
Research Article
Acceleration of Gas Reservoir Simulation Using Proper
Orthogonal Decomposition

Yi Wang ,1,2 Bo Yu ,3 and Ye Wang4

1National Engineering Laboratory for Pipeline Safety andMOE Key Laboratory of Petroleum Engineering and Beijing Key Laboratory
of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China
2Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Ministry of Education, Xi’an 710049, China
3School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
4Key Laboratory of Railway Vehicle Thermal Engineering, Lanzhou Jiaotong University, Ministry of Education,
Lanzhou 730070, China

Correspondence should be addressed to Bo Yu; yubobox@vip.163.com

Received 3 July 2017; Revised 26 August 2017; Accepted 17 September 2017; Published 3 January 2018

Academic Editor: Jianchao Cai

Copyright © 2018 YiWang et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

High-precision and high-speed reservoir simulation is important in engineering. Proper orthogonal decomposition (POD) is
introduced to accelerate the reservoir simulation of gas flow in single-continuum porous media via establishing a reduced-order
model by POD combined with Galerkin projection. Determination of the optimal mode number in the reduced-order model
is discussed to ensure high-precision reconstruction with large acceleration. The typical POD model can achieve high precision
for both ideal gas and real gas using only 10 POD modes. However, acceleration of computation can only be achieved for ideal
gas. The obstacle of POD acceleration for real gas is that the computational time is mainly occupied by the equation of state
(EOS). An approximation method is proposed to largely promote the computational speed of the POD model for real gas flow
without decreasing the precision. The improved POD model shows much higher acceleration of computation with high precision
for different reservoirs and different pressures. It is confirmed that the acceleration of the real gas reservoir simulation should use
the approximation method instead of the computation of EOS.

1. Introduction

Reservoir simulation, utilizing mathematical models to pre-
dict fluid flow in petroleum reservoirs, has been developed
since the 1800s [1]. It plays more and more important
roles in the development of oil exploration and production
[2]. Correspondingly, mathematical theories and numeri-
cal methods have attracted extensive attention [3–10]. The
computational cost of the oil reservoir simulations is huge
because a very dense mesh should be used causing long-time
iterations to achieve enough resolution. This kind of long-
time computation is usually not endurable in engineering.
Petroleum engineers attempted several approaches to speed
up oil reservoir simulations, including the scale-up approach
[11–15] and parallel computation [16]. Proper orthogonal
decomposition (POD) can reduce computational loads effi-
ciently via a reduced-order model. It has been applied to

heated-crude-oil pipe flow [17, 18] and other fields [19–21].
Ghommem et al. [22, 23] and Efendiev et al. [24] discussed
the POD and dynamic mode decomposition method for
time-dependent incompressible single-phase flow in high-
contrast heterogeneous porous media. They proved that the
POD model can achieve good precision in an appropriate
range.With fast progress of the exploration and development
of gas reservoirs, gas reservoir simulation attracted more
and more attention [25–28]. Additional computation should
be made to calculate the compressibility of the gas, which
does not exist in incompressible oil flow.Thus, the numerical
simulations of gas reservoirs are more complex and time-
consuming. The study on the acceleration method of gas
reservoir simulation by POD is meaningful. On the other
hand, the compressibility of the gas leads to a POD model
with stronger nonlinearity than oil flow. This situation might
cause the POD modeling process to be more difficult than
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the previous POD modeling for incompressible single-phase
flow. To the best of the authors’ knowledge, there is no report
concerning the POD model for gas reservoir simulation
especially for real gas. Therefore, it is worth discussing the
POD modeling method for gas reservoir simulations.

This paper is organized as follows. We revisit the govern-
ing equations of gas reservoir simulation and explain how
to apply the POD to the gas reservoir simulation briefly.
Then, a POD model will be established for gas reservoir
simulation in single-continuum porous media. Key effects
will be discussed on the acceleration ability of the POD
model. Finally, conclusions and suggestions will be made.

2. Numerical Methods

2.1. Governing Equations of Gas Reservoir Simulation. Pure
gas flow obeys mass conservation law (see (1)), Darcy’s law
(see (2)), and the gas law (see (3)) as follows:

𝜙𝜕𝜌𝜕𝑡 = −∇ ⋅ (𝜌u) + 𝑞, (1)

u = −k𝜇∇𝑝, (2)

𝜌 = 𝑝𝑊𝑍𝑅𝑇, (3)

where u is the Darcy velocity of gas flow in reservoirs, k is the
diagonal permeability tensor,𝑝 is the pressure,𝜌 is the density
of gas, 𝜇 is the dynamic viscosity of gas, 𝜙 is the porosity of
porous media, 𝑞 is the injection or production rate,𝑊 is the
molecular weight of gas, 𝑅 is the universal gas constant, 𝑇 is
the temperature of gas, and 𝑍 is the compressibility factor of
gas. 𝑍 should be calculated by the equation of state of gas. In
this paper, we use the Van der Waals equation:

𝑍3 − (𝐵 + 1)𝑍2 + 𝐴𝑍 − 𝐴𝐵 = 0, (4)

where 𝐴 = 𝑎𝑝/𝑅2𝑇2, 𝐵 = 𝑏𝑝/𝑅𝑇, 𝑍 = 𝑝V/𝑅𝑇, V is the
molar volume of gas, and 𝑎 and 𝑏 are gas constants changing
with different real gases. The compressibility of gas for
isothermal flow can be defined as

𝑐𝑔 = 1𝜌 𝑑𝜌𝑑𝑝
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇 . (5)

Using pressure as the primary variable, (1) and (5) can be
rewritten as follows:

𝜙𝑐𝑔𝑝𝜕𝑝𝜕𝑡 = ∇ ⋅ (k𝜇𝑝∇𝑝) + 𝑍𝑅𝑇𝑊 𝑞, (6)

𝑐𝑔 = 1𝑝 − 1𝑍 [ 𝐵 − 𝑍3𝑍2 − 2 (𝐵 + 1)𝑍 + 𝐴 𝑎𝑅2𝑇2
+ 𝐴 + 𝑍23𝑍2 − 2 (𝐵 + 1)𝑍 + 𝐴 𝑏𝑅𝑇] .

(7)

For the convenience of expression, we only use two-
dimensional cases in this paper, but the extension to three-
dimensional cases is straightforward.Thus, the above govern-
ing equations have the following expressions:

𝜙𝑐𝑔𝑝𝜕𝑝𝜕𝑡 = 𝜕𝜕𝑥 (𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥) + 𝜕𝜕𝑦 (
𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦) + 𝑍𝑅𝑇𝑊 𝑞, (8)

𝑢 = −𝑘𝑥𝑥𝜇 𝜕𝑝𝜕𝑥 , (9)

V = −𝑘𝑦𝑦𝜇 𝜕𝑝𝜕𝑦 , (10)

where 𝑘𝑥𝑥 and 𝑘𝑦𝑦 are two components of permeability k
in the 𝑥 and 𝑦 directions, respectively, and 𝑢 and V are two
components of Darcy velocity u in the 𝑥 and 𝑦 directions,
respectively. Gas reservoir simulation can be accomplished
via numerically solving (8)∼(10) to obtain pressure and
velocity with the calculation of parameters (𝑍 and 𝑐𝑔) using
(4) and (7).Here, 𝑐𝑔 is the implicit function of𝑝 (shown in (7))
so that it can only be explicitly solved. Therefore, the whole
term 𝑐𝑔𝑝 is treated explicitly.

2.2. Basic Idea of Proper Orthogonal Decomposition. The
above governing equations clearly show that the core of the
whole computation is the calculation of 𝑝. Once 𝑝 is solved,
one can directly solve 𝑢 and V. Therefore, the acceleration
of the computation of 𝑝 is the most important in the POD
modeling. The basic idea of the POD modeling for (8) is
briefly stated as follows.

(1) Separate the variable in space and time using the
following linear combination:

𝑝 = 𝑀∑
𝑛=1

𝑐𝑛𝜑𝑛, (11)

where𝜑𝑛 are the PODmodes which are the functions of space
(𝜑𝑛(𝑥, 𝑦)), 𝑐𝑛 are the temporal coefficients (𝑐𝑛(𝑡)), and 𝜑𝑛 are
the identity basis vectors orthogonal with each other:

𝜑𝑖 ⋅ 𝜑𝑗 = 𝛿𝑖𝑗, (12)

where “⋅”means the inner product of two vectors and 𝛿𝑖𝑗 is the
Kronecker delta taking the value 1 for 𝑗 = 𝑖 and 0 for others.

(2) 𝜑𝑛 can be calculated from the eigenvalue decomposi-
tion of a sample matrix, which can be obtained by aligning
the samples in a time series (𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑁):

S = [𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑁] , (13)

where 𝑆1 = [
[
𝑝11
𝑝21
...
𝑝𝐿1

]
]
, 𝑆2 = [

[
𝑝12
𝑝22
...
𝑝𝐿2

]
]
, 𝑆3 = [

[
𝑝13
𝑝23
...
𝑝𝐿3

]
]
, . . . , 𝑆𝑁 =

[
[
𝑝1𝑁
𝑝2𝑁
...
𝑝𝐿𝑁

]
]
, 𝐿 is the number of grid points (including boundary

points), and 𝑁 is the number of samples. A kernel can be
calculated as follows:

𝐶𝑖𝑗 = 1𝑁 ∫
Ω
𝑆𝑖𝑆𝑗𝑑Ω, (14)
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whereΩmeans domain. The matrix form of (14) is

C = Δ𝑥Δ𝑦𝑁 S𝑇S. (15)

The matrix C can be decomposed by eigenvalue decom-
position to obtain the eigenvalues and eigenvectors:

CV = 𝜆V, (16)

whereV is the eigenvectormatrix and 𝜆 are the eigenvalues of
the corresponding eigenvectors. Along with the descending
order of 𝜆 (𝜆1 > 𝜆2 > 𝜆3 > ⋅ ⋅ ⋅ > 𝜆𝑁), the importance
of eigenvectors V1, V2, V3, . . . , V𝑁 in V is also descending. To
quantitatively represent the importance of each eigenvector,
the energy 𝜉𝑛 of the 𝑛th eigenvector is introduced:

𝜉𝑛 = 𝜆𝑛∑𝑁𝑖=1 𝜆𝑖 × 100%. (17)

Correspondingly, the cumulative energy 𝜁𝑛 of the top 𝑛
eigenvectors can be expressed as follows:

𝜁𝑛 = ∑
𝑛
𝑗=1 𝜆𝑗
∑𝑁𝑖=1 𝜆𝑖 × 100%. (18)

POD modes 𝜑𝑛 can be obtained as follows:

𝜑𝑛 = SV‖SV‖ , (19)

where “‖‖” means the Euclidean distance.

(3) Substituting (11) into (8) and projecting the whole
equation onto the Hilbert space spanned by the POD modes𝜙𝑚 (𝑚 = 1 ∼ 𝑀), one can finally obtain a linear equation
system of 𝑐𝑛 in the scale of𝑀 ×𝑀, where𝑀 is the number
of POD modes in (11). Once the temporal coefficients 𝑐𝑛 are
solved, the original variable 𝑝 can be directly reconstructed
in (11), instead of the computation of (8). The computational
cost of (11) is in the scale of𝑀×𝑀 while the computational
cost of (8) is in the scale of 𝐿 × 𝐿. The number of samples is
usually quite smaller than the number of grid points (𝑁 ≪𝐿). The number of effective POD modes is smaller than the
number of samples (𝑀 ≤ 𝑁). Thus, the computational time
can be largely reduced using POD. The POD model is a
type of reduced-order model. The details of this step will be
explained in Section 2.3.

According to the above analyses, the core computation
of POD is the calculation of temporal coefficients 𝑐𝑛. The
equation of 𝑐𝑛 for gas reservoir simulation will be established
in detail in the next section.

2.3. Establishment of the POD Model for Gas Reservoir
Simulation. Substituted by (11), (8) can be transformed to

𝜙𝑐𝑔𝑝𝑀∑
𝑛=1

𝜑𝑛 𝑑𝑐𝑛𝑑𝑡
= 𝑀∑
𝑛=1

𝑀∑
𝑙=1

𝑐𝑛𝑐𝑙 [ 𝜕𝜕𝑥 (𝑘𝑥𝑥𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑥 ) + 𝜕𝜕𝑦 (
𝑘𝑦𝑦𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑦 )]

+ 𝑍𝑅𝑇𝑊 𝑞.

(20)

Equation (20) is projected onto 𝜑𝑚:

∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑚𝜙𝑐𝑔𝑝𝑀∑

𝑛=1
𝜑𝑛 𝑑𝑐𝑛𝑑𝑡 𝑑𝑥 𝑑𝑦 = ∫𝑙𝑦0 ∫𝑙𝑥0 𝜑𝑚

𝑀∑
𝑛=1

𝑀∑
𝑙=1

𝑐𝑛𝑐𝑙 [ 𝜕𝜕𝑥 (𝑘𝑥𝑥𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑥 ) + 𝜕𝜕𝑦 (
𝑘𝑦𝑦𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑦 )]𝑑𝑥𝑑𝑦 + ∫𝑙𝑦0 ∫𝑙𝑥0 𝜑𝑚𝑍𝑅𝑇𝑊 𝑞𝑑𝑥𝑑𝑦, (21)

where 𝑙𝑥 and 𝑙𝑦 are the lengths of the computational domain
in the 𝑥 and 𝑦 directions, respectively. As stated in (11), 𝑐𝑛 and 𝜑𝑛 are functions of time and space, respectively.Thus, the left-

hand side of (21) is transformed to

∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑚𝜙𝑐𝑔𝑝𝑀∑

𝑛=1
𝜑𝑛 𝑑𝑐𝑛𝑑𝑡 𝑑𝑥 𝑑𝑦 = 𝜙

𝑀∑
𝑛=1

𝑑𝑐𝑛𝑑𝑡 ∫𝑙𝑦0 ∫𝑙𝑥0 𝑐𝑔𝑝𝜑𝑚𝜑𝑛𝑑𝑥 𝑑𝑦. (22)

Using integration by part and the property of the POD
modes (see (12)), we can simplify the first term and

the second term of the right-hand side of (21) as fol-
lows:

∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑚 𝑀∑
𝑛=1

𝑀∑
𝑙=1

𝑐𝑛𝑐𝑙 [ 𝜕𝜕𝑥 (𝑘𝑥𝑥𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑥 ) + 𝜕𝜕𝑦 (
𝑘𝑦𝑦𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑦 )]𝑑𝑥𝑑𝑦

= 𝑀∑
𝑛=1

𝑀∑
𝑙=1

𝑐𝑛𝑐𝑙 ∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑚 [ 𝜕𝜕𝑥 (𝑘𝑥𝑥𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑥 ) + 𝜕𝜕𝑦 (

𝑘𝑦𝑦𝜇 𝜑𝑙 𝜕𝜑𝑛𝜕𝑦 )]𝑑𝑥𝑑𝑦 = ∫
𝑙𝑥

0
[(𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)

𝑙𝑦
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− (𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)
0

]𝑑𝑥 + ∫𝑙𝑦
0
[(𝜑𝑚 𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)𝑙𝑥 − (𝜑𝑚

𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)0]𝑑𝑦

− 𝑀∑
𝑛=1

𝑀∑
𝑙=1

𝑐𝑛𝑐𝑙 ∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑙 (𝑘𝑥𝑥𝜇 𝜕𝜑𝑛𝜕𝑥 𝜕𝜑𝑚𝜕𝑥 + 𝑘𝑦𝑦𝜇 𝜕𝜑𝑛𝜕𝑦 𝜕𝜑𝑚𝜕𝑦 )𝑑𝑥𝑑𝑦,

(23)

∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑚𝑍𝑅𝑇𝑊 𝑞𝑑𝑥𝑑𝑦 = 𝑅𝑇𝑊 ∫𝑙𝑦

0
∫𝑙𝑥
0
𝜑𝑚𝑍𝑞𝑑𝑥𝑑𝑦. (24)

Please note that the projection of the boundary condition
in (23) is dependent on boundary pressures and boundary
pressure gradients. To update them, the pressure field should
be firstly reconstructed using (11) in every time step once 𝑐𝑛 is
updated by the POD model. Therefore, the projection of the
boundary condition leads to additional computations of the
full-order equations (see (9), (10), and (11)), consumingmuch
more time. This is very harmful for the high acceleration of
the PODmodel. To ensure the high-acceleration advantage of
the PODmodel, the computations of (9), (10), and (11) should
be avoided in the PODmodel.This can be fulfilled by further
decomposing the pressures in (23). The derivations will be
made in the following three steps.

(1) If all the boundaries are Dirichlet condition (known
boundary pressure), boundary treatment can be expressed as
follows:

(𝜕𝑝𝜕𝑥)𝑛𝑥+1,𝑗 =
𝑝𝑛𝑥+1,𝑗 − 𝑝𝑛𝑥,𝑗Δ𝑥/2

= 2Δ𝑥 (𝑝𝑛𝑥+1,𝑗 −
𝑀∑
𝑛=1

𝑐𝑛 (𝜑𝑛)𝑛𝑥,𝑗) ,
(𝜕𝑝𝜕𝑥)0,𝑗 =

𝑝1,𝑗 − 𝑝0,𝑗Δ𝑥/2
= 2Δ𝑥 (

𝑀∑
𝑛=1

𝑐𝑛 (𝜑𝑛)1,𝑗 − 𝑝0,𝑗) ,
(𝜕𝑝𝜕𝑥)𝑖,𝑛𝑦+1 =

𝑝𝑖,𝑛𝑦+1 − 𝑝𝑖,𝑛𝑦Δ𝑦/2
= 2Δ𝑦 (𝑝𝑖,𝑛𝑦+1 −

𝑀∑
𝑛=1

𝑐𝑛 (𝜑𝑛)𝑖,𝑛𝑦) ,
(𝜕𝑝𝜕𝑥)𝑖,0 =

𝑝𝑖,1 − 𝑝𝑖,0Δ𝑦/2
= 2Δ𝑦 (

𝑀∑
𝑛=1

𝑐𝑛 (𝜑𝑛)𝑖,1 − 𝑝𝑖,0) ,

(25)

where the boundary pressures 𝑝𝑛𝑥+1,𝑗, 𝑝0,𝑗, 𝑝𝑖,𝑛𝑦+1, and 𝑝𝑖,0
are constant so that they remain in the expressions, and
their neighbor pressures (𝑝𝑛𝑥,𝑗, 𝑝1,𝑗, 𝑝𝑖,𝑛𝑦, 𝑝𝑖,1) are changing
with time so that they are decomposed into 𝑐𝑛 and 𝜑𝑛 using

(11). Thus, the projection of the boundary condition can be
transformed to

∫𝑙𝑥
0
[(𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)

𝑙𝑦

− (𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)
0

]𝑑𝑥

+ ∫𝑙𝑦
0
[(𝜑𝑚 𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)𝑙𝑥 − (𝜑𝑚

𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)0]𝑑𝑦

= 2Δ𝑦Δ𝑥
𝑛𝑦∑
𝑗=1

[(𝑘𝑥𝑥𝜇 𝜑𝑚𝑝2)
𝑛𝑥+1,𝑗

+ (𝑘𝑥𝑥𝜇 𝜑𝑚𝑝2)
0,𝑗

]

+ 2Δ𝑥Δ𝑦
𝑛𝑥∑
𝑖=1

[(𝑘𝑦𝑦𝜇 𝜑𝑚𝑝2)
𝑖,𝑛𝑦+1

+ (𝑘𝑦𝑦𝜇 𝜑𝑚𝑝2)
𝑖,0

]

− 𝑀∑
𝑛=1

𝑐𝑛{{{
2Δ𝑦Δ𝑥
𝑛𝑦∑
𝑗=1

[(𝑘𝑥𝑥𝜇 𝜑𝑚𝑝)
𝑛𝑥+1,𝑗

(𝜑𝑛)𝑛𝑥,𝑗

+ (𝑘𝑥𝑥𝜇 𝜑𝑚𝑝)
0,𝑗

(𝜑𝑛)1,𝑗] + 2Δ𝑥Δ𝑦
⋅ 𝑛𝑥∑
𝑖=1

[(𝑘𝑦𝑦𝜇 𝜑𝑚𝑝)
𝑖,𝑛𝑦+1

(𝜑𝑛)𝑖,𝑛𝑦

+ (𝑘𝑦𝑦𝜇 𝜑𝑚𝑝)
𝑖,0

(𝜑𝑛)𝑖,1]}}}
.

(26)

(2) If all the boundaries are Neumann condition (known
boundary velocity), boundary treatment can be expressed as
follows:

𝑢0,𝑗 = −(𝑘𝑥𝑥𝜇 𝜕𝑝𝜕𝑥)0,𝑗 ,
𝑢𝑛𝑥,𝑗 = −(𝑘𝑥𝑥𝜇 𝜕𝑝𝜕𝑥)𝑛𝑥+1,𝑗 ,

V𝑖,0 = −(𝑘𝑦𝑦𝜇 𝜕𝑝𝜕𝑦)
𝑖,0

,

V𝑖,𝑛𝑦 = −(𝑘𝑦𝑦𝜇 𝜕𝑝𝜕𝑦)
𝑖,𝑛𝑦+1

.

(27)
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The projection of the boundary condition can be transformed
to

∫𝑙𝑥
0
[(𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)

𝑙𝑦

− (𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)
0

]𝑑𝑥

+ ∫𝑙𝑦
0
[(𝜑𝑚 𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)𝑙𝑥 − (𝜑𝑚

𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)0]𝑑𝑦

= 𝑀∑
𝑛=1

𝑐𝑛

⋅ {{{
𝑛𝑦∑
𝑗=1

[𝑢0,𝑗 (𝜑𝑚𝜑𝑛)0,𝑗 − 𝑢𝑛𝑥,𝑗 (𝜑𝑚𝜑𝑛)𝑛𝑥+1,𝑗] Δ𝑦

+ 𝑛𝑥∑
𝑖=1

[V𝑖,0 (𝜑𝑚𝜑𝑛)𝑖,0 − V𝑖,𝑛𝑦 (𝜑𝑚𝜑𝑛)𝑖,𝑛𝑦+1] Δ𝑥}}}
.

(28)

(3) For general boundary conditions, the projection of the
boundary condition can be summarized via both (26) and
(28):

∫𝑙𝑥
0
[(𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)

𝑙𝑦

− (𝜑𝑚 𝑘𝑦𝑦𝜇 𝑝𝜕𝑝𝜕𝑦)
0

]𝑑𝑥

+ ∫𝑙𝑦
0
[(𝜑𝑚 𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)𝑙𝑥 − (𝜑𝑚

𝑘𝑥𝑥𝜇 𝑝𝜕𝑝𝜕𝑥)0]𝑑𝑦

= 𝐻𝐵𝑚 + 𝑀∑
𝑛=1

𝑐𝑛 (𝐻𝑉𝑚,𝑛 − 𝐻𝑃𝑚,𝑛) ,

(29)

where

𝐻𝐵𝑚 = 2Δ𝑦Δ𝑥
𝑛𝑦∑
𝑗=1

[(𝑘𝑥𝑥𝜇 𝜑𝑚𝑝2)
𝑛𝑥+1,𝑗

Diri𝑋𝑛𝑥+1,𝑗

+ (𝑘𝑥𝑥𝜇 𝜑𝑚𝑝2)
0,𝑗

Diri𝑋0,𝑗] + 2Δ𝑥Δ𝑦
⋅ 𝑛𝑥∑
𝑖=1

[(𝑘𝑦𝑦𝜇 𝜑𝑚𝑝2)
𝑖,𝑛𝑦+1

Diri𝑌𝑖,𝑛𝑦+1
+ (𝑘𝑦𝑦𝜇 𝜑𝑚𝑝2)

𝑖,0

Diri𝑌𝑖,0] ,

𝐻𝑉𝑚,𝑛 = Δ𝑦
𝑛𝑦∑
𝑗=1

[𝑢0,𝑗 (𝜑𝑚𝜑𝑛)0,𝑗 (1 − Diri𝑋0,𝑗)
− 𝑢𝑛𝑥,𝑗 (𝜑𝑚𝜑𝑛)𝑛𝑥+1,𝑗 (1 − Diri𝑋𝑛𝑥+1,𝑗)]
+ Δ𝑥 𝑛𝑥∑
𝑖=1

[V𝑖,0 (𝜑𝑚𝜑𝑛)𝑖,0 (1 − Diri𝑌𝑖,0)
− V𝑖,𝑛𝑦 (𝜑𝑚𝜑𝑛)𝑖,𝑛𝑦+1 (1 − Diri𝑌𝑖,𝑛𝑦+1)] ,

𝐻𝑃𝑚,𝑛 = 2Δ𝑦Δ𝑥
⋅ 𝑛𝑦∑
𝑗=1

[(𝑘𝑥𝑥𝜇 𝜑𝑚𝑝)
𝑛𝑥+1,𝑗

(𝜑𝑛)𝑛𝑥,𝑗Diri𝑋𝑛𝑥+1,𝑗

+ (𝑘𝑥𝑥𝜇 𝜑𝑚𝑝)
0,𝑗

(𝜑𝑛)1,𝑗Diri𝑋0,𝑗] + 2Δ𝑥Δ𝑦
⋅ 𝑛𝑥∑
𝑖=1

[(𝑘𝑦𝑦𝜇 𝜑𝑚𝑝)
𝑖,𝑛𝑦+1

(𝜑𝑛)𝑖,𝑛𝑦Diri𝑌𝑖,𝑛𝑦+1
+ (𝑘𝑦𝑦𝜇 𝜑𝑚𝑝)

𝑖,0

(𝜑𝑛)𝑖,1Diri𝑌𝑖,0] ,
(30)

where Diri𝑋 and Diri𝑌 are 1 for Dirichlet boundary condi-
tion and 0 forNeumannboundary condition.Thus, boundary
pressures only appear in the expressions of 𝐻𝐵𝑚 and 𝐻𝑃𝑚,𝑛
while boundary velocities only appear in the expression of𝐻𝑉𝑚,𝑛. 𝐻𝐵𝑚, 𝐻𝑉𝑚,𝑛, and 𝐻𝑃𝑚,𝑛 can also be calculated only
once, saving computational time. Let

𝐻𝑈𝑚,𝑛 = ∫𝑙𝑦
0
∫𝑙𝑥
0
𝑐𝑔𝑝𝜑𝑚𝜑𝑛𝑑𝑥 𝑑𝑦

= 𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

(𝑐𝑔𝑝𝜑𝑚𝜑𝑛)𝑖,𝑗 Δ𝑥Δ𝑦,
(31)

𝐻𝐷𝑚,𝑛,𝑙
= ∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑙 (𝑘𝑥𝑥𝜇 𝜕𝜑𝑛𝜕𝑥 𝜕𝜑𝑚𝜕𝑥 + 𝑘𝑦𝑦𝜇 𝜕𝜑𝑛𝜕𝑦 𝜕𝜑𝑚𝜕𝑦 )𝑑𝑥𝑑𝑦

= 𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

[𝜑𝑙 (𝑘𝑥𝑥𝜇 𝜕𝜑𝑛𝜕𝑥 𝜕𝜑𝑚𝜕𝑥 + 𝑘𝑦𝑦𝜇 𝜕𝜑𝑛𝜕𝑦 𝜕𝜑𝑚𝜕𝑦 )]
𝑖,𝑗

Δ𝑥Δ𝑦,
(32)

𝐻𝑆𝑚 = ∫𝑙𝑦
0
∫𝑙𝑥
0
𝜑𝑚𝑍𝑞𝑑𝑥𝑑𝑦 =

𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

(𝜑𝑚𝑍𝑞)𝑖,𝑗 Δ𝑥Δ𝑦. (33)

Then, the POD model for gas reservoir simulation can be
obtained in the following expression:

𝜙𝑀∑
𝑛=1

𝑑𝑐𝑛𝑑𝑡 𝐻𝑈𝑚,𝑛 = 𝐻𝐵𝑚 +
𝑀∑
𝑛=1

𝑐𝑛 (𝐻𝑉𝑚,𝑛 − 𝐻𝑃𝑚,𝑛)

− 𝑀∑
𝑛=1

𝑀∑
𝑙=1

𝑐𝑛𝑐𝑙𝐻𝐷𝑚,𝑛,𝑙 + 𝑅𝑇𝑊 𝐻𝑆𝑚.
(34)

Equation (34) is the time evolution equation of 𝑐𝑛. For
each time step, (34) can be solved via an efficient linear
solver (DLSARG) provided by FORTRAN coding language.
Numerical results are discussed in the next section to evaluate
the precision and the acceleration performances of the POD
reduced-order model.
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Figure 1: Computational domain and permeability.

3. Results and Discussions

The computational domain (100m × 100m) is shown in
Figure 1. Permeability takes the value 𝑘𝑠 in the blue area (50m× 50m in the center of the domain) and 𝑘𝑙 in the red area.
Natural gas with the main component of methane (CH4) is
the most important gas in subsurface reservoirs. Thus, it is
used in the numerical cases in this paper. Initial pressure 𝑝0 is
given in the whole domain with zero injection or production.𝑝lb and 𝑝rb are imposed on the left and the right boundaries.
No flow boundary condition is applied to the top and bottom
boundaries. All parameters are listed in Table 1, where 1md =9.869233 × 10−16m2.

In this condition, governing equations (see (4) and
(7)∼(10)) are solved to collect samples at different moments,
using the highly accurate finite difference method (FDM)
to ensure the grid-independent results for the grid number
more than 60 × 60 [29]. Thus, the grid number in this paper
(100 × 100) is enough. The temporal scheme is an explicit
advancement for each time step (Δ𝑡 = 1.296 s) with 2 × 106
time steps. After the total time scale of the simulation of 30
days, 2000 samples are collected. To evaluate the precision
and computational speed of the POD model, the relative
deviation 𝜀 and the acceleration ratio 𝑟 are defined in the
following:

𝜀 = 󵄩󵄩󵄩󵄩𝑝POD − 𝑝FDM󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝FDM󵄩󵄩󵄩󵄩 × 100%, (35)

𝑟 = 𝑡FDM𝑡POD
, (36)

where 𝑡 is the CPU time for the computation and the
subscripts “POD” and “FDM” represent the results from the
PODmodel and from the direct calculation of the governing
equations via the FDM. If 𝑟 > 1, the POD model can

Table 1: Computational parameters.

Parameter Value Unit𝜙 0.2 /𝑝0 101325 Pa𝑝lb 1013250 Pa𝑝rb 101325 Pa𝑞 0 kg/(m3⋅s)𝑘𝑠 1 md𝑘𝑙 100 md𝑅 8.3147295 J/(mol⋅K)𝑇 298 K𝑊 16 × 10−3 Kg/mol𝜇 11.067 × 10−6 Pa⋅s𝑎 0.2283 Pa⋅m6⋅mol−2𝑏 4.278 × 10−5 m3/mol𝑀 2000 /𝑛𝑥 100 /𝑛𝑦 100 /𝑙𝑥 100 m𝑙𝑦 100 m
Δ𝑥 1 mΔ𝑦 1 mΔ𝑡 1.296 s
Simulation time scope 30 Days

accelerate the computation.The larger 𝑟 represents the larger
acceleration.

3.1. POD Results for Ideal Gas. First of all, the POD model
is examined in the case of ideal gas (𝑍 ≡ 1), where 𝑎 and𝑏 in the Van der Waals equation (see (4)) are all zero. Thus,
the expression of the gas compressibility (see (7)) decays to𝑐𝑔 = 1/𝑝 so that (31) and (33) can be simplified as

𝐻𝑈𝑚,𝑛 =
𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

(𝜑𝑚𝜑𝑛)𝑖,𝑗 Δ𝑥Δ𝑦,

𝐻𝑆𝑚 =
𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

(𝜑𝑚𝑞)𝑖,𝑗 Δ𝑥Δ𝑦.
(37)

As shown in Figure 2, the first POD mode occupies the
vast majority (96.86%) of the total energy. This indicates
that the first mode captures the main characteristics of the
whole transient process. However, the relative deviation of
the reconstruction results largely fluctuates with time. The
maximum deviation is as high as 210% while the minimum
deviation is only 4.6 × 10−2% (Table 2). This phenomenon
indicates that a dominant mode occupying the vast majority
of energy can only obtain high-accurate reconstruction at
some moments but loses the fidelity at other moments. To
promote the reconstruction precision of the whole transient
process, more POD modes should be included. To ensure
high acceleration of the reduced-order model, the inclusion
of the POD modes should be as little as possible. Thus, there
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Table 2: Reconstruction deviations using top 1∼top 7 modes.

POD modes Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7𝜀max 210% 84% 46% 29% 27% 12% 13%𝜀min 4.6 × 10−2% 4.3 × 10−3% 2.4 × 10−3% 1.9 × 10−4% 5.7 × 10−3% 4.7 × 10−3% 6.9 × 10−4%
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Figure 2: Energy spectrum of the POD modes.

is an optimal truncation number of modes. Theoretically, the
number of the POD modes can be usually determined when
the cumulative energy contribution achieves 100%. As shown
in Figure 2, the cumulative energy contribution 𝜁𝑛 achieves
100% at and after the 7th PODmode. Although themaximum
deviation decreases rapidly with increasing number of POD
modes, the maximum deviation is still as high as 13% when
the top 7 modes are used. Therefore, more modes should be
considered in the reduced-order model.

Relative deviations along with time, using more POD
modes, are shown in Figure 3.With the increasing number of
PODmodes, the deviation converges rapidly whenmore than
top 10 modes are used. The maximum deviation decreases
greatly from 13.06% at the top 7 modes to 6.39% at the
top 10 modes. After the top 10 modes, the decrease of the
maximum deviation becomes much slower (5.31% for the top
20 modes, 5.25% for the top 30 modes, and 5.21% for the top
40modes).Theminimumdeviations are all small.Thus, it can
be considered that the reconstruction results converge at the
number of top 20modes. However, the computational time of
the PODmodel is increasing with increasing number of POD
modes, causing the acceleration ratio to be largely influenced
(Table 3). The largest drop of the acceleration ratio occurs
between the top 10 modes and top 20 modes. More POD
modes cause the dimension of the POD model to increase
much faster so that the computation of a larger equation sys-
tem consumesmuchmore time.Therefore, the optimal num-
ber of PODmodes needs a balance between the precision and
the acceleration. Between the top 10modes and top 20modes,
the precision is promoted a little (𝜀 from 6.39% to 5.31%) but
the acceleration ratio of the POD model decreases from 24
for the top 10 modes to 6.6 for the top 20 modes, so that the
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Top 7 modes
( = 6.86 × 10−4%~13.06%)

Top 10 modes
( = 1.63 × 10−3%~6.39%)

Top 20 modes
( = 1.17 × 10−3%~5.31%)

Top 30 modes
( = 6.71 × 10−4%~5.25%)

Top 40 modes
( = 8.74 × 10−4%~5.21%)

Figure 3: Reconstruction deviations using different numbers of
POD modes.

number of the top 10modes is an appropriate optimal number
of PODmodes. From the comparison, it should be noted that
the theoretical energy criterion is not enough to determine
the optimal number of PODmodes.The balance of precision
and acceleration should be considered. This will include
muchmore PODmodes with very small energy contribution,
but their actual contributions to precision are important.

It can also be seen from Figure 3 that the maximum
deviation (6.39%) and theminimumdeviation (1.63×10−3%)
occur at about 0.8 days and about 22 days when the top 10
modes are used in the POD model. The velocity field and
pressure field obtained by the POD model are compared
with those obtained by FDM to examine the reconstruction
precision of local characteristics. FromFigure 4, it is clear that
the two components of Darcy velocity and pressure are all
reconstructed well with tiny local deviation. From Figure 5,
reconstructed velocity component V and reconstructed pres-
sure agree well with those of FDM, but reconstructed velocity
component 𝑢 can only capture part of the features. Fortu-
nately, this maximum deviation only exists in a very narrow
range in Figure 3. The deviation at other moments decreases
rapidly.We examine the local flow field at the mean deviation
(3.54%) in Figure 6 and find that the local distributions of 𝑢,
V, and 𝑝 are well reconstructed. Thus, the POD model using
the top 10 POD modes can reconstruct the flow field in high
precision for the whole transient process.
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Figure 4: Flow field comparison for the minimum deviation. Black line: FDM; red dashed line: POD.

3.2. POD Results for Real Gas. For real gas, compressibility
factor (𝑍) and compressibility (𝑐𝑔) should be computed by
the equation of state (see (4)) and the equation of real gas
compressibility (see (7)). POD results for the same case in
Section 3.1 are obtained by solving (34). The reconstruction
precision (𝜀 = 2.78 × 10−3%∼6.39%) is as high as that of ideal
gas (Figure 3). Flow field comparisons are also very similar to
those in Figures 4–6. Thus, these results are not redundantly
shown here. The above PODmodel maintains high precision
for real gas simulation.

However, the acceleration ratio is as low as 0.9 (i.e.,
6240 s/7256 s inTable 4), whichmeans the PODmodel causes

the simulation to be even slower than FDM. This is quite
different from the high acceleration ratio for ideal gas (𝑟 = 24
in Table 3). The main difference between the computations
of real gas and ideal gas is that the equation of state (EOS)
should be computed for real gas. We analyze the different
contributions of the total computational time for FDM and
POD in Table 4 and find two important phenomena: (1)
the largest part of the total computational time is mainly
consumed on EOS for both FDM and POD (92% for FDM
and 78% for POD); the EOS cannot be expressed as an explicit
function of pressure so that it cannot be decomposed by the
POD; it can only be calculated locally for both FDMand POD
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Table 3: Computational time using top 7∼top 40 modes.

POD modes Top 7 Top 10 Top 20 Top 30 Top 40
CPU time of POD 15 s 23 s 85 s 246 s 420 s𝑟 37 24 6.6 2.2 1.3
Note. The computational time of FDM is 560 s.

Table 4: Computational time analyses in the case of real gas.

Total CPU time CPU time for EOS CPU time for flow
equations

Time contribution of
EOS

Time contribution of
flow equation

FDM 6240 s 5747 s 493 s 92% 8%
POD 7256 s 5660 s 1596 s 78% 22%
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Figure 5: Flow field comparison for the maximum deviation. Black line: FDM; red dashed line: POD.



10 Geofluids

100

80

60

40

20

0
100806040200

y
(m

)

x (m)

(a) 𝑢

100

80

60

40

20

0
100806040200

y
(m

)
x (m)

(b) V

100

80

60

40

20

0
100806040200

y
(m

)

x (m)

(c) 𝑝

Figure 6: Flow field comparison for the mean deviation. Black line: FDM; red dashed line: POD.

and thus the main computational time of real gas simulation
is not reduced in the PODmodel; (2) the computational time
for flow equations in POD (1596 s) is much longer than that
in FDM (493 s) with much higher contribution (22%) than
that of FDM (8%). This means the POD model is still slower
than FDM even not considering the computational time of
EOS. This can be explained using the expression of the POD
model. In themodel (see (34)), all terms are constant for time
advancement except the projection of the unsteady term (see
(31)) and the projection of the source term (see (33)). They
should be calculated in every time step because they contain
the variables changing with time (𝑐𝑔, 𝑝, and 𝑍). This kind of
calculation largely increases the total computations.

The above analyses indicate that the improvement of the
acceleration ability of the PODmodel should reduce the time
contribution of EOS and avoid the frequent computations of
the two projection terms in the POD computation. According
to these two points, we propose a new method: EOS is
only calculated once at the initial time. Then, the initial
compressibility, the initial compressibility factor, and the
initial pressure are used to approximate the two projection
terms in (31) and (33), which are treated as constants in
the following transient computation of the POD model.
Through this treatment, the calculations of EOS and the two
projection terms in every time step are all avoided for the
POD computation so that the computational time of the POD
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Table 5: Computational time for real gas after improvement.

Total CPU time CPU time for EOS CPU time for flow
equations

Time contribution of
EOS

Time contribution of
flow equation

FDM 6240 s 5747 s 493 s 92% 8%
POD 23 s 0.02 s 22.98 s 0.09% 99.91%
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Figure 7: Precision of the POD model for different treatment of
compressibility.

model is expected to be reduced greatly. The approximations
of the two projection terms are shown as follows:

𝐻𝑈𝑚,𝑛 =
𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

(𝑐0𝑔𝑝0𝜑𝑚𝜑𝑛)𝑖,𝑗 Δ𝑥Δ𝑦,
𝐻𝑆𝑚 =

𝑛𝑦∑
𝑗=1

𝑛𝑥∑
𝑖=1

(𝜑𝑚𝑍0𝑞)𝑖,𝑗 Δ𝑥Δ𝑦,
(38)

where 𝑐0𝑔 , 𝑍0, and 𝑝0 are the compressibility, the compress-
ibility factor, and the pressure in the initial condition (𝑡 = 0),
respectively.

Figure 7 shows that the relative deviation of the above
treatment is almost the same as that updating the compress-
ibility every time step, indicating that this treatment does not
affect the precision of the PODmodel. Table 5 shows that the
total computational time of the POD model has been largely
reduced because the computational time of EOS and flow
equations are all reduced greatly. The time decrease of EOS
is because the EOS is only calculated once.The time decrease
of flow equations is because the two projection terms are not
calculated with time advancement of the POD model. These
results demonstrate that large acceleration ratio (𝑟 = 6240 s/23 s = 271) of POD for real gas simulation can only be achieved
when the time contribution of EOS is greatly reduced.

3.3. Verification of the Improved PODModel in aMoreRealistic
Case. The improved POD model in the above section is
applied to a more complex case of real gas flow simulation to
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Figure 8: Real gas flow in a more realistic reservoir.
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Figure 9: Precision of the improved POD model.

confirm its capability. Permeability field is shown in Figure 8,
where the red area has a permeability 100md and the blue
area has a permeability 1md. The large permeability repre-
sents themain flow path of the gas in the reservoir such as soil
or sand.The small permeability represents themain obstacles
such as rock. Higher boundary pressure on the left border
(100 atm) is used because gas pressure is usually high in engi-
neering. Other parameters are the same as the previous case.

As shown in Figure 9, the relative deviations are also
as low as the previous case. The maximum and minimum



12 Geofluids

100

80

60

40

20

0
100806040200

y
(m

)

x (m)

(a) 𝑢

100

80

60

40

20

0
100806040200

y
(m

)

x (m)

(b) V

100

80

60

40

20

0
100806040200

y
(m

)

x (m)

(c) 𝑝

Figure 10: Flow field comparison at the maximum deviation for real gas. Black line: FDM; red dashed line: POD.

deviations are 6.65% and 0.13%, respectively, indicating high
precision of the improved PODmodel. It is further confirmed
in Figures 10 and 11 that the local flow fields are reconstructed
well at themaximum andminimum deviations. A little larger
deviation of pressure in Figure 10(c) may be caused by the
approximation of gas compressibility. However, the main
features of the pressure field are correctwhile the velocity field
hasmuch smaller deviation.Thus, the precision is acceptable.

Table 6 shows that the computational time is reduced
from 5823 s for FDM to 25 s for POD.The acceleration ratio is
as high as 233. Therefore, the improved POD model can still
greatly save computational time for more complex reservoir
and higher pressure.

Table 6: Computational time comparison for real gas.

CPU time of FDM CPU time of POD 𝑟
5823 s 25 s 233

4. Conclusions

Proper orthogonal decomposition is utilized in gas reservoir
simulation to accelerate the simulation speed of gas flow in
single-continuum porous media. High-precision reconstruc-
tion can be achieved using only 10 POD modes with the
deviations as low as 1.63 × 10−3%∼6.39% for ideal gas and
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Figure 11: Flow field comparison at the minimum deviation for real gas. Black line: FDM; red dashed line: POD.

1.95 × 10−3%∼6.55% for real gas. The acceleration ratio is as
high as 24 for the typical POD model of the ideal gas flow.
However, the computational speed of the typical PODmodel
of the real gas flow is even slower than FDM. Two key points
for improving the computational speed of the PODmodel are
discussed and verified:

(1) The computation of EOS should be avoided in the
solving process of the POD model because the total
computational time is dominated by EOS.

(2) POD projection terms containing compressibility
of gas should not be updated in every time step.

Otherwise, the computational time of flow equations
will also be longer than FDM.

According to the two points, we proposed a new method
to approximate the projection terms in all time steps using
the initial compressibility so that EOS only needs to be
calculated once at the initial condition. After this treatment,
it is verified in two different cases that the computational
speed of the POD model is largely promoted while high
precision is retained (0.13%∼6.65%).The computational time
of the real gas reservoir simulation is reduced from6240 s and
5823 s of FDM to 23 s and 25 s of POD for the two cases. The
acceleration ratios are 271 and 233, respectively.
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