13 research outputs found

    On Error-Controlled Numerical Model Reduction for Linear Transient FE\ub2 Analysis

    Get PDF
    Multiscale modeling is of high interest in the engineering community due to its ability to capture the overall response, while still accounting for processes and structures on underlying fine scales. One standard approach to multiscale modeling is the so-called FE\ub2 procedure, where the classic constitutive relation is replaced by a boundary value problem on a Representative Volume Element (RVE) comprising the underlying microscale features. It is well realized that straight-forward use of the FE\ub2-strategy can be computationally intractable for a fine macroscale mesh. Therefore, it is of interest to reduce the cost of solving the individual RVE-problem(s) by introducing some kind of reduced basis, here denoted Numerical Model Reduction (NMR). However, it is important to note that the richness of the reduced basis will determine the accuracy of the solution, which calls for error control.This thesis concerns numerical model reduction for linear transient problems in the FE\ub2 setting, in particular the problems of heat flow and poroelasticity. Two different reduction techniques – Spectral Decomposition and Proper Orthogonal Decomposition – are applied in order to obtain an efficient method of solving and evaluating homogenized quantities on the microscale. For the model problem of linear transient heat flow, the microscale finite element problem reduces to a set of (uncoupled) ordinary differential equations, which, obviously, can be solved more efficiently than the original fully resolved finite element problem.For the error estimation, we focus solely on the error due to the reduced basis and ignore time- and space-discretization errors. We derive guaranteed, explicit bounds on the error in (i) a constructed “energy” norm and (ii) a user-defined quantity of interest (QoI) within the realm of goal-oriented error estimation. As a “workhorse” for the error computation, we introduce an associated (non-physical) symmetrized variational problem in space-time. We obtain low cost estimators, based on the residual, which, in particular, requires no extra modes than the ones used for the reduced basis approximation. The performance of the estimator is demonstrated with numerical examples, and, for both the heat flow problem and the poroelastic problem, we overestimate the error with an order of magnitude, which is deemed acceptable given that the estimate is fully explicit and the extra cost is negligible

    Acceleration of Gas Reservoir Simulation Using Proper Orthogonal Decomposition

    Get PDF

    Numerical Model Reduction and Error Control for Computational Homogenization of Transient Problems

    Get PDF
    Multiscale modeling is a class of methods useful for numerical simulation of mechanics, in particular, when the microstructure of a material is of importance. The main advantage is the ability to capture the overall response, and, at the same time, account for processes and structures on the underlying fine scales. The FE2 procedure, "finite element squared", is one standard multiscale approach in which the constitutive relation is replaced with a boundary value problem defined on an Representative Volume Element (RVE) which contains the microscale features. The procedure thus involves the solution of finite element problems on two scales: one macroscopic problem and multiple RVE problems, typically one for each quadrature point in the macroscale mesh. While the solution of the independent RVE problems can be trivially parallelized it can still be computationally impractical to solve the two-scale problem, in particular for fine macroscale meshes. It is, therefore, of interest to investigate methods for reducing the computational cost of solving the individual RVE problems, while still having control of the accuracy.In this thesis the concept of Numerical Model Reduction (NMR) is applied for reducing the RVE problems by constructing a reduced spatial basis using Spectral Decomposition (SD) and Proper Orthogonal Decomposition. Computational homogenization of two different transient model problems have been studied: heat flow and consolidation. In both cases the RVE problem reduces to a system of ordinary differential equations, with dimension much smaller than of the finite element system.With the reduced basis and decreased computational time comes also loss of accuracy. Thus, in order to assess results from a reduced computation, it is useful to quantify the error. This thesis focuses solely on estimation of the error stemming from the reduced basis by assuming the fully resolved finite element solution to be exact, thereby ignoring e.g. time- and space-discretization errors. For the linear model problems guaranteed, fully computable, bounds are derived for the error in (i) a constructed "energy" norm and (ii) a user-defined quantity of interest within the realm of goal-oriented error estimation. In the non-linear case approximate, fully computable, bounds are derived based on the linearized error equation.In all cases an associated (non-physical) symmetrized variational problem in space-time is introduced as a "driver" for the estimate. From this residual-based estimates with low computational cost are obtained. In particular, no extra modes than the ones used for the reduced basis approximation are required. The performance of the estimator is demonstrated with numerical examples, and, for both the heat flow problem and the poroelastic problem, the error is overestimated by an order of magnitude, which is deemed acceptable given that the estimate is fully explicit and the extra cost is negligible

    Numerical Model Reduction with error estimation for computational homogenization of non-linear consolidation

    Get PDF
    Numerical Model Reduction (NMR) is adopted for solving the non-linear microscale problem that arises from computational homogenization of a model problem of porous media with displacement and pressure as unknown fields. A reduced basis is obtained for the pressure field using Proper Orthogonal Decomposition and the pertinent displacement basis is obtained using Nonuniform Transformation Field Analysis. An explicit, fully computable, a posteriori error estimator is derived based on the linearized error equation for quantification of the NMR error in terms of a suitably chosen energy norm. The performance of the error estimates is demonstrated via a set of numerical examples with varying load amplitudes

    Dimensional hyper-reduction of nonlinear finite element models via empirical cubature

    Get PDF
    We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accuracy.Peer ReviewedPostprint (published version

    A posteriori error estimation for numerical model reduction in computational homogenization of porous media

    Get PDF
    Numerical model reduction is adopted for solving the microscale problem that arizes from computational homogenization of a model problem of porous media with displacement and pressure as unknown fields. A reduced basis is obtained for the pressure field using (i) spectral decomposition (SD) and (ii) proper orthogonal decomposition (POD). This strategy has been used in previous work—the main contribution of this article is the extension with an a posteriori estimator for assessing the error in (i) energy norm and in (ii) a given quantity of interest. The error estimator builds on previous work by the authors; the novelty presented in this article is the generalization of the estimator to a coupled problem, and, more importantly, to accommodate the estimator for a POD basis rather than the SD basis. Guaranteed, fully computable and low-cost bounds are derived and the performance of the error estimates is demonstrated via numerical results

    Reduced basis multiscale finite element methods for elliptic problems

    Get PDF
    In this paper, we propose reduced basis multiscale finite element methods (RB-MsFEM) for elliptic problems with highly oscillating coefficients. The method is based on multiscale finite element methods with local test functions that encode the oscillatory behavior ([4, 14]). For uniform rectangular meshes, the local oscillating test functions are represented by a reduced basis method, parameterizing the center of the elements. For triangular elements, we introduce a slightly different approach. By exploring over-sampling of the oscillating test functions, initially introduced to recover a better approximations of the global harmonic coordinate map, we first build the reduced basis on uniform rectangular elements containing the original triangular elements and then restrict the oscillating test function to the triangular elements. These techniques are also generalized to the case where the coefficients dependent on additional independent parameters. The analysis of the proposed methods is supported by various numerical results, obtained on regular and unstructured grids

    Dimensional hyper-reduction of nonlinear finite element models via empirical cubature

    Get PDF
    We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accurac

    High-performance model reduction techniques in computational multiscale homogenization

    Get PDF
    A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version that accounts for the elastic/inelastic character of the solution - of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude - as compared with finite element analysis - whereas the maximum error in stresses is less than 10%. A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version that accounts for the elastic/inelastic character of the solution - of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude - as compared with finite element analysis - whereas the maximum error in stresses is less than 10%
    corecore