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On Error-Controlled Numerical Model Reduction for Linear Transient FE2 Analysis
FREDRIK EKRE
Department of Industrial and Materials Science
Division of Material and Computational Mechanics
Chalmers University of Technology

Abstract

Multiscale modeling is of high interest in the engineering community due to its ability
to capture the overall response, while still accounting for processes and structures on
underlying fine scales. One standard approach to multiscale modeling is the so-called FE2

procedure, where the classic constitutive relation is replaced by a boundary value problem
on a Representative Volume Element (RVE) comprising the underlying microscale features.
It is well realized that straight-forward use of the FE2-strategy can be computationally
intractable for a fine macroscale mesh. Therefore, it is of interest to reduce the cost of
solving the individual RVE-problem(s) by introducing some kind of reduced basis, here
denoted Numerical Model Reduction (NMR). However, it is important to note that the
richness of the reduced basis will determine the accuracy of the solution, which calls for
error control.

This thesis concerns numerical model reduction for linear transient problems in the
FE2 setting, in particular the problems of heat flow and poroelasticity. Two different
reduction techniques – Spectral Decomposition and Proper Orthogonal Decomposition –
are applied in order to obtain an efficient method of solving and evaluating homogenized
quantities on the microscale. For the model problem of linear transient heat flow, the
microscale finite element problem reduces to a set of (uncoupled) ordinary differential
equations, which, obviously, can be solved more efficiently than the original fully resolved
finite element problem.

For the error estimation, we focus solely on the error due to the reduced basis and
ignore time- and space-discretization errors. We derive guaranteed, explicit bounds on
the error in (i) a constructed “energy” norm and (ii) a user-defined quantity of interest
(QoI) within the realm of goal-oriented error estimation. As a “workhorse” for the error
computation, we introduce an associated (non-physical) symmetrized variational problem
in space-time. We obtain low cost estimators, based on the residual, which, in particular,
requires no extra modes than the ones used for the reduced basis approximation. The
performance of the estimator is demonstrated with numerical examples, and, for both the
heat flow problem and the poroelastic problem, we overestimate the error with an order
of magnitude, which is deemed acceptable given that the estimate is fully explicit and the
extra cost is negligible.
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Part I

Extended summary

1 Introduction

1.1 Background

Multiscale modeling is a well known approach for including effects from the microstructure
while performing simulations on the macroscale level. The main advantage is that they
usually require fewer computational resources for solving the problem. For large problems
it might not even be feasible to fully resolve the microstructure with e.g. finite elements.
There are a number of different approaches to multiscale modeling, e.g. Multiscale Finite
Element Methods (MsFEM) and Heterogeneous Multiscale Finite Element Method (HM-
FEM). Another well known approach is Variational Consistent Homogenization (VCH)
and the so-called FE2 procedure, where the classic constitutive relation is replaced by
a boundary value problem on a Representative Volume Element (RVE) comprising the
underlying microscale features, cf. e.g. Larsson et al. [1]. In practice this means that a
full finite element problem needs to be solved in each of the quadrature points on the
macroscale, and it is well-realized that straight-forward use of the FE2-strategy can be
computationally intractable for fine macroscale meshes. Therefore, it is of interest to
reduce the computational cost required for solving the individual RVE-problem(s) by
introducing some kind of reduced basis, here denoted Numerical Model Reduction (NMR).

Different NMR techniques for multiscale methods have been studied. Fish and
coworkers [2, 3] introduced “eigendeformation reduced-order homogenization” based on the
concept of Transformation Field Analysis (TFA) proposed by Dvorak and Benveniste [4].
A similar approach was proposed by Michel and Suquet [5, 6] denoted Nonuniform
Transformation Field Analysis (NTFA). The NTFA approach combined with Proper
Orthogonal Decomposition (POD) was investigated by Fritzen et al. [7, 8, 9, 10] for
visco-elasticity and a class of standard dissipative materials. POD was also utilized by
Jänicke et al. [11] for computational homogenization of poroelasticity, whereby the pore
pressure plays a role similar to inelastic strains in the NTFA framework.

The reduced basis introduces a new source of errors and the richness of the basis will
determine the accuracy of the solution. Strategies for quantifying this error have been
developed for various multiscale methods and reduction techniques in previous work, cf.
e.g. Abdulle et al. [12, 13], Boyaval [14], Ohlberger and Schindler [15], and Efendiev with
coworkers [16, 17]. It is not only the accuracy of the solution itself that is important,
usually the error in some other resulting quantity is also of interest. Within the realm of
goal-oriented error estimation the aim is to estimate the error in terms of a user-defined
quantities, cf. e.g. the work by Oden and Prudhomme [18, 19]. In the context of applying
NMR for the subscale such a quantity could be e.g. the homogenized stress used for the
macroscale computation.
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1.2 Aim of research

The aim of this research is to develop efficient methods for multiscale modeling. In
particular, the goal is to investigate NMR techniques, and apply them to the subscale
problems arizing from computational homogenization, in an attempt to make the solution
of complicated macroscopic problems feasible. As mentioned earlier, the use of NMR
methods results in an extra source of errors. Moreover, in a nested multiscale method this
error will propagate between the scales. Therefore, an important goal of the research is to
develop error estimators for quantification of this error, both locally for a given subscale,
and as a “global” measure on the macroscale.

1.3 Scope and limitations

The main focus of this work is to investigate error-controlled numerical model reduction
in a FE2 setting. The following major tasks are identified:

• implement an FE2 algorithm utilizing NMR for the subscale problem(s);

• derive an error estimator to quantify the NMR error in terms of an “energy norm”
and user-defined quantities of interest.

The present work is limited to transient linear problems. Linearity is an important
property for the type of guaranteed error estimates that is utilized for quantification of the
NMR error. The application of NMR with error control for non-linear problems is left for
future research. Another important limitation is that only the NMR error is considered
for the error estimation. Other types of errors, such as smoothening errors from the
homogenization, and time and space discretization errors, are completely ignored.
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2 FE2 approach to multiscale modeling

There exist multiple methods for multiscale modeling with the goal of taking the mi-
crostructure of the problem into account, e.g. the Multiscale Finite Element Method
(MsFEM) [20, 21] and the Heterogeneous Multiscale Finite Element Method [22, 12, 13].
It is noted that the latter method does not presume scale separation. In this work we
adopt the procedure of Variationally Consistent Homogenization (VCH). We assume
complete separation of scales between the microscale and the macroscale, cf. e.g. Larsson
et al. [1], and adopt the Finite Element squared (FE2) technique for solving the resulting
two-scale problem. Thus, in a finite element setting, the effective properties are computed
in each macroscale quadrature point by solving a boundary value problem defined on
the subscale structure. Information is passed between the scales in both directions – the
(current) macroscale solution is sent to the subscale (prolongation), the subscale problem
is solved, and effective properties are sent back to the macroscale (homogenization). See
Figure 2.1 for an illustration of the procedure.

Ω
Ω�

ū, ∇ū

Φ̄, q̄

Figure 2.1: Schematic illustration of the FE2 procedure: In each quadrature point of
the macroscale mesh (Ω) the homogenized field ū and the gradient ∇ū is passed to the
microscale (Ω�) where the microscale problem is solved, and homogenized quantites (e.g.
homogenized stored heat Φ̄ and homogenized flux q̄) are passed back to the macroscale.

As an example, consider the space-time weak format of linear transient heat flow1,
which was the subject of Paper A and Paper B. Find the temperature u(x, t) ∈ U s.t.

∫

I

∫

Ω

[
vcu̇+ ∇v · k∇u

]
dΩ dt+

∫

Ω

v(•, 0)cu(•, 0) dΩ =

∫

I

∫

ΓN

vhpres dΓ dt+

∫

Ω

v(•, 0)cu0 dΩ ∀v ∈ V, (2.1)

where v the test function, c the volume-specific heat capacity, k the thermal conductivity,
hpres the prescribed heat flux on part of the boundary, and u0 the initial condition. The
exact definitions of the trial and test spaces U and V, are omitted for brevity.

1The internal heat source is left out for brevity.
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In order to obtain the pertinent two-scale problem we apply the concept of varia-
tional consistent homogenization (VCH), see e.g. Larsson et al. [1]. First, we introduce
running averages over representative volume elements (RVE), with domain Ω� centered
at macroscale coordinate x̄, in the weak form. Next, we assume scale separation, via
first order homogenization, and decompose the field into one homogenized field, ū, and a
fluctuation field, uµ. For a given RVE, located at x̄, the field is decomposed as follows:

u(x̄;x, t) = ū(x̄, t) + ∇ū(x̄, t) · [x− x̄] + uµ(x̄;x, t). (2.2)

The test function v is decomposed in the same way, and we obtain the macroscale problem
by considering macroscopic test functions v̄, and the microscale problems by testing each
individual RVE with “fluctuation” test functions vµ. For the purpose of numerical model
reduction we are mainly interested in the resulting subscale problem, and therefore, for
the details of the macroscale problem in such a setting we refer to e.g. Paper B.

The resulting microscale problem reads as follows. For given macroscale input, ū(x̄, t),
∇ū(x̄, t), find uµ(x̄;x, t) ∈ Uµ� s.t.

1

|Ω�|

∫

I

∫

Ω�

[
vµc
[

˙̄u+ ∇ ˙̄u · [x− x̄] + u̇µ
]

+ ∇vµ · k
[∇ū+ ∇uµ

]]
dΩ dt +

1

|Ω�|

∫

Ω�
vµ(•, 0)c[ū(•, 0) + ∇ū(•, 0) · [x− x̄] + uµ(•, 0)− u0] dΩ = 0 ∀vµ ∈ Vµ�,

(2.3)

where Uµ� and Vµ� are the pertinent trial and test spaces, with their exact definitions left
out for brevity.

In a FE2-setting it is necessary to solve one microscale problem (2.3) in each macroscale
quadrature point, in general in a nested fashion. For complex macroscale structures,
especially for a fine mesh in three dimensions, the number of quadrature points, and
thus the number of necessary solves of the microscale problem, rapidly increases and can
quickly become infeasible. This is the reason we think that numerical model reduction
techniques couple well with the FE2 method; hence, an efficient way of solving the
microscale problems has the potential to reduce the necessary resources and make it
possible to solve large FE2 problems. In the subsequent chapter we discuss a couple of
methods to reduce the microscale problem.
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3 Numerical Model Reduction

In this section we discuss a number of ways to introduce an approximation of the fluctuation
field uµ, by using Numerical Model Reduction2 (NMR) techniques. The aim is to reduce
the cost associated with the solution of the many microscale problems in a FE2 setting.

Many reduction techniques are based on separation of domains. Perhaps the most
classical approach is to separate the time and space domains, e.g. a function u(x, t), would
be approximated as

u(x, t) ≈ uR(x, t) =

NR∑

a

ϕa(x)ξa(t) (3.1)

where ϕa(x) are spatial mode functions, where ξa(t) are time dependent “mode activity”
functions, and where NR is the number of mode products used in the expansion. Typically,
the spatial modes are based on a finite element discretization Uh with N degrees of freedom,
and the goal is that NR � N , i.e. that the number of degrees of freedom in the reduced
system is much smaller than in the original system. The modes thus span a space UR,
which is reduced compared to the original finite element space Uh, e.g.

U ⊃ Uh ⊃ UR := span{ϕa(x)}NR
a=1, (3.2)

where U is the continuous space, see Figure 3.1.

U UR

Uh

Figure 3.1: Illustration of the relation between the continuous space U, the finite element
space Uh (N degrees of freedom), and the reduced space UR (NR degrees of freedom)
spanned by the reduced basis.

One benefit of using an expansion like (3.1) is that the problem is reduced to that
of finding a set of unknown mode functions, each of them defined in a lower dimension
compared to the original function. In a numerical setting, e.g. the finite element method,
it might not be feasible to solve for u(x, t) directly, but it is (hopefully) possible to solve

2The terms Reduced Order Modeling (ROM) and Model Order Reduction (MOR) are also used
frequently in literature. We have chosen to use the term Numerical Model Reduction (NMR) to emphasize
that we are using numerical methods to reduce the numerical problem, rather than tampering with the
underlying model.
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for individual mode functions and construct the approximation uR(x, t). The quality of
the approximation is dependent on the quality of the computed modes and the number of
modes NR. Provided that suitable mode functions have been obtained, the expansion in
Eq. (3.1) reduces the original problem to a one-dimensional one, where the mode activity
coefficients ξa are the only unknowns.

There are a number of ways to obtain suitable modes, where the “best” method is
often problem dependent. For linear problems, spectral decomposition (SD) is often
used, whereas a reduced base is obtained by solving the resulting generalized eigenvalue
problem, e.g.

(K − λiM)ϕ
i

= 0, (3.3)

where M and K are mass- and stiffness-matrices assembled from the finite element
discretization, and where λi and ϕ

i
are eigenvalues and eigenvectors. The (truncated)

series of eigenvectors span the reduced space UR. Spectral Decomposition was used in
Paper A and Paper B to reduce the subscale finite element problem for linear transient
heatflow, reducing the problem to a set of (uncoupled) ordinary differential equations.
In Paper C we also used spectral decomposition for a coupled problem. However, the
eigenvalue problem was defined for an uncoupled version, and the resulting basis was thus
thus not able to capture the coupling of the fields.

Another method for finding modes is Proper Orthogonal Decomposition (POD), also
known as Karhunen-Loève decomposition or principal component analysis, see for example
Rousette et al. [23]. POD is a method that extracts relevant information, the “most
important” by some measure, from a dataset. In the context of finding a POD basis for
the subscale problem, we collect data by performing a number of “training simulations”
for the RVE, and collecting “snapshots” of the solution at different time steps. The
advantage of POD over e.g. SD is that it is more flexible since the POD modes can
capture, for example, nonlinearities. The disadvantage, of course, is the need for training
simulations and how to verify that relevant processes have been sufficiently captured
by the snapshots. In Paper C, POD was used to obtain a reduced basis for the model
problem of poroelastic media. Following the work by Jänicke et al. [11], we were able to
reduce the original finite element problem to a set of ordinary differential equations.

Another method, although not used in the present work, that has been popularized
recently is Proper Generalized Decomposition (PGD), cf. e.g. Chinesta et al. [24, 25, 26]
and Ladevèze et al. [27, 28]. The main advantage of the PGD method is that it can handle
high-dimensional problems efficiently, by using separation of variables. As an example,
a function f defined in RN could be approximated as a sum of NR products of mode
functions defined in a lower dimension, e.g. R1 in the following example

f(x1, x2, . . . , xN ) ≈
NR∑

a

X1,a(x1)X2,a(x2) . . . XN,a(xN ) (3.4)

where Xi,a are the mode functions, xi, i = 1, 2, . . . , NR are coordinates in space, time,
material parameters etc. The mode functions are computed one “layer” at a time until
convergence. The resulting solution is highly parametric, and PGD is thus well suited for
optimization or inverse problems, where fast evaluation is important.
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When employing any of the methods mentioned above, the process can be divided
into two distinct stages – usually denoted the “offline stage” and the “online stage”. The
offline stage includes everything that can be done in a preprocessing step and cached for
later use, e.g. computing the mode functions. The online stage, where the actual problem
solving is performed, can thus be made more efficient by using the precomputed quantities.
Of course, this division into stages only makes sense if the precomputed quantities actually
makes the overall computation more efficient, for example computing modes that can
be used for every time step, or every subscale problem, in the online stage. In the case
of computational homogenization it is possible to precompute modes for the subscale,
and, based on these modes, precompute macroscale coefficients. These coefficients can be
used for every subscale problem and for every timestep, in order to obtain an efficient
way of (i) solving the subscale problem and (ii) evaluating the homogenized quantities, as
demonstrated in Papers A–C.
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4 Estimation of the NMR error

There are multiple types of error involved in the solution of a FE2 problem, e.g. time and
space discretization errors from the finite element approximation (on both scales), model
errors due to prolongation and homogenization from the VCH framework, and, in the
context of NMR, the error introduced by the NMR approximation, and it is of course of
interest to quantify these errors.

A posteriori error estimation for finite element analysis have been discussed for many
years, cf. e.g. Babuška and Rheinboldt [29, 30] for some early work on estimation of
space discretization errors, and Hughes and Hulbert [31] for estimation of space-time
discretization errors. The error in the solution is quite often quantified in terms of an
“energy norm” associated with the problem, either globally, or locally when combined
with adaptive strategies for e.g. targeted mesh refinement. However, quite often it is not
only the quality of the solution itself (measured in suitable norm) that is of interest, but
rather the error in some other resulting quantity. Within the realm of goal-oriented error
estimation the aim is to estimate the error in terms of a predefined quantity, for example
the flux or stress, cf. e.g. the work by Eriksson et al. [32], Becker and Rannacher [33], and
Oden and Prudhomme [18, 19]. Parés et al. [34, 35, 36] presented guaranteed estimators
in this context for discretization errors in space and time for linear parabolic problems.
Several error estimators have been developed for different frameworks in the context of
multiscale modeling. Chamoin and Legoll [20] developed estimators based on constitutive
relation error for Multiscale Finite Element Method (MsFEM), Ohlberger [22] presented a
strategy for estimating the error in the Heterogeneous Multiscale Finite Element Method
(HM-FEM), and the model error from the VCH framework was quantified by, e.g., Larsson
and Runesson [37, 38, 39]. Error estimators for different NMR techniques have been
presented by e.g. Abdulle et al. [12, 13], Boyaval [14], Ohlberger and Schindler [15], and
Efendiev and coworkers [16, 17]. An alternative procedure was introduced by Verdugo et
al. [40], who developed a posteriori error estimators for the (conventional) finite element
discretization error using a reduced model for the adjoint solution.

While all of the different error sources mentioned above certainly are important for
FE2 implementations, we shall in this work focus solely on the estimation of the NMR
error. In practice this means that we consider a fully resolved finite element solution to be
“exact”, i.e. that |u− uh| ≈ 0 and consequently that |uh − uR| is a good approximation
of |u− uR|, cf. Figure 4.1. It is obvious that the accuracy of the NMR approximation is
dependent on multiple things, in particular the “quality” of the modes, i.e. how well they
capture the underlying phenomena, and the number of modes NR used in the expansion.
As an example, in Paper C we used a spectral basis based on a modified version of the
original problem and it was shown that this lead to a mediocre approximation since the
modes completely ignored the coupling between the fields.

In order to derive the explicit residual based error estimators presented in Papers A–
C for the NMR error we use utilize linearity of the problem. Since neither of the problems
discussed in Papers A–C are symmetric we define an auxiliary (symmetric) problem,
cf. e.g. Parés et al. [34, 35, 36]. The bilinear form of the auxiliary problem defines the
norm, which is used for the estimate. Explicit bounds on the error, based on the discrete
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U UR

Uh

u

uh uR

u− uR

uh − uR

u− uh

Figure 4.1: Illustration of the relation between the exact solution u ∈ U, the finite element
solution uh ∈ Uh, and the reduced solution uR ∈ UR.

residual, are derived, cf. e.g. Jakobsson et al. [41]. In Figure 4.2 the typical behavior of
the estimator is plotted. First, we note that a guaranteed estimator provides a bound,
within which the exact error must lie. Secondly, the relation between the estimated error
and the exact error determines the sharpness of the procedure. More specifically, we
define the effectivity index as

η =
Eest

E
, (4.1)

where Eest and E are the estimated and exact errors, respectively. A guaranteed estimator
should always result in η ≥ 1, and a sharp estimator η & 1. These properties can be
investigated for examples where the exact error (i.e. the exact solution) is known.

In Paper A and Paper C the estimator is defined locally on one RVE, while in
Paper B the estimator concerns the NMR error for the full FE2 problem, which includes
error transport between the scales. The performance of the estimator is demonstrated
with numerical examples, and in general the estimator overestimates the error with an
order of magnitude, i.e. η & 10.

NR/N

Eest

E

Figure 4.2: Typical behavior of the exact error E and the estimated error Eest as a
function of number of modes NR used in the approximation.
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5 Summary of appended papers

Paper A: Numerical model reduction with error control in computational
homogenization of transient heat flow.

Numerical Model Reduction (NMR) was exploited for solving the finite element prob-
lem on a single Representative Volume Element (RVE) that arises from computational
homogenization of linear transient heat flow. In this work, since the problem is linear,
an orthogonal basis for the subscale is obtained via the classical method of spectral
decomposition. When employing the orthogonal base, the subscale problem reduces to
a set of (uncoupled) ordinary differential equations (ODEs). The basic idea is that the
basis can be truncated to NR modes, where NR is (much) smaller than the number of
degrees of freedom (NDOFs) of the underlying finite element problem, without losing too
much accuracy. Hence, the solution of the subscale problem only involves the solution of
NR ODEs. A symmetrized version of the space-time variational format was adopted for
estimating the error from the model reduction in (i) energy norm and in (ii) user-defined
quantities of interest. This technique, which was first developed in the context of the
(non-selfadjoint) stationary diffusion-convection problem, was novel in the present context
of NMR. By considering the discrete, unreduced, finite element problem as exact, we were
able to obtain guaranteed bounds on the error while using only the reduced basis, and
with minor additional computational effort. The performance of the error estimates is
demonstrated via numerical results, where the subscale is modeled in both one and three
spatial dimensions. For the numerical examples that was presented, the “true error” is
overestimated with a factor of 10 in the region with a low number of modes, which is
considered acceptable given the efficiency of the explicit estimator, and the fact that the
bounds are guaranteed.

Paper B: On error controlled numerical model reduction in FE2-analysis of
transient heat flow.

Numerical model reduction was exploited for solving the nested two-scale (FE2) problem
that arises from computational homogenization of linear transient heat flow. Due to
linearity, the same type of reduction technique as in Paper A, spectral decomposition,
was used for the reduction of the underlying subscale problems. With the reduction, the
computationally demanding two-scale FE2 problem results in a “two-scale FE1 problem”,
i.e. only the macroscale problem is fully resolved with finite elements, whereas the
subscale problems are reduced to a set of independent ordinary differential equations. A
symmetrized version of the space-time variational format of the macroscale problem was
used for the error estimation, similar to the symmetrized format used in Paper A. The key
difference for the estimator, compared to Paper A, is the ability to also take into account
the error transport between the two scales, which was previously completely ignored. It
is noted, however, that other error sources, such as time and space discretization, is still
ignored. The estimate still only depends on the reduced basis used for the solution, and is
explicit, resulting in a computationally efficient estimator where the extra cost is negligible
compared to the cost of solving the two-scale problem. Guaranteed bounds on the NMR
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error, as compared to the fully resolved finite element solution, for the two-scale problem
is obtained for (i) energy norm and (ii) user-defined (macroscale) quantities of interest.
The performance of the two-scale estimator was demonstrated in two examples, where the
macroscale was modeled in one and two dimensions, both with three-dimensional subscale
problems. The behavior of the estimate is very similar to the behavior of the subscale
estimate from Paper A– it overestimates the “true error” with an order of magnitude for
small number of modes, which is deemed acceptable given that the bounds are guaranteed
and the efficiency of the error indicator.

Paper C: A posteriori error estimation for numerical model reduction in com-
putational homogenization of porous media.

Numerical Model Reduction (NMR) was adopted for solving the microscale problem
that arizes from computational homogenization of a model problem of porous media
with displacement and pressure as unknown fields. A reduced basis was obtained for
the pressure field using (i) Proper Orthogonal Decomposition (POD) and (ii) Spectral
Decomposition (SD). This strategy has been used in previous work – the main contribution
of this paper was the extension with an a posteriori estimator for assessing the error in (i)
energy norm and in (ii) a given quantity of interest. A similar strategy as in Paper A and
Paper B was used for the derivation of the estimator – a symmetrized format of the weak
form was used in order to derive the explicit residual-based estimate. Guaranteed, explicit,
bounds were derived and the performance of the error estimates was demonstrated via
numerical results. A comparison between the SD basis and the POD basis was performed.
As expected, the POD basis yielded a small error, and thus also a smaller estimate, but
the sharpness when comparing the estimate to the exact error is poor. In contrast, the
SD basis resulted in a higher error, but a sharper estimate.
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6 Conclusions and outlook

In the present work we applied numerical model reduction for the subscale problems in an
FE2 setting. In particular, Spectral Decomposition and Proper Orthogonal Decomposition
were used in order to define a reduced solution space and, thereby, obtain efficient methods
for solving the subscale problems and evaluating the homogenized quantities that are
needed for the macroscale. We derived an explicit, residual-based, estimator for estimating
the NMR error in both the energy norm and user-defined linear quantities of interest.

As an outlook for further development, it is of interest to also include other error
sources in the estimate. In particular, both time and space discretization errors, and
model errors due to homogenization, were completely neglected so far. In this work we
only considered Dirichlet type of boundary conditions for the subscale problems. However,
this type of boundary conditions is not always the best choice, and it would be interesting
to further develop the reduction strategy, and the error estimator, to also handle other
types, such as Neumann or periodic boundary conditions. Finally, the present work is
limited to linear problems. It would be interesting to investigate NMR for nonlinear
problems further, and, in particular, derive an estimator with the capability to obtain
guaranteed or approximate bounds on the NMR error.
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