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Abstract

We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number
of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided
into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in
the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points),
we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in
integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization
problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in
terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not
solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that
the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to
the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two
nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples,
the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing
accuracy.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Generally speaking, model order reduction refers to any endeavor aimed at constructing a simpler model from
a more complex one. The simpler model is usually referred to as the reduced-order model (ROM), while the more
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complex one is termed the full-order or high-fidelity model. This full-order model may be, for instance, – as is the
case here – a finite element (FE) model.

The focus of the present paper is on the so-called projection-based, reduced-order models. The existence of such
low-dimensional representations for a given parametrized finite element problem relies on the premise that the state
variable can be accurately approximated by a linear combination of a few global basis vectors. The most common
approach is to determine these basis vectors by applying some type of dimensionality reduction strategy (such as the
Proper Orthogonal Decomposition, POD) over a so-called training sample. This sample is obtained by previously
solving – in an offline stage – the full-order model for judiciously chosen values of the input parameters.

1.1. Approximation of nonlinear terms

In the general case of governing equations featuring terms that bear a nonaffine relationship with both the state
variable and input parameters, the construction of an inexpensive low-dimensional model entails two sequential
stages [1], namely: (1) projection onto the reduced basis, and (2) approximation of the nonlinear term. Once a basis
matrix for the state variable is available, the projection stage is a standard operation consisting in introducing the
approximation of the state variables in the governing equation, and then in posing the resulting equation in the space
spanned by the basis vectors. This operation naturally leads to a significant reduction in the number of unknowns, and
hence diminishes considerably the equation solving effort. However, in a general nonlinear case, the computational
cost of evaluating the residual still depends on the size of the underlying finite element mesh—hence the need for a
second reduction stage.

In contrast to the first reduction stage, which is more or less standard, the second stage of dimensionality reduction
– Ryckelynck [2] coined the term hyper-reduction to refer to it – is far more challenging and still remains an issue of
discussion in the model reduction community. In the following, we examine the various approaches encountered in
the related literature to deal with this additional dimensionality reduction stage.

1.2. Classification of “hyper-reduction” methods

Let Fh
∈ RN denote1 the full-order term bearing a general, nonaffine relationship with both the input variable

and the state variable (in the context of this paper, Fh
∈ RN will be the vector of FE nodal internal forces). The

corresponding projection onto the reduced order space will be represented by F ∈ Rn (n ≪ N ), the connection
between these two variables being the matrix of basis vectors Φ ∈ RN×n (F = ΦT Fh). Existing approaches for
dealing with the approximation of F can be broadly classified as nodal vector approaches and integral approaches.

1.2.1. Nodal vector approximation approaches (“gappy” data)
In this type of approaches, the approximation is carried out by replacing the finite element vector Fh by a

low-dimensional interpolant Fh
≈ RFFh

z , RF ∈ RN×m being the interpolation matrix, and Fh
z the entries of Fh

corresponding to the degrees of freedom (z ⊂ {1, 2, . . . , N }) at which the interpolation takes place. The interpolation
matrix is obtained following the common procedure of computing a basis matrix for Fh , and then determining a
set of indices so that the error is minimized over a set of representative snapshots of Fh . This set of interpolation
indices can be determined offline using procedures such as the Empirical Interpolation Method (EIM) [3,4], the Best
Points Interpolation Method (BPIM) [5], the Discrete BPIM [6] or the Missing Point Estimation Method [7]. The
idea behind this vector approximation approach has its roots in the landmark work of Everson and Sirovich [8] for
reconstruction of “gappy” data, and was historically the first proposal for dealing with nonlinear terms in model order
reduction; it has been adopted by, among others, [1,9–14]. Alternatively, [2] proposes to bypass the construction of
the low-dimensional interpolant and simply solve the balance equations at appropriately selected degrees of freedom
(collocation).

1 A word in notation is in order here. The superindex h is employed throughout the paper to denote finite element nodal quantities; bare symbols,
on the other hand, are associated to reduced-order variables, that is, variables projected onto the reduced-order space. Likewise, FE and reduced-
order dimensions are represented by upper-case and lower-case symbols, respectively. For instance, N and n denote the number of unknowns in
the FE and reduced-order problems, respectively, whereas M and m represents the total number of integration points in the FE and reduced-order
problem, respectively.
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1.2.2. Integral approximation approaches
In a finite element context, F can be regarded, not only as a projection of a large vector into a reduced-order space

(F = ΦT Fh), but also as the result of integrating over the concerned domain Ω ⊂ Rd (d = 2 or 3) the corresponding
reduced-order variable f = ΦT f h (f h

: Ω → RN ), i.e.:

F = ΦT

Ω

f h dΩ =

Ω

f dΩ . (1)

Accordingly, the problem at hand can be also viewed as that of approximation of an integral, rather than approximation
of a vector. In turn, this problem can be addressed by: (1) seeking a low-dimensional approximation of the integrand,
or (2) approximating the integral itself as a weighted sum of the integrand evaluated at optimal sampling points.

1. Interpolation of the integrand. This type of approaches follows, in essence, the same procedure described for
vector approximation approaches; the difference lies in that, rather than constructing an interpolant for the
integral, in this case, it is the integrand that is subjected to approximation via interpolation, that is, if we make
f (x) ≈


g∈z

Rg(x)f (xg), where Rg (g ∈ z) stands for the interpolation functions, then we can write

F =

Ω

f dΩ ≈

g∈z

Qg  
Ω

Rg dΩ


f (xg) =

g∈z

Qgf (xg). (2)

Hence, the integral can be approximated as a sum of the product of matrix weights Qg (which can be calculated
offline) and the integrand evaluated at the interpolating points xg ∈ z —this set of points is to be chosen among the
Gauss points of the underlying finite element mesh. This is the approach followed by [15–18].

2. Cubature methods. The last approaches to be discussed can be regarded as global cubature methods. To the best
of the authors’ knowledge, the first scheme of this type was proposed by An. et al. (2009) [19] in the context of
computer graphics applications, and was recently introduced in computational mechanics circles by Farhat and
co-workers [20,21]. Following the classical recipe of Gaussian quadrature of polynomial functions, An et al.
advocate to approximate the integral as a finite sum of positive scalar weights {ωg}

m
g=1 times the integrand

evaluated at appropriately chosen sampling points:

F ≈
m

g=1

ωgf (x̄g). (3)

The strategy proposed by An et al. [19], and employed in successive refinements and extensions of the
method [22–27], consists in determining, among the integration points of the FE mesh, a reduced set of points
and associated positive weights so that the integration error is minimized over a set of representative samples of
the integrand. The motivation behind constraining the weights to be positive scalars is that, in doing so, the contri-
bution to the Jacobian matrix due to the nonlinear term inherits the spectral properties of its full-order counterpart.
To put it simply, in a structural problem, if the FE stiffness matrix is symmetric and positive definite, so will be
its reduced-order counterpart. It should be highlighted that this desirable attribute is not enjoyed by the other two
approaches discussed above (at least in the context of standard Galerkin projection, see Ref. [28]). Indeed, inter-
polatory schemes ruin the symmetry and, depending on the location of the sampling points, may also destroy the
positive definiteness of finite element stiffness matrices [17,14]. As a consequence, such schemes tend to be less
robust than the finite element models they intend to approximate.

1.3. Goal of the paper and original contributions

All of the above described approaches are still in their infancy, and many theoretical and practical aspects still
remain unaddressed. The goal of the present paper is to contribute to enhance and clarify some of these aspects in the
particular case of cubature-based ROMs. Specifically, we propose a novel cubature approach – we call it for reasons
that will become clear latter the Empirical Cubature Method – that addresses the following issues:
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1. The cost associated to the greedy selection algorithm put forward by An et al. in their seminal paper [19] can
prove unduly expensive in relatively large problems featuring high number of cubature points. To alleviate this
(offline) computational cost, we propose to subject the integrand to a dimensionality reduction process (here, we
use the Singular Value Decomposition, SVD). In doing so, the underlying minimization problem can be cast in
terms of the first p dominant modes obtained from such a decomposition, rather that in terms of the set of P
snapshots (in general, p ≪ P , so the reduction in computational effort may prove substantial). Furthermore, we
show that in problems in which the geometry is independent of the input parameters, the internal force modes can
be alternatively obtained via an SVD of stress snapshots.
(a) The above reduction in offline computational cost is partially made at the expense of an additional SVD, which

is, in its own right, a very memory demanding operation. To overcome possible memory bottlenecks, we have
concocted a partitioned SVD that precludes the necessity of processing the whole snapshot matrix (and that is
amenable to parallelization).

2. There are certain parametric ROMs in which the nonlinear term F is by definition zero for any training configura-
tion. This is the case, for instance, of the self-equilibrium problems appearing in multiscale hierarchical analysis,
a research arena in which model reduction is particularly appealing, as evidences the intense research activity in
the recent decade [17,29–36]. In this kind of problems, the minimization problem associated to the determination
of optimal points and weights becomes ill-posed—it admits the trivial solution ωg = 0 (g = 1, 2, . . . , m) for any
set of integration points. Based on an idea developed by the authors in Ref. [17] to deal with a similar problem
in integrand-approximation approaches, we propose to decompose the snapshots into their component along the
range of the integral operator, and its component along the nullspace. It is shown that this strategy, aside from
eliminating the ill-posedness, leads to numerical cubature rules in which the volume, V , of the physical domain is
exactly integrated, that is,

m
g=1 ωg = V .

3. Last but not least, we have devised a greedy selection algorithm able to find the absolute minimum (exact integra-
tion) of the optimization problem arising from the above mentioned decomposition. In particular, we have found
that exactly integrating p integrand modes (plus the volume) requires m = p + 1 points. Furthermore, as op-
posed to existing approaches, the selection algorithm presented here need not solve, in all iterations, the expensive
nonnegative least-squares problem to force the positiveness of the weights.

For the sake of concreteness, we have chosen as vehicle for exposing all the above ideas a classical nonlinear struc-
tural model in small strains, and consequently, the discussion that follows is couched in the terminology of structural
finite element models: the state variable will be the vector of unknown nodal displacement and the nonlinear term
Fh the vector of nodal internal forces. Nevertheless, the methodology is general and may be applied in many other
contexts. For instance, in a nonlinear heat conduction problem, the state variable would be the vector of temperatures,
and the nonlinear term Fh the heat-flux vector.

To make the paper reasonably self-contained, we throughly describe, not only the proposed cubature scheme (Sec-
tion 4), and the resulting hyper-reduced order model (Section 5), but also the parameterized finite element model
(Section 2), as well as the reduced-order model arising from the first reduction stage (Section 3). Guidelines of how to
deal with Dirichlet boundary conditions and external forces are also provided in Section 3. Likewise, recipes for com-
puting displacement reduced basis specially suited for the numerical examples presented in Section 6 are explained in
Appendix C—these recipes are also original contributions of this work. The previously mentioned partitioned SVD,
on the other hand, is not in the main body of the paper but is relegated to Appendix B.

2. Parametrized finite element model

The parametrized nonlinear equation whose complexity we wish to reduce is the standard finite element,
semi-discrete motion equation in its Lagrangian form:

Mh d̈ h(µ)+ Fh(dh, dh
0 ;µ) = Fh

ext (µ)−Mh
0 d̈h

0(µ). (4)

Here, dh
∈ RN and dh

0 ∈ RN0 denote the vectors of unknown and prescribed nodal displacements, respectively.
The dimensions of these two vectors (i.e., the number of unrestricted and restricted degrees of freedom N and N0,
respectively) are assumed to remain constant along the analysis (constant Dirichlet boundaries). Superposed dots
indicate material time derivative, i.e. d̈ h

= ∂2dh/∂t2. The set of input parameters is symbolically represented by µ,
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Given µ ∈ D, gh(µ) : [0, T ] → RN0 , uh
0, vh

0 ∈ RN , Fh
ext (µ) : [0, T ] → RN , find dh

: [0, T ] → RN such that

Mh d̈ h
+ Fh

= Fh
ext −Mh

0 d̈h
0

where

Fh
=


Ω

f h dΩ ≈
M

g=1

Wgf h(xg; ·)

subject to the Dirichlet boundary and initial conditions:

dh
0 = gh, dh(0) = uh

0, ḋh(0) = vh
0,

and the constitutive equations

H

σ , dh, dh

0 , ξ ;µ


xg
= 0, g = 1, 2, . . . , M

Box I. Statement of the finite element problem.

and the corresponding space by D; this set of inputs may encompass variations of the prescribed boundary conditions,
body forces, material parameters, etc... (occasionally, for notational brevity, the variable time t will be also included
in µ). Mh

∈ RN×N and Mh
0 ∈ RN×N0 are the mass matrices that give the inertial forces caused by acceleration of

unrestricted and restricted DOFs, respectively; they both are assumed to be independent of µ.
On the other hand, Fh

∈ RN and Fh
ext ∈ RN denote the vectors of nodal internal and external forces, respectively.

For simplicity of exposition, Fh
ext is assumed to be independent of the state variable. Thus, the previously mentioned

“offending”, nonlinear term requiring optimized cubature is the vector of nodal internal forces Fh . The FE integration
rule employed to evaluate this vector (e.g., element-wise Gauss quadrature) will be characterized by the pairs
{xg, Wg}

M
g=1, xg ∈ Ω being the position of the gth integration point, Wg the corresponding weight (this weight includes

the Jacobian of the finite element containing the point), and M the total number of integration points; accordingly, we
can compactly write

Fh
=


Ω

f h dΩ ≈
M

g=1

Wgf h(xg) (5)

where f h(xg) : D → RN is the (sparse) internal force vector at the gth integration point. In a small strain setting,

f h(xg) = Bh T
(xg)σ (xg), Bh(xg) ∈ RN×s being the classical (global) strain–displacement finite element matrix at

point xg , and σ ∈ Rs the stress vector (s = 4, 6, for plane stress/strain problems, and 3D problems, respectively).
The nonlinearity between f h and the state variable dh may be of geometric nature (large strains) and/or material
nature. Lastly, the constitutive relationship between the stress vector and both µ and the history of deformation at
each integration point will be symbolically represented here by

H

σ , dh, dh

0 , ξ ;µ


xg
= 0, g = 1, 2, . . . , M (6)

where ξ stands for the vector of internal variables. For future references, the statement of the finite element problem
is summarized in Box I.

3. First reduction stage

3.1. Unknown nodal displacements

The whole idea of model reduction relies on the premise that, for any input parameter µ ∈ D, the displacement
solution can be approximated by a set of n linearly independent basis vectors Φi ∈ RN (i = 1, 2, . . . , n), with n ≪ N ,
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that is

dh(µ) ≈ Φd(µ) (7)

where Φ =

Φ1 Φ2 · · · Φn


is the displacement basis matrix, and d ∈ Rn the vector of (unknowns) reduced

displacements—physically, the vector containing the amplitude of each displacement mode. There are various
procedures for computing the basis matrix Φ. The most common one consists in, firstly, solving the full-order problem
for representative values of the input parameters {µ j

}
P
j=1 (µ j

∈ D); then collecting the corresponding solutions in a
snapshot matrix:

Xd :=

dh(µ1) dh(µ2) · · · dh(µP )


; (8)

and, finally, extracting the dominant modes by processing this matrix using any type of dimensionality reduction.
If the standard Singular Value Decomposition (SVD) is the strategy of choice, then Xd ≈ ΦΣΦVT

Φ , ΣΦ and
VΦ ∈ RP×n being the truncated matrices of singular values and right singular vectors, respectively. More sophisticated
dimensionality reduction techniques can, of course, be used. For instance, in the example shown in Section 6.1, we
use the elastic/inelastic SVD proposed by the authors in [17], that consists, roughly, in decomposing the ensemble
of solutions in those obtained in the elastic range, and those obtained when inelastic processes come into play,
and then perform separated SVDs for each ensemble. Likewise, in the example of Section 6.2, the basis matrix for
displacements includes both SVD modes and the dominant natural vibration modes of the structure. Further details
concerning these two alternative strategies are provided in Appendix C.

3.2. Input vectors

To construct a ROM whose complexity is completely independent of the size of the underlying FE mesh, it is
necessary2 to replace by low-rank representations, not only the solution vector dh , but also the input vectors of
prescribed displacements (dh

0 ) and external forces3 (Fh
ext ). In fact, these two vectors usually admit exact approximations

by linear combination of a few spatial basis vectors: if prescribed displacements are, say, uniform in space, just one
spatial mode would suffice; if the spatial variation is linear, then two spatial modes would be needed, and so on. The
coefficients in the linear combinations, on the other hand, can be obtained by interpolation. For instance, for the nodal
vector of prescribed displacements, we can write (assuming an exact approximation)

dh
0(µ) = (ΞΞ−1

b )dh
0


b
(µ) (9)

where Ξ ∈ RN0×n0 is the corresponding basis matrix, b ⊆ {1, 2, . . . , N0} a set of n0 admissible interpolation indices
(admissible here means that the block matrix of Ξ corresponding to rows b = {b1, b2, . . . , bn0}, denoted by Ξ b, is
invertible), and dh

0


b the entries of dh

0 corresponding to indices b. By introducing the variables

Φ0 := ΞΞ−1
b d0 := dh

0


b
. (10)

Eq. (9) becomes expressible in a format similar to the approximation of the unknown displacement in Eq. (7), i.e.:

dh
0(µ) = Φ0d0(µ). (11)

The basis matrix Ξ can be obtained by the same procedure used for the basis matrix of dh , that is, by collecting
the vector of prescribed displacements for the training input parameters in a single matrix Xd0 ∈ RN0×P , and then
applying the SVD to get the matrix of left singular vectors. Once this matrix is at one’s disposal, the set of interpolation
indices b can be easily determined by means of, for instance, the Discrete Empirical Interpolation Method (DEIM) [4].

2 In many problems, computational savings achieved by compressing input vectors may be negligible in comparison with the savings obtained
from approximating unknown displacement and internal forces, and therefore, this operation may be skipped.

3 For simplicity of exposition, we have assumed that the initial conditions uh
0 and vh

0 are independent of µ. Should such conditions be dependent

on µ, the same procedure explained in the following is to be applied to uh
0 and vh

0 .
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The interpolant of Fh
ext can be constructed following the same approach, i.e, by making

Fh
ext = (ΘΘ−1

c )Fh
ext


c

(12)

Θ ∈ RN×n f and c ⊂ {1, 2, . . . , N } being the corresponding basis matrix and set of interpolation points, respectively.

3.3. Projection onto the reduced-order space

Introducing expressions (7) and (11) into the FE balance equation (4), and multiplying by ΦT (Galerkin projection),
we get

(ΦT MhΦ)d̈ +ΦT Fh
= ΦT Fh

ext − (ΦT Mh
0Φ0)d̈0. (13)

Defining the reduced mass matrices M ∈ Rn×n and M0 ∈ Rn×n0 by

M := ΦT MhΦ M0 := ΦT Mh
0Φ0 (14)

and the reduced vector of internal and external forces (F ∈ Rn and Fext ∈ Rn , respectively) by

F = ΦT Fh Fext = ΦT Fh
ext (15)

balance equation (13) can be rewritten as4

Md̈ + F = Fext −M0d̈0. (16)

Likewise, the initial and boundary conditions in the ROM become

d0 = gh
b(µ), d(0) = u0, ḋ(0) = v0 (17)

where u0 = ΦT uh
0 and v0 = ΦT vh

0 .
Lastly, substitution of Eq. (12) into the second equation in (15) leads to the low-dimensional representation of the

reduced external force vector:

Fext = Rext Fh
ext


c
, where Rext = ΦT (ΘΘ−1

c ). (18)

3.4. Internal forces

The only term in Eq. (16) that still remains dependent on the complexity of the FE mesh (through the number of
FE integration points M) is the reduced vector of internal forces F ∈ Rn ; indeed, multiplying Eq. (5) by ΦT leads to

F =

Ω

ΦT f h dΩ ≈
M

g=1

Wgf (xg; ·), (19)

where f := ΦT f h . To culminate the model-order reduction process, thus, we have to develop a more efficient
integration rule for F—one that acknowledges the fact that displacements, and therefore, strains, stresses and internal
forces reside now in low-dimensional spaces. Approximation consistency considerations dictate that this last step is to
be carried out in a second reduction stage, one in which the “reference” model is no longer the finite element model,
but the ROM described heretofore. For the reader’s convenience and easy reference, the offline operations necessary
to construct such a reduced-order problem, as well as the statement of the model itself, are summarized in Boxes II
and III, respectively.

4 It is at this point that the usefulness of our notational scheme becomes evident: to get the reduced-order balance equation (16), one just has to
drop the superscript “h” in all the terms of the full-order equation (4) —bearing in mind the distinct definitions of the involved operators.
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1. Solve the finite element problem (see Box I) for representative input parameters {µi
}

P
i=1. Store the resulting vectors

of unrestricted nodal displacements (dh), prescribed nodal displacements (dh
0 ) and external nodal forces (Fh

ext ) in
the snapshot matrices Xd , Xd0, and Xf ext , respectively.

2. Apply the SVD (or any other dimensionality technique alike) to matrices Xd , Xd0, and Xf ext to determine their
respective basis matrices Φ ∈ RN×n , Ξ ∈ RN0×n0 and Θ ∈ RN×n f .

3. Determine the interpolation indices b ⊆ {1, 2, . . . , N0} and c ⊂ {1, 2, . . . , N } corresponding to basis matrices Ξ
and Θ , respectively (using, for instance, the DEIM).

4. Compute the reduced-order matrices Φ0 = ΞΞ−1
b , M = ΦT MhΦ, M0 = ΦT Mh

0Φ0, Rext = ΦT ΘΘ−1
c ,

u0 = ΦT uh
0 and v0 = ΦT vh

0 .

Box II. Offline operations (first reduction stage).

Given µ ∈ D, gh
b(µ) : [0, T ] → Rn0 , u0, v0 ∈ Rn, Fh

ext


c(µ) : [0, T ] → Rn f , find d : [0, T ] → Rn such that

Md̈ + F = Fext −M0d̈0

where

F =

Ω

f dΩ ≈
M

g=1

Wgf (xg; ·), (f = ΦT f h)

and Fext = Rext Fh
ext


c, subject to the Dirichlet boundary and initial conditions:

d0 = gh
b, d(0) = u0, ḋ(0) = v0,

and to the constitutive equations

H(σ , d, d0, ξ ;µ)|xg
= 0, g = 1, 2, . . . , M

Box III. Statement of the reduced-order problem (without approximation of internal forces).

4. Empirical cubature method (offline stage)

In this section, we describe the formalisms concerning the problem of approximating the integral of the reduced
vector of internal forces using the proposed Empirical Cubature Method (ECM). To originate our considerations from
a general standpoint, we first deal with the case in which a continuous representation of the integrand is assumed to
be available. Then, we move to the more practical scenario of only having at one’s disposal a discrete representation
of the integrand—that is, when the integrand is only known at the integration points of the FE mesh.

4.1. Standard “optimized” cubature scheme

As pointed out in Section 1.3, our proposal for efficiently integrating the vector of reduced internal forces draws
on the optimized cubature scheme proposed by An et al. in Ref. [19]. We begin our discussion by briefly summarizing
the main ingredients of this scheme. Suppose that the reduced-order problem described in Box III is solved for the set
of input parameters {µi

}
P
i=1 (the same set employed in the first reduction stage). Let f j

I (x) = f I (x, µ j ) denote the
I th component (I = 1, 2, . . . , n) of the integrand at point x ∈ Ω corresponding to the solution for input parameter µ j

( j = 1, 2, . . . , P). The idea put forward in Ref. [19] consists in approximating the integral of any f j
I : Ω → R as the

sum of positive, scalar weights multiplied by the function evaluated at appropriately chosen points, i.e.:

F j
I =


Ω

f j
I dΩ ≈

m
g=1

ωg f j
I (x̄g). (20)
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The positions of the integration points Z = {x̄g}
m
g=1 and their associated positive weights ω = [ω1, ω2,

. . . , ωm]
T (ωg > 0) are determined so that the integration error for all components and training samples is minimized:

(ω, Z) = arg min
w∈Rm

+,Z̄g∈Ω

 n
I=1

P
j=1

(e j
I )

2 (21)

where

e j
I :=

m
g=1

ωg f j
I (x̄g)−


Ω

f j
I dΩ . (22)

Minimization problem (21) can be cast in matrix format as follows

(ω, Z) = arg min
w∈Rm

+,Z̄g∈Ω
∥JZ̄w− b∥ (23)

where ∥ · ∥ stands for the standard Euclidean norm, and

JZ :=


f 1(x̄1) f 1(x̄2) · · · f 1(x̄m)

f 2(x̄1) f 2(x̄2) · · · f 2(x̄m)

· · · · · ·
... · · ·

f P (x̄1) f P (x̄2) · · · f P (x̄m)

 , b :=




Ω

f 1 dΩ
Ω

f 2 dΩ

...
Ω

f P dΩ


, f j

=


f j
1

f j
2
...

f j
n

 . (24)

Notice that the gth column of JZ ∈ Rn P×m contains the value of the integrand at the gth integration point for all
training samples; the vector b ∈ Rn P , on the other hand, is formed by arranging the exact integral of each function in
a single column.

4.2. Dimensional reduction of the integrand

Problem (23) represents a combinatorial, nonnegative minimization problem whose complexity depends, among
other factors, on the total number of samples of the integrand (P). Especially in dynamic and/or history dependent
problems, this number may prove inordinately high, for, in such cases, the time variable is considered as an input
parameter, and, hence, one has to store the solution at all time steps, or a representative set of time steps. To alleviate
the intrinsic computational burden of solving this optimization problem, we propose to subject the integrand to a
dimensionality reduction process – in a manner similar to that explained for the displacement vectors in the first
reduction stage –, and then pose the minimization problem (23) in terms of the (orthogonal) basis functions arising
from this process, rather than in terms of the integrand itself.

Suppose that using some dimensionality reduction technique, we determine a set of p ≪ P basis functions for f j
I

so that

f j
I (x) ≈

p
i=1

Λi (x)c j
i I , ( j = 1, 2, . . . , P; I = 1, 2, . . . , n) (25)

where Λi : Ω → R stands for the i th basis function, and c j
i I ∈ R is the corresponding coefficient in the approximation.

Introducing the above into the expression for the integration error (22), we get

e j
I =


m

g=1

ωgΛi (x̄g)−


Ω

Λi dΩ


c j

i I . (26)

Since the coefficients are independent of the position, it follows that minimizing the integration error e j
I over all

training samples and components is equivalent to minimizing the error incurred in approximating the integral of the
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basis functions Λi (i = 1, 2, . . . , p). This consideration leads to a minimization problem similar to problem (23), but
in which the matrices JZ and b are defined in terms of the orthogonal basis functions Λi (i = 1, 2, . . . , p) – rather
that in terms of the samples of the integrand f j

I –, i.e.:

JZ :=


Λ1(x̄1) Λ1(x̄2) · · · Λ1(x̄m)

Λ2(x̄1) Λ2(x̄2) · · · Λ2(x̄m)

· · · · · ·
... · · ·

Λp(x̄1) Λp(x̄2) · · · Λp(x̄m)

 b =




Ω

Λ1 dΩ
Ω

Λ2 dΩ

...
Ω

Λp dΩ


. (27)

Thus, in subjecting the integrand to a dimensionality reduction process, the number of rows of both JZ and b
decreases from P n to p (where p ≪ P), and, consequently, so does the computational cost associated to solving the
minimization problem.

4.3. Basis functions for the integrand: continuous case

4.3.1. Shortcoming of standard approaches
We now face the problem of developing a general strategy for determining the basis functions Λi : Ω → R for

the integrand. In principle, one may use the standard strategy of directly applying the POD or techniques alike to the
ensemble of snapshot of the integrand function { f j

I (x)}Pj=1. However, as pointed out in the introductory section, this

strategy renders the minimization problem (23) ill-posed in cases in which the integral of such samples is zero for all
values of the input parameters,5 i.e, when

Ω
f j
I dΩ = 0 (28)

for all j = 1, 2, . . . , P and I = 1, 2, . . . , n. Indeed, since the basis functions are linear combination of snapshots,
their integrals will be also zero, and, consequently, b = 0. Under such circumstances, minimization problem (23)
becomes

(ω, Z) = arg min
w≥0,Z̄g∈Ω

∥JZ̄w∥, (29)

which possesses the trivial solution ω = 0 (for any set of integration points). Of course, this ill-posedness may be
simply alleviated by replacing the non-negative constraint by each ωg being greater than a certain (small) tolerance.
However, the quality of this solution becomes sensible to the value of the chosen tolerance and, furthermore, it leads
to integration schemes requiring more integration points than strictly necessary.

4.3.2. Expanded basis approach (EBA)
The approach adopted here to eliminate the above-mentioned ill-posedness is to use an “expanded basis” (in a

sense that will become clear in the ensuing discussion) for the nonlinear term. This idea was introduced by the authors
in Ref. [17] for dealing with problems of similar nature appearing in the context of schemes based on interpolation
of the integrand. The gist of this general idea goes as follows. Suppose that the equations arising from the Galerkin
projection (first reduction stage) are compactly written as

A(s) = D, (30)

where s is the nonlinear term we wish to approximate, A is a linear operator independent of both the input parameter
and the state variable, and D ∈ Rn the sum of the remaining terms of the governing equation. Let us assume for the

5 This situation is encountered in quasi-static problems with no external forces (only prescribed displacements).
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sake of argument that s ∈ RM , and that, therefore, A admits a matrix representation, denoted also by A. Then suppose
that s in Eq. (30) is replaced by the approximation s ≈

p
i=1 Ψ i ci = Ψc:

A


p

i=1

Ψ i ci


= D ⇒ (AΨ)c = D (31)

{Ψ i }
p
i=1 being a set of basis vectors (and Ψ ∈ RM×p the corresponding basis matrix). Expression (31) represents a

system of n scalar equations that are linear in the coefficients ci = ci (µ, d), although nonlinear, in general, in the
state variable d ∈ Rn . It may be inferred from this fact, thus, that a necessary condition for Eq. (31) to have a unique
solution in the state variable d is that these n equations must be all linearly independent.6 This implies that the rank
of the product of A times the basis matrix Ψ must be equal to the number of unknowns n, i.e. rank(AΨ) = n.

This necessary condition poses certain restrictions on the number and form of employed basis functions {Ψ i }
p
i=1.

One of such restrictions is obvious: the number of modes for s must be equal or greater than the number of unknowns
(p ≥ n), on the grounds that7

rank(AΨ) ≤ min(rank(A), rank(Ψ)) = min(n, p). (32)

Another (less obvious) condition, articulated and formulated by the authors in Ref. [17], is that the span of the basis
vectors must cover entirely the range of the operator A (denoted by R(A)), or, to put it another way, the intersection
of the range of the operator and the span of the chosen basis functions must be the range of the operator itself:

R(A) ∩ span{Ψ i }
p
i=1 = R(A). (33)

The proof that this condition guarantees that rank(AΨ) = n follows from the (columnwise) orthogonal decomposition
of Ψ into its components along the kernel (denoted by N (A)) and range of A:

Ψ = Ψ R
+Ψ N , with Ψ R

i ∈ R(A), Ψ N
i ∈ N (A). (34)

Indeed, since AΨ N
= 0, we have that rank(AΨ) = rank(AΨ R). Furthermore, if Eq. (33) holds, then rank(Ψ R) = n.

By elementary properties of the rank of product of matrices (see for instance Ref. [37]), if follows finally that
rank(AΨ R) = rank(A) = n.

If the basis functions are simply taken as a linear combination of snapshots of the concerned term s evaluated at the
solution, satisfaction of (33) becomes contingent on the particular form of the right-hand side D. The worst conceivable
scenario for its fulfillment is when D = 0 for any input parameter µ ∈ D—which, incidentally, is the case at hand.
Indeed, in such circumstances, any f (µ j ) lies in the kernel of A, and therefore, the basis functions themselves will
reside in such a subspace; since N (A) and R(A) are orthogonal subspaces, it follows that R(A)∩span{Ψ i }

p
i=1 = ∅—

hence the ill-posedness.
The proposal advocated by the authors in [17] to guarantee that condition (33) is invariably observed – regardless

of the particular form of the right-hand side D – is to construct the set of basis matrix by expanding the reduced basis
set for the nonlinear term s with a basis for R(A):

{

Basis for s  
Ψ1,Ψ2, . . . ,Ψ p,

Basis for R(A)  
Υ1,Υ2, . . . ,Υn}. (35)

However, in the problem addressed in Ref. [17], the right-hand side term is invariably zero (self-equilibrium problem),
and under such conditions, the set of vectors in Eq. (35) is linearly independent (since Ψ i ·Υ j = 0). To extend the
method for cases in which D ≠ 0, we propose here to exploit the orthogonal decomposition induced by the operator
and construct the basis set as

{

Basis for ŝ  
Ψ̂1, Ψ̂2, . . . , Ψ̂ p,

Basis for R(A)  
Υ1,Υ2, . . . ,Υn} (36)

6 As argued in Ref. [17], in interpolatory approaches (when the coefficients ci are determined by interpolation), failure to meet this necessary
condition is conducive to rank deficient Jacobian matrices.

7 It is assumed that Eq. (30) is well-posed, and therefore, A has full rank, rank(A) = n.
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where {Ψ̂}pi=1 is a reduced basis for the orthogonal projection of s onto the kernel of A (denoted by ŝ). In doing

so, Ψ̂ j ∈ N (A), and hence ⟨Ψ̂ j ,Υ i ⟩ = 0 (here, ⟨·, ·⟩ symbolizes the scalar product employed in the orthogonal
decomposition of the pertinent space in R(A) and N (A)).

4.3.3. Application of the EBA to the cubature problem
Let us now discuss the application of the method described in the foregoing to the problem at hand, which is to

approximate f I : D × Ω → R in equation
Ω

f I dΩ = FI , I = 1, 2, . . . , n. (37)

Comparison of the preceding equation with Eq. (30) indicates that, in this case, it is the integral itself that plays the
role of the linear operator A. Thus, for purposes of constructing the reduced basis of f I , we shall regard the integral
as an operator I that maps elements of the space of integrable functions on the domain Ω ⊂ Rd (denoted by V )
to R. Next we introduce the orthogonal decomposition, in the L2-norm, of V into the range and kernel of I , i.e.:
V = N (I)⊕R(I). The kernel of the integral operator is formed by all integrable functions whose integral is zero:

N (I) =


g ≠ 0 ∈ V |


Ω

g dΩ = 0


. (38)

On the other hand, the range of I is formed by those functions of V that are orthogonal to N (I), that is

R(I) =


h ≠ 0 ∈ V | ∀g ∈ N (I),


Ω

g h dΩ = 0


. (39)

It readily follows from the preceding definition that the range of the integral operator is the space of constant functions
in Ω ; thus, the dimension of R(I) is equal to 1, and a basis set for this space is formed by any constant function
over Ω . Likewise, it is immediate to see that the projection of any sample of the integrand f j

I (I = 1, 2, . . . , n,

j = 1, 2 . . . , P) onto N (I) can be calculated by subtracting to f j
I its average value over Ω , i.e.:

f̂ j
I = f j

I −
1
V


Ω

f j
I dΩ , I = 1, 2, . . . , n; j = 1, 2, . . . , P (40)

where V =

Ω dΩ is the volume of the domain. Therefore, the desired set of basis functions for the integrand is to

be constructed as the union of a basis set for the zero-average snapshots (40) (obtained via the POD, for instance) and
a constant function (for instance, g(x) = 1,∀x ∈ Ω )

{

Basis for f̂ j
I  

Λ1,Λ2, . . . ,Λp,

Basis for R(I)
1 }. (41)

Let us now discuss the implications of using the above basis set in the formulation of the minimization problem
(23). Introducing (41) in the expressions (27) of JZ and b, we arrive at

JZ =


ĴZ
1T


, b =


b̂
V


=


0
V


(42)

where ĴZ ∈ Rp×m and b̂ ∈ Rp are defined by

ĴZ :=


Λ1(x̄1) Λ1(x̄2) · · · Λ1(x̄m)

Λ2(x̄1) Λ2(x̄2) · · · Λ2(x̄m)

· · · · · ·
... · · ·

Λp(x̄1) Λp(x̄2) · · · Λp(x̄m)

 b̂ =




Ω

Λ1 dΩ
Ω

Λ2 dΩ

...
Ω

Λp dΩ


= 0 (43)
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whereas 1T
= [1, 1, . . . , 1] (an all-ones row vector of dimension m). Substitution of the new definitions of JZ and b

in the expression of the objective function in problem (23) leads to

∥JZω − b∥2 = ∥ĴZω∥2 + ∥1T ω − V ∥2 = ∥ĴZω∥2 +


m

g=1

ωg − V

2

. (44)

Notice that the second term in the above objective function vanishes when the sum of the weights equal the volume of
the domain. Therefore, aside from eliminating the ill-posedness of the standard approach, the proposed strategy leads
to a minimization problem in which the requirement that the sum of weights has to be as close as possible to the total
volume of the domain is explicitly imposed. It should be mentioned that neither the original cubature scheme of An.
et al. [19], nor later related proposals (e.g. [20]), exhibits this remarkable feature.

Remark 4.1. It is interesting to note that the format exhibited by JZ and b in the proposed approach (Eq. (42)) bears
a close resemblance to their counterparts in classical Gaussian quadrature (see, for instance, page 143 in Ref. [38]).
The reason of such a similarity is that they share a common attribute: the use of orthogonal basis functions. However,
Gaussian formulae were originally conceived for one-dimensional domains (quadrature) and polynomial functions,
while our approach can be applied to any multidimensional domain (cubature), and, furthermore, can deal with
general, empirical basis functions, the qualifier empirical meaning “derived from computational experiments” [39]—
hence the employed appellation Empirical Cubature Method.

4.4. Discrete formulation

In formulating the minimization problem (29), it was tacitly assumed that a continuous description of the integrand
is available. However, in common finite element implementations, the value of the integrand is only calculated at
the integration points of each finite element. For practical reasons, thus, it proves convenient to retrace the analysis
described in the foregoing from a “discrete” perspective, i.e., treating the integrand as a spatially discrete variable.

The most immediate implication of the integrand being defined only at the integration points of the mesh is that the
integral we wish to approximate can no longer be regarded as a linear operator that maps continuous functions into
R; rather, it should be viewed as an operator that maps vectors of RM (recall that M is the number of FE integration
points) to R. The matrix representation of this operator can be inferred from the expression for the approximated
integral of f I as follows:

FI =


Ω

f I dΩ ≈
M

g=1

Wg f I (xg) =

M
g=1


Wg(


Wg f I (xg))

=
√

W
T F I , I = 1, 2, . . . , n

(45)

where
√

W ∈ RM is defined by

√
W :=


W1


W2 · · ·


WM

T
, (46)

and F I ∈ RM is formed by gathering in a single column vector the values of the integrand at all FE points (multiplied
by the square root of each finite element integration weight)

F I :=




W1 f I (x1)
W2 f I (x2)

...
WM f I (xM )

 . (47)

It readily follows from Eq. (45) that
√

W
T

is but the matrix representation of the integral operator when the domain
space RM is endowed with the standard scalar product.
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Remark 4.2. Notice that the definition of operator
√

W
T

tacitly presupposes that all FE weights are positive. In view
of this apparent limitation of the method (it excludes FE integration rules with negative weights), it may be wondered
why not to define the operator by putting all the weights in the vector F I (that is, (F I )g = Wg f I (xg)), or in the
operator itself (so that (F I )g = f I (xg)). The reason is that the discrete formulation (45) is, strictly speaking, the only
one consistent with its continuous counterpart:

∥ f I ∥
2
L2(Ω) =


Ω

f I f I dΩ ≈
M

g=1

Wg f I (xg) f I (xg) = ∥F I ∥
2 (48)

i.e., the euclidean norm of F I is the actual approximation of the L2 to norm of f I (x). Nevertheless, the procedure
explained in the following discussion can be also applied when the other two (less restrictive) definitions of the discrete
integral operator are adopted (in fact, in the event of meshes with fairly uniform element size, the three alternatives
should yield similar results).

4.4.1. Basis matrices
Having defined the discrete version of the integral operator, the next step consists in determining the basis matrix

for the nonlinear term F I (I = 1, 2, . . . , n). According to the previously described expanded basis approach, the

basis matrix for F I is to be constructed as the union of a basis matrix for the range of
√

W
T

(which is simply the

space spanned by
√

W) and a basis matrix, Λ ∈ RM×p, for the projection of F I onto the kernel of
√

W
T

, i.e:

Expanded basis matrix =

Λ1 Λ2 · · · Λp

√
W

. (49)

The starting point for computing Λ is the snapshot matrix of F j
I for all components I = 1, 2, . . . , n and all training

configurations j = 1, 2, . . . , P:

XF =

F1

1 · · · F1
n F2

1 · · · F2
n F P

1 · · · F P
n


. (50)

The projection of each column of XF onto N (
√

W
T
) can be calculated by subtracting its orthogonal projection

onto R(
√

W
T
); this operation yields

F̂ j
I := F j

I −

√
W

∥
√

W∥

 √
W

T

∥
√

W∥
F j

I


=




W1( f j
I (x1)− F j

I /V )
W2( f j

I (x2)− F j
I /V )

...
WM ( f j

I (xM )− F j
I /V )

 , (51)

which is essentially the same expression obtained in the continuous case (40) (the integrand at a given point minus the
volume average), but with each entry multiplied by the square root of the corresponding FE integration weight. The
required basis matrix can be finally determined by collecting all these vectors in a single matrix X̂F ∈ RM×n P

X̂F =

F̂1

1 · · · F̂1
n F̂2

1 · · · F̂2
n F̂ P

1 · · · F̂ P
n


(52)

and then applying a dimensionality reduction technique such as the SVD8 to obtain an approximated basis matrix of
rank p for the column space of X̂F , i.e.:

X̂F ≈ ΛΣΛVT
Λ (53)

8 It is interesting to note that, since each row of X̂F is multiplied by the square root of the corresponding finite element weight, the minimization
problem underlying the SVD is actually posed in the norm defined by the diagonal matrix of finite element weights (which, in turn, as we saw
earlier, is the discrete counterpart of the L2 norm).
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where ΣΛ and VT
Λ are the matrices of singular values and right singular vectors, respectively, associated to the

selected, dominant left singular vectors9 Λ ∈ RM×p.

Remark 4.3. The standard SVD is a RAM-intensive operation, and, consequently, manipulating relatively large snap-
shot matrices may easily exhaust the memory capabilities of the computer at hand. To overcome this difficulty, we
propose to adopt two complementary strategies. Firstly, in problems in which the geometry is input-parameter inde-
pendent, the nonlinearity between the internal forces and displacements is concentrated on the stresses and, therefore,
one may obtain the basis matrix for the internal forces from a basis matrix for the stresses themselves. This strategy
is specially advantageous for relatively high number of reduced displacement modes (n), as the size of the snapshot
stress matrix is independent of this reduced dimension.

For high number of training configurations, however, the above strategy may prove insufficient to lower the offline
computational requirements to affordable levels. For such cases, we have devised a partitioned version of the SVD
that precludes the necessity of manipulating the whole matrix, hence significantly diminishing memory requirements.

To preserve the continuity of the presentation, the detailed description of these two complementary methods is
relegated to Appendices A and B, respectively.

4.4.2. Minimization problem
The statement of the discrete minimization problem that allows one to determine the optimized location of

integration points and corresponding weights is quite similar to the continuous problem (23): find α ∈ Rm
+ and

z ∈ Nm
⊂ {1, 2, . . . , M} such that

(α, z) = arg min
ᾱ≥0,z̄

∥J̄zᾱ − b∥2. (54)

Note that, in this case, the goal is to choose a set of m points among the M FE integration points of the underlying
finite element mesh {x1, x2, . . . , xM }—that is, we have now a combinatorial optimization problem. Hereafter, the gth
optimal point will be denoted by x̄g := xzg .

Following the same logic that led to Eq. (42), Jz ∈ Rp+1×m and b ∈ Rp+1 can be decomposed into the following
block matrices

Jz =

Λz
√

Wz

T
, b =


0T V

T
(55)

(Λz and
√

Wz denotes the block matrices of Λ and
√

W, respectively, formed by the rows corresponding to the indices
of the selected points z ⊂ {1, 2, . . . , M}). With this decomposition, the objective function is expressible as

∥Jzα − b∥2 = ∥ΛT
z α∥2 + ∥

√
W

T
z α − V ∥2. (56)

Introduction of the preceding expression into problem (54) leads to the following minimization problem: find
α ∈ Rm

+ and z ∈ Nm
⊆ {1, 2 . . . M} such that

(α, z) = arg min
ᾱ≥0,z̄

∥ΛT
z̄ ᾱ∥2 +


m

g=1


Wz̄g ᾱg − V

2
 . (57)

After solving for α, the sought-after weights can be computed as

ωg :=


Wgαg, g = 1, 2, . . . , m. (58)

Observe that, as in the continuous case, the condition that the sum of weights should be as equal as possible to the
volume of the domain appears explicitly in the objective function (57).

9 Alternatively, instead of directly using as basis matrix the left singular vectors, one may use as basis matrix Λ← ΛΣΛ. This is equivalent to
define the objective function in (57) in terms of the norm defined by such singular values.
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4.5. Solution of the optimization problem

We turn now to the solution of the combinatorial optimization problem (54). In the field of combinatorial
optimization, this type of problem is termed a hard regressor selection [40]: we are given a matrix J ∈ Rp+1×M , whose
columns are potential regressors, and a vector b ∈ Rp+1 is to be fit by a linear combination of m < M columns of J.
The problem is to choose the subset of m columns to be used as well as the associated coefficients. One straightforward
approach would be to check every possible combination, considering that, for a fixed set of columns z, the optimal α

can be found by solving a nonnegative least-squares problem—using, for instance, the active set algorithm developed
by Lawson and Hanson [41]. In principle, this should be done for each of the

M
m


feasible combinations. Needless to

say, since M ≫ m (for otherwise the whole reduction procedure would prove pointless), this brute force approach is
not viable and recourse to heuristic methods, able to at least determine sub-optimal solutions, is to be made.

4.5.1. Greedy selection method
The heuristic method employed in the present work is described in the flowchart of Box IV. This method is based

on the greedy algorithm put forward by An and co-workers in their seminal paper [19]. Two features distinguishes
our algorithm from that in Ref. [19], namely: (1) the definition of the matrices J and b appearing in the objective
function (J is a row-wise orthogonal matrix and all entries of b are zero but the last one, which is equal to the volume
of the domain); and (2) the unrestricted least-squares appearing in Step 3. The reason why α is tentatively computed
by an unrestricted least-squares (LS) fit in Step 3 is that we have empirically observed that, in almost all iterations,
this operation furnishes vectors α with positive entries, hence precluding the need to solve the expensive nonnegative
least-squares problem of Step 5.

4.5.2. Convergence to absolute minimum
Numerical experience shows that the algorithm in Box IV invariably drives the objective function ∥Jzα − b∥ to

zero when the number of selected points10 (i.e. colums) equals the number of rows of J, that is, when

m+ = p + 1. (59)

This convergence property can be attributed to one of the distinguishing feature of the proposed cubature scheme,
namely, that J is the transpose of an orthogonal basis matrix, and hence, it has full rank. When m+ = p+ 1, the block
matrix Jz becomes square and, furthermore, since the algorithm selects linearly independent columns, invertible. This
means that α = J−1

z b and, consequently, ∥Jzα − b∥ = 0.
The linear independence of the selected columns follows from the fact that, at Step 1, the algorithm identifies the

new index zk as that whose associated column is the most positively parallel to the current residual, for this is the
column that will reduce the residual norm the most. This necessarily implies that Jzk must be linearly independent
of the previously selected columns {Jz1 , Jz2 , . . . , Jzk−1}—a linearly dependent column carries redundant information
and would not, thus, contribute to lower the residual.

5. Hyperreduced-order model

For completeness, the offline steps required for determining the set of integration points and their associated
weights are summarized11 in Box V. Likewise, the statement of the resulting “hyper-reduced” order problem is set
forth in Box VI. It should be stressed that the only difference between this problem and the reduced-order problem
shown previously in Section 3 (see Box III) is the evaluation of the integral of the reduced internal forces—now it
requires computation of the integrand at solely m ≪ M points. As a consequence, the solving effort associated to the
constitutive equations also diminishes by a factor M/m, as well as memory requirements for storing the history of
internal variables.

10 Notice that, at Step 6, points whose associated weights are identically zero are removed from z. Hence, the cardinality of z at the end of each
iteration coincides with the number of points with strictly positive weights (m+).
11 The reduced-order operators Φ0, M, M0, Rext and Bg = Bh

gΦ (g = 1, 2, . . . , M) were already determined in the offline phase of the first
reduction stage, see Box II, are, hence, need not be computed again.
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DATA: J =

Λ
√

W
T
∈ R(p+1)×M , b =


0 V

T
∈ Rp+1, T O L , m

Initializations
– Set of integration points: z← ∅, Set of candidate points: y← {1, 2, . . . , M}
– Nonzero components of α: m+← 0, number of iterations k ← 1
– Residual vector: r← b
while ∥r∥/∥b∥ > T O L AND m+ <= m do
1. Compute new point i as: i = arg max

i∈y
J̃T

y r/∥r∥, where J̃ j := J j/∥J j∥

2. Move i from set y to set z (z← z ∪ i and y← y \ i)
3. Determine α by (unrestricted least-squares):

α←


JT
z Jz

−1
JT
z b

4. If all entries of α are nonnegative, go to step 7.
5. Determine α by solving the nonnegative least-squares problem

α← arg min
ᾱ≥0
∥Jzᾱ − b∥2

6. Set z← z \ z0, (where z0 ⊂ z | α(z0) = 0), α← α(z) and y← y ∪ z0.
7. Update the residual: r← (b− Jzα).
8. Set k ← k + 1, m+← card(z)
end
9. Compute the desired integration weights as

ωg =
√

Wzg αg, g = 1, 2, . . . , m

Box IV. Empirical cubature method (offline stage). Greedy algorithm for computing an optimal set of integration points z ⊂ {1, 2, . . . , M} and
corresponding weights ω ∈ Rm

+
.

.

1. Solve the reduced-order problem (without approximation of internal forces, see Box III) for the set of
representative input parameters {µi

}
P
i=1 (the same employed for the problem presented in Box III).

2. Store the components of the reduced internal forces at all integration points and all training configurations in the
snapshot matrix XF ∈ RM×n P (see Eq. (50)). Alternatively, one may store the stresses at the integration points,
and then calculate a “compressed” XF ∈ RM×nq by means of formula (A.5) in Appendix A. Likewise, store the
FE integration weights (including the Jacobian) in a vector W ∈ RM .

3. Compute the matrix of zero-integral snapshots X̂F by applying formula (51) to each column of matrix XF .
4. Determine an orthogonal basis matrix Λ ∈ RM×p for the column space of X̂F as the p leading left singular vectors

arising from the SVD of X̂F .
5. Construct the matrix J ∈ Rp+1×M and b ∈ Rp+1 appearing in the cubature optimization problem as J =

Λ
√

W
T

and b =

0T V

T
, where V =

M
i=1 Wi .

6. Determine the set of integration points z ∈ Nm and their associated weights ω ∈ Rm
+ by means of the algorithm

described in Box IV.

Box V. Offline operations (second reduction stage).

5.1. Reconstruction of displacement, stress and strain fields

In practice, the output of interest in the hyper-reduced-order problem described in Box VI is rarely the vector of
reduced displacements d per se, but rather a derived quantity of either the nodal displacements or the stresses at the
Gauss points of the finite element mesh (or both). The vector of nodal displacements can be recovered by multiplying
the reduced displacement vectors12 d by the corresponding basis matrix, i.e., dh

≈ Φd.
On the other hand, stresses (or any other related variable, such as the internal variables ξ ) at any integration point

xg (g = 1, 2, . . . , M) of the finite element mesh can be, in principle, recovered by locally integrating in time the

12 Recall that d corresponds to the unknown nodal displacements. Prescribed displacements are given by the expression dh
0 = Φ0d0, where Φ0

is defined in Eq. (10).
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Given µ ∈ D, gh
b(µ) : [0, T ] → Rn0 , u0, v0 ∈ Rn, Fh

ext


c(µ) : [0, T ] → Rn f , find d : [0, T ] → Rn such that

Md̈ + F = Fext −M0d̈0

where

F =

Ω

f dΩ ≈
m

g=1

ωgf (xzg ; ·), (f = ΦT f h)

and Fext = Rext Fh
ext


c, subject to the Dirichlet boundary and initial conditions:

d0 = gh
b, d(0) = u0, ḋ(0) = v0,

and to the constitutive equations

H(σ , d, d0, ξ ;µ)|xzg
= 0, g = 1, 2, . . . , m

Box VI. Statement of the hyper-reduced order problem (with approximation of internal forces).

corresponding constitutive equations. In general, these recovery operations are carried out when the simulation is
completed, as part of the postprocess – to display, for instance, contour plot of stresses – and therefore do not affect
the online cost of the reduced-order simulation.

However, there are certain problems in which the output of interest is a function of the whole stress field and, in
addition, it has to be computed online, at the end of each time step. In such cases, an efficient recovery of the stress
field is a must. One route for efficiently recovering or reconstructing the stresses at all Gauss points is via least-squares
fitting (the so-called Gappy Data reconstruction, introduced by Everson and Sirovich in [8]). Indeed, let Ψ ∈ Rs·M×q

be a stress basis matrix (calculate by the SVD, for instance),13 and let Ŝz ∈ Rs·m denote the vector containing the
stresses computed by the hyper-reduced order model at the selected integration points z, that is:

Ŝz =

σ T (xz1) σ T (xz2) · · · σ T (xzm )

T
. (60)

Least-squares fitting yields the following approximated, global stress vector S ∈ Rs·M

S ≈ ΨΨ+z Ŝz (61)

where Ψ+z = (ΨT
z Ψ z)

−1ΨT
z stands for the pseudo-inverse of Ψ z ∈ Rs·m×q (Ψ z is the matrix formed by the rows

of Ψ corresponding to the set of indices z ∈ Nm
⊂ {1, 2, . . . , M}).14

Recovery or reconstruction by least-squares fitting can be also applied to strains. However, to compute a basis
matrix (designated by Υ ) for strains, one need not to store snapshots as in the case of stresses. Rather, a “compressed”
snapshot matrix Eε (featuring n + n0 columns) can be obtained by multiplying the displacement basis matrices
Φ ∈ RN×n and Φ0 ∈ RN0×n0 by the corresponding FE strain–displacement matrices. This can be done by defining
the global (sparse) displacement basis matrix

Φ =


Φ 0
0 Φ0


(62)

and then computing the rows of Eε associated to the FE integration point xg (g = 1, 2, . . . , M) as

Eε(xg) = B(e)(xg)Φ
(e), (63)

B(e)(xg) being the FE strain–displacement matrix of element e at integration point xg , and Φ(e) the rows of Φ
corresponding to the degrees of freedom of element e (e is the index of the finite element containing the integration

13 Notice that this stress basis matrix is to be calculated anyway when internal forces are computed by the method described in Appendix A.
14 For Ψ+z to exist, Ψz must be full rank, and this, in turn, requires the number of rows of Ψz be greater than the number of columns (m · s ≥ q).

In Appendix A, we show that p ∼ n · q , which, by virtue of the findings of Section 4.5.2, implies that m ∼ n · q . Thus, it follows that the necessary
condition for Ψ+z to exist is largely met.
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Fig. 1. Geometry of the plate (plane strain), along with the employed FE discretization and boundary conditions.

point xg). Once Eε is at one’s disposal, an orthonormal basis matrix for strains can be determined15 by an SVD. It is
worth noting that, in cases in which strains admit an additive decomposition into elastic and inelastic parts, one may
reconstruct with this basis matrix, not only the total strains, but also each of these contributions. This capability is
illustrated in the numerical example discussed in the ensuing section (see Fig. 10).

6. Numerical results

In this section, the efficiency of the proposed model-order reduction strategy is assessed in two representative
structural examples, namely, a quasistatic (cylindrical) bending problem, on the one hand, and a dynamic, forced
vibration problem, on the other hand (both in composite plates undergoing infinitesimal, elasto-plastic deformations).

6.1. Bending of a composite plate

6.1.1. Problem set-up
The composite plate is made of three distinct materials: matrix, reinforcements, and foam. The mechanical behavior

of both the matrix and reinforcements materials is modeled by a rate-independent, Von Mises elastoplastic model
endowed with a linear, isotropic hardening law (consult Ref. [42] for details on the implementation of this elastoplastic
model). The material properties for the matrix material are: Young’s modulus Em

= 70 · 103 MPa, Poisson’s ratio
νm
= 0.3, yield stress σm

y = 60 MPa and hardening modulus Hm
= 5 MPa. For the reinforcement material, on the

other hand, these constants take the following values: Er
= 200 · 103 MPa, νr

= 0.3, σ r
y = 110 MPa and H r

= 10
MPa. Lastly, the foam inclusions are assumed to behave elastically, with E f

= 20 MPa and ν f
= 0.3.

The finite element mesh can be also seen in Fig. 1. The number of (four-node bilinear) elements is Nelem = 45 349,
and the number of nodes Nnode = 46 163. The employed quadrature formula, on the other hand, is the standard
2 × 2 Gauss rule, the total number of Gauss points amounting thus to M = 4 Nelem = 181 396. To overcome
incompressibility issues while maintaining the displacement-based formulation presented in the preceding sections,
the commonly known as “B-bar” approach is adopted [42]. The constitutive differential equations are integrated in
time using the classical (fully implicit) backward-Euler scheme.

6.1.2. First reduction stage
The goal of the hyper-reduced order model (HROM) we wish to develop is to predict the bending moment on

the left edge of the plate for any prescribed rotation on the left and right edges (θl and θr , respectively) and any
transverse, uniformly distributed load (qdis). The set of input parameters µ in the problem, thus, can be symbolically

15 Normally, Eε is full rank and can be thereby directly taken as a basis matrix, i.e., Υ = Eε .
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Fig. 2. SVD truncation error versus number of basis vectors employed in the approximation (n). The portion between 6 and 12 modes is shown in
magnified form in logarithmic scale.

represented by µ = {θl(t), θr (t), qdis(t)}. Notice that the time variable t appears implicitly also in the set of input
parameters—due to plastic yielding, the response of the plate at a particular time depends on the history of these three
parameters.

As explained in the preceding sections, the construction of the desired HROM involves two sequential dimension-
ality reduction stages. The first reduction stage consists in the creation of the reduced-order model with no approx-
imation of internal forces (henceforth labeled ROM). To arrive at the ROM, we follow the steps outlined in Box II.
The first step is to run finite element analysis for representative values of such input parameters (the training inputs).
We have chosen three sets of such training inputs: rotation of increasing magnitude (linear with time) on the left edge
while the right edge remains fixed (µtr1

= {θ0
l t/T, 0, 0}), rotation of increasing magnitude on the right edge while the

left edge remains fixed (µtr2
= {0, θ0

r t/T, 0}), and transverse load of increasing magnitude while the right and the left
edges remain fixed (µtr3

= {0, 0, q0
dis t/T }), where t ∈ [0, T ], with T = 10 s. The values of the constants appearing

in the preceding expression are set to θ0
l = −θ0

r = 0.025 rad, and q0
dis = −0.85 MN/m2—these values ensure that

the plate is loaded well into the inelastic range and, consequence, plastic hinges develop. The time domain for each
input history is discretized into 200 equally spaced steps, resulting in a total number of P = 3 · 200 = 600 snapshots.

Three matrices are to be stored in memory and processed by dimensionality reduction in the first reduction stage
(Step 2 of Box II): the matrix of prescribed displacements Xd0 ∈ RN0×P , the matrix of external forces Xf ext ∈ RN×P ,
and the matrix of unrestricted displacements Xd ∈ RN×P (the number of restricted and unrestricted DOFs is N0 = 156
and N = 2Nnode − N0 = 92 170, respectively). Spatial variation of boundary conditions can be (exactly) described
by just two parameters (θl and θr ), and therefore, n0 = rank(Xd0) = 2; by the same token, for external forces,
n f = rank(Xf ext ) = 1. Using the SVD, the corresponding basis matrices Ξ ∈ RN0×n0 and Θ ∈ RN×n f (see
Section 3.2) can be easily obtained; the interpolation indices b and c, on the other hand, can be either automatically
determined by means of the Empirical Interpolation Method [3,4], or by manually selecting two horizontal degrees of
freedom (DOFs) (one on each edge) for interpolation of prescribed displacements, and one vertical DOF on the top
boundary for interpolation of external force.

To obtain the basis matrix Φ for the unrestricted displacements, we follow the SVD-like elastic/inelastic
factorization proposed by the authors in Ref. [17]—and sketched, for completeness, in Appendix C. Since the problem
is quasi-static in the small strains regime, the number of elastic modes16 is equal to the spatial dimensionality of the
set of input parameters, i.e., nel

= n0+n f = 3. Therefore, we only have to elucidate how many inelastic modes nin
=

n − nel can be deemed as dominant or “essential”. To this end, we plot in Fig. 2 the (dimensionless) SVD truncation
error estimates defined as e∗ := ∥Xd − X∗d(n)∥/∥Xd∥, where X∗d(n) denotes the SVD approximation of rank n.

It can be appreciated in Fig. 2 that the first three modes – the elastic modes – contains more than 95% of the
information, while the remaining 5% only corresponds to pure inelastic modes. With n = 10 (7 inelastic modes), the

16 The number of displacement modes necessary to exactly reproduce the FE results in the elastic range.
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Fig. 3. Bending moment on the left edge versus time for the three training trajectories. Results computed with the FE model and the ROM using
n = 10 and the full set of FE integration points. The relative L2 errors for the three cases are 0.20%, 0,19% and 0.16%.

(a) Mode 1 (elastic). (b) Mode 2 (elastic).

(c) Mode 3 (elastic). (d) Mode 4 (inelastic).

Fig. 4. Deformed shapes corresponding to the first 4 dominant displacement modes ({Φ1,Φ2,Φ3,Φ4}).

error level is around 0.01%. In Fig. 3, we plot the output of interest (evolution of bending moment on the left edge)
for the three trajectories using the FE model and the ROM constructed with such a number of displacement modes
(n = 10); as expected, differences between FEM response and the one predicted by the ROM are negligible (below
0.2%). Finally, by way of illustration, Fig. 4 displays the deformed shape corresponding to the first 4 displacement
modes (Φi , i = 1, 2, 3, 4).

6.1.3. Second reduction stage

In the first reduction stage, discussed in the foregoing, the number of displacement unknowns have been reduced
from N = 92 170 to n = 10 with almost no loss in accuracy. Yet, this reduction in the number of DOFs only
provides modest speedup of around 2. This fact highlights that the actual bottleneck for fast online computation is
not the solution of the discrete balance equations, but rather the determination of the stresses, internal forces and
stiffness matrices at all the integration points of the underlying finite element mesh (in this case, M = 181 396). The
second reduction stage, summarized in Box V, is aimed at choosing among these FE points a reduced set of optimized
cubature points (as well as their associated positive weights).
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Fig. 5. (a) SVD truncation error for stresses versus number of modes q . (b) Dimensionless residual ∥r∥/V versus number of integration points for
the case q = 12 (hence p = q · n = 12 · 10 = 120). The portion between 116 and 122 points is shown in magnified form in logarithmic scale.

We begin by solving the reduced-order equations (Step 1) for the same input parameters employed in the first
reduction stage (that is, {µtr1(ti ), µtr2(ti ), µtr3(ti )}, i = 1, 2, . . . , 200). For computing and processing the reduced
internal forces in Step 2, we adopt the stress-based procedure described in Appendix A: the stresses at all FE Gauss
points and all time steps for the three trajectories are stored column-wise in a matrix Xσ ∈ Rs M×P (here s = 4); then,
the elastic/inelastic factorization (the same employed for displacements) is performed on Xσ , taking as number of
elastic stress modes17 qel

= 3. The corresponding SVD error graph versus number of stress modes q – the analogous
of Fig. 2 – is displayed in Fig. 5(a). It can be gleaned from this Figure that q = 12 gives reasonably low stress
approximation error (below 1%). Accordingly, we construct the “compressed” internal force matrix XF (see formula
(A.5) in Appendix A) using q = 12 stress modes—hence, XF features p = q · n = 12 · 10 = 120 columns.

Next, we determine the zero-average internal force matrix X̂F (Step 3 in Box V), and use the SVD to determine
a set of orthogonal basis vectors Λ for the reduced internal forces (Step 4). With Λ at our disposal, we construct the
matrices J and b appearing in the objective function of the cubature optimization problem (Step 5), and finally solve
this problem by means of the greedy algorithm of Box IV (Step 6).

6.1.4. Empirical cubature
To examine the convergence of this greedy algorithm, we plot in Fig. 5(b) the dimensionless residual ∥r∥/∥b∥ =

∥r∥/V (the one employed as termination criterion in Box IV) versus the number of points m (for the case
p = n · q = 10 · 12 = 120). It can be readily seen that the residual decreases monotonically as the number of
integration points increases, and at the threshold m = p + 1 = 121, it drops sharply to a negligible value (∼10−15),
indicating that, as theoretically anticipated in Section 4.5.2, the algorithm has converged to the absolute minimum.

Concerning the computation time, the partitioned SVD of the stress snapshot matrix took approximately 70 s,
while the selection of m = 121 points among M = 181 396 FE points was carried out in approximately 45 s (both
operations in an serial Matlab program, running at 2.9 GHz with 8 GB of RAM and 4 Intel Core-i7 processors, in
Linux). This is as a relatively low computation time when compared with previous cubature optimization methods.
When using the original18 greedy algorithm by An et al. [19], the CPU time for selecting m = 121 points rises up
to 1014 s (approximately 8 times slower). Difference in performance becomes more pronounced as the number of
selected points increases. For m = 300 points, for instance, our algorithm needed 233 s (≈4 min), while the algorithm
in [19] employed 4053 s (1 h and 10 min). As pointed out in Section 4.5.1, the reasons why our method appears to
outperform the original scheme of [19] are two: firstly, memory requirements are drastically reduced; and, secondly,
and most importantly, our approach avoids in almost all iterations the expensive nonnegative least-squares problem.
Specifically, in the selection of m = 300 points, our algorithm only needed to solve the nonnegative least squares
problem in 5 iterations (of a total of 307 iterations).

17 In order not to process the whole matrix Xσ , we employ the partitioned SVD strategy, described in Appendix B, for both the elastic and inelastic
matrices. In particular, we employ a partition of 10 block matrices with 60 snapshots each.
18 We implemented the greedy algorithm proposed by [19] in its raw form, i.e., without the heuristics aimed at accelerating the algorithm (namely,

subset strategy for choosing new candidates, and subset training).
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Fig. 6. Bending moment on the left edge versus time for the three training trajectories. Results computed with the FE model (M = 181 396
integration points) and the HROM using m = 60, 90 and 121 integration points.

Table 1
Relative L2 error between the predictions of the HROM
for the three training trajectories – using m = 60, 90
and 121 integration points – and the reference FE model
(that employs M = 181 396 integration points).

Traj. 1 Traj. 2 Traj. 3 Max.

m = 60 0.48% 0.30% 0.78% 0.78%
m = 90 0.51% 0.68% 0.50% 0.68%
m = 121 0.29% 0.31% 0.17% 0.31%

6.1.5. HROM results

Next we study the extent to which the integration error affects the quality of the response predicted by the HROM
(in terms of the output of interest). To this end, we analyze in Fig. 6 the evolution of the bending moment on the left
edge versus time, for the three training trajectories, using both the finite FE model and the HROM with q = 12 stress
modes and varying number of integration points. Specifically, we set m = 60, 90 and 121. The relative L2 errors for
each case are displayed in Table 1. Inspection of Fig. 6 and Table 1 shows that, remarkably, deviations between FE
response and the HROM graphs are practically imperceptible for the three cases. These results also suggest that there
is no need to exactly integrate all the internal force modes: gains in accuracy achieved by passing from m = 60 to
m = p + 1 = 121 points are practically negligible (from 0.78% to 0.31%).
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Fig. 7. Location of the m = 60 integration points chosen by the greedy algorithm (for p = 12 stress modes).

Fig. 8. Weight (in % of the total volume V , and sort in descending order) associated to each integration point (for m = 60).

Fig. 7 depicts the position of the elements19 containing the m = 60 points selected by the greedy algorithm.
Observe that around 50 points are equally distributed along regions close to the right and left edges, while the
remaining points are scattered over the middle portion of the beam. Likewise, the weights (divided by the total volume)
associated to these m = 60 points are plotted in Fig. 8. Notice that the distribution of the total volume among the
chosen points is far from being uniform: the sum of the 10 highest weights amounts to 90% of the total volume, while
the remaining weights only contribute with a 9.99% (hence, the error in integrating the volume with these 60 points is
only 0.01%).

We pointed out in Section 5.1 that, although the HROM only tracks the evolution of stresses and (plastic and
elastic) strains at the reduced set of integration points, one can “reconstruct”, for post-processing purposes, such fields
by using least-square fitting (see Eq. (61)). To illustrate this capability, we plot in Figs. 9 and 10 the contour plots of
effective stresses and effective plastic strains, respectively, at the end of the first training configuration computed by
the FE model and the HROM model (using q = 12 stress modes, n + n0 = 12 strain modes and m = 60 points).
The qualitative resemblance between the HROM and FE patterns is startling in both cases—despite the fact that
the number of integration points has been reduced by a factor over 3000. Obviously, upon closer inspection, some
“inconsistencies” become apparent. For instance, in Fig. 10(b), it can be appreciated that the HROM predicts that
plastic yielding occurs at some of the (elastic) foam inclusions. This is because least-squares fitting is a purely data
driven approach and, consequently, the reconstructed variables are not consistent, in general, with the constitutive
behavior assumed for each material.

6.1.6. Testing trajectory
We examine now the error incurred by the HROM in predicting the response of the plate for input parameters

different from those employed in the “training” process. The plate is subjected to a loading/unloading cycle of
prescribed rotation on the right edge in tandem with transverse load, while the left edge remains fixed, i.e., µ =

{0, θmax
r g(t), qmax

dis g(t)}. The constants are set to θmax
r = −0.01 rad and qmax

dis = −0.4 M N/m2; on the other hand,
g = g(t) : [0, T ] → R is the piecewise constant function shown in Fig. 11(a). The analysis required 300 equally
spaced time steps. The plots of bending moment on the left edge versus time for the FE model and the HROM (m = 60

19 It should be stressed here that the selection of a Gauss point within a given finite element does not imply that the rest of Gauss points of
the element are included in the reduced set of integration points. Hence, as distinct from the “mesh-sampling” method advocated by Farhart and
co-workers [20,21], the HROM proposed here completely ignores the finite element origin of the integration points.
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Fig. 9. Contour plot of effective stresses at the end of the first training configuration (deformed shape amplified by a factor of 10). (a) Finite element
model (M = 181 396 integrations points). (b) Hyper-reduced order model (“reconstruction” using q = 12 stress modes and m = 60 integration
points).

Fig. 10. Contour plot of effective plastic strains at the end of the first training configuration (deformed shape amplified by a factor of 10). (a) Finite
element model (M = 181 396 integrations points). (b) Hyperreduced order model (“reconstruction” using n + n0 = 10+ 2 = 12 strain modes and
m = 60 integration points).

Fig. 11. (a) Input parameters employed to test the HROM. (b) Bending moment on the left edge versus time for these input parameters. Results
computed with the FE model and the HROM using m = 60 integration points.

integration points) are displayed in Fig. 11(b). Remarkably, the two curves are practically indistinguishable at the scale
of plot; the maximum error is observed at the end of the process (residual bending moment, see enlarged region), and
it is below 1.5%.
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Table 2
Comparison of the dimensions and computation time of the finite element problem and the hyper-reduced
order problem, along with the corresponding “compression” ratios.

FEM HROM “Compression” ratio

Number of unrestricted DOFs N = 92170 n = 10 9217
Number of restricted DOFs N0 = 156 n0 = 2 78
Number of parameters defining external forces N f = 776 n f = 1 776
Number of integration points M = 181396 m = 60 3023.2
Computation time 6180 s 2.5 s 2472

Fig. 12. Number of iterations required for convergence of the accompanying Newton–Raphson algorithm for both the FE model and the HROM
(with m = 60 points).

6.1.7. Compression ratios and speedup
To summarize, we present in Table 2 the dimensions characterizing both the high-fidelity FE model and the

employed HROM, along with the corresponding “compression” or dimensionality reduction factors. Observe that
both the number of displacement unknowns and the number of integration points have been reduced by three orders of
magnitude. These startling compression ratios are reflected in equally astonishing speedup factors (≈2400): the 300
time steps of this example were computed in 2.5 s by the HROM, while the FE model employed 1 h and 43 min (both
in a vectorized20 Matlab program, running at 2.9 GHz with 8 GB of RAM and 4 Intel Core-i7 processors, in Linux).

Lastly, to assess the robustness of the HROM, we show in Fig. 12 the number of iterations required for convergence
of the accompanying Newton–Raphson algorithm in the case of the FE model and the HROM. Observe that, at all
time steps, the number of iterations employed by the HROM is less or equal than in finite element model (for the same
convergence tolerance).

6.2. Forced vibration of a composite plate

6.2.1. Problem set-up
We now turn our attention to the development of an HROM for the free vibration of the composite plate shown in

Fig. 13. The procedure to arrive at such a HROM is essentially the same as the one explained in the previous example;
thereby, in the interest of brevity, some details will be omitted (such as the SVD error analyses).

The plate is made of two materials: matrix and foam. The mechanical behavior of the matrix is modeled by a
rate-independent, Von Mises elastoplastic model endowed with a linear, isotropic hardening law (Em

= 100·103 MPa,

20 It should be remarked that the speedup factors are even more spectacular when standard, non-vectorized FE Matlab codes are used; in our case,
the speedup for this example rises above 18 000.
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Fig. 13. Geometry of the plate (plane strain), along with the employed FE discretization.

νm
= 0.3, σm

y = 60 MPa and Hm
= 5 MPa), while the foam inclusions are assumed to behave elastically

(E f
= 20 MPa and ν f

= 0.3). The density of the matrix and the foam, on the other hand, are ρm
= 7.75 · 103 kg/m3

and ρ f
= 0.775 kg/m3, respectively.

The finite element mesh can be also seen in Fig. 13. The number of (four-node bilinear) elements is Nelem = 17 829
(hence, M = 4 · Nelem = 71 316), and the number of nodes Nnode = 18 460. The constitutive differential equations
are integrated in time using the classical (fully implicit) backward-Euler scheme, while the momentum equation is
integrated using a Newmark β-method [43], with parameters β = 1/4 and γ = 1/2.

6.2.2. Training process
The goal of the reduced-order model in this problem is to predict the vibration behavior of the plate when the left

edge is subjected to a vertical, oscillatory displacement of the form

vl(t) =
Q

i=1

Ai sin 2π
t

T v
i

(64)

while the other edge remains free (hence, µ = {vl(t)}). In particular, we are interested in capturing the vibration
behavior when the periods of the prescribed displacement T v

i (i = 1, 2, . . . , Q) range between the first and fourth
largest natural period of the plate: T̄1 ≤ T v

i ≤ T̄4, including the possible development of plastic yielding when
T v

i ≈ T̄1 and T v
i ≈ T̄2, that is, when resonance occurs at the two largest natural periods of the structure (an

eigenvalue analysis shows that the natural periods of this structure are: T̄1 = 0.760 s, T̄2 = 0.125 s, T̄3 = 0.047 s and
T̄4 = 0.029 s).

The training process is made according to the above specifications: we set Q = 2, A1 = A2 = 2.1 · 10−3 m, and
T v

1 = 0.98 T̄1 = 0.745 s and T v
2 = 1.08 T̄2 = 0.135 s. The resulting graph of prescribed displacement versus time is

displayed in Fig. 14 (blue line).

6.2.3. First reduction stage
We run a finite element analysis in which the time domain is discretized into 6000 equally spaced steps and

store in memory the matrix of prescribed displacements Xd0 ∈ RN0×P and the matrix of unrestricted displacements
Xd ∈ RN×P (the number of restricted and unrestricted DOFs is N0 = 77 and N = 2Nnode − N0 = 36843,
respectively). Notice that spatial variation of Dirichlet boundary conditions can be described by just one parameters
(vl ), and therefore, n0 = rank(Xd0) = 1; by the same token, for external forces, n f = 0.

To obtain the basis matrix Φ for unrestricted displacements, we follow the approach described in Appendix C.1;
in this approach, the first nvib columns of Φ are the dominant natural vibration modes of the structure, while the
remaining modes are determined by a weighted SVD of the orthogonal complement of the snapshot matrix Xd . Here,
we set nvib

= 4 (to meet of the requirement outlined earlier), and n⊥ = 6. These n = 10 modes proved to be sufficient
for predicting the displacement response of the structure with an error level below 1%. This can be appreciated in



714 J.A. Hernández et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 687–722

Fig. 14. Prescribed displacements versus time employed for training and testing the HROM. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 15. Displacement of the right, top corner node versus time computed with the FE model and the ROM (using nvib vibration modes and n⊥ = 6
SVD modes).

Fig. 15, where we show the vertical displacement of the top, rightmost corner node versus time computed by the
FE model and the ROM with these n = 10 modes. To illustrate the above mentioned “attenuation” effect due to
plastic yielding, we show also in this Figure the displacement computed by the FE model had the matrix material been
entirely elastic.

6.2.4. Second reduction stage

For the second reduction stage, we adopt (as in the quasi-static example) the stress-based procedure outlined in
Appendix A: the stresses at all FE Gauss points and all time steps are stored column-wise in a snapshot matrix, and
then, the SVD-like elastic/inelastic factorization is performed on such a matrix. An error analysis revealed that, by
using 4 elastic modes and 6 inelastic modes, the truncation error is below 1%. Accordingly, we construct the required
internal force matrix X̂F using these modes (hence, X̂F has p = q · n = 10 · 10 = 100 columns). With X̂F at our
disposal, we construct the matrices J and b appearing in the objective function of the cubature optimization problem,
and finally solve such a problem by means of the greedy algorithm of Box IV.
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Fig. 16. (a) Dimensionless residual ∥r∥/V versus number of integration points for the case q = 10 (hence p = q · n = 10 · 10 = 100 internal
force modes). The portion between 95 and 102 points is shown in magnified form in logarithmic scale.

Fig. 17. Displacement of the right, top corner node versus time computed with the FE model and the HROM (using q = 10 stress modes and
m = 60, 80 and 101 integration points).

6.2.5. Empirical cubature
Fig. 16(b) contains the graph of the dimensionless residual ∥r∥/∥b∥ = ∥r∥/V versus the number of points m

(for the case p = n · q = 100). As expected, the algorithm converges to the absolute minimum (zero integration
error) at m = p + 1 = 101 points. To assess a posteriori integration errors, we compare in Fig. 17 the plots of
displacement of the top, right node versus time for the FE model and the HROM with varying number of integration
points (m = 60, 80 and 101). Inspection of these plots shows that the level of accuracy at m = 60 (residual error
around 1%) and m = 101 (residual error around 10−15) are quite similar. This observation reinforces the conclusion
made in the previous example that there is no need to exactly integrate all the internal force modes appearing in the
objective function. On the other hand, Fig. 18(a) shows the location of the elements containing the selected points
(for m = 60). Observe that around 60% of such points are located in the region near the left edge, wherein plastic
yielding is more likely to occur due to resonance-induced bending. Likewise, the value of the associated weights (as a
percentage of the total volume) is displayed in Fig. 18(b). The sum of these m = 60 weights furnishes a volume only
10−5% below the total volume.

6.2.6. Testing trajectory
It only remains to assess the capability of the HROM to predict the vibrational behavior of the plate under con-

ditions different from those used in the “calibration” (training) process. To this end, we set in Eq. (64) Q = 2,
A1 = A2 = 6.33 · 10−3 m, and in order to induce resonance, T v

1 = 1.02 T̄1 = 0.758 s (2% above the first natural
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Fig. 18. (a) Location of the m = 60 integration points chosen by the greedy algorithm (for p = 10 stress modes). (b) Weights (sort in descending
order) in % of total volume.

Fig. 19. Displacement of the right, top corner node versus time computed with the FE model and the HROM with m = 60 points. The input
displacement (prescribed on the left edge) is also shown.

period). The other constant, T v
2 , is set 60% above the second natural period (T v

2 = 1.6 T̄2 = 0.20 s). The resulting
prescribed displacement versus time graph is shown in Fig. 14 (red, dotted curve).

In Fig. 19, we show the vertical displacement of the top, rightmost corner node versus time computed by the FE
model and the HROM (with n = 10 displacement modes and m = 60 integration points). To illustrate the resonance
phenomenon, this graph is accompanied by the plot of the input displacement versus time (displacement prescribed at
the left edge). Discrepancies between the predictions of the high-fidelity, FE model (M = 71 316 integration points)
and the hyperreduced-order model (m = 60 integration points) are barely perceptible until time t ≈ 1.75 s; thereafter,
small drifts (below 5%) are detected at the peaks of the curve. Remarkably, at the end of the simulation, the HROM
error is below 1.5%. The remarkable accuracy of the HROM can be also appreciated in term of stresses, in Fig. 20,
where we display the contour plots of effective stresses (at the end of the simulation) obtained by the FEM and the
HROM (using q = 10 stress modes and m = 60 points).

7. Concluding remarks

• Robustness. One of the most attractive features of the proposed hyper-reduced order model – and in general, of
all cubature-based ROMs – is that it preserves the spectral properties of the Jacobian matrix of the finite element
motion equations. This has been corroborated by the examples shown in the preceding section. The materials of the
studied composite beams obey small strains, elastoplastic constitutive equations endowed with strain hardening,
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Fig. 20. Contour plot of effective stresses at the end of the simulation. (a) Finite element model (M = 71 316 integrations points). (b) Hyperreduced
order model (“reconstruction” using q = 10 stress modes and m = 60 integration points). Deformed shaped amplified 10 times in both cases.

and therefore, the finite element and the reduced order stiffness matrices at all Gauss points are symmetric and posi-
tive definite. Since the stiffness matrices in the HROM are positive combination of these matrices, it follows that the
HROM matrices are also symmetric and positive definite. As the graphs shown in Fig. 12 demonstrate, this trans-
lates into equally fast or even faster convergence rates of the accompanying solution algorithm (Newton–Raphson).
• Number of integration points. We have theoretically demonstrated and numerically confirmed that the number of

points needed to exactly integrate p internal force modes (plus the volume) is m = p + 1. It turn, it is shown in
Appendix A that the number of internal force modes is equal to the product of numbers of displacement and stress
modes: p = n q. Thus, it may be concluded that

n ≤ m ≤ n q + 1 (65)

(the lower bound n is dictated by well-posedness considerations, see inequality (32)). Furthermore, in most prob-
lems (specially those in which the input parameters are variations of boundary conditions), the number of stress
modes is of the same order than the number of displacement modes (q = O(n)); thus, we can say that:

n ≤ m ≤ O(n2). (66)

For instance, in the quasistatic example of Section 6.1, n = 10 and q = 12, while in the vibration problem of
Section 6.2, n = q = 10; this amounts to m = 121 and m = 101 points, respectively, for exactly integrating the
corresponding internal force modes.

Nevertheless, the a posteriori accuracy assessments for varying number of integration points carried out for
the two examples (Figs. 6 and 17) suggest that exactly integrating the chosen p modes amount to “overkill”: in
both cases cases, using around 50% and 60% of the threshold p + 1 was sufficient to deliver reasonably accurate
predictions of the pertinent outputs of interest.
• Computer implementation. Three distinct simulation codes are involved in the overall model reduction process,

namely, (1) the finite element code, employed for generating displacement snapshots (see Box I); (2) the intermedi-
ate reduced-order code, employed for generating the reduced internal force snapshots (see Box III); (3) and the final
hyperreduced-order code, Box VI, which is the one used in the “online” computations. It is noteworthy that the three
underlying problems are nothing but particular cases of Galerkin approximation method, the basic differences be-
ing the basis functions employed for the approximation and the integration rule for the evaluation of internal forces.
Indeed, the finite element model uses classical shape functions with local support, while both the ROM and the
HROM seek the solution in spaces spanned by Ritz (globally supported) basis functions. Likewise, internal forces
(and therefore stiffness matrices) are evaluated by elementwise Gauss rules in the FEM and the ROM, whereas, in
the HROM, this operation is carried by a tailored cubature scheme—the proposed Empirical Cubature Method.
• Empirical Cubature Method. A distinguishing feature of the proposed Empirical Cubature Method with respect to

similar cubature schemes is that the weights at almost all iterations of the greedy selection algorithm are calculated
with a standard, unconstrained least-squares—in fact, the nonnegative least squares problem of step 5, see Box IV,
is included to filter out small negative weights caused by roundoff errors. We have not given a formal proof of this
salient feature – it was discovered by “serendipity” –, but numerical experiments seem to suggest that it may be
attributed to the fact that basis vectors in the objection function are mutually orthogonal, and furthermore, their
volumetric averages are zero. Research in this aspect of the method is currently in progress and will be reported in
a forthcoming publication.
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Appendix A. Basis matrix for internal forces

A key step in the development of the proposed reduced-order integration scheme (see Section 4.4) is the determina-
tion of an orthogonal basis matrix Λ ∈ RM×p for the column space of matrix X̂F . The direct route to determine this ba-
sis matrix is to store the reduced internal forces at all FE integration points and all training configuration in the snapshot
matrix XF ∈ RnM×P , then use Eq. (51) to transform XF into X̂F , and finally apply the SVD to X̂F (X̂F ≈ ΛΣΛVT

Λ ).
Alternatively, in problems in which the geometry is input-parameter independent, one may obtain the basis matrix

for the internal forces from a basis matrix for the stresses. Indeed, the reduced internal force at a given FE integration
point xg is given by

f I (xg;µ) = BT
I (xg)σ (xg, µ). (A.1)

Here, BI ∈ Rs×1 denotes the reduced strain–displacement matrix for the displacement mode Φ I , and σ ∈ Rs the
Cauchy stress vector (s = 4 or 6 for 2D or 3D problems, respectively). In turn, the expression for BI reads

BI (xg) = B(e)(xg)Φ
(e)
I (A.2)

B(e)(xg) being the FE strain–displacement matrix of element e at point xg , and Φ(e)
I the entries of Φ I corresponding

to the degrees of freedom of element e (e denotes the index of the finite element containing the integration point xg).
Since the geometry is input-independent, BI is also independent21 of µ; thus, it is solely the stresses that depend on the
input parameters. The dimensionality reduction effort can be thereby concentrated on the matrix of stress snapshots,
constructed by collecting the stress vectors for all FE integrations points and all training configurations as follows:

Xσ :=

S1 S2

· · · S P

, (A.3)

where S j
∈ Rs M is formed by stacking the stress vector at all FE integration points in a single column vector:

S j
:=


σ j (x1)

σ j (x2)

...

σ j (xM )

 . (A.4)

Suppose that the SVD is applied to Xσ , and let Ψ ∈ Rs M×q and {λ̄i }
q
i=1 denote the corresponding left singular

vector matrix (of rank q) and their associated singular values, respectively. Ψ (with each column multiplied by its
corresponding singular values) can be construed as a “compressed” matrix of stress snapshots, and, accordingly, one
may calculate the required internal forces matrix XF using this compressed version; a generic column of XF calculated
this way is given by

F j
I =




W1BT
I (x1)λ̄ jΨ j (x1)

W2BT
I (x2)λ̄ jΨ j (x2)

...
WM BT

I (xM )λ̄ jΨ j (xM )

 , I = 1, 2, . . . , n, j = 1, 2, . . . , q. (A.5)

21 This assertion is only true in small strains. To derive a similar decomposition for large strains problems, one has to replace the Cauchy stress
vector σ by the first Piola–Kirchhoff stress vector.
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Notice that the size of the “compressed” matrix XF is M × q n, i.e., the number of columns of XF is equal to the
product of two reduced dimensions: the number of displacement modes n and the number of stress modes q .

The benefits of using this alternative method based on determining the dominant stress modes are twofold. Firstly,
memory requirements are drastically reduced, since one need not allocate additional memory for storing the reduced
internal forces at all FE points and for all training configurations. Secondly, as opposed to the snapshot matrix of
reduced internal forces, the snapshot matrix of stresses is independent of the reduced dimensions of the problem. As
a consequence, for problems in which n > s, it proves more advantageous in terms of computational cost to apply
the SVD to the stress matrix Xσ rather than to the internal force matrix X̂F . Besides, in problems in which the output
of interest depends on stress quantities, the stress basis matrix Ψ is needed for reconstructing the stress field anyway,
and therefore, this stress-based strategy would not involve additional computational effort.

Appendix B. Partitioned SVD

For large snapshot matrices, attempting to directly calculate the Singular Value Decomposition (SVD) may exceed
the memory capabilities of the computer at hand. In what follows, we propose an (approximate) method for calculating
the SVD that precludes the necessity of manipulating the whole matrix, and, therefore, can help in diminishing mem-
ory requirements. The method is based on the observation that, in general, contiguous columns within the snapshot
matrix exhibit high degree of linear correlation.

Suppose we wish to approximate the truncated SVD of rank n of a matrix X ∈ RN×P (with N ≥ P , and n ≪ P).
The expression for the exact factorization reads

X = UΣVT
+ E, (B.1)

where U ∈ RN×n , Σ ∈ Rn×n and V ∈ RP×n are the truncated matrices of left singular vectors, singular values, and
right singular vectors, respectively; E, on the other hand, stands for the contribution of the discarded singular values
(if any). We begin by partitioning X into Q block matrices as follows

X =

X1 X2 · · · XQ


. (B.2)

Next, we apply the SVD on each block matrix Xi (i = 1, 2, . . . , Q), retaining only the first ri = min (rank(Xi ), n)

singular values:

Xi = UiΣ i VT
i + Ēi (i = 1, 2, . . . , Q) (B.3)

Ui ∈ RN×ri , Σ i ∈ Rri×ri and Vi ∈ RP×ri being the truncated matrices of left singular vectors, singular values, and
right singular vectors, respectively (and Ēi the matrix corresponding to the discarded, if any, trailing singular values).
Substitution of Eq. (B.3) into Eq. (B.2) yields

X =

U1Σ 1VT

1 U2Σ 2VT
2 · · · UQΣ QVT

Q


+ Ē, (B.4)

where Ē =

Ē1 Ē2 · · · ĒQ


. The above expression can be rearranged as follows

X =

X̄  
U1Σ 1 U2Σ 2 · · · UQΣ Q


V̆T  

VT
1 0 0 0

0 VT
2 0 0

0 0
. . . 0

0 0 0 VT
Q

 +Ē

= X̄V̆T
+ Ē,

(B.5)

where X̄ ∈ RN×r and V̆ ∈ RP×r , with r =
Q

i=1 ri ≤ nQ. The final step consists in obtaining the truncated SVD of
X̄ (of rank n)

X̄ = ŪS̄V̄T
+ Ĕ, (B.6)
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where Ū ∈ RN×n , S̄ ∈ Rn×n and V̄ ∈ Rr×n . Introducing the above factorization into Eq. (B.5), and moving the error
terms to the left-hand side, we finally get

X− (Ē+ Ĕ) = ŪS̄V∗T
, (B.7)

where V∗T
:= V̄T V̆T . Note that both V̆ and V̄ are columnwise orthonormal matrices; it follows thus that V∗ exhibits

also this property; indeed

V∗T V∗ = V̄T (V̆T V̆)V̄ = V̄T (I)V̄ = I (B.8)

(I ∈ Rn×n is the identity matrix). Since both Ū and S̄ arise from an SVD, and therefore, are columnwise orthonormal
and diagonal with positive entries, respectively, it follows from the uniqueness of such a decomposition that the
factorization ŪS̄V∗T appearing in Eq. (B.7) is indeed the SVD of the matrix X − (Ē + Ĕ). Hence, ŪS̄V∗T can be
regarded as an approximation (of order O(∥Ē + Ĕ∥)) to the truncated SVD of rank n of matrix X. Notice that, if
n = rank(X), then Ē = Ĕ = 0, and the described method would provide the exact factorization.

Concerning the memory saves provided by this approximated SVD, notice that it requires Q independent SVDs of
matrices of size, on average, N × P

Q , and one additional SVD over a matrix of size N × r , with r ≤ nQ. So, the larger
matrix to be manipulated has only r ≤ nQ columns—recall that n ≪ P by hypothesis.

Appendix C. Elastic/inelastic dimensionality reduction

Let X ∈ RN×n be a snapshot matrix, of either displacement, internal forces, or stresses, and let us decompose this
matrix as X =


Xe Xi


, where Xe and Xi stand for the block matrices corresponding to solutions in the elastic and

inelastic ranges, respectively. We seek an SVD-like factorization X = ŪS̄V̄T (with Ū and V̄ orthonormal matrices,
and S̄ diagonal with positive entries) such that the first nel columns of Ū form a basis matrix for the column space of
the elastic matrix Xe.

To this end, we first compute a generic orthogonal basis matrix D ∈ RN×nel
for the column space of Xe (using, for

instance, the SVD itself), and then obtain the matrix arising from projecting X onto the space spanned by D:

X̄e := D(DT X). (C.1)

In doing so, we can write

X = X̄e + X̄i , (C.2)

where X̄i := X − X̄e. Finally, introducing the SVD of both X̄e and X̄i in the preceding equation, we arrive at the
desired factorization22

X = ŪeS̄eV̄e + Ūi S̄i V̄i =

Ū  
Ūe Ūi

 S̄  
S̄e 0
0 S̄i

 V̄T  
V̄T

e
V̄T

i


= ŪS̄V̄T .

(C.3)

This strategy proves specially advantageous in those small strains, quasi-static problems in which the set of input
parameters solely embodies variations of boundary conditions and external forces. Indeed, in such cases, the elastic
response can be captured exactly by23 nel

= n0+n f elastic modes and, therefore, by taking n ≥ nel , the reduced-order
model is guaranteed to deliver elastic solutions with the same accuracy as the underlying (full-order) finite element
model—in other words, only the solution in the inelastic range is subject to approximation.

22 Alternatively, when the sole variable of interest is the matrix of left singular vectors Ū, the inelastic modes may be obtained by simply
calculating the SVD of Xi − D(DT Xi ).
23 Here, n0 and n f denote the number of parameters used to characterize the Dirichlet boundary conditions and external forces, respectively (see

Section 3.2).
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C.1. Modal analysis combined with SVD

In small strains, nonlinear vibration problems, a similar decomposition may offer some benefits when seeking
dominant displacement modes; however, instead of employing as elastic modes the dominant left singular vectors
arising from an SVD of the elastic snapshots, it proves more consistent to use the first nvib natural vibrational
modes (those with lowest frequencies), and determine the remaining modes using a “weighted SVD” (one that uses
as minimization norm the mass matrix Mh). The procedure can be sketched as follows: suppose that, after solving
the corresponding eigenproblem, we have at our disposal the first nvib natural vibration modes, denoted henceforth
by Φvib (these modes are assumed to be Mh-orthogonal). To determine the remaining n⊥ = n − nvib displacement
modes, designated by Φ⊥, we obtain first the Cholesky decomposition of the mass matrix Mh , i.e., Mh

= M̄hT M̄h ,
and then compute the truncated SVD (of rank n⊥) of the matrix defined as

X̄ = M̄h


Xd −Φvib(ΦvibT
MhXd)


. (C.4)

The desired basis matrix Φ⊥ finally emerges from making

Φ⊥ = M̄h−1Ū, (C.5)

Ū ∈ RN×n⊥ being the matrix of left singular vectors arising from the above mentioned SVD. It is easily seen that the
resulting basis matrix for displacements

Φ =

Φvib Φ⊥


(C.6)

is Mh-orthonormal. Indeed, by definition, ΦvibT
MhΦvib

= I. Likewise, from Eq. (C.5), it follows that

Φ⊥
T

MhΦ⊥ =


M̄h−1Ū
T 

M̄hT M̄h
 

M̄h−1Ū


= ŪT


M̄h−T M̄hT
 

M̄h−1M̄h


Ū

= ŪT Ū = I. (C.7)

To complete the proof, it only remains to demonstrate that Φ⊥
T

MhΦvib
= 0. Since the column space of Φ⊥ is but a

subspace of the column space of M̄h−1X̄, this demonstration boils down to showing that ΦvibT
Mh(M̄h−1X̄) = 0:

ΦvibT
Mh(M̄h−1X̄) = ΦvibT

Mh


Xd −Φvib(ΦvibT
MhXd)



= ΦvibT
MhXd −

I  
ΦvibT

MhΦvib(ΦvibT
MhXd)

= 0. (C.8)

The advantage of this way of determining the displacement modes is that it ensures that the free, elastic vibration
behavior corresponding to the first nvib vibration modes is exactly captured—independently of the input parameters
employed in the training process.
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