
A posteriori error estimation for numerical model reduction in
computational homogenization of porous media

Downloaded from: https://research.chalmers.se, 2021-08-31 11:43 UTC

Citation for the original published paper (version of record):
Ekre, F., Larsson, F., Runesson, K. et al (2020)
A posteriori error estimation for numerical model reduction in computational homogenization of
porous media
International Journal for Numerical Methods in Engineering, 121(23): 5350-5380
http://dx.doi.org/10.1002/nme.6504

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Received: 18 September 2019 Revised: 4 March 2020 Accepted: 16 June 2020

DOI: 10.1002/nme.6504

S P E C I A L I S S U E A R T I C L E

A posteriori error estimation for numerical model reduction
in computational homogenization of porous media

Fredrik Ekre Fredrik Larsson Kenneth Runesson Ralf Jänicke

Department of Industrial and Materials
Science, Chalmers University of
Technology, Gothenburg, Sweden

Correspondence
Fredrik Ekre, Department of Industrial
and Materials Science, Chalmers
University of Technology, Gothenburg
SE-41296, Sweden.
Email: fredrik.ekre@chalmers.se

Funding information
Vetenskapsrådet, Grant/Award Number:
2015-05422

Summary
Numerical model reduction is adopted for solving the microscale problem
that arizes from computational homogenization of a model problem of porous
media with displacement and pressure as unknown fields. A reduced basis is
obtained for the pressure field using (i) spectral decomposition (SD) and (ii)
proper orthogonal decomposition (POD). This strategy has been used in pre-
vious work—the main contribution of this article is the extension with an a
posteriori estimator for assessing the error in (i) energy norm and in (ii) a given
quantity of interest. The error estimator builds on previous work by the authors;
the novelty presented in this article is the generalization of the estimator to a
coupled problem, and, more importantly, to accommodate the estimator for a
POD basis rather than the SD basis. Guaranteed, fully computable and low-cost
bounds are derived and the performance of the error estimates is demonstrated
via numerical results.

K E Y W O R D S
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1 INTRODUCTION

Multiscale modeling with computational homogenization is a well-known approach for material modeling. The advan-
tage that multiscale strategies have over direct numerical simulation (DNS) is the reduced computational cost, while still
being able to take small scale processes and structures into account. A standard method for multiscale modeling is the
so-called finite element squared (FE2) procedure, where subscale computations are carried out on representative vol-
ume elements (RVE) in each point of the macroscale domain1 in a nested iteration scheme. Compared with DNS, FE2

introduces a “model error” due to the smoothing, which was quantified in, e.g. the work of Larsson and Runesson.1,2

Even though there are benefits with FE2 over DNS, the FE2 scheme can still be very computationally demanding for
practical problems, especially for fine macroscale meshes in three dimensions, since the number of RVE problems rapidly
increases with the mesh density. It is therefore of interest to reduce the computational cost of solving the individual RVE
problems. A number of methods, here denoted numerical model reduction2 (NMR), have been proposed for reducing the
solution space of a discrete RVE problem. In particular, we highlight methods based on superposition of “modes” that

1In practice one RVE solution per macroscale quadrature point in a finite element setting.
2The terms reduced order modeling (ROM) and model order reduction (MOR) are also used frequently in literature. We have chosen to use the term
NMR to emphasize that we are using numerical methods to reduce the numerical problem, rather than tampering with the underlying model.
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are characteristic to the solution field. Various attempts have been made, in the context of small strain (visco)plasticity,
to approximate the inelastic strains by “inelastic modes.” One example is the “eigendeformation-based-reduced-order
homogenization” technique introduced by Fish and coworkers,3,4 which relies on the concept of transformation field
analysis, originally proposed by Dvorak and Benveniste.5 Michel and Suquet6,7 proposed a similar approach coined
nonuniform transformation field analysis (NTFA). Fritzen et al8-11 exploited NTFA combined with proper orthogo-
nal decomposition (POD) for viscoelasticity and a class of standard dissipative materials. Jänicke et al12 applied this
approach to poroelasticity, whereby the pore pressure plays a role similar to inelastic strains in the NTFA framework. As
a consequence of the reduced model, the macroscale problem reduces to a single-phase continuum, where the “mode
coefficients” can be interpreted as internal variables. This is the reduction model that is considered in this article.
Other reduction techniques have been studied in the context of multiscale finite element methods by, e.g. Nguyen13 for
parametrized PDEs and by Efendiev et al14,15 for flows in heterogeneous media. The concept of “hyperreduction” has also
been investigated for multiscale methods by, e.g. Hernández et al16 and Memarnahavandi et al,17 where, in addition to
reducing of the number of degrees of freedom, also the cost for evaluating the residual is reduced.

Naturally the use of a reduced basis results in an additional source of error, and therefore it is of interest to control
and quantify this error. Several different error estimators have been developed, for different model reduction techniques,
in the context of multiscale modeling. Methods for estimating the error from POD type reduction techniques have been
presented by Abdulle et al18,19 for heterogeneous multiscale methods and by Boyaval20 for numerical homogenization.
Ohlberger and Schindler developed a method for estimating the error for localized reduced basis multiscale methods.
Error estimation based on the constitutive relation error has been proposed by Kerfriden et al21 and Chamoin and Legoll.22

For the estimator proposed in this article, we consider the fully resolved finite element solution to be the exact one, similar
to what was presented in Aggestam et al23 and Ekre et al.24 The consequence of this is that the estimator only quantifies the
error stemming from the use of a reduced base and “ignores” e.g. space and time discretization errors. Naturally it would
be of interest to develop an estimator which quantifies these errors as well. However, there are cases where the point of
departure is already a fine mesh; it might, for example, be obtained from detailed voxel data or be required to capture
complex microstructural features. In addition, for linear problems, many of the necessary quantities can be precomputed
in an “offline” stage where one can afford the fine mesh without having to tackle the problem of integration, as one would
have to do for, e.g. a nonlinear problem.

In this article, we consider a continuum mechanics model of porous media as the model problem, following the
work in Jänicke et al.12 We will consider two different methods of obtaining a reduced basis for the microscale problem;
spectral decomposition (SD), which was used for the linear transient heat flow problem in, e.g., Aggestam et al,23 Ekre
et al,24 and POD, which was used for the same porous media problem in Reference 12. The main new contribution of
this article, as compared with Jänicke et al,12 is the extension with an a posteriori error estimator for assessing the accu-
racy of the reduced solution. We utilize the linearity of the problem and derive an auxiliary symmetric form, cf. e.g.
Pares et al.25-27 From the auxiliary form we obtain error bounds based on the discrete residual, cf. e.g. Jakobsson et al.28

We aim for guaranteed, explicit, fully computable, bounds on the error introduced by the reduced basis in terms of (i)
energy norm and (ii) a user-defined quantity of interest using goal oriented error estimation, cf. Oden and Prudhomme.29

We aim to base the estimate on the “active” modes, that is, the modes used for the reduced solution, and will thus not
consider hierarchical approaches (eg, by computing additional modes used solely for the purpose of estimating the error).
This strategy for estimating the error follows what was presented in References 23,24. The novelty in this article is the gen-
eralization of the estimator. They key differences can be summarized as follows; the estimator is derived for a POD basis
(rather than for a SD basis), the estimator is generalized for the coupled problem, the implicit relation between pressure
and displacement (via static equilibrium) is used to eliminate the displacement field from the pertinent error equations.

Throughout this article, regular font is used to denote scalars (eg, 𝛼), bold italic font is used to denote first- and
second-order tensors (eg, u, 𝜺), and bold font to denote fourth-order tensors (eg, E). The scalar product (single contrac-
tion) is denoted by ⋅, double contraction is denoted with : and the outer product denoted by ⊗. For first-order tensors a,
b, second-order tensor A and fourth-order tensor B, we thus have

a ⋅ b = aibi, (1a)

(A ⋅ b)i = Aijbj, (1b)

(B ∶ A)ij = BijklAkl, (1c)
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(a ⊗ b)ij = aibj, (1d)

for Cartesian components, where repeated indices are summed over (Einstein summation convention). A superposed dot
is used for time derivatives (eg, u̇ = du

dt
). Volume averaging of a field • is denoted as

⟨•⟩□ ∶= 1|Ω□|∫Ω□

• dΩ, (2)

where Ω□ is the domain occupied by an RVE, and |Ω□| the corresponding volume.
This article is outlined as follows: Section 2 introduces computational homogenization, for the model problem of

porous media. Section 3 introduces NMR and describes how it is applied to the microscale (RVE) problem(s). Section 4
discusses how the error in the reduced solution can be estimated in terms of an energy norm, and Section 5 describes
the goal oriented error estimation. Section 6 presents numerical results for two example problems, which verify the error
estimates. This article is concluded in Section 7, which summarizes the findings.

2 TWO-SCALE ANALYSIS BASED ON COMPUTATIONAL
HOMOGENIZATION

2.1 The model problem—Strong and space-time weak formats

As a model problem, we consider a continuum mechanics description of a linear-elastic porous medium, where the
pores are filled with a viscous fluid. We base our model on Jänicke et al12 which adapts Biot’s equations for linear
consolidation,30,31 with displacement u=u(x, t) and pressure p= p(x, t) as the primary fields

−𝝈(u, p) ⋅ 𝛁 = 0 ∀x ∈ Ω × (0,T], (3a)

Φ̇(u, p) + 𝛁 ⋅ w(𝛁p) = 0 ∀x ∈ Ω × (0,T], (3b)

where 𝝈 is the linear stress tensor, Φ the fluid storage function and w the seepage velocity. The two fields are
subjected to standard boundary conditions on the Dirichlet (Γ(u|p)

D ) and Neumann (Γ(u|p)
N ) parts of the boundary,

respectively

u = upres on Γ(u)
D × (0,T], t ∶= 𝝈 ⋅ n = tpres on Γ(u)

N × (0,T], (4a)

p = ppres on Γ(p)
D × (0,T], h ∶= w ⋅ n = hpres on Γ(p)

N × (0,T]. (4b)

For simplicity, we will consider linear constitutive relations for the stress, fluid storage, and fluid flux. The stress is
given by

𝝈 = E∶𝜺[u] − 𝛼pI, (5)

where E is the constant elastic stiffness tensor, 𝜺[u]= [u⊗𝛁]s is the linear strain tensor and 𝛼 is the so-called Biot’s
coefficient. The storage function and seepage velocity for the liquid phase are given by

Φ = 𝜙 + 𝛼𝛁 ⋅ u + 𝛽p, (6a)

w = −K ⋅ 𝛁p, (6b)

where𝜙 is the (initial) porosity, K = kI is the permeability tensor with isotropic permeability k, and 𝛽 is the compressibility
parameter of the fluid-filled pore space. 𝛼 and 𝛽 are defined in terms of the bulk moduli of the fluid, Kf, and the solid, Ks,
phase as follows:
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𝛼 = 1 − K
Ks , (7a)

𝛽 = 𝜙

Kf
+ 𝛼 − 𝜙

Ks . (7b)

Finally, we need an initial condition for Φ, viz.

Φ|t=0 = Φ0 = 𝜙 + 𝛼𝛁 ⋅ u0 + 𝛽p0. (8)

The standard weak format in space-time, corresponding to (3), reads: Find (u, p) ∈  ×  such that

∫I∫Ω

[
𝜺[v]∶E∶𝜺[u] − 𝛁 ⋅ v 𝛼p

]
dΩdt = ∫I∫ΓN

v ⋅ tpresdΓdt ∀v ∈  , (9a)

∫I∫Ω
[q𝛽ṗ + 𝛁q ⋅ K ⋅ 𝛁p + 𝛁 ⋅ u̇ 𝛼q]dΩdt + ∫Ω

[qΦ]|t=0dΩ

= ∫I∫ΓN

qhpresdΓdt + ∫Ω

[
qΦ0

]|t=0dΩ ∀q ∈ . (9b)

The semidiscrete version of (9) is obtained by defining

U(t) ∶=
{

v ∈ Uh ∶ v = upres on Γ(u)
D

}
, (10a)

U
0 ∶=

{
v ∈ Uh ∶ v = 0 on Γ(u)

D

}
, (10b)

P(t) ∶=
{

q ∈ Ph ∶ q = ppres on Γ(p)
D

}
, (10c)

P
0 ∶=

{
q ∈ Ph ∶ q = 0 on Γ(p)

D

}
, (10d)

where Uh ∈ [H1(Ω)]3 and Ph ∈ H1(Ω) represents the finite element discretization, and H1 the space of functions with
square integrable derivatives of order 0 and 1. The spaces used in (9) are consequently defined as

 ∶= H1(I;U(t)
)
, (11a)

 ∶= L2
(

I;U0), (11b)

 ∶= H1(I;P(t)
)
, (11c)

 ∶=
{

q(x, t) ∶ q|t=0 ∈ P
0, q|I ∈ L2

(
I;P0)}. (11d)

Here, we introduced Bochner spaces for space-time functions, such that, for example, H1(I;X) = {v(x, t) ∶ ||v(•, t)||X ∈
H1(I)} and L2(I;X) = {v(x, t) ∶ ||v(•, t)||X ∈ L2(I)} for a space X of spatial functions with suitable norm || • ||X . L2(I) and
H1(I) are the spaces of square integrable functions and functions of square integrable derivatives, respectively, on the time
interval I.

Remark 1. In order to shorten notation, we henceforth adopt the convention that the trace is included in H1(I), meaning
that, for example, q ∈ H1(I;X) infers that q(0) and q(T) exist and reside in X. □

2.2 First-order selective homogenization in the spatial domain

The single-scale problem in Subsection 2.1 is replaced by a two-scale problem. We introduce (i) running averages in the
weak form and (ii) scale separation via first-order selective homogenization, following Larsson et al.32 As a first step, we
replace the single-scale problem (9) with the following, two-scale, problem: Find (u, p) ∈ FE2 × FE2 such that
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A(u)(u, p; v) = L(u)(v) ∀v ∈ FE2 , (12a)

A(p)(u, p; q) = L(p)(q) ∀q ∈ FE2 , (12b)

where the space-time variational forms are defined as

A(u)(u, p; v) ∶= ∫I∫Ω

[
𝔞(u)□ (u, v) − 𝔟□(p, v)

]
dΩdt, (13a)

L(u)(v) ∶= ∫I∫ΓN

v ⋅ tpresdΓdt, (13b)

A(p)(u, p; q) ∶= ∫I∫Ω

[
𝔪□(ṗ, q) + 𝔞(p)□ (p, q) + 𝔟□(q, u̇)

]
dΩdt + ∫Ω

[
𝔪□(p, q) + 𝔟□(q,u)

]|t=0dΩ, (13c)

L(p)(q) ∶= ∫I∫ΓN

qhpresdΓdt + ∫Ω

[
𝔪□(p0, q) + 𝔟□(q,u0)

]|t=0dΩ. (13d)

In (13), we introduced pertinent space-variational RVE-forms, representing running averages on domains Ω□ located at
each macroscale spatial point x:

𝔞(u)□ (u, v) ∶= ⟨𝜺[v]∶E∶𝜺[u]⟩□, (14a)

𝔟□(u, v) ∶= ⟨𝛁 ⋅ v 𝛼u⟩□, (14b)

𝔪□(u, v) ∶= ⟨v𝛽u⟩□, (14c)

𝔞(p)□ (u, v) ∶= ⟨𝛁v ⋅ K ⋅ 𝛁u⟩□. (14d)

Remark 2. For later use, we also introduce two norms based on 𝔪□ and 𝔞(p)□ , respectively:

||v||𝔪 ∶=
√
𝔪□(v, v), ||v||𝔞 ∶=

√
𝔞(p)□ (v, v). (15)

□

In order to define the two-scale trial spaces FE2 , FE2 and the corresponding test spaces FE2 , FE2 , we introduce
first-order homogenization. However, to simplify matters we adopt selective homogenization, in the sense that it is only
the displacement field u that is decomposed into macroscale and microscale parts, whereas p is represented only as a
fluctuation field. Hence, in each RVE, centered at macroscale coordinate x, we thus decompose u as

u(x; x, t) = uM(x; x, t) + u𝜇(x; x, t), (x, t) ∈ Ω□ × I, (16)

where we use first-order homogenization for the macroscale part, viz.

uM(x; x, t) ∶= u(x, t) + 𝜺(x, t) ⋅ [x − x], (17)

with 𝜺 ∶= [u ⊗ 𝛁]s. As to the pressure field, we have

p(x; x, t) = p𝜇(x; x, t), (x, t) ∈ Ω□ × I, (18)

that is, the pressure field “lives” entirely on the subscale.
We are now in the position to define the two-scale ansatz and test spaces

FE2 ∶=
{

u∶ u|Ω□
= uM[u] + u𝜇, u|ΓN

(u) = u, u𝜇 ∈  𝜇
□, u ∈ u

}
, (19a)

FE2 ∶=
{

v∶ v|Ω□
= vM[v] + v𝜇, v|ΓN

(u) = v, v𝜇 ∈ 𝜇
□, v ∈ }

, (19b)
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FE2 ∶=
{

p∶ p|Ω□
= p𝜇, p𝜇 ∈ □

}
, (19c)

FE2 ∶=
{

q∶ q|Ω□
= q𝜇, q𝜇 ∈ □

}
, (19d)

cf. Ekre et al.24 The details of the ansatz and test spaces in (19) is discussed in the following two sections (2.3
and 2.4).

2.3 The macroscale (homogenized) problem

The macroscale problem is obtained from Equation (12) by setting v𝜇 = 0 and q𝜇 = 0. Find u ∈  such that

∫I∫Ω
𝜺[v]∶𝝈(u,u𝜇)dΩdt = ∫I∫ΓN

v ⋅ tpresdΓdt ∀v ∈  , (20)

where  and  are the ansatz and test spaces for the macroscale problem. We omit the exact definitions of these spaces,
since we henceforth in this article focus solely on the local microscale RVE-problem. The homogenized stress 𝝈 is
defined as

𝝈{𝜺[u]} ∶= ⟨𝝈⟩□, (21)

where 𝝈{𝜺} is implicit due to the history dependence.

2.4 The microscale (RVE) problem

Since we shall (in this article) be concerned only with the solution of the RVE-problem, we consider the situation where
uM from (17) is known, i.e. u(t) and 𝜺(t) are known functions in time (for the given RVE in question). The problem (12)
thus reduces to that of finding (u𝜇, p) ∈  𝜇

□ × □ that solve

A(u)
□ (u𝜇, p; v𝜇) = L(u)

□ (v𝜇) ∀v𝜇 ∈ 𝜇
□, (22a)

A(p)
□ (u𝜇, p; q) = L(p)

□ (q) ∀q ∈ □, (22b)

where we introduced the RVE space-time variational forms

A(u)
□ (u, p; v) ∶= ∫I

[
𝔞(u)□ (u, v) − 𝔟□(p, v)

]
dt, (23a)

L(u)
□ (v) ∶= ∫I

𝔞(u)□

(
− uM, v

)
dt, (23b)

A(p)
□ (u, p; q) ∶= ∫I

[
𝔪□(ṗ, q) + 𝔞(p)□ (p, q) + 𝔟□(q, u̇)

]
dt +

[
𝔪□(p, q) + 𝔟□(q,u)

]|t=0, (23c)

L(p)
□ (q) ∶= ∫I

𝔟□
(

q,−u̇M
)

dt +
[
𝔪□(p0, q) + 𝔟□(q,u0 − uM)

]|t=0. (23d)

We adopt Dirichlet boundary conditions, for both u𝜇 and p, and the spaces of spatial functions for the RVE problem are
consequently defined as

U
0
□ ∶=

{
v ∈ U□,h ∶ v = 0 on Γ□

}
, (24a)

P□ ∶=
{

q ∈ P□,h ∶ q = 0 on Γ□
}
, (24b)
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where U□,h and P□,h are the (spatially) FE-discretized function spaces. The trial and test spaces in (22) can be
expressed as

 𝜇
□ ∶= H1(I;U0

□

)
, (25a)

𝜇
□ ∶= L2

(
I;U0

□

)
, (25b)

□ ∶= H1(I;P□
)
, (25c)

□ ∶=
{

q(x, t) ∶ q|t=0 ∈ P□, q|I ∈ L2
(

I;P□
)}
. (25d)

3 NUMERICAL MODEL REDUCTION

3.1 Preliminaries

We will now use the fact that Equation (22a) is time-invariant, and does not contain any time derivatives, of u or p, to
reduce the problem further. As a preliminary step, we introduce an implicit reduction of the displacement fluctuation u𝜇.
For any t ∈ I we define

u𝜇(t) = u𝜇
𝜺
(t) + u𝜇p{p(t)}, (26)

where u𝜇
𝜺
(t) ∈ U

0
□(t) satisfies

𝔞(u)□

(
u𝜇
𝜺
(t), 𝛿u𝜇

)
= 𝔞(u)□

(
− uM(t), 𝛿u

)
∀𝛿u𝜇 ∈ U

0
□, (27)

and the implicit function u𝜇p is defined from

u𝜇p{q} ∶= u𝜇p ∈ U
0
□ ∶ 𝔞(u)□

(
u𝜇p , 𝛿u

)
= 𝔟□(q, 𝛿u) ∀𝛿u ∈ U

0
□. (28)

In summary, for a given RVE, we use the following decomposition of u

u = uM + u𝜇 = uM + u𝜇
𝜺

⏟⏞⏟⏞⏟
=∶ u𝜺

+ u𝜇p = u𝜺 + u𝜇p . (29)

Remark 3. We note, from (27), that u𝜇
𝜺

can be directly assessed in terms of unit strain perturbations, that is,

u𝜇
𝜺
(x, t) =

ndim∑
i,j=1

û(i,j)
𝜺

(x)
[
𝜺(t) ∶ ei ⊗ ej

]
, (30)

where the “unit fields” û(i,j)
𝜺

∈ U
0
□ are solved from

𝔞(u)□ (û(i,j)
𝜺
, 𝛿u𝜇) = −𝔞(u)□

(
ei ⊗ ej ⋅ [x − x], 𝛿u𝜇

)
∀𝛿u𝜇 ∈ U

0
□ i, j = 1, 2, . .ndim. (31)

□

With the displacement fluctuation implicitly known from p we can formulate a condensed version of the original
problem in (22); Find p ∈ □ such that

A□(p, q) = L□(q) ∀q ∈ □, (32)

where we defined
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A□(q, r) ∶= ∫I

[
𝔪□(q̇, r) + 𝔞(p)□ (q, r) + 𝔟□

(
r,u𝜇p{q̇}

)]
dt +

[
𝔪□(q, r) + 𝔟□

(
r,u𝜇p{q}

)]|t=0, (33a)

L□(q) ∶= ∫I
𝔟□(q,−u̇𝜺)dt + [𝔪□(p0, q) + 𝔟□(q,u0 − u𝜺)]|t=0. (33b)

3.2 NMR-ansatz

We now introduce the concept of NMR with the aim to reduce the computational cost of solving each RVE problem (32).
To this end, we construct a reduced spatial basis for the pressure, and define pR(x,t) as the approximation of p(x,t) with
an expansion using NR modes

p(x, t) ≈ pR(x, t) =
NR∑

a=1
pa(x)𝜉a(t) ∈ □,R ∶= H1(I;P□,R), (34)

where {pa}
NR
a=1 is a set of linearly independent basis functions that span the reduced RVE space

P□,R ∶= span{pa}
NR
a=1 ⊂ P□, (35)

and where 𝜉a are mode “activity coefficients.” The identification of the spatial modes pa will be discussed further in
Subsection 3.4.

Remark 4. We note that in the ansatz (34) the aim is to precompute the spatial modes pa in the “offline” stage, and later
solve for the mode activity coefficients in the “online” stage. This is in contrast to other methods, for example, Proper
Generalized Decomposition, where both functions are computed in the online stage. □

In order to satisfy (28), and find u𝜇p{p(t)}, we make the following ansatz

u𝜇p,R(x, t) =
NR∑

a=1
u𝜇a (x)𝜉a(t) (36)

where u𝜇a (x) are (spatial) displacement modes and where 𝜉a(t) are the same mode activity coefficients as those used for
the reduced pressure field. The sequence of displacement modes are readily solved from (28). Find u𝜇a ∈ U□ such that

𝔞(u)□

(
u𝜇a , 𝛿u𝜇

)
= 𝔟□(pa, 𝛿u𝜇) ∀𝛿u𝜇 ∈ U

0
□ a = 1, 2, . .NR, (37)

i.e. one stationary, linear, problem to solve for each mode pa.

3.3 Explicit form of the reduced subscale problem

With the approximations from the previous section we can, following the procedure in Jänicke et al,12 define the reduced
equivalent of (22): Find pR ∈ □,R such that

A□(pR, qR) = L□(qR) ∀qR ∈ □,R, (38)

where □,R follows from (25d), with P□ replaced by P□,R. Hence, we can expand the test function q using the spatial
pressure modes, i.e. qR =

∑NR
a=1 pa𝜂a, and express (38) explicitly as the problem of finding the mode coefficients 𝜉a(t) ∈

H1(I), a = 1, 2, . .,NR such that

NR∑
a=1

[ NR∑
b=1

∫I
𝜂a[𝔪□(pb, pa)𝜉b + 𝔞(p)□ (pb, pa)𝜉b + 𝔟□

(
pa,u𝜇b

)
𝜉b]dt + 𝜂a(0)

[
𝔪□(pb, pa)𝜉b + 𝔟□

(
pa,u𝜇b

)
𝜉b]|t=0

]
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=
NR∑

a=1

[
∫I
𝜂a𝔟□(pa,−u̇𝜺)dt + 𝜂a(0)

[
𝔪□(p0, pa) + 𝔟□(pa,u0 − u𝜺)

]|t=0

]
∀𝜂a ∈  , a = 1, 2, ..,NR, (39)

where

 ∶= {v(t) ∶ v|t=0 ∈ R, v|I ∈ L2(I)}. (40)

Remark 5. Equation (39) can be formulated as a semidiscrete system of size NR as follows

M ̇⃗
𝜉 + K 𝜉 = f⃗ , (41a)

M 𝜉
0
= f⃗

0
, (41b)

where

(M)ab = 𝔪□(pb, pa) + 𝔟□
(

pa,u𝜇b
)
, (42a)

(K)ab = 𝔞(p)□ (pb, pa), (42b)

(f⃗ )a = 𝔟□(pa,−u̇𝜺) =

[ndim∑
ij
𝔟□

(
pa,−ei ⊗ ej ⋅ [x − x] − û(i,j)

𝜺
ei ⊗ ej

)]
∶ 𝜺̇ (42c)

(f⃗
0
)a = [𝔪□(p0, pa) + 𝔟□(pa,u0 − u𝜺)]|t=0. (42d)

□

The full two-scale model involves the solution of (reduced) microscale problems (39), typically one for each macroscale
quadrature point, in order to find homogenized stress 𝝈 and the sensitivity w.r.t. the macroscale strain 𝜕𝝈

𝜕𝜺
. In particular,

the homogenized stress can be formulated as

𝝈(t) = E𝜀 ∶ 𝜺(t) +
NR∑

a=1
Ep,a 𝜉a(t), (43)

where the fourth-order tensor E𝜺 and the second-order tensors Ep,a can be computed in the “offline stage,” resulting in
efficient evaluation of the homogenized stress, i.e.

E𝜀 = ⟨E⟩□ +
ndim∑

ij

⟨
E∶𝜀

[
û(i,j)
𝜀

]⟩
□ei ⊗ ej, (44a)

Ep,a = ⟨E∶𝜺[u𝝁
a
]⟩□ − ⟨pa⟩□I, (44b)

where E is the fourth-order stiffness tensor for linear elasticity.

3.4 Construction of the reduced basis

In the previous section, we set aside the discussion about the construction of the spatial modes pa for the reduced basis.
We merely mentioned that the modes span the reduced pressure space P□,R ⊂ P□. In this section, we will briefly discuss
two different methods to construct the reduced base: POD and SD.

3.4.1 Proper orthogonal decomposition

In order to construct a POD basis for the pressure, we collect NS pressure “snapshots” p̂k ∶= p(tk), k = 1, 2, . .,NS,
in time, from the solution of the fully resolved problem given in Equation (22). To extract modes from the dataset of
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snapshots, we first form the correlation matrix C with entries

(C)kl = ⟨p̂kp̂l⟩□ k, l = 1, 2, . .,NS, (45)

which we use to solve the eigenvalue problem C𝝋⃗ = 𝝀
→
𝝋, and obtain eigenvalues 𝝀a and eigenvectors

→
𝝋a, ordered based

on the eigenvalues in decreasing order such that 𝝀1 ≥ 𝝀2, … . The final modes, used for the reduced pressure solution,
are finally computed as

pa =
NS∑

k=1
p̂k(

→
𝜑a)k, a = 1, 2, . .,NPOD

R . (46)

Remark 6. The number of modes NPOD
R is determined by truncation of the eigenvalues series, in practice when the quotient

𝜆N∕𝜆1 becomes “sufficiently small.” □

3.4.2 Spectral decomposition

SD is a well suited method of finding a reduced basis for linear problems. In the context of computational homogenization,
a spectral base was used for the transient heat flow problem in Aggestam et al23 for the RVE problem, and later extended to
the full two-scale model in Ekre et al.24 The problem discussed in this article is not well suited for SD, due to the coupling
between the two fields. Nevertheless, it is possible to construct a generalized eigenvalue problem from the uncoupled
version by simply ignoring the term 𝔟□(•, •) in Equation (22b). Find the eigenpairs (pa, 𝜆a) ∈ P□ ⊗R+ such that

𝔞(p)□ (pa, 𝛿p) = 𝜆a𝔪□(pa, 𝛿p) ∀𝛿p ∈ P□ a, b = 1, 2, … , (47a)

𝔪□(pa, pb) = 𝛿ab a, b = 1, 2, … , (47b)

where 𝜆1 ≤ 𝜆2 ≤ … are the eigenvalues, and p1,p2,… the corresponding eigenfunctions. From (47), we also obtain the
standard orthogonality condition

𝔞(p)□ (pa, pb) = 𝜆a𝛿ab a, b = 1, 2, … . (48)

The spectral base is not expected to perform particularly well, since it originates from a modified problem which does not
take the coupling into account. However, the spectral base is advantageous for the error estimation, as will be discussed
in Sections 4 and 5 and may serve as a “reference solution.”

3.4.3 Projection onto the reduced space

For the subsequent error analysis, we define a projection operator ΠR ∶ L2(Ω□) → P□,R such that, for any given q ∈
L2(Ω□) and for any given reduced set P□,R, the projection ΠRq ∈ P□,R is defined by the identity

𝔪□(ΠRq, 𝛿q) = 𝔪□(q, 𝛿q) ∀𝛿q ∈ P□,R. (49)

We also define the complementary operator

ΠC ∶= I − ΠR (50)

where I is the identity operator. We note that for p, q ∈ L2(Ω□) the following identity holds

𝔪□(p,ΠCq) = 𝔪□(ΠCp, q) (51)
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since

𝔪□(p,ΠCq)
(50)
= 𝔪□(p, q) −𝔪□(p,ΠRq)

(49)
= 𝔪□(p, q) −𝔪□(ΠRp,ΠRq)

(49)
= 𝔪□(p, q) −𝔪□(ΠRp, q)

(50)
= 𝔪□(ΠCp, q). (52)

4 ESTIMATION OF THE NMR ERROR IN ENERGY NORM

4.1 Preliminaries

It is clear that the reduced solution pR is an approximation of p, and that the reduction introduces an error. In this section,
we will assess the accuracy of the (reduced) solution by estimating the error. The goal is to obtain an estimate for the
error in terms of an energy norm, and in terms of user-defined quantities (goal oriented estimation). We recognize that
the total error have multiple sources, in particular (i) NMR and (ii) space and time discretization. In this article, we focus
solely on the error from NMR, and thus assume that the resolution in time and space is sufficiently good.

The (exact) error in the pressure is defined as

g(x, t) ∶= p(x, t) − pR(x, t) ∈ □, (53)

where p ∈ □ is the exact solution, and where pR ∈ □,R is the reduced solution. In order to find an estimate for g we use
the following “building blocks”:

• definition of the error equation and corresponding residual (Subsection 4.2);
• definition of an auxiliary error equation based on the construction of an auxiliary bilinear form in space-time with

associated norm, cf. the work of Parés et al27 (Subsection 4.3);
• formulation of the explicit energy norm estimate, cf. the work of Jakobsson et al28 (Subsection 4.4).

This strategy follows the procedure outlined in Aggestam et al,23 Ekre et al.24 This article can be considered a generaliza-
tion of the previous work, and, in particular, includes the following novelties: the model problem is a coupled two-field
problem; the estimator (and the reduced model) are derived for a POD basis (in contrast to a SD basis); the implicit rela-
tion between u and p given by static equilibrium is utilized to (i) reduce the error equation to a one-field problem, and
(ii) to construct the symmetric norm-inducing form.

4.2 The error equation and corresponding residual

From linearity of A□(•, •) we may establish the error equation: Find g ∈ □ such that

A□(g, q) = L□(q) − A□(pR, q) =∶ R□(q) ∀q ∈ □, (54)

where the residual is defined by

R□(q) ∶= ∫I
[𝔟□(q,−u̇𝜺 − u𝜇p{ṗR}) −𝔪□(ṗ,Rq) − 𝔞(p)□ (pR, q)]dt

+ [𝔪□(p0 − pR, q) + 𝔟□(q,u0 − u𝜺 − u𝜇p{pR})]|t=0

= ∫I
[𝔪□(Mt, q)]dt + [𝔪□(M0, q)]|t=0. (55)

In the last step, we collected all terms by defining Mt and M0 from the following identities

Mt ∈ P□ ∶ 𝔪□(Mt, 𝛿p) = 𝔟□
(
𝛿p,−u̇𝜺 − u𝜇p{ṗR}

)
−𝔪□(ṗR, 𝛿p) − 𝔞(p)□ (pR, 𝛿p) ∀𝛿p ∈ P□, (56a)
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M0 ∈ P□ ∶ 𝔪□(M0, 𝛿p) = 𝔪□(p0 − pR, 𝛿p) + 𝔟□
(
𝛿p,u0 − u𝜺 − u𝜇p{pR}

)
∀𝛿p ∈ P□. (56b)

Remark 7. It is important to note that it is not necessary to solve Mt explicitly in each time step, since it is enough to com-
pute the sensitivities w.r.t the time-dependent functions. The total computational effort for the error estimate is discussed
further in Section 4.5. □

Since we are only concerned with the error stemming from the reduced basis, and hence consider (38) to be solved
exactly, we note that

R□(qR) = 0 ∀qR ∈ □,R, (57)

and hence obtain the following, Galerkin-like, identity

R□(q) = R□(q) − R□(ΠRq) = R□(ΠCq) = ∫I
[𝔪□(ΠCMt, q)]dt + [𝔪□(ΠCM0, q)]|t=0 ∀q ∈ □, (58)

where we in the last step used the projection property from Equation (51).

4.3 Auxiliary error equation and associated norm

In order to obtain a norm, and to construct an auxiliary problem where we avoid computation of the implicit relation
up{q} for any q ∈ □, we introduce the auxiliary bilinear form Â□(•, •), defined as follows

Â□(q, r) ∶= ∫I
𝔞(p)□ (q, r)dt + 1

2
𝔪□(q, r)|t=0 +

1
2
𝔪□(q, r)|t=T , (59)

cf. a similar approach in Parés et al.27 We note that Â□(•, •) defines a scalar product on the set

̂□ ∶=
{

q(x, t) ∶ q|t=0 ∈ P□, q|I ∈ L2(I;P□), q|t=T ∈ P□
}
, (60)

and hence it can be used to define a norm

||q|| ∶=
√

Â□(q, q). (61)

Furthermore, we note that3 □ ⊂ ̂□, and that any functional on □ can be evaluated for functions in ̂□. Finally, for
any function q ∈ □, we derive the following inequality

A□(q, q) = ∫I

⎡⎢⎢⎢⎢⎢⎣
𝔪□(, q)
⏟⏟⏟

1
2

d
dt
[𝔪□(q,q)]

+ 𝔟□(q,u𝜇p{})
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(28)
= 𝔞(u)□ (u𝜇p{q},u𝜇p{q̇})

+ 𝔞(p)□ (q, q)

⎤⎥⎥⎥⎥⎥⎦
dt +

⎡⎢⎢⎢⎢⎢⎣
𝔪□(q, q) + 𝔟□(q,u𝜇p{q})

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
(28)
= 𝔞(u)□ (u𝜇p{q},u𝜇p{q})

⎤⎥⎥⎥⎥⎥⎦
|t=0

= ∫I

⎡⎢⎢⎢⎢⎢⎣
1
2

d
dt
[𝔪□(q, q)] + 𝔞(u)□ (u𝜇p{q},u𝜇p{})

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1
2

d
dt
𝔞(u)□ (u𝜇p{q},u𝜇p{q})

+ 𝔞(p)□ (q, q)

⎤⎥⎥⎥⎥⎥⎦
dt +

[
𝔪□(q, q) + 𝔞(u)□ (u𝜇p{q},u𝜇p{q})

] |t=0

= ∫I

[1
2

d
dt
[𝔪□(q, q)] +

1
2

d
dt
[𝔞(u)□ (u𝜇p{q},u𝜇p{q})] + 𝔞(p)□ (q, q)

]
dt +

[
𝔪□(q, q) + 𝔞(u)□ (u𝜇p{q},u𝜇p{q})

] |t=0

= ∫I
𝔞(p)□ (q, q)dt + 1

2
[𝔪□(q, q)]t=T

t=0 + 1
2
[𝔞(u)□ (u𝜇p{q},u𝜇p{q})]t=T

t=0 +
[
𝔪□(q, q) + 𝔞(u)□ (u𝜇p{q},u𝜇p{q})

] |t=0

3Recall the notation that p(0) and p(T) are included in □.
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= ∫I
𝔞(p)□ (q, q)dt + 1

2
𝔪□(q(0), q(0)) +

1
2
𝔪□(q(T), q(T))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Â□(q,q)

+ 1
2
𝔞(u)□ (u𝜇p{q(0)},u𝜇p{q(0)})

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

+ 1
2
𝔞(u)□ (u𝜇p{q(T)},u𝜇p{q(T)})

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

≥ Â□(q, q), (62)

i.e. the auxiliary form bounds A□(•, •) from below.
We may now express an auxiliary error equation based on the form in Equation (59). Find ĝ ∈ ̂□ such that

Â□(ĝ, q) = R□(q) ∀q ∈ ̂□. (63)

The norm of the auxiliary error ĝ provides an upper bound of the norm of the true error g

||g|| ≤ ||ĝ||, (64)

which follows from the inequality in (62), the definitions of the error equations in (54) and (63), and from using
Cauchy-Schwartz inequality, i.e.

||g||2 = Â□(g, g)
(62)≤ A□(g, g)

(54)
= R□(g)

(63)
= Â□(ĝ, g)

C−S≤ ||ĝ||||g||. (65)

4.4 Explicit NMR-error estimates

In what follows, we aim to derive an explicit upper estimate for ||ĝ||, which will thus also serve as an upper bound of ||g||.
From the definition of the norm in (61), we obtain

||ĝ|| ∶=
√

Â□(ĝ, ĝ) =

√
∫I

||ĝ||2
𝔞dt + 1

2
||ĝ||2

𝔪|t=0 +
1
2
||ĝ||2

𝔪|t=T . (66)

We first note that, from the definition of the auxiliary form Â□(•, •), the auxiliary error equation (63) localizes in time
and can be expressed explicitly t = 0, t ∈ I and t =T. In the following three sections (4.4.1,4.4.2, and 4.4.3) we consider (63)
separately for these three cases and aim for explicit estimates for the three RVE-norms ||ĝ||𝔪|t=0, ||ĝ||𝔞|t∈I and ||ĝ||𝔪|t=T
in (66), respectively. The final estimate of ||ĝ|| is given in Section 4.4.4.

4.4.1 Auxiliary error equation at time t = 0

At time t = 0 the auxiliary error equation (63) reduces to the problem of finding ĝ(0) =∶ ĝ0 ∈ P□ such that

1
2
𝔪□(ĝ0, q) = 𝔪□(ΠCM0, q) ∀q ∈ P□. (67)

With Cauchy-Schwarz inequality we obtain the following upper bound from (67):

||ĝ0||2
𝔪 = 𝔪□(ĝ0, ĝ0)

(67)
= 2𝔪□(ΠCM0, ĝ0)

C−S≤ 2||ΠCM0||𝔪||ĝ0||𝔪, (68)

and, thus, obtain an estimate for the contribution to ||ĝ|| at t = 0

1
2
||ĝ(0)||2

𝔪 ≤ 2||ΠCM0||2
𝔪. (69)
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4.4.2 Auxiliary error equation at time t ∈ I

In the time interval the auxiliary error equation (63) reduces to the problem of finding ĝ(t) =∶ ĝt ∈ P□ such that

𝔞(p)□ (ĝt, q) = 𝔪□(ΠCMt, q) ∀q ∈ P□, (70)

and we obtain the following upper bound using Cauchy-Schwartz inequality

||ĝt||2
𝔞 = 𝔞(p)□ (ĝt, ĝt) = 𝔪□(ΠCMt, ĝt)

C−S≤ ||ΠCMt||𝔪||ĝt||𝔪. (71)

To proceed we need a relation between ||ĝt||𝔪 and ||ĝt||𝔞. To this end, we use SD and write ĝt =
∑N

a=1 𝜑a𝜉a where 𝜉a are
coefficients to the corresponding eigenmodes 𝜑a from the solution of the eigenvalue problem

𝔞(p)□ (𝜑a, 𝛿p) = 𝜆a𝔪□(𝜑a, 𝛿p) ∀𝛿p ∈ P□ a = 1, 2, . .,N, (72a)

𝔪□(𝜑a, 𝜑b) = 𝛿ab a, b = 1, 2, . .,N, (72b)

with eigenvalues 𝜆a sorted in increasing order, such that 𝜆1 ≤ 𝜆2, … . With ĝt written as the spectral expansion we can
obtain the following inequality

||ĝt||2
𝔪 = || N∑

a=1
𝜑a𝜉a||2

𝔪 =
N∑

a=1
𝜉2

a = 1
𝜆min

N∑
a=1
𝜆min 𝜉

2
a ≤ 1

𝜆min

N∑
a=1
𝜆a𝜉

2
a = 1

𝜆min
|| N∑

a=1
𝜑a𝜉a||2

𝔞 =
1

𝜆min
||ĝt||2

𝔞. (73)

Finally, with (71) and (73), we arrive at the following upper bound for the time interval contribution to ||ĝ||
||ĝ(t)||2

𝔞 ≤ ||ΠCMt||2
𝔪

𝜆min
. (74)

Remark 8. We note that the eigenvalue problem in (72) is equivalent to the eigenvalue problem from Section 3.4.2, where
it was used to identify a spectral base for the reduced field. Thus, if such a base is used for the reduction, we may use the
same strategy as in Aggestam et al23 and exchange 𝜆min to 𝜆NR , resulting in a sharper bound. □

4.4.3 Auxiliary error equation at time t =T

At time t =T the auxiliary error equation reduces to the problem of finding q̂(T) =∶ q̂T ∈ P□ such that

1
2
𝔪□(ĝT , q) = 0 ∀q ∈ P□, (75)

and, since 𝔪□(•, •) is coercive, this leads to the trivial result

1
2
||ĝ(T)||2

𝔪 ≡ 0. (76)

4.4.4 Final estimate of the energy norm

Equation (66) together with estimates given in (69), (74) and (76) now gives the final error estimate in the energy
norm

||ĝ|| = √
∫I

||ĝ||2
𝔞dt + 1

2
||ĝ||2

𝔪|t=0 +
1
2
||ĝ||2

𝔪|t=T ≤
√

∫I

||ΠCMt||2
𝔪

𝜆min
dt + 2||ΠCM0||2

𝔪 =∶ Eest. (77)



EKRE et al. 15

The estimate is similar to the estimate given for the transient heat flow problem in Equation (112) from Aggestam et al,23

with some important differences:

• in Aggestam et al23 the norm inducing functional is equal to the original functional for the same argument4, whereas
here, in Equation (65), we need an extra inequality, ||g||2 = Â□(g, g) ≤ A□(g, g), due to the handling of the term coupling
the fields;

• in Aggestam et al23 the eigenvalue in the estimate is chosen to the largest resolved eigenvalue, which is possible since
a spectral based is used for the reduction, whereas here we need to use the lowest eigenvalue in the general case.5

4.5 Quantification of computational effort for the estimate

The final estimate in Equation (77) requires the solution to the auxiliary problems for Mt and M0 from Equation (56).
As mentioned in Section 4.2 it is not necessary to solve for Mt in each time step, it is enough to solve for the sensitivities
w.r.t the time-dependent quantities. For Mt it is sufficient to solve 6+NR linear static problems6; one for each macroscale
strain component, and one for each mode in the reduced basis. For M0 there is one extra solution for the initial condition.
In particular it is important to note that the number of auxiliary solves is fixed and does not scale with neither mesh
size nor the number of time steps. These 6+NR functions can be precomputed, and, when they are known, the estimate
in (77) is fully explicit and efficient to evaluate.

5 GOAL ORIENTED ESTIMATION OF THE NMR ERROR

5.1 Preliminaries

In this section, we will discuss quantification of the error in terms of user-defined quantities of interest (QoI) using goal
oriented error estimation. The procedure to obtain the explicit estimate follows the steps in Section 4 closely, and in
particular, we will again only focus on the error introduced by the reduced base, and ignore space-time discretization
errors by considering the fully resolved finite element problem to be the exact solution.

For the goal oriented error estimation, we use the following “building blocks”:

• definition of linear output functional for the chosen quantity of interest (Section 5.2);
• definition of the dual problem and corresponding reduced dual problem (Section 5.3);
• formulation of the dual residual and the dual error with upper and lower bounds (Sections 5.4 and 5.5);
• construction of explicit error bounds for the error in the quantity of interest (Section 5.6).

5.2 Linear output functional

We introduce linear goal functionals Q(u)
□ ,Q

(p)
□ , corresponding to the original (uncondensed) RVE problem in (22), that

represents the Quantity of Interest (QoI)

Q(u)
□ (u) ∶= ∫I

[𝔮(u)□,t(t;u)]dt + 𝔮(u)□,T(u(T)), (78a)

Q(p)
□ (p) ∶= ∫I

[𝔮(p)□,t(t; p)]dt + 𝔮(p)□,T(p(T)). (78b)

4In particular, from Equation (74) in Aggestam et al23 there is ||e||2 = As
□(e, e) = A□(e, e) for the error e.

5As mentioned in Section 3.4.2 it is possible to use a spectral base for problem discussed in this article, in which case the largest resolved eigenvalue
can be used in the estimate, as noted in Section 4.4.2.
6The auxiliary problems are of size N, for example, the size of the underlying finite element problem that the reduced basis is based on, and have a
“mass matrix” as the left-hand side.
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For the condensed problem (32), we can clearly reformulate the QoI as

Q□(p) ∶= Q(u)
□ (u𝜺 + up{p}) + Q(p)

□ (p). (79)

However, for the subsequent error analysis we wish to establish up{•} for the entire P□, and not just for P□,R as was done
in Subsection 3.2. To this end, we establish the following problems to solve for auxiliary “influence functions” u⋆t (t) ∈ U

0
□

and u⋆T ∈ U
0
□:

𝔞(u)□ (𝛿u,u⋆t (t)) = 𝔮(u)□,t(t; 𝛿u) ∀𝛿u ∈ U
0
□, ∀t ∈ I, (80a)

𝔞(u)□ (𝛿u,u⋆T ) = 𝔮(u)□,T(𝛿u) ∀𝛿u ∈ U
0
□. (80b)

We may now rewrite (79) as an explicit expression in p, by using the auxiliary dual problems in (80), and the definition
of the implicit function up in (28)

Q□(p) = ∫I
[𝔮(u)□,t(t;u𝜺) + 𝔮(u)□,t(t;up{p}) + 𝔮(p)□,t(t; p)]dt + 𝔮(u)□,T(u0(T)) + 𝔮(u)□,T(up{p(T)}) + 𝔮(p)□,T(p(T))

(80)
= ∫I

[𝔮(u)□,t(t;u𝜺) + 𝔞(u)□ (up{p},u⋆t ) + 𝔮(p)□,T(t; p)]dt + 𝔮(u)□,t(u0(T)) + 𝔞(u)□ (up{p(T)},u⋆T ) + 𝔮(p)□,T(p(T))

(28)
= ∫I

[𝔮(u)□,t(t;u𝜺) + 𝔟□(p,u⋆t ) + 𝔮(p)□,t(t; p)]dt + 𝔮(u)□,T(u0(T)) + 𝔟□(p(T),u⋆T ) + 𝔮(p)□,T(p(T)). (81)

Equation (81) now represents the output and is fully explicit in p. Finally, we may express the functional for the error
g= p− pR

Q□(g) ∶= Q□(p) − Q□(pR) = ∫I
[𝔟□(g,u⋆t ) + 𝔮(p)□,t(t; g)]dt + 𝔟□(g(T),u⋆T ) + 𝔮(p)□,T(g(T)), (82)

which is an explicit functional on the space

⋆
□ = {q(x, t) ∶ q|I ∈ L2(I;P□), q|t=T ∈ P□}. (83)

Example: Time-averaged homogenized stress
Consider the ij-component of the homogenized stress, 𝜎ij, as the Quantity of Interest. The output functional can thus

be defined by

𝔮(u)□,t(t;u) = 1|I||Ω□|∫Ω□

[ei ⊗ ej ∶ E∶𝜺[u]]dΩ, (84a)

𝔮(u)□,T(u) = 0, (84b)

𝔮(p)□,t(t; p) = 1|I||Ω□|∫Ω□

[−𝛼p𝛿ij]dΩ, (84c)

𝔮(p)□,T(p) = 0. (84d)

We note, in particular, that this functional does not depend on time, and therefore it is enough to solve the auxiliary
problems (80a) once, instead of once per time step, which is needed in the general case.

5.3 Dual problem

We define the dual problem as that of finding p⋆ ∈ □ such that



EKRE et al. 17

A⋆
□(p

⋆, q) = Q□(q) ∀q ∈ ⋆
□, (85)

where we recall the test space ⋆
□ from (83), and where the dual form A⋆

□ is defined as

A⋆
□(q, r) ∶= ∫I

[−𝔪□(q̇, r) − 𝔟□(r,up{q̇}) + 𝔞(p)□ (q, r)]dt +𝔪□(q(T), r(T)) + 𝔟□(r(T),up{q(T)}). (86)

We note that, for q, r ∈ □

A□(q, r) = A⋆
□(r, q), (87)

which follows from integration by parts, namely,

∫I
𝔪□(q̇, r)dt +𝔪□(q(0), r(0)) = ∫I

[ d
dt
[𝔪□(q, r)] −𝔪□(q, ṙ)

]
dt +𝔪□(q(0), r(0))

= ∫I
−𝔪□(q, ṙ) + [𝔪□(q, r)]T

0 +𝔪□(q(0), r(0)) = ∫I
−𝔪□(ṙ, q)dt +𝔪□(r(T), q(T)), (88)

and

∫I
𝔟□(r,up{q̇})dt + 𝔟□(r(0),up{q(0)})

(28)
= ∫I

𝔞(u)□ (up{r},up{q̇})dt + 𝔟□(q(0),up{r(0)})

∫I

[ d
dt
[𝔞(u)□ (up{r},up{q})] − 𝔞(u)□ (up{ṙ},up{q})

]
dt + 𝔟□(q(0),up{r(0)})

(28)
= ∫I

[−𝔟□(q,up{ṙ})]dt + [𝔟□(q,up{r})]T
0 + 𝔟□(q(0),up{r(0)})

= ∫I
[−𝔟□(q,up{ṙ})]dt + 𝔟□(q(T),up{r(T)}). (89)

The reduced dual problem is defined as that of finding p⋆R ∈ □,R such that

A⋆
□(p

⋆
R , qR) = Q□(qR) ∀qR ∈ ⋆

□,R, (90)

where ⋆
□,R follows from (83), with P□ replaced with P□,R.

5.4 Dual error equation and corresponding residual

We define the dual error equation as the problem of finding g⋆ ∈ □ such that

A⋆
□(g

⋆, q) = Q□(q) − A⋆
□(p

⋆
R , q) =∶ R⋆□(q) ∀q ∈ ⋆

□ (91)

where g⋆ ∶= p⋆ − p⋆R is the error in the dual solution. Consequently, due to (87) and the Galerkin orthogonality in (54)
we obtain

A⋆
□(g

⋆, g) = Q□(g) − A⋆
□(p

⋆
R , g) = Q□(g) − A□(g, p⋆R) = Q□(g), (92)

since p⋆R ∈ □,R ⊂ □,R.
The dual residual is expanded similar to Subsection 4.2

R⋆□(q) = ∫I
[𝔟□(q,u⋆t ) + 𝔮(p)□,t(t; q) +𝔪□(ṗ⋆R , q) + 𝔟□(q,up{ṗ⋆R}) − 𝔞(p)□ (p⋆R , q)]dt

+ 𝔟□(q(T),u⋆T ) + 𝔮(p)□,T(q(T)) −𝔪□(p⋆R(T), q(T)) − 𝔟□(q(T),up{p⋆R(T)})

= ∫I
𝔪□(M⋆

t , q)dt +𝔪□(M⋆
T , q(T)) (93)
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In the last step we, once again, collected all the terms by defining M⋆
t and M⋆

T from the following identities

M⋆
t ∈ P□ ∶ 𝔪□(M⋆

t , 𝛿p) = 𝔟□(𝛿p,u⋆t + up{ṗ⋆R}) + 𝔮(p)□,t(t; 𝛿p) +𝔪□(ṗ⋆R , 𝛿p) − 𝔞(p)□ (p⋆R , 𝛿p) ∀𝛿p ∈ P□, (94a)

M⋆
T ∈ P□ ∶ 𝔪□(M⋆

T , 𝛿p) = 𝔟□(𝛿p,u⋆T − up{p⋆R(T)}) + 𝔮(p)□,T(𝛿p) −𝔪□(p⋆R(T), 𝛿p) ∀𝛿p ∈ P□. (94b)

Remark 9. We once again note that it is not necessary to solve for M⋆
t explicitly in each time step, it is enough to solve

for the sensitivities w.r.t. the time-dependent functions. The total computational effort for the error estimate is discussed
further in Section 5.7. □

As with the energy norm error estimate in Section 4.2, we are only concerned with the error stemming from the
reduced basis, and hence consider (90) to be solved exactly. For the residual this means that

R⋆□(qR) = 0 ∀qR ∈ ⋆
□,R, (95)

and we, once again, obtain the following, Galerkin-like, identity

R⋆□(q) = R⋆□(q) − R⋆□(ΠRq) = R⋆□(ΠCq) = ∫I
[𝔪□(ΠCM⋆

t , q)]dt + [𝔪□(ΠCM⋆
T , q)]|t=T ∀q ∈ Q⋆

□, (96)

where we, in the last step, used the projection property from Equation (51).

5.5 Dual error estimate—Upper and lower bounds

To find an estimate for the defined quantity of interest we first define the auxiliary dual error equation using the auxiliary
form (59) from Subsection 4.3; Find ĝ⋆ ∈ ̂□ such that

Â□(ĝ⋆, q) = R⋆□(q) ∀q ∈ ̂□. (97)

Remark 10. With the same argumentation as in Subsection 4.4, the solution ĝ⋆ provides an upper bound of the exact dual
error as follows: ||g⋆|| ≤ ||ĝ⋆||, (98)

since ||g⋆||2 = Â□(g⋆, g⋆) ≤ A⋆
□(g

⋆, g⋆) = R⋆□(g
⋆) = Â□(ĝ⋆, g⋆) ≤ ||ĝ⋆||||g⋆||. (99)

□

In addition to the auxiliary dual error equation, we also introduce the “composite errors,” g± and ĝ±, as linear
combinations of the corresponding primal and dual parts, viz.

g± ∶= 𝜅g ± 1
𝜅

g⋆ ∈ □, (100a)

ĝ± ∶= 𝜅ĝ ± 1
𝜅

ĝ⋆ ∈ ̂□, (100b)

for any 𝜅 ≠ 0. Due to linearity, the auxiliary composite error ĝ± is the solution to

Â□(ĝ±, q) = 𝜅R□(q) ±
1
𝜅

R⋆□(q) =∶ R±
□(q) ∀q ∈ ̂□, (101)

with the combined residual R±
□ defined explicitly as

R±
□(q) = ∫I

𝔪□(ΠCM±
t , q)dt + [𝔪□(ΠCM±

0 , q)]|t=0 + [𝔪□(ΠCM±
T , q)]|t=T , (102)
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where we introduced

M±
0 ∶= 𝜅M0, (103a)

M±
t ∶= 𝜅Mt ±

1
𝜅

M⋆
t , (103b)

M±
T ∶= ± 1

𝜅
M⋆

T . (103c)

Consider now the following equalities7:

Â□(ĝ±, g±) = 𝜅2Â□(ĝ, g) ± [Â□(ĝ, g⋆) + Â□(ĝ⋆, g)] + 𝜅−2Â□(ĝ⋆, g⋆) =

= ±2Q□(g) + 𝜅2Â□(ĝ, g) + 𝜅−2Â□(ĝ⋆, g⋆), (104)

where we in the last step used the following identities, derived from the error equations and the Galerkin orthogonality

Â□(ĝ, g⋆)
(63)
= R□(g⋆)

(54)
= A□(g, g⋆)

(87)
= A⋆

□(g
⋆, g)

(92)
= Q□(g), (105a)

Â□(ĝ⋆, g)
(97)
= R⋆□(g)

(91)
= A⋆

□(g
⋆, g)

(92)
= Q□(g). (105b)

In a procedure resembling the Parallelogram law, cf. Oden and Prudhomme,29 we subtract the “−”-equation from the
“+”-equation in (104) and obtain

Q□(g) =
1
4
[Â□(ĝ+, g+) − Â□(ĝ−, g−)], (106)

where the terms in the right-hand side of (106) can be bounded from below,

Â□(ĝ±, g±) = R±
□(g

±) = A□(g±, g±) ≥ ||g±||2, (107)

and from above using Cauchy-Schwartz inequality,

Â□(ĝ±, g±) ≤ ||ĝ±||||g±||. (108)

We can now obtain upper and lower bounds on Q□(g) by combining (106) with (107) and (108)

1
4
[||g+||2 − ||ĝ−||||g−||] ≤ Q□(g) ≤ 1

4
[||ĝ+||||g+|| − ||g−||2]. (109)

In what follows we will use the trivial lower bound, ||g±|| ≥ 0. Utilizing a sharper lower bound for ||g±|| would naturally
result in a sharper estimate. However, it requires implicit procedures, which would make the final estimate more compu-
tational demanding. As a last step, we also utilize the bounds given by (65) and (98) and arrive at upper and lower bounds
for the error in the quantity of interest

E−
Q ∶= −1

4
||ĝ−||2 ≤ Q□(g) ≤ 1

4
||ĝ+||2 =∶ E+

Q. (110)

5.6 Explicit bounds for the error in quantity of interest

In order to obtain explicit upper and lower bounds for E−
Q and E+

Q from Equation (110) we need an estimate for the norm
of the composite error, ||ĝ±||. To this end, we use the strategy described in Subsection 4.4 and consider the composite error
equation (101) localized in time for times t = 0, t ∈ I and t =T separately.

7Note that we here use the subscript ± as an alternative to presenting two equations; one “+” and one “−”.
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5.6.1 Composite error equation at t = 0

At time t = 0 the composite error equation reduces to finding ĝ±(0) =∶ ĝ±0 ∈ P□ such that

1
2
𝔪□(ĝ±0 , q) = 𝔪□(ΠCM±

0 , q) ∀q ∈ P□. (111)

In terms of the norm, we obtain the following upper bound, using Cauchy-Schwartz inequality

||ĝ±0 ||2
𝔪 = 𝔪□(ĝ±0 , ĝ

±
0 )|t=0 = 2𝔪□(ΠCM±

0 , ĝ
±
0 )|t=0 ≤ 2||ΠCM±

0 ||𝔪||ĝ±0 ||𝔪, (112)

and obtain the following contribution to ||g±|| at t = 0

1
2
||ĝ±(0)||2

𝔪 ≤ 2||ΠCM±
0 ||2

𝔪. (113)

5.6.2 Composite error equation for t ∈ I

In the time interval, t ∈ I, the composite error equation reduces to finding ĝ±(t) =∶ ĝ±t ∈ P□ such that

𝔞(p)□ (ĝ±t , q) = 𝔪□(ΠCM±
t , q) ∀q ∈ P□, (114)

and, by using the same arguments as in Section 4.4.2, we obtain the following upper bound for the contribution to ||ĝ±||
||ĝ±(t)||2

𝔞 ≤ ||ΠCM±
t ||2

𝔪

𝜆min
. (115)

5.6.3 Composite error equation for t =T

At time t =T the composite error equation reduces to finding ĝ±(T) =∶ ĝ±T ∈ P□ such that

1
2
𝔪□(ĝ±T , q) = 𝔪□(M±

T , q) ∀q ∈ P□, (116)

and with the same arguments as in Section 5.6.1 we obtain the following upper bound of the contribution to ||ĝ±||
1
2
||ĝ±(T)||2

𝔪 ≤ 2||ΠCM±
T ||2

𝔪. (117)

5.6.4 Final upper and lower estimate for the error in quantity of interest

With the norm from Equation (66), the bounds from Equations (113), (115), and (117), and the upper and lower bounds
of the Quantity of Interest from Equation (110) we obtain the following explicit estimates

E+
Q ≤ E+

Q,est ∶= 1
4

min
𝜅

[
∫I

||ΠCM+
t (𝜅)||2

𝔪

𝜆min
dt + 2||ΠCM+

0 (𝜅)||2
𝔪 + 2||ΠCM+

T (𝜅)||2
𝔪

]
(118a)

E−
Q ≥ E−

Q,est ∶= −1
4

min
𝜅

[
∫I

||ΠCM−
t (𝜅)||2

𝔪

𝜆min
dt + 2||ΠCM−

0 (𝜅)||2
𝔪 + 2||ΠCM−

T (𝜅)||2
𝔪

]
(118b)
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Finally, the estimates can be optimized by finding an optimal value of 𝜅. We note that Equation (118) can be
written as

E+
Q,est =

1
4

min
𝜅

[A𝜅2 + 2B + C𝜅−2] (119a)

E−
Q,est = −1

4
min
𝜅

[A𝜅2 − 2B + C𝜅−2] (119b)

with coefficients

A ∶= ∫I

||ΠCMt||2
𝔪

𝜆min
dt + 2||ΠCM0||2

𝔪, (120a)

B ∶= ∫I

𝔪□(ΠCMt,ΠCM⋆
t )

𝜆min
dt, (120b)

C ∶= ∫I

||ΠCM⋆
t ||2

𝔪

𝜆min
dt + 2||ΠCM⋆

T ||2
𝔪. (120c)

Solving the trivial minimization problem, we obtain 𝜅2
opt =

√
C
A

, which results in the following explicit upper and
lower bounds

E+
Q,est =

1
4
[
√

AC + 2B] (121a)

E−
Q,est = −1

4
[
√

AC − 2B] (121b)

5.7 Quantification of computational effort for the estimate

Similar to the final estimate for the energy norm, the estimates in Equation (121) requires the solution to some auxiliary
problems; Equation (80) for u⋆t and u⋆T , Equation (94) for M⋆

t and M⋆
T and Equation (56) for Mt and M0. For each quantity

of interest, u⋆t and u⋆T requires one linear static solve each.8
Solving for M⋆

t requires 6+NR, and for M⋆
t 1, linear static problem(s). Once again we emphasize that these are all

computations that can be performed in the “offline” stage, stored, and then used for the error estimation throughout the
“online” stage.

6 NUMERICAL EXAMPLES

For the numerical examples we consider two different RVEs in three spatial dimensions. The RVEs consist of gas saturated
matrix material (phase 1) with spherical, water saturated, inclusions of two different types (phases 2 and 3, respectively).
The material parameters for the three phases are presented in Table 1.

In order to quantify the sharpness of the error estimate (as compared with the exact error) we define the effectivity
index as

𝜂 ∶= Eest

E
, (122)

where Eest is the estimate (Equation (77)), and E the exact error. Similarly, for the goal oriented estimate we define

𝜂Q ∶=
EQ,est|EQ| , EQ,est ∶= max (|E+

Q,est|,E−
Q,est|), (123)

8Assuming that the quantity of interest is independent of time, as the example in Section 5.2.
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T A B L E 1 Material parameters for the three material phases in the RVEs used for the numerical examples

Phase 1 (matrix) Phase 2 (inclusions) Phase 3 (inclusions)

G (GPa) 8.8 15.8 15.8

K (GPa) 9.6 16.2 16.2

𝜙 (–) 0.2 0.1 0.1

Ks (GPa) 36 36 36

Kf (GPa) 0.022 2.3 2.3

k (m2 MPa−1 s−1) 2 0.033 0.0033

Abbreviation: RVEs, representative volume elements.

F I G U R E 1 RVEs used for the
numerical examples. To the left a single
spherical inclusion of Phase 2 embedded
in matrix of Phase 1 used for Example 1,
and to the right multiple spherical
inclusions of Phase 2 (blue) and Phase 3
(red) embedded in matrix of Phase 1
used for Example 2. [Color figure can be
viewed at wileyonlinelibrary.com]

where EQ,est is a “worst case” combination of the upper and lower bounds, and EQ the exact error in the quantity of
interest.

6.1 Example 1: Isotropic RVE with a single centered inclusion

As a first example, we consider an isotropic RVE of size 1 m× 1 m× 1 m, with a single centered inclusion with radius
0.4 m, see Figure 1. For this example, we use the same load case as in the training computations (see Section 6.1.1)
for the prediction; the 𝜀11 component is rapidly increased and then kept constant, while keeping the other strain
components at 0.

6.1.1 Example 1: Identification of reduced basis

The snapshots for the POD are extracted from training computations. For the first example, we perform a stress-relaxation
test as training by ramping up 𝜺11(t) = 𝜓(t) according to Figure 2, while keeping the other components at 0. The resulting
homogenized stress is plotted in Figure 3. The snapshots for the POD are collected from the “relaxation part”, i.e. from
the time steps where t > 1× 10−5s. In Figure 4 the first two POD modes are plotted, together with the first SD modes for
the RVE.

6.1.2 Example 1: Energy norm of the error

The estimated error in energy norm, Eest, given in Equation (77), is plotted in Figure 5 for the prediction load case (which,
for this example is the same as the training load case). The exact error, E = ||g||, is also plotted in the same figure. We note

http://wileyonlinelibrary.com
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F I G U R E 2 Ramp function used for prescribing macroscale strain
components for the training computation(s)

F I G U R E 3 Example 1: Homogenized stress, normalized with their peak
values, from the fully resolved solution with the load case used for the training
computation(s)

F I G U R E 4 Example 1: First and second POD
modes (top left and top right, respectively) resulting
from the training computations, together with the first
and second SD modes (bottom left and bottom right,
respectively) visualized on a cut plane through the
middle of the RVE. [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 5 Example 1: Exact and estimated error in energy norm using the POD (left) and SD (right) basis

F I G U R E 6 Example 1: Effectivity index for the estimated error in
energy norm

that, as expected, the residual, and therefore also the error estimate, decreases much faster for the POD base compared
with the SD base. The effectivity index, 𝜂, for the estimate in energy norm is plotted in Figure 6. We note that the effectivity
index increases quickly for the POD base, but stays rather constant for the SD base. One explanation for this is the fact
that, with the SD base, we can use a higher eigenvalue for the final estimate, as discussed in Section 4.4.2.

6.1.3 Example 1: Error in time-averaged homogenized stress

In Section 5, we discussed how to estimate the error in a user-defined quantity of interest, and in particular the homog-
enized stress. We now consider the time-averaged homogenized stress, 𝜎11, as the quantity of interest and compute the
upper and lower estimates for the error, E+

Q,est and E−
Q,est, given in Equation (121). The results are plotted in Figure 7, and

the combined estimate, from Equation (123), is plotted in Figure 8. In both figures, we also include the exact error, EQ, as
compared with the full finite element solution. We note that the behavior of the estimates, and the corresponding effectiv-
ity indexes in Figure 9, is very similar to the estimate of the energy norm from the previous section. However, in Figure 9,
we see that the effectivity index deteriorates even more for the POD estimate.

6.2 Example 2: Heterogeneous RVE with multiple inclusions

For the second example, we consider an RVE of size 1 m× 1 m× 1 m, with multiple, nonoverlapping, spherical inclusions
with radii between 0.1 and 0.4 m, see Figure 1. For the prediction, we combine prescribed macroscale strain in 11, 22, and
33 directions according to Figure 10, resulting in macroscale stresses presented in Figure 11.
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F I G U R E 7 Example 1: Exact error and upper and lower estimates of the error in time-averaged homogenized stress for the POD (left)
and SD (right) basis

F I G U R E 8 Example 1: Exact error and the combined estimate EQ,est of the error in time-averaged homogenized stress for the POD
(left) and SD (right) basis

F I G U R E 9 Example 1: Effectivity index for the estimated error in
time-averaged homogenized stress

6.2.1 Example 2: Identification of reduced basis

For the second example, we also use the stress relaxation test from Section 6.1.1, but now in three
directions by setting 𝜀ii(t) = 𝜓(t), for i= 1,2,3, resulting in three training computations from which we col-
lect snapshots. The resulting first two POD modes are plotted in Figure 12, together with the first two
SD modes.
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F I G U R E 10 Example 2: Prescribed macroscale strains, as functions of
time, defining the load case used for prediction

F I G U R E 11 Example 2: Homogenized stress, normalized with their peak
values, from the fully resolved solution for the load case used for prediction

F I G U R E 12 Example 2: First and second POD
modes (top left and top right, respectively) resulting
from the training computations, together with the first
and second SD modes (bottom left and bottom right,
respectively) visualized on a cut plane through the
middle of the RVE [Color figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 13 Example 2: Exact and estimated error in energy norm using the POD (left) and SD (right) basis

F I G U R E 14 Example 2: Effectivity index for the estimated error in
energy norm

6.2.2 Example 2: Energy norm of the error

The estimated error in energy norm, Eest, given in Equation (77), is plotted in Figure 13, together with the exact error,
E = ||g||. We note that the result is similar to the results for the first example in the previous section. In particular, we note
that, as expected, the residual, and therefore also the error estimate, decreases much faster for the POD base compared
with the SD base. The effectivity index, 𝜂, for the estimate in energy norm is plotted in Figure 14. We note that the
effectivity index is higher for the POD base than for the SD base, just as for the previous example.

6.2.3 Example 2: Error in time-averaged homogenized stress

Once again we use the time average of 𝜎11 as the quantity of interest for the goal oriented error estimation. The resulting
upper and lower bounds, E+

Q,est and E−
Q,est from Equation (121), are plotted in Figure 15, together with the combined

estimate and effectivity index (123) plotted in Figures 16 and 17, respectively. The results are similar to the first example,
where the POD base results in much smaller residual and hence smaller estimate, but the spectral base results in a better
effectivity index.

6.3 Example 3: Influence of training data

In the third numerical example, we investigate the effect of the training data on the error estimate. The training data are
collected using the same method as for the previous example (see Section 6.2.1), however, we vary the activation function
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F I G U R E 15 Example 2: Exact error and upper and lower estimates of the error in time-averaged homogenized stress for the POD (left)
and SD (right) basis

F I G U R E 16 Example 2: Exact error and the combined estimate EQ,est of the error in time-averaged homogenized stress for the POD
(left) and SD (right) basis

F I G U R E 17 Example 2: Effectivity index for the estimated error in
time-averaged homogenized stress

𝜓 as follows:

𝜓1(t) = 𝜓(t), (124a)

𝜓2(t) = 𝜓(t∕10), (124b)

𝜓3(t) = 𝜓(10t), (124c)
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F I G U R E 18 Example 3: Threshold number of modes NR required
for reaching 10%, 1%, 0.1%, and 0.01% estimated relative error in terms of
the energy norm, respectively, for the three different POD basis
constructed from the datasets DS1, DS2, and DS3

in order to obtain three different datasets (DS1, DS2, DS3) to build the POD basis from. The microstructure of the RVE,
and the load case used for the prediction, are the same as in Example 2.

In Figure 18, we illustrate the threshold number of modes needed in order to obtain a certain accuracy, in terms of
the energy norm, indicated by the estimate. We note that the threshold differs between the different datasets quite a lot
even for this simple load case.

This example also illustrates the need for different number of modes, or even different basis, for different macroscopic
location in an FE2 setting where the loading are different for each RVE computation.

7 CONCLUSIONS AND OUTLOOK

In this article, we have presented an a posteriori error estimate for the error introduced by NMR in the context of
homogenization of porous media. More specifically, we extended the reduced order model presented in Jänicke et al12

with an explicit, fully computable, and computationally efficient error estimator for guaranteed bounds of the error in
terms of (i) energy norm and (ii) user-defined QoI. The estimator is a generalization of similar estimators presented by the
authors23,24 with the major important differences that it handles the coupled problem, and that the estimator is derived
for a POD basis rather than an SD basis.

The performance of the estimator was demonstrated by two numerical examples, and for reduced basis obtained
by (i) SD and (ii) POD. As expected, the POD base results in much smaller residuals compared with the SD base,
but in general the effectivity index of the estimator when using an SD base is better. It is noted that the sharpness
of the estimator quickly deteriorates with increasing number of modes. However, considering the fact that the esti-
mates are fully computable with negligible overhead, a sharper estimate would probably require significantly higher
computational cost.

An interesting extension, left for future work, would be to develop a method to create a mixed base by combining
spectral modes and POD modes in a clever way, in order to reduce the high effectivity index obtained from the estimator
for the pure POD case.

As to future work, the obvious next step is to embed the error estimator for the subscale problem, pre-
sented in this article, into a full-fledged nested FE2 procedure. This would require taking care of error trans-
port between the two scales, similar to what was presented in Ekre et al24 for the linear heat flow problem. We
also, once again, note that in this work we completely ignored errors from sources such as time and space dis-
cretization, and it would be of interest to extend the estimator with the ability to estimate those errors as well.
Finally, we note that we have not considered adaptive techniques in this article. It would be interesting to inves-
tigate this, and use the error estimator as a measure for adaptively adding new modes to the subscale problem
on the fly.
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