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Numerical Model Reduction and Error Control for Computational Homogenization of
Transient Problems
FREDRIK EKRE
Department of Industrial and Materials Science
Division of Material and Computational Mechanics
Chalmers University of Technology

Abstract
Multiscale modeling is a class of methods useful for numerical simulation of mechanics, in
particular, when the microstructure of a material is of importance. The main advantage
is the ability to capture the overall response, and, at the same time, account for processes
and structures on the underlying fine scales. The FE2 procedure, finite element squared,
is one standard multiscale approach in which the constitutive relation is replaced with
a boundary value problem defined on an Representative Volume Element (RVE) which
contains the microscale features. The procedure thus involves the solution of finite
element problems on two scales: one macroscopic problem and multiple RVE problems,
typically one for each quadrature point in the macroscale mesh. While the solution of the
independent RVE problems can be trivially parallelized it can still be computationally
impractical to solve the two-scale problem, in particular for fine macroscale meshes. It
is, therefore, of interest to investigate methods for reducing the computational cost of
solving the individual RVE problems, while still having control of the accuracy.

In this thesis the concept of Numerical Model Reduction (NMR) is applied for reducing
the RVE problems by constructing a reduced spatial basis using Spectral Decomposition
(SD) and Proper Orthogonal Decomposition. Computational homogenization of two
different transient model problems have been studied: heat flow and consolidation. In
both cases the RVE problem reduces to a system of ordinary differential equations, with
dimension much smaller than of the finite element system.

With the reduced basis and decreased computational time comes also loss of accuracy.
Thus, in order to assess results from a reduced computation, it is useful to quantify the
error. This thesis focuses solely on estimation of the error stemming from the reduced
basis by assuming the fully resolved finite element solution to be exact, thereby ignoring
e.g. time- and space-discretization errors. For the linear model problems guaranteed, fully
computable, bounds are derived for the error in (i) a constructed “energy” norm and
(ii) a user-defined quantity of interest within the realm of goal-oriented error estimation.
In the non-linear case approximate, fully computable, bounds are derived based on the
linearized error equation.

In all cases an associated (non-physical) symmetrized variational problem in space-time
is introduced as a “driver” for the estimate. From this residual-based estimates with
low computational cost are obtained. In particular, no extra modes than the ones used
for the reduced basis approximation are required. The performance of the estimator is
demonstrated with numerical examples, and, for both the heat flow problem and the
poroelastic problem, the error is overestimated by an order of magnitude, which is deemed
acceptable given that the estimate is fully explicit and the extra cost is negligible.

Keywords: error estimation, model reduction, computational homogenization
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All we have to decide is what to do with the time that is given to us.
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Part I
Extended summary

1 Introduction

1.1 Background

Multiscale modeling is an established class of methods for simulation of physical processes.
The main idea behind these methods is to include effects from the microscopic level while
performing simulations on the macroscopic level, all while requiring fewer computational
resources compared to the alternative of fully resolving everything in a (conventional)
single scale analysis. For large problems it might not even be feasible to fully resolve the
microstructure. There are a number of different approaches to multiscale modeling. In
this work computational homogenization using the so-called “Finite Element squared”
(FE2) technique is considered, cf. e.g. Feyel et al. [1] and Larsson et al. [2]. In the FE2

procedure the classic constitutive relation is replaced by a boundary value problem on a
Representative Volume Element (RVE) comprising the underlying microscale features.
In practice this means that a full finite element problem needs to be solved in each of
the quadrature points on the macroscale, and it is well-realized that straight-forward
use of the FE2-strategy can be computationally intractable for fine macroscale meshes.
Therefore, it is of interest to reduce the computational cost required for solving the
individual RVE-problem(s) by introducing some kind of reduced basis, here denoted
Numerical Model Reduction (NMR).

A number of different NMR techniques have been proposed for increasing the computa-
tional efficiency of multiscale methods. Reduction methods based on characteristic modes
are highlighted and are widely used. The most prominent example is modal synthesis in
vibration analysis, see e.g. textbooks on structural dynamics [3]. A more general method,
applicable also for non-linear problems, is Proper Orthogonal Decomposition (POD), see
e.g. Rousette et al. [4]. Considering multifield problems, Michel and Suquet [5] introduced
Nonuniform Transformation Field Analysis (NTFA) for inelastic strain modes. NTFA
together with POD was investigated by Fritzen et al. [6] for visco-elasticity. This strategy
was also used by Jänicke et al. [7] for computational homogenization of poroelasticity
where application of the POD basis reduces the original boundary value problem to a set
of ordinary differential equations.

The reduced basis introduces a new source of errors and the richness of the basis will
determine the accuracy of the solution. Strategies for quantifying this error have been
developed for various multiscale methods and reduction techniques in previous work, cf.
e.g. Abdulle et al. [8, 9], Boyaval [10], Ohlberger and Schindler [11], and Efendiev et
al. [12, 13]. It is not only the accuracy of the solution itself that is important, usually the
error in some other resulting quantity is also of interest. Within the realm of goal-oriented
error estimation the aim is to estimate the error in terms of a user-defined quantities, cf.
e.g. the work by Oden and Prudhomme [14, 15]. In the context of applying NMR for the
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subscale such a quantity could be, e.g., the homogenized stress used for the macroscale
computation.

1.2 Aim and scope of research
The overall purpose of this research is to investigate NMR techniques and apply them to
the subscale problems arising from computational homogenization of transient problems.
In addition, since the NMR introduces an additional source of error, the aim is to develop
methods for estimating and quantifying this error. The following tasks are identified and
carried out during the Ph.D. project:

• Apply NMR to computational homogenization of a class of transient problems: heat
flow and porous media.

• Develop computable guaranteed bounds for the NMR error.

• Establish a procedure for total control of the NMR error in FE2 simulations.

• Extend the computable error estimator to goal-oriented error control in user-defined
quantities of interest.

• Develop an error estimator suitable for the non-linear consolidation problem.

The scope of the work is limited by focusing on the efficiency aspect of the FE2

procedure and using NMR to reduce the computational cost. Furthermore, the sought
error control is limited to the NMR error. It is assumed that a fine underlying discretization
is used such that the NMR error will be the major contribution to the total error. There are
situations where a very fine mesh might be required to describe complex microstructural
features or where it might be obtained from e.g. detailed voxel data, which motivates this
assumption. Also, errors induced by the FE2 procedure, e.g. homogenization errors, are
neglected. Finally, for simplicity only Dirichlet boundary conditions have been considered
for the RVE problem.

1.3 Structure of this thesis
This thesis consists of an of an extended summary and six appended papers. The
remainder of this extended summary is structured as follows. Chapter 2 includes an
overview of multiscale modeling, and in particular a description of the VCH framework for
computational homogenization which has been used in this project. The FE2 procedure is
described for the two model problems of transient heat flow and transient consolidation.
In particular the RVE problems are presented, which serve as the basis for the NMR.
Chapter 3 includes an overview of various reduction techniques with the focus Spectral
Decomposition and Proper Orthogonal Decomposition. The application of NMR to the
RVE problem is described. Chapter 4 discusses estimation of the NMR introduced error.
The strategy which has been developed in this project is presented. Chapter 5 includes
a brief summary of the appended papers and presents the main findings. The thesis is
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concluded in Chapter 6 which summarizes the results, and presents an outlook for future
work.
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2 FE2 approach to multiscale modeling

Multiple methods exist for multiscale modeling with the goal of taking the microstructure
of the problem into account, e.g. the Multiscale Finite Element Method (MsFEM) [16, 17],
Heterogeneous Multiscale Finite Element Method [18, 8, 9], and the Variational MultiScale
(VMS) method [19] and developments thereof [20, 21]. It is noted that the latter methods
do not presume scale separation. In this work we adopt the procedure of computational
homogenization and assume complete separation of scales between the microscale and the
macroscale, cf. e.g. Feyel et al. [1], Miehe et al. [22], Geers et al. [23], and Larsson et al. [2].
The Finite Element squared (FE2) procedure is used for solving the resulting two-scale
problem and, thus, effective properties are computed in each macroscale quadrature point
by solving a boundary value problem defined on the subscale structure. Information is
passed between the scales in both directions – the (current) macroscale solution is sent to
the subscale (prolongation), the subscale problem is solved, and effective properties are
sent back to the macroscale (homogenization). See Figure 2.1 for an illustration of the
procedure.

Ω
Ω�

ū, ∇ū

Φ̄, q̄

Figure 2.1: Schematic illustration of the FE2 procedure applied to homogenization of
heat flow. In each quadrature point x̄ of the macroscale mesh (Ω) the homogenized
temperature ū(x̄, t) and the gradient ∇ū(x̄, t) are passed to the microscale (Ω�) where
the microscale problem is solved to give uµ(x̄;x, t). Finally, homogenized stored heat
Φ̄(x̄;x, t) and homogenized flux q̄(x̄;x, t) are passed back to the macroscale.

In an FE2-setting it is necessary to solve one microscale problem in every macroscale
quadrature point, in general in a nested fashion. For complex macroscale structures,
especially for a fine mesh in three dimensions, the number of quadrature points, and thus
the number of necessary solves of the microscale problem, rapidly increases and can quickly
become infeasible. This is the reason why numerical model reduction techniques couple
well with the FE2 method; hence, an efficient way of solving the microscale problems has
the potential to reduce the necessary resources and make it possible to solve larger FE2

problems.
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2.1 Two-scale formulation of transient heat flow
Homogenization of transient linear heat flow is the topic of Paper A and Paper B. The
weak space-time format is used as a starting point for defining the two-scale problem:
find the temperature u(x, t) ∈ U such that∫

I

∫
Ω

[
vcu̇+∇v · k∇u

]
dΩdt+

∫
Ω

v(•, 0)cu(•, 0)dΩ =∫
I

∫
ΓN

vhpres(t)dΓdt+
∫
Ω

v(•, 0)cu0 dΩ ∀v ∈ V, (2.1)

where v is the test function, c = c(x) is the volume-specific heat capacity, k = k(x)
is the thermal conductivity. The multiscale feature of the problem is present due to
spatially fluctuating values of c and k. U and V are appropriate trial and test spaces
with their exact definitions left out for brevity. The boundary conditions are defined
as follows: h(t) := −k∇u = hpres(t) on ΓN and u(t) = upres(t) on ΓD, where the full
boundary Γ := ΓN ∪ ΓD and ΓN ∩ ΓD = ∅. Finally, initial conditions are u = u0 in Ω at
time t = 0.

In order to obtain the pertinent two-scale problem we apply the concept of Variational
Consistent Homogenization (VCH), see e.g. Larsson et al. [2]. We first introduce run-
ning averages over representative volume elements (RVE), with domain Ω� centered at
macroscale coordinate x̄, in the weak form. Next we assume scale separation, via first
order homogenization, and decompose the temperature into a homogenized field, ū, and a
fluctuation field, uµ. For a given RVE located at x̄ the temperature and the test function
are decomposed as follows:

u(x̄;x, t) = ū(x̄, t) +∇ū(x̄, t) · [x− x̄] + uµ(x̄;x, t), (2.2a)
v(x̄;x, t) = v̄(x̄, t) +∇v̄(x̄, t) · [x− x̄] + vµ(x̄;x, t). (2.2b)

The macroscale problem is obtained by considering macroscopic test functions v̄ (setting
vµ = 0), and the microscale problems by testing each individual RVE with “fluctuation”
test functions vµ (setting v̄ = 0). We thereby seek the macroscale solution ū ∈ Ū such
that∫

I

∫
Ω

[
v̄ ˙̄Φ +∇v̄ · [ ˙̄̄Φ− q̄]

]
dΩdt+

∫
Ω

[
v̄(•, 0)Φ̄(•, 0) +∇v̄(•, 0) · ¯̄Φ(•, 0)

]
dΩ =∫

I

∫
ΓN

v̄h̄pres dΓdt+
∫
Ω

[
v̄(•, 0)Φ̄0 +∇v̄(•, 0) · ¯̄Φ0

]
dΩ ∀v̄ ∈ V̄, (2.3)

where Φ̄ and q̄ are the effective stored heat and heat flux, and ¯̄Φ is a (non-standard)
higher order storage term. Here, Ū and V̄ are the suitably defined trial set and test space,
respectively. Furthermore, h̄pres is the macroscopic representation of hpres, while Φ̄0 and
¯̄Φ0 are representations of the initial condition (u0).

As mentioned earlier, in the FE2 scheme, the macroscale problem and RVE problems
are solved in a nested fashion. This means that for each RVE solve the macroscale
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components, ū and ∇ū, are constant input data. The resulting microscale problem reads
as follows: for known ū(x̄, t) and ∇ū(x̄, t), find uµ(x̄;x, t) ∈ Uµ

� such that∫
I

1

|Ω�|

∫
Ω�

[
vµc

[
˙̄u+∇ ˙̄u · [x− x̄] + u̇µ

]
+∇vµ · k

[
∇ū+∇uµ

]]
dΩdt +

1

|Ω�|

∫
Ω�

vµ(•, 0)c
[
ū(•, 0) +∇ū(•, 0) · [x− x̄] + uµ(•, 0)− u0

]
dΩ = 0 ∀vµ ∈ Vµ

�,

(2.4)

where |Ω�| denotes the volume of the RVE, and where Uµ
� and Vµ

� are the pertinent
trial and test spaces for the RVE (with exact definitions left out for brevity, cf. e.g.
Paper B). For the RVE problem we consider Dirichlet boundary conditions, i.e. uµ = 0
on Γ�,D = Γ�. It is worth noting that, for the purpose of accurately predicting material
behavior, Dirichlet boundary conditions are often not the best choice. Instead other types,
such as Neumann boundary conditions and strong/weak periodic boundary conditions,
are often used, cf. e.g. Jänicke et al. [7, 24]. In this thesis, and in the appended papers,
only Dirichlet boundary conditions are considered for simplicity.

Equation (2.4) is the basic format to which the numerical model reduction is applied,
cf. Chapter 3. Since the topic of this thesis is numerical model reduction of the RVE
problem we leave out the details of the macroscale problem and refer to e.g. Paper B.

2.2 Two-scale formulation of transient consolidation
with selective homogenization

In Papers C–F we instead consider two-scale formulation of porous media as a coupled
formulation with displacement u and pressure p as unknowns. For the chosen model the
weak space-time format is defined by the following problem: find (u, p) ∈ U × P, such
that ∫

I

∫
Ω

ε[v] : σ dΩdt =
∫
I

∫
ΓN

v · tpres dΓdt ∀v ∈ V, (2.5a)∫
I

∫
Ω

[
q Φ̇−∇q ·w

]
dΩdt+

∫
Ω

[qΦ]|t=0 dΩ =∫
I

∫
ΓN

qhpres dΓdt+
∫
Ω

[qΦ0]|t=0 dΩ ∀q ∈ Q, (2.5b)

where σ is the Cauchy stress tensor, ε[u] = [u ⊗ ∇]s is the linear strain tensor, Φ is
the fluid storage function, and w the seepage velocity. The definitions of the trial and
test spaces are defined are left out for brevity, refer to e.g. Paper C. For stress and fluid
storage we have used linear constitutive relations

σ(ε[u], p) = E : ε[u]− αpI, (2.6a)
Φ(∇ · u, p) = φ+ βp+ α∇ · u, (2.6b)
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where E is the elastic fourth order stiffness tensor, α is the Biot coefficient, β the
compressibility parameter of the fluid-filled pore space, and φ the (initial) porosity. The
seepage velocity is defined as

w(∇ · u, p) = −k(∇ · u, p) ∇p (2.7)

In Papers C–E we considered the case of constant permeability, i.e.

k(∇ · u, p) = k0, (2.8)

resulting in a linear problem, and in Paper F considered a non-linear relation

k = k(∇ · u, p) = 1

α2
0

(α0 +∇ · u)2 k0, (2.9)

such that the permeability depends on the volumetric strain ∇ ·u, resulting in a non-linear
problem. In the limit α0 → ∞ the original linear case with k = k0 is obtained.

In order to establish the two-scale problem we follow the same steps outlined in
Section 2.1, but instead of homogenizing both fields we employ selective homogenization
and let p be represented as a fluctuation field “living” entirely on the RVE. Thus, for an
RVE located at x̄ the fields are decomposed as follows

u(x̄;x, t) = ū(x̄, t) + ε̄(x̄, t) · [x− x̄] + uµ(x, t), (2.10a)
p(x̄;x, t) = pµ(x̄;x, t), (2.10b)

and similarly for the test functions v and q, respectively. The resulting macroscale problem
becomes standard balance of momentum,

−σ̄ ·∇ = 0, (2.11)

on strong form, where σ̄ is the effective homogenized stress tensor.
Testing each RVE independently with vµ and q gives the RVE problem(s): for known

ū(x̄;x, t) and ε̄(x̄;x, t), find (uµ(x, t), p(x, t)) ∈ Uµ
� × Pµ

� such that∫
I

1

|Ω�|

∫
Ω

ε[vµ] : σ dΩdt = 0 ∀vµ ∈ Vµ
�, (2.12a)∫

I

1

|Ω�|

∫
Ω

[
q Φ̇−∇q ·w

]
dΩdt+ 1

|Ω�|

∫
Ω

[qΦ]|t=0 dΩ =

1

|Ω�|

∫
Ω

[qΦ0]|t=0 dΩ ∀q ∈ Qµ
�, (2.12b)

where Uµ
�, Vµ

�, Pµ
� and Qµ

� are appropriate trial and test spaces for the RVE (cf. Paper C).
Once again we choose to consider Dirichlet boundary conditions for displacement and
pressure: uµ = 0 on Γ� and p = 0 on Γ�.

The RVE problem in Equation (2.12) is the starting point for the numerical model
reduction, discussed further in Chapter 3. The main differences from the case of transient
heat flow, cf. Section 2.1, are the coupling of the two fields uµ and p, and the non-linearity
that was introduced as part of Paper F.
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3 Numerical Model Reduction
In a two-scale setting the computational cost of the RVE problems can be a significant
bottleneck in the overall computation since the number of RVE problems scale with (i)
number of timesteps, (ii) number of iterations, and (iii) the macroscale mesh density.
In this section we discuss how the problem can be reduced, using Numerical Model
Reduction1 (NMR) by introducing an approximation of the fluctuation field on the RVE
level.

Different NMR techniques have been studied in the context of multiscale modeling.
Fish and coworkers [25, 26] introduced “eigendeformation reduced-order homogenization”
based on the concept of Transformation Field Analysis (TFA) proposed by Dvorak and
Benveniste [27]. A similar approach was presented by Michel and Suquet [5, 28] denoted
Nonuniform Transformation Field Analysis (NTFA). The NTFA approach combined with
Proper Orthogonal Decomposition (POD) was investigated by Fritzen et al. [6, 29, 30, 31]
for visco-elasticity and standard dissipative materials. Jänicke et al. [7] also used POD
for computational homogenization of poroelasticity, whereby the pore pressure plays a
role similar to inelastic strains in the NTFA framework. Waseem et al. [32] used spectral
decomposition for homogenization of transient heat flow. Another method, suitable for
highly parametric problems, is Proper Generalized Decomposition (PGD), cf. e.g. Chinesta
et al. [33, 34, 35] and Ladevèze et al. [36, 37]. PGD allows for further decomposition of the
function to be approximated and allows for e.g. material parameters or geometric features
to be parameters of the solution. A related concept is “hyperreduction” where, in addition
to reducing of the number of degrees of freedom, also the cost for evaluating the residual
is reduced, cf. e.g. Ryckelynck et al. [38, 39], Hernández et al. [40], and Memarnahavandi
et al. [41].

In this thesis we consider the classical approach of separating the time and space
coordinates and use a reduced spatial basis for the fluctuation fields (e.g. the temperature
uµ as in Papers A–B and displacement and pressure (uµ, p) as in Papers C–F). An
approximation of function u(x, t), would then be approximated as

u(x, t) ≈ uR(x, t) =

NR∑
a

ϕa(x)ξa(t), (3.1)

where ϕa(x) are spatial mode functions, where ξa(t) are time dependent “mode activity”
functions, and where NR is the number of mode products used in the approximated
expansion. Spatial modes are usually based on a finite element discretization of the
domain, e.g. Uh, with N degrees of freedom. The aim is, naturally, that NR � N , i.e.
that the number of degrees of freedom in the reduced system is much smaller than in the
original system. The spatial modes span the reduced space UR, which is a subset of the
original finite element space Uh, i.e.

U ⊃ Uh ⊃ UR := span{ϕa(x)}NR
a=1, (3.2)

1The terms Reduced Order Modeling (ROM) and Model Order Reduction (MOR) are also used frequently
in the literature. We have chosen the term Numerical Model Reduction (NMR) to emphasize that we are using
numerical methods to reduce the numerical problem, rather than tampering with the underlying model.
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where U is the continuous space, see Figure 3.1. With the mode functions known, the
expansion in Eq. (3.1) reduces the original problem to a one-dimensional one, where the
mode activity coefficients ξa are the only unknowns.

U

UR

Uh

Figure 3.1: Illustration of the relation between the continuous space U, the finite element
space Uh, with N degrees of freedom, and the reduced space UR, with NR degrees of
freedom.

The accuracy of the approximation obviously depend on the computed modes (and
the number of modes). In particular, when NR � N , which is the desired case, it is
important that the NR modes are able to accurately capture the “true” solution. It thus
seems natural that the process of computing the modes have an important influence on
the final approximation. There are a number of ways to obtain suitable modes, where the
“best” method is often problem dependent. For transient linear problems, cf. Papers A–B,
Spectral Decomposition (SD) is used. The reduced basis is then based on the system mass-
and stiffness matrices, M and K, and solved from the generalized eigenvalue problem

Kϕ
i
= λiMϕ

i
, (3.3)

where λi and ϕ
i

are eigenvalues and (discrete) eigenvectors in the finite element space Uh.
The (truncated) series of eigenvectors span the reduced space UR. Spectral decomposition
was used in Paper A and Paper B to reduce the subscale finite element problem for linear
transient heat flow, reducing the problem to a set of (uncoupled) ordinary differential
equations. A reduced basis based on spectral decomposition was also used for the linear,
but coupled, problem in Papers C–D. In this case the generalized eigenvalue problem
was similarly based on the system matrices, but the “coupling matrix” was completely
ignored. The numerical examples in Papers C–D also show that the spectral base is not
able to efficiently decrease the error (although, for the purpose of estimating the error it
still performs well).

Proper Orthogonal Decomposition (POD), also known as Karhunen-Loève decomposi-
tion or principal component analysis, is another method for constructing a basis, see for
example Rousette et al. [4]. POD is a method that extracts the “most important” (by some
measure) information from a dataset. In the context of computational homogenization,
and constructing a reduced basis for the RVE problem, this dataset can be collected
during “training simulations” where the RVE is subjected to representative load. During
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the simulation “snapshots” of the fluctuation field are then captured to build up the
dataset. The advantage of POD over SD is the flexibility – it does not impose restrictions
such as e.g. linearity. The disadvantage, of course, is the need for training simulations and
how to verify that relevant processes have been sufficiently captured by the snapshots. In
Papers C–F, POD was used to obtain a reduced basis for the model problem of poroelastic
media closely following the work by Jänicke et al. [7]. In this case the RVE problem is
reduced to a set of coupled2 ordinary differential equations.

The application of most reduced basis methods can be divided into two distinct stages
which are usually denoted the “offline stage” and the “online stage”. The offline stage
includes everything that can be done in a preprocessing step and cached for later use, e.g.
computing the mode functions and assembling system matrices (in the case of a linear
problem). The online stage, where the actual problem solving is performed, can thus be
made more efficient by using the precomputed quantities. Of course, the split into an
offline and an online stage only makes sense if all the preparations actually make the
overall online computation more efficient. Computational homogenization is one such
example since, if all RVEs have the same structure, precomputed properties can be reused
by every RVE and every timestep. For linear problems (Papers A–E) the (reduced) system
matrices, and macroscopic coefficients used for evaluating homogenized quantities, can
be precomputed to eliminate virtually all necessary work other than solving the (small)
system. For the problem of linear heat flow, the original RVE problem from Eq. (2.4) is
replaced by the set of diagonalized ordinary differential equations in Eq. (3.4):

ξ̇a + λaξa = fū,a ˙̄u+ f∇ū,a ·∇ ˙̄u

ξa(0) = ξ0,a
a = 1, 2, . . . , NR (3.4)

where ξa are the unknown mode activity coefficients, where ˙̄u and ∇ ˙̄u are inputs to the
RVE, and where λa, fū,a, f∇ū,a, and ξ0,a are quantities that can be precomputed for
a given reduced basis. After solving Eq. (3.4) to obtain ξa the macroscopic response is
evaluates as follows:

Φ̄(ū,∇ū, ξa) = Φ̄ūū+ Φ̄∇ū ·∇ū+

NR∑
a=1

Φ̄µ
aξa, (3.5a)

¯̄Φ(ū,∇ū, ξa) =
¯̄Φūū+ ¯̄Φ∇ū ·∇ū+

NR∑
a=1

¯̄Φµ
aξa, (3.5b)

q̄(ū,∇ū, ξa) = q̄ūū+ q̄∇ū ·∇ū+

NR∑
a=1

q̄µ
aξa, (3.5c)

where Φ̄, ¯̄Φ, and q̄ are the storage terms and the flux pertinent to the macroscale problem,
cf. Eq. (2.3), and Φ̄ū, Φ̄∇ū, Φ̄µ

a , ¯̄Φū, ¯̄Φ∇ū, ¯̄Φµ
a , q̄ū, q̄∇ū, and q̄µ

a are all quantities that
have been precomputed for the reduced basis.

Figure 3.2 shows a schematic illustration of the reduced FE2 procedure. The macroscale
problem is unchanged, but the original boundary value problem for the RVE has been

2For the linear problem it is possible to further transform the system into a decoupled one by performing an
additional diagonalizing procedure.
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replaced by an offline stage, resulting in a “database” of precomputed quantities, and
an online stage involving only the solution of a small system of equations. The ho-
mogenized fields ū and ∇ū from the macroscale, together with precomputed quantities
from the database (λa, fū,a, f∇ū,a, and ξ0,a) gives the fluctuation field uµ in terms of
mode coefficients ξa. The solution is then used together with precomputed macroscopic
coefficients (Φ̄ū, Φ̄∇ū, Φ̄µ

a , etc) to evaluate homogenized quantities that are passed back
to the macroscale.

Ω

uµ =
∑NR

a=1 ϕaξa

Φ̄, ¯̄Φ, q̄

ū, ∇ū
λa, fū,a, f∇ū,a, ξ0,a

Φ̄ū, Φ̄∇ū, Φ̄
µ
a , . . .

Figure 3.2: Illustration of the reduced FE2 procedure where the RVE boundary value
problem have been replaced by an offline stage, illustrated as a database of precomputed
quantities, and an online stage consisting of the solution of a small system of size NR and
evaluation of homogenized quantities.

For non-linear models (Paper F) it is still necessary to perform a full online integration
when assembling the local system, and when evaluating the macroscopic response. In this
case the integration becomes the major contribution to the total computational cost since
the cost of solving the system is negligible in comparison. For this purpose the concept
of “hyperreduction” [38, 39, 40, 41] has been developed. However, this type of further
reduction of the computational cost has not been considered further in the present work.
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4 Estimation of the NMR error

The solution obtained from the FE2 procedure is corrupted by errors from multiple sources
such as e.g. time- and space-discretization (on both scales) and model errors introduced
by the prolongation and averaging from the VCH framework. The application of NMR
introduces an additional source of error when trading decreased accuracy for increased
efficiency. In order to verify, and trust, the obtained solution, it is necessary to quantify
and control these errors.

The error is usually measured in terms of a norm that is associated with the problem,
the “energy norm”, cf. e.g. Babuška and Rheinboldt [42, 43] for some early work on
estimation of discretization errors in space. The error can be estimated globally, but also
locally, for example element-wise, to identify areas where the error is large and, thus,
finding areas where the discretization needs to be refined in an adaptive scheme. While the
quality of the solution itself is certainly of interest it is quite often “secondary” quantities,
e.g. quantities that are evaluated from the solution such as flux or stress, that are more
important. For this purpose, goal-oriented error estimation has been developed where
the aim is to control the error in predefined quantities, for example the flux on a specific
boundary or the stress in a critical region of the domain. Eriksson et al. [44], Becker and
Rannacher [45], and Oden and Prudhomme [14, 15] are some examples. Parés et al. [46,
47, 48] presented guaranteed goal-oriented estimators for discretization errors in space
and time for linear parabolic problems. In the context of multiscale modeling Chamoin
and Legoll [16] developed estimators based on constitutive relation error for Multiscale
Finite Element Method (MsFEM), Ohlberger [18] presented a strategy for estimating the
error for Heterogeneous Multiscale Finite Element Method (HM-FEM), and the model
error from the VCH framework was quantified by, e.g., Larsson and Runesson [49, 50,
51]. Error estimators for estimating the NMR error for various reduction techniques have
been presented by e.g. Abdulle et al. [8, 9], Boyaval [10], Ohlberger and Schindler [11],
and Efendiev et al. [12, 13]. An alternative procedure was introduced by Verdugo et
al. [52], who developed a posteriori error estimators for the (conventional) finite element
discretization error using a reduced model for the adjoint solution.

As mentioned above, there are many sources of error and all of them contribute to
the total error. However, the work presented in this thesis is limited to estimation of the
NMR error, i.e. the error that is introduced as a result of the chosen reduction strategy.
In practice this means that the fully resolved finite element solution is considered to be
“exact”, thereby ignoring errors from the discretization. This means that we consider
|u − uh| ≈ 0 and, consequently, that |uh − uR| is a good approximation of |u − uR|, cf.
Figure 4.1. The accuracy of the NMR approximation depends on multiple things, in
particular the “quality” of the computed modes, that is, how accurately they can capture
the underlying phenomena, and the number of modes NR in the expansion. Papers C–D
provides examples of poor accuracy stemming from a suboptimal choice of modes. In this
case a spectral basis was constructed based on a modified version of the original problem,
in particular the coupling between the fields was ignored, and, as the results confirm, the
basis performed poorly leading to large residuals.

In Papers A–F we have derived a posteriori, residual based, error estimators for the
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U

UR

Uh

u

uh uR

u− uR

uh − uR

u− uh

Figure 4.1: Illustration of the relation between the exact solution u ∈ U, the finite element
solution uh ∈ Uh, and the reduced solution uR ∈ UR.

NMR error in the RVE solution which are explicit and fully computable. In Paper B the
error transport between the scales where also considered to give an estimate of the NMR
error for the full FE2 problem. For the (linear) problems presented in Papers A–E the
estimators provide guaranteed bounds of the NMR error in terms of both an associated
energy norm an in terms of predefined quantities of interest. The estimates are based
on a symmetric auxiliary problem, cf. e.g. Parés et al. [46, 47, 48] and a corresponding
auxiliary error equation. The auxiliary form is defined such that it defines an “energy
norm” associated with the problem, and, through the auxiliary error, provides a bound
on the true error, i.e. ‖e‖ ≤ ‖ê‖ where e is the exact error and ê is the auxiliary error
representation. An explicit estimate of the (discrete) residual is derived, cf. e.g. Jakobsson
et al. [53] which in turn provides an estimate of the auxiliary error, e.g. ‖e‖ ≤ ‖ê‖ ≤ Eest
where Eest is the estimate of the residual. A similar strategy is used for the non-linear
problem considered in Paper F. In this case the estimate is based on the linearized error
equation, and the auxiliary form provides only an approximate bound on the true error.

The overall strategy can, without going into specifics, be summarized with the following
“building blocks”:

• Definition of error equation for error e = u− uR:

A(e, v) = R(v), (4.1)

where A(•, •) is the weak space-time form of the problem, and R(•) the residual.

• Definition of an auxiliary bilinear and symmetric form Â such that

‖•‖ :=

√
Â(•, •), Â(•, •) ≤ A(•, •). (4.2)

where Â(•, •) defines the auxiliary symmetric space-time format.

• Definition of auxiliary error equation for auxiliary error representation ê:

Â(ê, v) = R(v). (4.3)
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• Combining error equations and the bound given by Â(•, •) for obtaining the bound
‖e‖ ≤ ‖ê‖:

‖e‖ = Â(e, e) ≤ A(e, e) = R(e) = Â(ê, e) ≤ ‖ê‖‖e‖. (4.4)

• Estimation of the residual:
|R(ê)| ≤ Eest‖ê‖, (4.5)

where Eest is the final energy norm estimate, i.e.

‖e‖ ≤ ‖ê‖ ≤ Eest. (4.6)

The typical behavior of the estimator is illustrated in Figure 4.2 as a function of
the number of modes used in the reduction. First, we note that a guaranteed estimator
provides a bound, within which the exact error must lie. Secondly, the relation between
the estimated error and the exact error determines the sharpness of the procedure. More
specifically, we define an effectivity index

η =
Eest

E
, (4.7)

where Eest and E are the estimated and exact errors, respectively, such that a guaranteed
estimator should always result in η ≥ 1, and a sharp estimator η & 1. The same behavior
is encountered in all the examples, in particular the behavior of the effectivity index: for
low number of modes the estimator is “sharp”, overestimating the error with an order of
magnitude, but as the number of modes increase the estimator quickly deteriorates.

NR/N

Eest
E

Figure 4.2: Typical behavior of the exact error E and the estimated error Eest as a
function of number of modes NR used in the approximation.

For estimating the error in terms of user-defined quantities of interest the following
additional steps were used:

• Definition of the exact and reduced dual problems:

A?(u?, v) = Q(v), A?(u?
R, v) = Q(v), (4.8)

where Q is a linear output functional for measuring user-defined quantities.
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• Definition of dual error equation for dual error e?:

A?(e?, v) = R?(v). (4.9)

• Definition of auxiliary dual error equation for auxiliary dual error representation ê?:

Â(ê?, v) = R?(v). (4.10)

• Linear combination of the auxiliary primal and dual error representations for
obtaining upper (E+

Q ) and lower (E−
Q ) estimates on Q(e), i.e. the error in the

quantity of interest:
E−

Q ≤ Q(e) ≤ E+
Q . (4.11)

The behavior of the goal oriented estimator is very similar to the estimator for the energy
norm of the error. For a small number of modes the sharpness is acceptable and the
estimated error overestimates the true error with an order of magnitude.
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5 Summary of appended papers
Paper A: Numerical model reduction with error control in computational
homogenization of transient heat flow.

Numerical Model Reduction (NMR) is exploited for solving the finite element problem on
a single Representative Volume Element (RVE) that arises from computational homoge-
nization of linear transient heat flow. Since the problem is linear, an orthogonal basis
for the subscale is obtained via the classical method of spectral decomposition. When
employing the orthogonal base, the subscale problem reduces to a set of (uncoupled)
ordinary differential equations (ODEs). The basic idea is that the basis can be truncated
to NR modes, where NR is (much) smaller than the number of degrees of freedom (NDOFs)
of the underlying finite element problem, without losing too much accuracy. Hence, the
solution of the subscale problem only involves the solution of NR ODEs. A symmetrized
version of the space-time variational format was adopted for estimating the error from the
model reduction in (i) energy norm and in (ii) user-defined quantities of interest. This
technique, which was first developed in the context of the (non-self adjoint) stationary
diffusion-convection problem, is novel in the present context of NMR. By considering the
discrete, unreduced, finite element problem as exact, we are able to obtain guaranteed
bounds on the error while using only the reduced basis, and with minor additional com-
putational effort. The performance of the error estimates is demonstrated via numerical
results, where the subscale is modeled in both one and three spatial dimensions. For the
numerical examples that are presented, the “true error” is overestimated with a factor of
10 in the region with a low number of modes, which is considered acceptable given the
efficiency of the explicit estimator, and the fact that the bounds are guaranteed.

Paper B: On error controlled numerical model reduction in FE2-analysis of
transient heat flow.

Numerical model reduction is exploited for solving the nested two-scale (FE2) problem that
arises from computational homogenization of linear transient heat flow. Due to linearity,
the same type of reduction technique as in Paper A, spectral decomposition, is used for the
reduction of the underlying subscale problems. With the reduction, the computationally
demanding two-scale FE2 problem results in a “two-scale FE1 problem”, i.e. only the
macroscale problem is fully resolved with finite elements, whereas the subscale problems
are reduced to a set of independent ordinary differential equations. A symmetrized
version of the space-time variational format of the macroscale problem is used for the
error estimation, similar to the symmetrized format used in Paper A. The key difference
for the estimator, compared to Paper A, is the ability to also take into account the
error transport between the two scales, which was previously completely ignored. It is
noted, however, that other error sources, such as time and space discretization, is still
ignored. The estimate still only depends on the reduced basis used for the solution, and is
explicit, resulting in a computationally efficient estimator where the extra cost is negligible
compared to the cost of solving the two-scale problem. Guaranteed bounds on the NMR
error, as compared to the fully resolved finite element solution, for the two-scale problem
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is obtained for (i) energy norm and (ii) user-defined (macroscale) quantities of interest.
The performance of the two-scale estimator is demonstrated in two examples, where the
macroscale is modeled in one and two dimensions, both with three-dimensional subscale
problems. The behavior of the estimate is very similar to the behavior of the subscale
estimate from Paper A– it overestimates the “true error” with an order of magnitude for
small number of modes, which is deemed acceptable given that the bounds are guaranteed
and the efficiency of the error indicator.

Paper C: A posteriori error estimation for numerical model reduction in com-
putational homogenization of porous media.

Numerical Model Reduction (NMR) is adopted for solving the microscale problem that
arises from computational homogenization of a model problem of porous media, with
displacement and pressure as unknown fields. A reduced basis is obtained for the pressure
field using (i) Proper Orthogonal Decomposition (POD) and (ii) Spectral Decomposi-
tion (SD). By using the NTFA framework, corresponding displacement modes can be
precomputed at an offline stage. A similar strategy as in Paper A and Paper B is used
for the derivation of energy norm and goal oriented error estimators – a symmetrized
format of the weak form is used in order to derive the explicit residual-based estimates.
Guaranteed, explicit, bounds are derived and the performance of the error estimates is
demonstrated via numerical results. A comparison between the SD basis and the POD
basis is performed. As expected, the POD basis yields a small error, and thus also a
smaller estimate, but the sharpness when comparing the estimate to the exact error is
poor. In contrast, the SD basis results in a higher error, but a sharper estimate.

Paper D: Combining spectral and POD modes to improve error estimation
of numerical model reduction for porous media.

Spectral decomposition and Proper Orthogonal Decomposition is used to reduce the
computational cost of solving the RVE problem pertinent to computational homogenization
of porous media. This work directly continues upon Paper C with the extension of combined
reduced basis consisting of both spectral modes and POD modes. It was noted in Paper C
that a spectral basis resulted in a high error, but the resulting error estimator was sharp.
In contrast, a POD basis resulted in a low error, but the error estimator was not as
sharp compared to the spectral base, prompting the idea of constructing a combined
basis. Numerical examples are presented for two three-dimensional RVEs with different
microstructures. The results suggests that a combined basis can give a lower value of the
computed error bound for the same number of reduced modes. Since this is the measure
that can be assessed in a stopping criteria in, e.g., an adaptive algorithm, the combined
basis can be considered the most efficient one. However, the performance highly depends
on the eigenvalue spectrum from the spectral basis and, hence, the microstructure.

Paper E: Efficient two-scale modeling of porous media using numerical model
reduction with fully computable error bounds.

The microscale problem arising from computational homogenization of linear transient
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porous media is solved by adopting the concept of NMR. Homogenization is performed
for both the displacement and pressure, in contrast to Papers C–D where selective
homogenization was used, and weak periodic boundary conditions are used for the RVE
problem. A numerical example concerning a three-dimensional RVE with randomly
distributed inclusions is presented. The estimator from Papers C–D, although still
applicable only for Dirichlet boundary conditions, is used for estimating the error in the
homogenized stress.

Paper F: Numerical model reduction with error estimation for computational
homogenization of non-linear consolidation.

Numerical model reduction is adopted for solving the non-linear microscale problem
that arises from computational homogenization of non-linear porous media. More specif-
ically, we consider the case of deformation-dependent permeability. Proper Orthogonal
Decomposition is used for creating a reduced spatial basis for the pressure and displacement
following the work in Papers C–E. An explicitly, fully computable, a posteriori error
estimator that approximates the NMR error is derived based on the linearized error
equation. A bilinear symmetric auxiliary form is presented that approximately bounds
the exact error from above. The auxiliary form is defined and motivated by the fact that
it in the “linear limit” strictly bounds the error. This is in contrast to the work presented
in previous papers, Papers A–E, where the corresponding bound is strict. Numerical
results are presented for a three-dimensional RVE with random microstructure applied
to transient macroscopic loading. The results indicate that, for the chosen loading, the
estimator overestimates the error by one order of magnitude for close to linear loads, and
slightly more as the non-linearity (and the error) is increased by an increased amplitude
of the macroscale loading.
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6 Conclusions and outlook
In this thesis methods for reducing the computational cost for solving RVE problems using
NMR has been presented. Two different strategies for constructing a reduced basis were
considered: in Papers A–B Spectral Decomposition was used for transient heat flow, and
in Papers C–F Proper Orthogonal Decomposition was used for the problem of transient
consolidation. In both cases the RVE problem was reduced from a full finite element
problem to a (small) set of ordinary differential equations that could be solved efficiently.

In addition to the NMR formulation, low cost, fully computable, estimators for
quantifying the NMR error have been proposed. For linear problems (Papers A–E), a
strategy for obtaining guaranteed bounds on the error in terms of an energy norm, and
also in terms of user-defined quantities, such as fluxes or stresses, was presented. In
Paper A and Papers C–E the estimator was derived for estimation of the error local on
one RVE. In Paper B, the full FE2 problem was considered. For this case an estimator
for the total error, taking into account also the error propagation between the two scales,
was presented. The performance of the estimators was demonstrated in a number of
numerical simulations. The examples show that even when using just a few modes in
the approximation, i.e. when NR � N , the error is small. In this region the estimated
error overestimates the true error with one or two orders of magnitude. As the number
of modes increase the usefulness of the estimator also deteriorates. This behavior was
observed for both the heat flow problem and the porous media problem, and for error
estimation in terms of energy norm as well as user-defined quantities of interest.

One interesting finding from Paper C was that the the POD basis performed well w.r.t.
reducing the actual error, but worse in terms of the estimated error. On the contrary,
the spectral basis performed poorly in terms of reducing the actual error, but performed
better in terms of the sharpness of the estimator. The idea of a combined basis, using
modes from both spectral decomposition and POD, was developed in Paper D where it
was shown that it is possible to combine modes in order to obtain a lower error bound
than for using any of the individual basis alone.

In Paper F we considered a non-linear formulation of consolidation using POD reduction
for the RVE problem. An estimator for the error in terms of a suitably defined energy
norm was presented. In this case the estimate was based on the linearized error equation
that results in an approximate, instead of guaranteed, bound of the NMR error. Numerical
examples demonstrated the effectiveness of the estimator. Similarly as for the linear
problems, the effectivity of the estimate is best in the region of NR � N .

A logical next step for further development is to extend the estimator for the non-linear
poroelasticity problem to goal-oriented error estimation.

Since we in this work focused solely on the NMR error, it is also of interest to
further develop the estimators to handle other sources of error, such as time- and space-
discretization errors, and model errors due to homogenization. This would give a more
complete picture in the sense of estimating the total error without, as was done in
this work, assuming that the NMR error is the major contributor. Another interesting
extension is adaptivity, where the estimators developed in this work can be applied in an
adaptive FE2-scheme. The estimate would then serve as an indicator for which areas, or
which RVEs, that need to be refined using more modes.
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In this work only Dirichlet type of boundary conditions for the subscale problems were
implemented. Although this choice simplifies the formulation of the estimate, it is not
necessarily the best one. For completeness, it would be interesting to apply the reduction
strategy, and the error estimator, to Neumann and periodic boundary conditions.

For a non-linear problem the cost of integration becomes significant compared to the
cost of solving the reduced system. To this end it could be useful to apply hyperreduction,
while adjusting the estimator accordingly, to further speed up the simulations.

Finally, the developed strategy can be adopted for other engineering applications than
those studied in this thesis. The results for poroelasticity are directly transferable to other
problems such as, e.g., thermoelasticity or the chemo-mechanically coupled problem. The
procedure developed for the non-linear problem should be investigated for other important
applications of non-linear transient character, accounting for e.g. inelastic deformations.
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