25 research outputs found

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa

    Improving WalkSAT for Random 3-SAT Problems

    Get PDF
    Stochastic local search (SLS) algorithms are well known for their ability to efficiently find models of random instances of the Boolean satisfiability (SAT) problems. One of the most famous SLS algorithms for SAT is called WalkSAT, which has wide influence and performs well on most of random 3-SAT instances. However, the performance of WalkSAT lags far behind on random 3-SAT instances equal to or greater than the phase transition ratio. Motivated by this limitation, in the present work, firstly an allocation strategy is introduced and utilized in WalkSAT to determine the initial assignment, leading to a new algorithm called WalkSATvav. The experimental results show that WalkSATvav significantly outperforms the state-of-the-art SLS solvers on random 3-SAT instances at the phase transition for SAT Competition 2017. However, WalkSATvav cannot rival its competitors on random 3-SAT instances greater than the phase transition ratio. Accordingly, WalkSATvav is further improved for such instances by utilizing a combination of an improved genetic algorithm and an improved ant colony algorithm, which complement each other in guiding the search direction. The resulting algorithm, called WalkSATga, is far better than WalkSAT and significantly outperforms some previous known SLS solvers on random 3-SAT instances greater than the phase transition ratio from SAT Competition 2017. Finally, a new SAT solver called WalkSATlg, which combines WalkSATvav and WalkSATga, is proposed, which is competitive with the winner of random satisfiable category of SAT competition 2017 on random 3-SAT problem

    Effect of Initial Assignment on Local Search Performance for Max Sat

    Get PDF
    In this paper, we explore the correlation between the quality of initial assignments provided to local search heuristics and that of the corresponding final assignments. We restrict our attention to the Max r-Sat problem and to one of the leading local search heuristics - Configuration Checking Local Search (CCLS). We use a tailored version of the Method of Conditional Expectations (MOCE) to generate initial assignments of diverse quality. We show that the correlation in question is significant and long-lasting. Namely, even when we delve deeper into the local search, we are still in the shadow of the initial assignment. Thus, under practical time constraints, the quality of the initial assignment is crucial to the performance of local search heuristics. To demonstrate our point, we improve CCLS by combining it with MOCE. Instead of starting CCLS from random initial assignments, we start it from excellent initial assignments, provided by MOCE. Indeed, it turns out that this kind of initialization provides a significant improvement of this state-of-the-art solver. This improvement becomes more and more significant as the instance grows

    Local Search For SMT On Linear and Multilinear Real Arithmetic

    Full text link
    Satisfiability Modulo Theories (SMT) has significant application in various domains. In this paper, we focus on quantifier-free Satisfiablity Modulo Real Arithmetic, referred to as SMT(RA), including both linear and non-linear real arithmetic theories. As for non-linear real arithmetic theory, we focus on one of its important fragments where the atomic constraints are multi-linear. We propose the first local search algorithm for SMT(RA), called LocalSMT(RA), based on two novel ideas. First, an interval-based operator is proposed to cooperate with the traditional local search operator by considering the interval information. Moreover, we propose a tie-breaking mechanism to further evaluate the operations when the operations are indistinguishable according to the score function. Experiments are conducted to evaluate LocalSMT(RA) on benchmarks from SMT-LIB. The results show that LocalSMT(RA) is competitive with the state-of-the-art SMT solvers, and performs particularly well on multi-linear instances

    An Iterative Path-Breaking Approach with Mutation and Restart Strategies for the MAX-SAT Problem

    Full text link
    Although Path-Relinking is an effective local search method for many combinatorial optimization problems, its application is not straightforward in solving the MAX-SAT, an optimization variant of the satisfiability problem (SAT) that has many real-world applications and has gained more and more attention in academy and industry. Indeed, it was not used in any recent competitive MAX-SAT algorithms in our knowledge. In this paper, we propose a new local search algorithm called IPBMR for the MAX-SAT, that remedies the drawbacks of the Path-Relinking method by using a careful combination of three components: a new strategy named Path-Breaking to avoid unpromising regions of the search space when generating trajectories between two elite solutions; a weak and a strong mutation strategies, together with restarts, to diversify the search; and stochastic path generating steps to avoid premature local optimum solutions. We then present experimental results to show that IPBMR outperforms two of the best state-of-the-art MAX-SAT solvers, and an empirical investigation to identify and explain the effect of the three components in IPBMR

    Proceedings of SAT Competition 2014 : Solver and Benchmark Descriptions

    Get PDF
    Peer reviewe
    corecore