge of the
grid). Each colored tile is performed consecutively going from left to right, but in the
case of (a) and (c), the colored tiles can be processed in parallel safely. In addition,
the points within each colored tile are performed a single iteration at a time.

We note that the following algorithms can be used in conjunction with barriers.

For example, instead of having a barrier after each iteration, we can perform n

iterations with one of the following algorithms, execute a barrier, and then perform

another n iterations. In this way, a barrier becomes a part of the overall tuning

space.

10.1.1 Näıve Tiling

Näıve tiling, where we decompose the grid into blocks spatially (but not tem-

porally), is the simplest approach to improving the memory access pattern when

performing multiple iterations. An example of this algorithm is shown for a simple

tim
e

Figure 6.5: Execution of three steps of the proposed modified version of time
skewing. Four different processors (red, orange, green and blue) update different
portions of the space time domain. The update of the inverted triangle of space
time points between different trapezoids is assigned in a circular pattern. By
alternating the direction of communications the correct position of the partitions
is restored.

Again, the number of time steps to collapse is tunable. The best number
of steps to collapse using time skewing is difficult to obtain. However, in a
real architecture, we should expect it to be a fraction of the theoretical upper
bound derived in Section 6.2.2.

We now present an additional optimization of the skewing method shown
in Figure 6.3 that has both a minimum number of communications and no
computation overhead. The idea is to send the border of the trapezoid after
it has been computed (not before as in the circular queue method). By
using the QW trasformation in conjunction with time skewing, only one
data structure is used. Therefore, it is easy to send the whole border to
an adjacent node which will in turn update the entire inverted triangle of
“clean up” work. Assuming periodic boundary conditions, a circular pattern
of communications can be established and therefore every node performs the
same number of operations. Obviously there is no computation overhead. At
the end of a superstep, a node have in its buffers a different partition than
its assigned one. However by alternating the direction of communications
among processing nodes, it is possible to restore every element in its correct
position ( Figure 6.5 ).
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6.3 Conclusions

Throughout this thesis, we analyzed many optimizations techniques. Some of
them are specific to structured grids computations (Chapter 4) while others
are applicable to any scientific computation (Chapter 5). In Chapter 4, we
presented the class of Q trasformations that together with the SH method
ensure the lowest theoretical number of communications among processes
for a generic d dimensional stencil. Moreover, we analyzed the QW trasfor-
mation class of optimizations that reduce the memory requirements to an
optimal value while maintaining a lower bound on the number of commu-
nications. We also presented the ghost cell expansion method and the SF
trasformation . Both methods are capable of linearly reducing the number
of cache miss, but they both introduce a computational overhead. The effect
of the SF trasformation was thoroughly examined in Chapter 5 together
with classical loop reordering transformations. We analyzed loop reordering
transformations by taking into account that for some stencil computations,
it is possible to collapse different time steps while for others, it is infeasible.
In the former case, time skewing allows to dramatically reduce the number
of cache miss. In the latter case, it is possible to reorder the computation
inside a time step and by carefully selecting the schedule, achieve a number
of cache faults close to the theoretical lower bound (for a single step). Finally
in Chapter 6, we analyzed all the reasonable combinations of the aforemen-
tioned optimizations methods. We concluded that for stencil computations,
where it is not possible to collapse different time steps, the combination of
Q trasformation ,SH method and loop reordering limited to a time step will
produce the best results. On the other hand, for computations where it is
possible to collapse different time steps, we have compared SF and time
skewing. We concluded that time skewing is probably more efficient in terms
of performance, however a more accurate analysis on a real architectures is
necessary. Finally, we examined how computations employing time skew-
ing (which is strictly sequential) can be executed in parallel. We examined
various solutions and derived, as a proof of concept, an alternative method
that, unlike methods found in literature, has no computational overhead. All
these optimizations were examined by following the methodology presented
in Chapter 3, thus utilizing an abstract cost model in order to prove per-
formance gain. In some cases, the limits of the model were evident (as in
the case of the increase of flops in SF ) and we used experimental results
to prove our claims. A meaningful testing of these methods should be per-
formed on real architectures as a future work. Given the amount of methods
presented, a comprehensive set of tests on a representative subset of all struc-
tured grid computations and a representative set of modern architectures will
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be a very time consuming task although necessary. We performed a subset
of all possible tests and we present some meaningful experimental results in
the next chapter. Nonetheless, the structured model and the theoretical re-
sults presented throughout this thesis can be used as a reference in order to
interpret experimental results and guide the optimization of structured grid
computations.
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Experimental Results

Tests were performed in order to validate theoretical results presented through-
out this thesis. In order to perform these tests a specific compiler was devel-
oped in order to automatically produce optimized code withQ trasformations
and/or SF trasformation and/or the SH method . In order to perform loop
reordering optimizations we utilized the Pluto polyhedral compiler[8] in or-
der to automatize the process of producing tiled nested loops. Tests were
performed on the following machines:

Andromeda: Intel(R) Xeon(R) CPU E5520 @ 2.27GHz multicore machine
with two sockets. Every socket contains 4 cores with hyperthreading for a
total of 16 hardware thread. OpenMPI 1.6 is used as the MPI library with
gcc 4.6.2.

Titanic AMD Opteron(tm) Processor 6176 multicore machine with two
sockets. Every socket contains 12 cores divided in two chips. No mechanisms
for hardware multithreading is available therefore the number of hardware
thread is 24. MPICH2 v1.4.1 is used as the MPI library with icc 12.1.0.

All reported results are the average of the completion time for a single
time step (iteration) obtained as the average of 10 trials. All the tests do
not consider scatter and gather operations since they are unaffected by the
optimizations techniques presented. Moreover, all test are performed for a
fixed parallelism degree and varying partition size, in order to test the effec-
tiveness of different optimizations for different sizes of the working domain.
In order to test the effectiveness of the Q trasformation and SH method we
wanted to ensure that the following constrains were met:

I. Every partition has the same number of elements.
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II. Every partition has the optimal surface to volume ratio (hypercubes),
therefore the number of elements to transfer is minimal.

III. There are no communications from a partition to itself.

These constrains are necessary to ensure that communications are per-
formed only when necessary and every partition has the same amount of
elements to transfer. If the optimizations give a performance gain in this
strict testing condition it is correct to assume that they will be even more
effective when the amount of data to transfer is higher (or unbalanced) with
respect to the partition size. If performance gain is proven under constrain
II. it should be evident for other less desirable shapes where communications
have even more impact on performance. Constrain III. is necessary to avoid
communications that are useless (from a process to itself). In order to do so
it is sufficient to have two partition per spatial dimension.
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Figure A.1: Mean completion time of a single time step of the naive, Q , Q and
SH versions of the two dimensional Jacobi stencil executed on Andromeda.

The first set of tests is performed on Adromeda. From Figure A.1 we can
see how the performance of the whole computation is increased by Q trasfor-
mations or Q trasformations and SH method . This effect is noticeable for
partition’s sizes up to 105 elements. As expected, performance gain is notice-
able for small sizes of the partition where communications’ cost dominates.
Figure A.2 shows that the cost of communications is generally reduced while
the cost of computation is unaffected (Figure A.3). Notice that for some
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Figure A.2: Communication time of a single time step of the of naive, Q , Q and
SH versions of the two dimensional Jacobi stencil executed on Andromeda.

sizes of the partition there is a decrease in performance due to the fact that
the cost of communications ( Figure A.2) increase abruptly with respect
to the size of data transmitted. This is probably due to the library used
for message passing. Since the family of Q transformations tends to group
together communications (therefore performing bigger communications less
frequently) they suffer of this deterioration of performance more than the
naive version.

By performing the same test on another machine (Titanic) we obtain
similar results (Figure A.4).

From Figure A.5 it is clear that communications are relevant only for a
small size of the partition. Therefore, optimizations of the Q family can only
be beneficial for small working domains in the two dimensional case.

Apart for some fluctuations on the experimental values we have a notice-
able performance gain for partitions up to 105 elements and almost negligible
variation of performance for higher dimensionality.
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Figure A.3: Computation time of a single time step the of naive, Q , Q and
SH versions of the two dimensional Jacobi stencil (without MPI communications)
executed on Andromeda.
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Figure A.4: Mean completion time of naive of the naive Q and Q + SH version
of the Jacobi stencil executed on Titanic.
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Figure A.5: Total, computation and communication time of the two dimensional
jacobi stencil (naive version) executed on Titanic.
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Figure A.6 shows results for the 3d jacobi stencil. Here the ratio of
communication and computation is different; communications have a greater
impact in performance and so do our optimization techniques. We can see
that there is an increment in performance for partitions ranging from 104 to
106 elements.
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Figure A.6: Mean completion time of naive and Q + SH version of the 3d Jacobi
stencil executed on Andromeda.

Figure A.7 shows the effect of the SF trasformation on the Jacobi Stencil.
These results perfectly reflects our theoretical analysis of Section 5.2. For
partitions which can fit entirely in the L1 cache ( L1 is 64Kbyte therefore it
can store less than 105 double precision values) SF trasformation is counter
productive since it increase the number of floating point operations. For
partitions of bigger size there is a noticeable speed-up with respect to the
naive version due primarily to the increased temporal locality (Figure A.8).
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Figure A.7: Mean completion time of naive,SF2 and SF2 + SH version of the
Jacobi stencil executed on Titanic. Values are normalized w.r.t the number of time
steps.
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Figure A.8: Comparison of Computation cost for both naive and SF2 version.
Communication cost of the naive version is shown for reference. Notice that for
sufficiently big partitions the computation cost dominates.
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Now we conclude our set of experimental results with the analysis of
the loop tiling and loop skewing techniques presented in Section 5.5.1 and
Section 5.5.2. We selected the two dimensional laplace stencil and a fixed
cache block size of 32x32 for loop tiling and 32x32x32 for loop skewing.
Results are presented in Figure A.9. While the performance gain is evident
for the time skewing method, tiling only in the spatial dimensions does not
produce significant improvements and might be counter productive (Figure
A.10). In particular, apart from fluctuations in the experimental results,
loop tiling seems more ineffective where it should be beneficial, i.e., when
the partition size is big and can not fit in the lower levels of the memory
hierarchy.
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Figure A.9: Comparison of naive, loop tiling and time skewing version of the two
dimensional laplace stencil.

This strange behaviour of loop tiling is well known in literature[25, 14].
This is caused by both hardware and software pre-fetching mechanisms which
produce additional, unnecessary, memory traffic. In fact, hardware mecha-
nisms assume that elements are accessed in a unit stride fashion which is
obviously not true if loop tiling is used. On the other hand, eliminating pre-
fetching altogether cause a dramatic degradation of performance. In [13] this
problem is analyzed in detail. Since compilers (at the state of the art) cannot
automatically determine tile’s boundaries and insert pre-fetching instruction
accordingly, the author concludes that they should be inserted by the pro-
grammer. Moreover, hardware pre-fetching mechanisms should be disabled.
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Figure A.10: Speedup (Tnaive/Topt) of loop tiled and time skewed version with
respect to the naive version of the two dimensional laplace stencil.

Another possible explanation of results in Figure A.9 is that tiling increase
code complexity. In particular tiling increase the number of for loops and
introduces additional conditional instructions in order to consider partition
sizes which are not exact multiples of tile sizes. Therefore, tiled concurrent
code is less “compiler friendly” since it is more difficult to apply standard
optimizations such as loop unrolling[37]. Even if optimal object code is pro-
duced, the number of conditional jumps in object code is inevitably higher
and this might affect the computation performance.
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