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Abstract 

Focused random walk (FRW) is one of the most influential paradigm of stochastic local search (SLS) algorithms for the 

propositional satisfiability (SAT) problem. Recently, an interesting probability distribution (PD) strategy for variable selection 

was proposed and has been successfully used to improve SLS algorithms, resulting in state-of-the-art solvers. However, most 

solvers based on the PD strategy only use polynomial function (PoF) to handle the exponential decay and are still unsatisfactory in 

dealing with medium and huge k-SAT instances at and near the phase transition. The present paper is focused on handling all 

k-SAT instances with long clauses. Firstly, an extensive empirical study of one state-of-the-art FRW solver WalkSATlm on a wide 

range of SAT problems is presented with the focus given on fitting the distribution of the break value of variable selected in each 

step, which turns out to be a Boltzmann function. Using theses case studies as a basis, we propose a pseudo normal function (PNF) 

to fit the distribution of the break value of variable selected, which is actually a variation of the Boltzmann function. In addition, a 

new tie-breaking flipping (TBF) strategy is proposed to prevent the same variable from being flipped in consecutive steps. The 

PNF based PD strategy combined with the TBF strategy lead to a new variable selection heuristic named PNF-TBF. The PNF-TBF 

heuristic along with a variable allocation value (Vav) function are used to significantly improve ProbSAT, a state-of-the-art SLS 

solver, leads to a new FRW algorithm dubbed PNFSat, which achieves the state-of-the-art performance on a broad range of huge 

random 7-SAT instance near the phase transition as demonstrated via the extensive experimental studies. Some further improved 

versions on top of PNFSat are presented respectively, including PNFSat_alt, which achieves the state-of-the-art performance on 

the medium 7-SAT instances at the phase transition; PN&PoFSat, which achieves the state-of-the-art performance on a broad range 

of random 5-SAT benchmarks; as well as an integrated version of these three algorithms, named PDSat, which achieves the 

state-of-the-art performances on all huge and medium random k-SAT instances with long clauses as demonstrated via the 

comparative studies using different benchmarks.  
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1 Introduction 

The propositional satisfiability (SAT) problem is one of the 

most widely studied NP-complete problems and plays an 

outstanding role in many domains of computer science and 

artificial intelligence due to its significant importance in both 

theory and applications [1]. Considering a propositional 

formula F in the Conjunctive Normal Form (CNF) defined on a  

set of Boolean variables, the SAT problem asks whether there 
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exists a truth assignment to the variables of F that satisfies all 

clauses in F. The SAT problem is fundamental in solving many 
practical problems in combinatorial optimization, statistical 

physics, circuit verification, mathematical logic, machine 

learning, constraint satisfaction, real-time scheduling, and 

computing theory [2]. 

Since SAT solving is a practical domain, we need SAT 

instances to test different algorithms. The uniform random 

k-SAT instances are a well-studied category of SAT. The class 

of random k-SAT instances is a relatively unbiased sample for 

algorithms [3]. Random k-SAT instances remain very difficult. 

Indeed, such instances are challenging for all kinds of 

algorithms and by controlling the instance sizes and the 

clause-to-variable ratios, they provide adjustable hardness 

levels to assess the solving capabilities. Moreover, the 

performance of algorithm is usually stable on random k-SAT 

instances, either good or bad. Actually, the class of random 

k-SAT instances is one of the three main tracks in the 

well-known SAT competitions [4]. 

There are many optimization algorithms dedicated to 

different SAT solvers to solving SAT problems, which are 

divided into two main classes: one is complete, the other is 

incomplete. Complete algorithms are mainly based on DPLL [5, 

6] and resolution principle [7]. The incomplete SAT solvers are 

mainly based on stochastic local search (SLS) algorithms 

which are among the best- known methods currently available 
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for solving types of SAT problems. Although the incomplete 

SAT solvers cannot guarantee either to find the solutions or 

prove a given Boolean formula unsatisfiable, some of them are 

surprisingly more effective than state-of-the-art complete 

solvers on finding models of satisfiable formulae for random 

k-SAT instances [8]. SLS strategies can also be applied to 

solving traveling salesman problems by optimizing ant colony 

algorithm [9]. 

An SLS algorithm starts by generating randomly a truth 

assignment of the variables of F. Then it explores the search 

space to minimize the number of falsified clauses. To do this, it 

iteratively flips the truth value of a variable selected according 

to some heuristic at each step until it seeks out a solution or 

timeout. Hence, there are two main factors affecting SLS 

algorithms, one is to generate a complete initial assignment, 

and the other is a variable selection heuristic.  

Among random k-SAT instances, random 3-SAT ones 

exhibit some particular statistical properties and are easy to 

solve, for example, by SLS algorithms and a statistical physics 

approach called Survey Propagation [37]. It has been shown 

that the famous SLS algorithm WalkSAT [36] scales linearly 

with the number of variables for random 3-SAT instances near 

the phase transition. The state-of-the-art FrwCB solves random 

3-SAT instances near the phase transition (at ratio 4.2) with 

millions of variables within 2-3 hours [12]. 

However, random k-SAT instances with long clauses remain 

very difficult, and the performance of SLS algorithms on such 

instances has stagnated for a long time. Indeed, such instances 

are challenging for all kinds of algorithms, including the 

Survey Propagation algorithm, which solves random 3-SAT 

instances extremely fast [37]. Recently, a few progresses such 

as, CScoreSAT [32], ProbSAT [18] and YalSAT [10], have 

been made in this direction. In particular, when solving random 

instances near the phase transition, CScoreSAT is good at 

k-SAT with k>3, and ProbSAT is good at solving random 

5-SAT and 7-SAT instances, and the YalSAT algorithm is good 

at solving random 5-SAT instances.  

Most SLS solvers improve different variable selection 

heuristics to develop algorithms. Heuristics in SLS algorithms 

for SAT can be divided into two categories: two-mode SLS 

algorithms and focused random walk (FRW) algorithms. 

Recent solvers usually combine these two kinds of heuristics, 

such as the winners of random satisfiable category of SAT 

Competition 2017 and the silver award of random satisfiable 

category of SAT competition 2016 namely YalSAT [10] and 

CSCCSat [11]. 

FRW algorithms always select a variable to be flipped from 

an unsatisfied clause chosen randomly in each step [12]. On 

solving random k-SAT instances, FRW framework performs 

better than others. WalkSAT, regarded as the first FRW 

algorithm, firstly uses both noise factor and random walk 

strategy, then utilizes greedy strategy and still shows 

state-of-the-art performance in solving 3-SAT instances. 

WalkSATlm [13, 34] implemented several variants of 

WalkSAT’s algorithm, and took a large step towards improving 

SLS algorithm for random k-SAT instances with k> 3. 

FrwCBlm [3] implemented a completely new configuration 

checking (CC) strategy based on clause states and showed great 

efficiency and robustness on random k-SAT instances with k>3. 

Recently, one two-mode algorithm based on an interesting 

probability distribution (PD) strategy for variable selection had 

been proposed to handle the random k-SAT instances, resulting 

in an efficient two-mode algorithm, such as Sparrow [15], 

which is the winner of random satisfiable track of SAT 

competition 2011. Whereas previous heuristics select the 

flipping variable based on variables properties, the PD strategy 

takes the circumstance of the variable into account. The PD 

strategy for SAT in the literature [16] selects a variable x to be 

flipped by deciding whether it has the best make or the lowest 

break in an unsatisfied clause chosen randomly. Moreover, the 

experimental results in the literature [16] indicate that the FRW 

algorithms based on PD strategy dubbed ProbSATsc13, is more 

effective than two-model SLS algorithms and the winner of the 

random satisfiable track of SAT competition 2013. Afterwards, 

the PD heuristic has been further developed, such as 

polypower1.0 [17], which is the fourth place of random 

satisfiable track of SAT competition 2016; YalSAT [10], which 

implements several variants of ProbSAT’s algorithm, and win 

the random satisfiable track of SAT competition 2017; 

ProbSAT [18], which is the second-ranked solver among the 

SLS solvers in terms of capability for the SAT competition 

2018.  

The literature [16] has showed that the exponential delay in 

probability with growing break value might be too strong in the 

case of 3-SAT, so the PD strategy selects a variable x to be 

flipped according to the polynomial function (PoF) of break 

value, and picks a variable x to be flipped according to the 

exponential function of break value for k-SAT with k>3. The 

FRW algorithm polypower1.0 [17] also deals with exponential 

decay in some sense, and it uses a PoF to solve random k-SAT 

instances. However, there are some limitations in previous 

FRW algorithms based on the PD strategy, which only use PoF 

to handle the exponential decay for random k-SAT instances, 

and thus lose their power, especially for solving random k-SAT 

instances with k>3. Empirical evidences, which present the 

ineffectiveness of the PD strategy only based on the PoF, can be 

found in Section 6. In this paper, we propose a new fitting 

function strategy that works much better on the problem of 

exponential delay. 

The first contribution of the present work is summarized 

below: we use an internationally renowned FRW algorithm 

WalkSATlm [13] to test all medium and huge random k-SAT 

instances from SAT competition 2017 and 2018, with the aim 

to fit the distribution of the average ratio of the total times of 

variables corresponding to each break value in all variables 

selected and the total times of variables corresponding to each 

break value in all randomly unsatisfied clauses selected in the 

solution process for all random k-SAT instances that can be 

solved by WalkSATlm, while the fitting function is consistent 

with the so-called Boltzmann function. Since WalkSATlm 

utilizes the noise strategy, there is a certain probability that the 

variables are randomly selected. We found that the smaller the 

probability in the noise strategy is, the smaller the error 

between the distribution of the ratio of break value and the 
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Boltzmann function is. 

The second contribution of the present work is to adapt the 

fitting function to make it applicable to FRW algorithms. A 

new alternative PD strategy based on a new probability 

function, called pseudo normal function (PNF), is proposed. 

Then we propose a new variable selection heuristic, called 

PNF-TBF, which combines the PNF and a new tie-breaking 

flipping (TBF) strategy in a subtle way. Then we combine 

PNF-TBF with the recently proposed variable allocation value 

(Vav) function [20], resulting in a new FRW algorithm named 

PNFSat. The experiments show that PNFSat exhibits the best 

performance on huge random 7-SAT instances. Further 

analysis for PNFSat indicates that the new tie-breaking strategy 

is not suitable for solving medium 7-SAT instances at the 

threshold ratio of the solubility phase transition, but the 

alternation version PNFSat_alt (PNFSat without the new 

tie-breaking strategy) significantly outperforms its FRW 

competitors (which are based on the PD strategy), namely 

ProbSAT [18] and YalSAT [10] as well as the currently best 

two-mode SLS solver Score2SAT [19] on such instances. 

The third contribution of the present work is to improve the 

performance of PNFSat on solving medium and huge random 

5-SAT instances with various ratios and sizes. Based on the 

Boltzmann function, we propose two new variable selection 

heuristics called PN-PoF and Po-PNF respectively, which 

reflects a combined use of both PN-PoF and Po-PNF on top of 

PNFSat, leading to a new FRW algorithm dubbed PN&PoFSat.  

Significantly improving PNFSat, PN&PoFSat achieves 

state-of-the-art performance on random 5-SAT instances. 

Furthermore, our experiments show that PN&PoFSat exhibits 

the best performance on huge and medium random 5-SAT 

instances in terms of total success runs. 

Additionally, the fourth contribution of the present work is 

that we combine PNFSat, PNFSat_alt and PN&PoFSat, leading 

to a new flexible FRW algorithms called PDSat. Our 

evaluations present that PDSat dramatically outperforms 

state-of-the-art SLS solvers on all huge and medium random 

k-SAT instances with long clauses, including FRW algorithms 

namely WalkSATlm, YalSAT and ProbSAT, and two-mode 

SLS algorithms namely Sparrow [15], DCCASat [21], 

CSCCSat [11], and Score2SAT. 

Finally, we provide discussions about the implementation of 

the PDSat algorithm in our work, and do further empirical 

analyses on comparing PoF, PNF, PN-PoF and Po-PNF, Vav 

function, and the new TBF mechanism. According to our 

observations, PoF loses its effectiveness when applying to the 

problem of exponential decay on random k-SAT instances with 

long clauses, and to the best of our knowledge, PDSat is 

currently the only PD strategy that can be used to improve the 

problem of exponential decay and the performance of PD 

strategy based FRW algorithms. 

This paper is structured as follows. In Section 2, we provide 

some necessary preliminaries. Section 3 discusses the fitting 

function of the break value of variables selected in WalkSATlm, 

i.e., a Boltzmann function. In Section 4, we propose the new 

PNF distribution of the break value of variable selected, which 

is actually a variation of the Boltzmann function. In Section 5, a 

new TBF strategy is proposed, followed by the PNF-TBF 

heuristic based on the PNF and TBF, which led to a new FRW 

algorithm called PNFSat, an alternative version of PNFSat, 

called PNFSat_alt is also provided, their performances are 

demonstrated with the detailed experimental studies. In Section 

6, we propose the Po-PNF heuristic and PN-PoF heuristic, and 

introduce the PN&PoFSat algorithm which reflects a combined 

use of the above two heuristics on top of PNFSat. The empirical 

results of PN&PoFSat are also provided. Section 7 discusses 

the integrated algorithm of PNFSat, PNFSat_alt and 

PN&PoFSat, called PDSat, along with its experimental 

evaluation. Further discussions on the approximate 

implementation of PDSat and empirical analyzes on PNF, 

Po-PNF, PN-PoF, PoF, Vav function and the new TFB scheme 

applied to FRW algorithms are demonstrated in Section 8. 

Finally, Section 9 concludes the paper and lists some future 

work. 

2 Preliminaries 

A formula F of the SAT is defined by a pair F=(X, C) such that 

X={x1, x2,…, xn} is a set of n Boolean variables (their values 

belong to the set {true, false}) and C={c1, c2, …, cn} is a set of 

m clauses. A clause ci ϵ C is a disjunction of literals and a literal 

is either a variable xi (which is called positive literal) or its 

negation ¬xi (which is called negative literal). We define 

C(x)={c | c is a clause which x appears in}. A clause can also be 

represented by the set of its literals. For a set of literals L, var(L) 

is the set of the variables in L. Accordingly, var(ci) is the set 

containing the variables appearing in ci. The size of a clause ci 

is the number of its literals and it is denoted by | ci| =| var(ci)|. 

If the size of each clause in C is equal to k (∀ci ϵ C, | ci|=k) then 

the instance is a k−SAT instance and r = m/n is its clause-to- 

variable ratio. An instance F=c1˄c2˄…˄cm is a conjunction of 

clauses.  
A satisfying assignment  for a formula F is an assignment 

to its variables such that the formula evaluates to true.  If xi is 

true by  then xi belongs to  (otherwise ¬xi ϵ ). A set of all 

unsatisfied clauses under a complete assignment a for a formula 

F is defined by unsat(). Given an instance F, the SAT problem 

is to find a satisfying assignment or prove that none exists. A 

literal l is said to be satisfied by the current value of the variable 

 if l ϵ  and falsified if ¬l ϵ . A clause is satisfied by  if at 

least one of its literals is true literal and falsified otherwise. A 

clause is t-satisfied if and only if it includes exactly t true 

literals under  [13]. A solution of F is an assignment that 

satisfies all the clauses of F.  

The SLS algorithm generally generates a random complete 

assignment. Recently, the variable allocation value (Vav) 

function [31] is proposed to generate a greedy initial 

assignment. The Vav function of a variable x is the number of 

occurrences of literal x divided by the number of occurrences of 

literal ⌐x. If the Vav function of the variable x is greater than the 

specified parameter, the initial assignment of the variable x is 

true; if the Vav function of the variable x is less than another 

specified parameter, the initial the initial assignment of the 
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variable x is false; otherwise the initial assignment of the 

variable x is assigned randomly. 

In each step, the mainly variable x properties used by SLS 

algorithms for SAT are make(x) [13], [22] and break(x) [23], 

which are the number of clauses that would become satisfied 

and unsatisfied respectively, if variables x were to be flipped. 

Usually, SLS algorithms for random k-SAT instances select a 

variable x to be flipped based on its properties of score(x) [24], 

[25], [26] and age(x) [27]. A scoring function which can be a 

simple property or any mathematical expression with one or 

more properties measures the increase in the number of 

satisfied clauses by flipping x, and score(x) is defined as 

make(x)−break(x). age(x) is defined as the number of steps 

since the variable x was last flipped.  

2.1 Probability distribution strategy review 

Probability distribution (PD) techniques have proven 

successful in FRW algorithms [10], [15], [17], [18]. PD 

strategy is based on the PoF, which aims to handle the cycling 
problem in local search [18]. When algorithms based on PD 

strategy reached a local minimum, they compute a PD on the 

variables from an unsatisfied clause. In the context of SAT, 

originally state in the literature [15], given a formula F and a 

complete assignment , the probability distribution of a 

variable x takes into account the difference between the score(x) 

and the age(x) of variables. 

In addition to FRW SLS algorithms based on PD strategy, 

previous SLS algorithms for SAT always utilize the greedy 

strategy. They usually select the flipping variable according to 

the properties of variables x, such as make(x), break(x), 

score(x), and circumstance information [28], [29], [30]. Greedy 

strategy is easy to fall into the local minimum. However, 
compare with other state-of-the-art SLS algorithms, PD based 

ones need neither noise nor a random walk or greedy strategy to 

escape efficiently from cycles. The PD strategy is a simple and 

efficient method [15]. This is the essential difference between 

the PD strategy and previous works. 

2.2 ProbSAT review 

In this section, we briefly review the ProbSAT algorithm [18], 

which serves as the basic of our proposed algorithms in the later 

sections. The ProbSAT algorithm is a recent milestone in local 

search for solving SAT. Just after it was proposed, it becomes 

the basic framework of Dimetheus and YalSAT. Yalsat won the 

random track of SAT Competition 2017, Dimetheus won the 

RSC 2014 and 2016. 

The PD strategy used in ProbSAT is based on a polynomial 

function or an exponential shape, f(x, ), as listed below 

respectively: 

𝑓(𝑥,) = (ℇ + 𝑏𝑟𝑒𝑎𝑘(𝑥,))
−𝑐𝑏

                     (1) 

or 

𝑓(𝑥,) = (𝑐𝑏)−𝑏𝑟𝑒𝑎𝑘(𝑥,)                               (2) 

where 𝑐𝑏  and ℇ are two parameters. 

The pseudo-code of ProbSAT is described in Algorithm 1 

and can be found in the literature [18].  

Agorithm 1:  ProbSAT algorithm 

Input: CNF-formula F, MaxTries, MaxSteps 

    Output: A satisfying assignment  of F, or “UNKNOWN” 

1  begin 

2         for i = 1 to MaxTries do 

3                 ←a generated truth assignment randomly for F;  

4                for j = 1 to MaxSteps do                         

5                         if  satisfies F then Return ; 

6                          C ←an unsatisfied clause chosen at random; 

7                          for x in C do 

8                                  compute f (x, ); 

9                                  x ←random variable x according to probability 
𝑓(𝑥,)

∑ 𝑓(𝑧,)𝑧∈𝐶
; 

10                        end for 

11                          ←  with x flipped; 

12               end for 

13         end for 

14      Return “UNKNOWN”; 

15 end 

 

In the beginning, ProbSAT algorithm performs the first loop 

until it finds a satisfying assignment or reaches the first limited 

steps denoted by MaxTries. Then ProbSAT algorithm generates 

a complete assignment  randomly as the initial assignment 

(line 3 in Algorithm 1). Then ProbSAT algorithm starts the 

second loop until a satisfying solution is found or reaches the 

second limited steps denoted by MaxSteps. During the search 

process, ProbSAT algorithm selects an unsatisfied clause 

randomly (line 6 in Algorithm 1), and then ProbSAT tries to 

select a flipping variable based on probability (line 7-10in 

Algorithm1) to be flipped (line 11 in Algorithm 1). Finally, 

once the search process terminates, the ProbSAT reports  as 

the solution; otherwise, ProbSAT reports UNKNOWN. 

ProbSAT algorithm explores the search space to minimize 

the number of unsatisfied clauses. To do this, it is natural for 

ProbSAT algorithm to select a variable to be flipped.  

3 Boltzmann fitting function of break value in 

WalkSATlm 

WalkSATlm is a typical and state-of-the-art FRW algorithm, 

which utilizes greedy strategy and random walk. As 
WalkSATlm and PD strategy based algorithms are two 

completely different FRW algorithms, a natural question is 

whether there exists an alternative function which can reflect 

the dynamics of the variable in the solution process of 

WalkSATlm, and can also be used to guide the solution of the 

PD strategy based algorithms. The literature [16] has shown 

that break value is the best important factor and PD strategy can 

even do without the make value completely. Hence, in this 

section we only fit the distribution of break value of variables 

selected by WalkSATlm.  

3.1 Experiment preliminaries 

To test WalkSATlm, we set up four benchmarks:  

1) 7-SAT_huge: The benchmark contains all 40 huge 

random 7-SAT instances from SAT Competition 20171  and 

 
1https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/  
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SAT Competition 2018 2  ( 16.0 19.8r  , n= 250000, two 

instances each size).  

2) 7-SAT_medium: The benchmark includes all 50 medium 

random 7-SAT instances ( 87.79r = , 90≤n≤ 168, one instance 

each size except for 11 instances of n=120) from SAT 

Competitions 2017 and 2018.  

3) 5-SAT_huge:  The benchmark contains all 40 huge 

random 5-SAT instances ( 16.0 19.8r  , n=250000, two 

instances each size) from SAT Competition 2017 and SAT 

Competition 2018.  

4) 5-SAT_medium: The benchmark includes all 50 medium 

random 5-SAT instances ( 21.117r = , 220≤n≤ 590, one 

instance each size except for 11 instances of n=250) from SAT 

Competitions 2017 and 2018. 

The binary of WalkSATlm is downloaded from the webpage 

of SAT Competition 20163.  

In this paper, all experiments are carried out on a machine 

under a 64-bit Ubuntu Linux Operation System, using 2 cores 

of Intel(R) Core (TM) i3-3240M 3.4 GHz CPU. WalkSATlm is 

performed for ten runs on each instance within 2000s. 

3.2 Fitting function of break value in WalkSATlm 

In this section, we fit the distribution of the average ratio of the 

total times of variables corresponding to each break value in all 

variables selected and the total times of variables 

corresponding to each break value in all randomly unsatisfied 

clauses selected in the solution process for all random k-SAT 

instances with long clauses that can be solved by WalkSATlm, 

and the results are shown in Figs. 1-4. The boxes in Figs. 1-4 

are the detailed information of the fitting function. When the 

break value is greater than 19, the average ratio is 0, so we have 

done a uniform sampling of break values belong to [0, 19]. 

 

 
Fig. 1.  Average ratio of the average times of break value in all variables 

selected and the average times of break value in all randomly unsatisfied 

clauses selected. All black squares refer to the discrete distribution of the 

average break value ratio of all 7-SAT_huge benchmark solved within the time 

limit. The curve is the fitted distribution of all discrete points.  

 
2http://sat2018.forsyte.tuwien.ac.at/  
3https://baldur.iti.kit.edu/sat-competition-2016/  

 
Fig. 2.  Average ratio of the average times of break value in all variables 

selected and the average times of break value in all randomly unsatisfied 

clauses selected. All black squares refer to the discrete distribution of the 

average break value ratio of all 7-SAT_medium benchmark solved. The curve  

is the fitted distribution of all discrete points.  

 
Fig. 3.  Average ratio of the average times of break value in all variables 

selected and the average times of break value in all randomly unsatisfied 

clauses selected. All black squares refer to the discrete distribution of the 

average break value ratio of all 5-SAT_huge benchmark solved. The curve is 

the fitted distribution for all discrete points with break value from 0 to 11. 

 

 
Fig. 4.  Average ratio of the average times of break value in all variables 

selected and the average times of break value in all randomly unsatisfied 

clauses selected. All black squares refer to the discrete distribution of the 

average break value ratio of all 5-SAT_medium benchmark solved. The curve 

is the fitted distribution for all discrete points with break value from 0 to 11.  
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Result summary: In the case of 7-SAT_huge benchmark 

and 7-SAT_medium benchmark, a very good fit function which 

is a Boltzmann function has been obtained, and the error of the 

discrete points and the fitting function is very small. In the case 

of 5-SAT_huge benchmark and 5-SAT_medium benchmark, 

when the break value is less than 12, there is a good fitting 

function, which also satisfies a Boltzmann function in addition 

to the different parameter settings. 

WalkSATlm utilizes random walk strategy by a noise factor 

wp. In fact, wp is 0.390 on random 5-SAT_huge benchmark; wp 

is 0.351 on random 5-SAT _medium benchmark; wp is 0.120 

on random 7-SAT_huge benchmark; wp is 0.115 on random 

7-SAT _medium benchmark in WalkSATlm algorithm. Hence, 

when the break value is greater than 11, the bigger the wp is, the 

more variables are randomly selected to flip. So, we just fit the 

function for the discrete points with the break values from 0 to 

11 on random 5-SAT_huge benchmark and 5-SAT_medium 

benchmark. 

Hence, when the break value is from 0 to 19, if wp 

approaches to 0, the distribution of between the break value and 

the utilization rate of break value, which is the average ratio of 

the total times of variables corresponding to each break value in 

all variables selected and the total times of variables 

corresponding to each break value in all randomly unsatisfied 

clauses selected in the solution process for all random k-SAT 

instances that can be solved by WalkSATlm, tends to be a 

Boltzmann function. 

4 Pseudo normal function as a new probability 

function 

As PD strategy is still in its infancy for solving SAT problem, a 
natural question is whether there exists an alternative PD 

strategy for SAT which is more efficient and robust than PoF 

based PD strategy on improving SLS algorithms for k-SAT 

instances with long clauses. In this section, we propose a novel 

probability function, called a pseudo normal function (PNF), 

which is actually a variation of the Boltzmann function, which 

forms a basis for an alternative PD strategy.  

It has turned out that the influence of break is rather strong 

[16]. Thus, it is reasonable if we only consider the break value 

completely, it still leads to very good algorithms, while its 

implementation is simple and has less overhead. On the other 

hand, note that the Boltzmann function reflects the probability 

distribution of the break value when WalkSATlm solves the 

random k-SAT instances with long clauses, and is close to the 

exponential distribution. The above considerations suggest two 

principles in designing the new alternative PD strategy as 

below:  

1) The break value property plays a very important role; 

2) When WalkSATlm solves the random k-SAT instances 

with long clauses, the probability distribution of the break 

value is close to exponential distribution. 

As a result, the normal function of the break value is defined 

firstly, followed by a new notion of pseudo normal function. 

Definition 1: For a CNF formula F, a complete assignment α 

to var(F), the normal function, denoted by NF, is a function on 

var(F) such that

              

 

        

𝑁𝐹(𝑥, 𝛼) =
1

√2*𝜋
∗ 𝑒−

𝑏𝑟𝑒𝑎𝑘(𝑥,)2

2                              (3) 

Definition 2: For a CNF formula F, a complete assignment α 

to var(F), the pseudo normal function, denoted by PNF, is a 

function on var(F) such that 

   

𝑃𝑁𝐹(𝑥, 𝛼) = 𝜋 ∗
1

√2∗𝜋
∗ 𝑒−

𝑏𝑟𝑒𝑎𝑘(𝑥,)2

2 = 𝜋 ∗ 𝑁𝐹(𝑥, 𝛼)     (4) 

PNF is an exponential function of the break value. This 

function is so simple and can be computed with little overhead. 

Note that PNF is different from the exponential function 

utilized in ProbSAT [18]. Especially, the exponential function 

of ProbSAT is based on the break value, while PNF is based on 

the square of the break value. Moreover, ProbSAT has 

parameter involved, while there is no parameter in the PNF. 

5 Proposed algorithm PNFSat for random 

7-SAT 

In this section, we introduce the main ideas in the proposed 

algorithm for random 7-SAT. We firstly apply a new PD 

strategy based on PNF to the FRW SLS paradigm and then 

present a new tie-breaking strategy, both of which leads to a 

new variable selection heuristic, called a PNF-TBF heuristic. 

5.1 Applying the PNF to the FRW SLS paradigm 

In this section, we apply the PNF to the focused random 

walking (FRW) SLS paradigm. 

Previous PD strategy based SLS algorithm for random 

7-SAT problems can be categorized into two classes: (i) some 

early PD strategy based on PoF for random 7-SAT [17]; (ii) 

recent studies, mainly including ProbSAT [18] and YalSAT [10] 

as well as their variants, used the PD strategy based on the 

exponential function for random 7-SAT. The exponential 

function turns out to be more effective than PoF for solving 

7-SAT problems. In the present work, we propose to utilize the 

PD strategy based on the PNF described in Section 4 to identify 

a “good” variable which has the minimum break value.  

5.2 The new tie-breaking strategy 

Currently, there are two most popular variable selection 

strategies for solving SAT: probability function and 

configuration checking (CC) strategy [30]. 

Adopting the probability based on the PNF to pick a variable 

to be flipped may select the same variable in consecutive steps, 

so that it makes useless search in consecutive steps. Therefore, 

it is expected that the last flipping variable could not be the 

current flipping variable based on the idea of configuration 

checking (CC) strategy, which has proved to be effective in 

SLS algorithms for solving SAT [11, 19]. Thus, it is reasonable 

for us to employ a tie-breaking strategy that avoids selection of 
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the same variable in consecutive steps. 

The proposed tie-breaking strategy is inspired by the idea in 

the literature [13], but they are essentially different from each 

other. The latter may not be suitable for algorithms based on the 

PD strategy. The main difference lines in that in our proposal, a 

variable is mainly selected based on the PNF, there is no need 

to select one from all those variables with the same minimum 

break value in the selected clause. 

Before introducing the new tie-breaking strategy, we 

introduce the tie-breaking flipping (TBF) variable firstly. 

Definition 3: For a CNF formula F, a complete assignment α 

to var(F), and the last flipped variable y, for a set of all 

unsatisfied clauses unsat(α), a variable x is tie-breaking 

flipping (TBF) if and only if x ϵ var(unsat(α)) and x≠y.  

Note that a variable x is a TBF of unsatisfied clause c if and 

only if x ϵ var(c) and x y . 

In this paper, we use TBFVar(α) to denote the set of all TBF 

variables of F under α. The TBFVar (c) is denoted the set of all 

TBF variables of an unsatisfied clause c. 

The new tie-breaking strategy, called TBF, is described as 

follows: 

- When the TBF strategy is called, if there exists a variable 

selected by the PNF based PD strategy which is the same as the 

last flipped variable y, then if the number of unsatisfied clause 

is less than parameter R, it prefers to pick a TBF variable of 

clause c as the flipping variable randomly;  

- Otherwise, the TBF strategy prefers to randomly pick a TBF 

variable of F as the flipping variable, leading the algorithm to 

search deeply, and preventing the algorithm from revisiting the 

recently faced scenario. 

5.3 The PNF-TBF heuristic 

According to the PNF and the new tie-breaking strategy, we 

design a new variable selection heuristic named PNF-TBF. 

Specially, the PNF-TBF heuristic works as follows. After 

randomly selecting an unsatisfied clause c, PNF-TBF switches 

between two levels, i.e., the probability level and TBF level, 

depending on whether the variable x selected by PD strategy 

based on PNF is the same as the last flipped variable y or not. If 

x ≠ y, PNF-TBF works in the probability level; otherwise it 

works in the TBF level. In probability level, PNF-TBF prefers 

to choose the variable x with the minimum break(x) in the 

clause c. In the TBF level, if the number of unsatisfied clauses 

(numFalse) is less than the parameter R, PNF-TBF chooses the 

variable x randomly in TBFVar(c); otherwise, it chooses the 

variable x randomly in TBFVar(α).  

In brief, the new variable selection mechanism based on 

PNF-TBF heuristic is achieved by selecting the variables by 

probability based on PNF; once ties occur, a new tie-breaking 

strategy breaks ties of variables and selects a variable by the 

new tie-breaking strategy. 

5.4 PNFSat algorithm 

In this section, we utilize the PNF-TBF heuristic and the  

Algorithm 2:  PNFSat (F) 

Input: CNF-formula F, MaxTries, MaxSteps 

Output: A satisfying assignment α of F, or UNKNOWN 

1  for i = 1 to MaxTries do 

2    α ←a generated assignment for F by variable allocation value function; 

3         for j = 1 to MaxSteps do                         

4                if α satisfies F then 

5     return α; 

6                C ←an unsatisfied clause selected randomly; 

7                  for x in C do 

8                        f(x, a) ←compute PNF(x, α); 

9                   v ←random variable x according to probability
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
; 

10              if  ( v==bestVar ) then 

11                     if ( numFalse<R) then 

12              bestVar ←random variable x in TBFVar(c);  

13                    else 

14                     bestVar ←random variable x in TBFVar(a); 

15             else 

16                bestVar=v; 

17                flip(bestVar);   

18 return UNKNOWN; 

 

variable allocation value (Vav) function [20] to improve 

ProbSAT algorithm and make a serious modification on 

ProbSAT, resulting in a new FRW algorithm dubbed PNFSat. 

The pseudo-code of the PNFSat algorithm is outlined in 

Algorithm 2. Before getting into the details of the PNFSat 

algorithm, we first introduce two modifications employed in 

the algorithm. 

PNFSat differs from ProbSAT in the following two aspects. 

Firstly, although both algorithms utilize the PD strategy, the PD 

strategy in PNFSat is based on the PNF for solving random 

7-SAT, while ProbSAT use the PD strategy based on the 

exponential function described in Section 2.2. Secondly, 

PNFSat utilizes the new tie-breaking to break ties, while 

ProbSAT does not use any tie-breaking strategies. 

Initially, PNFSat performs the first loop until it finds a 

satisfying assignment or reaches the first limited steps denoted 

by MaxSteps. Then PNFSat generates a complete assignment   

by a Vav function as the initial solution. Then it executes the 

second loop until a solution is found or reaches the second 

limited steps denoted by MaxTries.  

In each search step, PNFSat picks a variable to be flipped. It 

performs the random walk to select an unsatisfied (line 6 in 

Algorithm 2), and then picks a variable according to the 

PNF-based PD strategy which is presented in Section 4 (lines 

7-9 in Algorithm 2) and the new tie-breaking strategy (lines 

(10-16 in Algorithm 2): PNFSat first picks a variable by the 

PNF-based PD strategy, and then if the variable is the same as 

the last flipped variable and the number of unsatisfied clause is 

less than parameter R, PNFSat prefers to pick a TBF variable of 

clause c to be flipped randomly (lines 11 and 12 in Algorithm 2); 

otherwise, the new tie-breaking prefers to randomly pick a TBF 

variable of F to be flipped (lines 13 and 14 in Algorithm 2). 

After the variable to be flipped is selected, the PNFSat flips the 

selected variable (line 17 in Algorithm 2), then the PNFSat 

algorithm starts the next search step. 

Finally, when the search terminates, if α satisfies all clauses 

of F, PNFSat outputs α as the solution; otherwise, PNFSat 

reports UNKNOWN. 
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5.4.1 Experimental preliminaries of PNFSat 

In this subsection, we evaluate PNFSat on extensive random 

7-SAT instances. Some experiment preliminaries are given 

below first.  

Benchmarks: All the instances used in the following 

experiments are generated according to the random k-SAT 

model [35]. we adopt the following five benchmarks for 

uniform random 7-SAT. 

1) 7-SAT_huge_SC18: The benchmark includes all 20 huge 

random 7-SAT instances with 55 59r  , 60 64r   , 
65 69r  , 70 74r  (n= 50000, five instances each group) 

from SAT Competition 2018.  

2) 7-SAT_huge_SC17: The benchmark contains all huge 

7-SAT instances with 55 59r  , 60 64r  , 65 69r  ,

70 74r   (n= 50000, five instances each group) from SAT 

Competition 2017.  

3) 7-SAT _huge_SC16: The benchmark consists of all 20 

huge random 7-SAT instances with various ratio ( 55 74r  , 

n=50000, one instance each ratio) from SAT Competition 

2016. 

4) 7-SAT_huge: Random 7-SAT instances near the 

threshold ratio of phase transition, generated random by the 

random k-SAT model (r=66.0, n=50000, 20 instances). 

5) 7-SAT_medium _SC: The benchmark contains all 90 

medium random 7-SAT instances with 90 108n  ,

110 128n  , 130 148n  and 150 168n   (r= 87.79, 

30 instances expect for the second group, 20
 
instances the other 

group ) from SAT Competition 2016 , 2017 and 2018.  

The medium k-SAT benchmarks have a clause-to-variable 

ratio equal to the conjectured threshold ratio of the solubility 

phase transition, for which 50% of the uniform k-SAT instances 

are satisfiable, and a significant traction (about 50%) of the 

medium k-SAT instances is unsatisfiable. For most algorithms, 

instances generated closer to the phase-transition ratio are 

harder to solve [4]. 

The PNFSat algorithm is implemented in C/C++. For the 

parameters of the Vav function in PNASat, we utilize the 

default parameter setting tuned in the literature [20]. The 

parameter R for the TBF strategy in PNFSat are tuned 

according to our experience, and the parameter setting is R=3. 

We compare PNFSat with four state-of-the-art FRW solvers, 

including WalkSATlm [13], FrwCBlm [3], YalSAT [10] and 

ProbSAT [18], and one state-of-the-art two-mode solver 

Score2SAT. WalkSATlm and FrwCBlm are still highly 

competitive with the state-of-the-art on random k-SAT 

instances with long clauses. YalSAT is the winner of the 

random track of SAT Competition 2017. ProbSAT wins the 

gold medal of the random SAT track in SAT Competition 2013, 

is the second-ranked solver among the SLS solvers in terms of 

capability for the SAT competition 2018 and the current best 

FRW solver. Score2SAT wins the bronze of SAT Competition 

2017, but its performance outperforms the winner of SAT 

Competition 2017 on random k-SAT instances with long 

clauses4 and it is the best two-mode SLS solver on random 

 
4https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results 

k-SAT instances. 

In this paper, for WalkSATlm and FrwCBlm the parameters 

are set as the ones used in SAT Competition 2016. The source 

code of FrwCBlm can be downloaded online 5. The YalSAT 

and Score2SAT solvers we adopt are the two submitted to SAT 

Competition 2017 6 . The binary of ProbSAT can be 

downloaded online7 and we use the parameter setting as the one 

used in SAT Competition 2018.  

In this paper, for each solver on each instance group, we 

report the number of success runs (#suc), as well as “par 10”,  

which is a penalized average run time where an unsuccessful 

run of a solver is penalized as 10 times cutoff time, and “Over 

all” symbols averaged over all instances with each run per 

instance. Note that PAR 10 is adopted in SAT Competitions 

and has been widely used in the literature as a prominent 

performance measure for SLS solvers [32]. If a solver has no 

successful run on an instance class, the corresponding “par10” 

is marked with “n/a”. 

For the 7-SAT_huge_SC17 benchmark and 7-SAT_huge_ 

SC18 benchmark, each solver is performed for twenty runs for 

each instance. For the 7-SAT_huge_SC16 benchmark and 

7-SAT_medium_SC benchmark as well as 7-SAT_huge 

benchmark, each solver is performed for five runs for each 

instance. The cutoff time for all runs is set to 5000 seconds as 

same as SAT competitions in 2016, 2017 and 2018. 

5.4.2 Experiment results for PNFSat 

1) Results on the 7-SAT_huge_SC18 benchmark: Table 1 

illustrates comparative results of PNFSat and its competitors on 

the huge random 7-SAT benchmark from SAT Competition 

2018. None of the solvers can solve any huge 7-SAT instances 

with ratios between 70 and 74, indicating that random 7-SAT 

instances near the phase transition are so difficult.  

Nevertheless, PNFSat shows significant superiority over 

ProbSAT and performs much better than the other competitors 

on the whole benchmark. Especially, on the random 7-SAT 

instance with 65≤r≤69, PNFSat is the only solver that solves 20 

runs. Actually, all the competitors become ineffective (among 

which WalkSATlm, FrwCBlm and ProbSAT have the highest 

success rate of 20%) on the random 7SAT instance 

with65≤r≤69, whereas PNASat still achieves a success rate of 

40% for this instance class. Also, PNFSat significantly 

outperforms its competitors in terms of run time, which is more 

obvious as the instances ratio increases. 

2) Results on the 7-SAT_huge_SC17 benchmark: To show 

the robustness of PNFSat, we compare PNFSat with its 

competitors on the huge random 7-SAT benchmark from SAT 

Competition 2017. Table 2 presents the results of PNFSat and 

its competitors on this benchmark. According to the results, 

PNFSat stands out the best solver and significantly performs 

better than its competitors, which confirms the robustness of 

PNFSat on huge random 7-SAT instances.

 
5https://baldur.iti.kit.edu/sat-competition-2016/solvers/  
6https://baldur.iti.kit.edu/sat-competition-2017/solvers/ 
7http://sat2018.forsyte.tuwien.ac.at/solvers/random/  



 9 

Table 1: Comparative result of PNFSat and its competitors on the 7-SAT_huge_SC18 

Instance  
Class 

WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

55≤r≤59 50 19 50 14 50 9 50 21 50 8 

60≤r≤64 50 432 50 395 50 20 40 10062 50 15 

65≤r≤69 10 40433 10 40521 10 40058 0 n/a 20 30079 

70≤r≤74 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 

Over all   110 22721 110 22732 110 22522 90 27521 120 20026 

 
Table 2: Comparative result of PNFSat and its competitors on the 7-SAT_huge_SC17 

Instance  
Class 

WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

55≤r≤59 50 21 50 16 50 9 50 21 50 8 

60≤r≤64 50 406 50 474 50 24 40 10236 50 16 

65≤r≤69 10 40586 10 40621 10 40021 0 n/a 20 32092 

70≤r≤74 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 

Over all   110 22754 110 22778 110 22514 90 27517 120 22220 

 

Table 3: Comparative result of PNFSat and its competitors on the 7-SAT_huge_SC16 

#Total runs 
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

100 55 22729 55 22776 55 22512 50 26430 55 22508 

 

Table 4: Comparative result of PNFSat and its competitors on the 7-SAT_huge 

#Total runs 
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

100 0 n/a 0 n/a 0 n/a 0 n/a 65 18368 

 
Table 5: Comparative result of PNFSat and its competitors on the 7-SAT_medium_SC 

Instance  
Class 

WalkSATlm FrwCBlm ProbSAT Yalsat Score2SAT PNFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

90≤n≤108 70 15345 65 17532 70 15056 70 15063 70 15077 70 15028 

110≤n≤128 80 23791 80 23656 90 20584 75 25264 85 22044 85 22116 

130≤n≤148 55 23558 35 33065 45 27984 40 30463 45 27812 45 28203 

150≤n≤168 30 35369 10 45204 20 40187 15 42701 30 35507 10 45178 

Over all 235 24435 190 29174 225 25359 200 28028 230 24769 210 27044 

 

3) Results on the 7-SAT_huge_SC16 benchmark: To solve 

the huge random 7-SAT instances, Table 3 presents the results 

of PNFSat and its competitors on this benchmark. Although 

PNFSat, ProbSAT, WalkSATlm and FrwCBlm succeed in 55 

runs, the average time of PNFSat is 22508 s, whereas those of 

ProbSAT, WalkSATlm and FrwCBlm are 22512, 22729 and 

22776, respectively. Also, YalSAT succeeds in 50 runs within 

the cutoff time. Therefore, PNFSat exhibits the best 

performance among these state-of-the-art solvers on the huge 

random 7-SAT instances. 

4) Results on the 7-SAT_huge benchmark: As reported in 

Table 4, the results show PNFSat dramatically outperforms its 

competitors. ProbSAT, WalkSATlm, YalSAT and FrwCBlm 

fail in all runs, while PNFSat succeeds in 65 runs, which 

indicates the scalability of the PNFSat algorithm. 

5) Results on the 7-SAT_medium _SC benchmark: Table 5 

presents the experimental results of PNFSat and its competitors 

on medium random 7-SAT instances at phase transition. 

Although PNFSat solves a few less instances than other 

competitors, PNFSat has similar performance with its 

competitors on such instances. 

6) Summarization for random 7-SAT: Tables 1, 2, 3, 4 and 5 

present the results of comparing PNFSat with ProbSAT, 

WalkSATlm, YalSAT, FrwCBlm as well as Score2SAT on 

random 7-SAT instances from SAT Competition 2017, 2018 

and 2019. PNFSat shows a substantial improvement over 

ProbSAT on these random 7-SAT instances. On all instance 

classes expect for the 7-SAT_ medium _SC, PNFSat achieves a 

higher success rate than ProbSAT does. Particularly, on the 

huge sized instances with 65≤r≤69, PNFSat succeeds in 40 runs 

while ProbSAT only succeeds in 20 runs. Moreover, PNFSat 

also significantly outperforms its competitions in terms of both 

success rate and run time on huge random 7-SAT instances, 

which indicates a substantial performance improvement of 

PNFSat over its competitions on these huge random 7-SAT 

instances. However, PNFSat does not show any notable 

improvement for ProbSAT on medium random 7-SAT 

instances (Table 5). On the other hand, PNFSat cannot rival 

state-of-the-art SLS solvers, such as the winners of SAT 

Competition 2017, on medium random 7-SAT instances at the 

phase transition, and thus further improved version is 

introduced in the subsequent section. 
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5.5 Further analysis of PNFSat and its alternative 

version PNFSat_alt 

It might seem that TBF level is a relatively minor concern. In 

effect, however, it has an essential impact on the PNFSat 

algorithm. This is because when the algorithm based on the 

PNF strategy selects a variable to be flipped, there is sometimes 

more than one such selected variable, which is the same in two 

adjacent steps. Thus, in order to demonstrate the effectiveness 

of TBF in the PNF-TBF heuristic, we conducted experiments to 

compare PNFSat with an alternative version, called PNFSat_alt, 

as detailed below:  

PNFSat_alt: this alternative version of PNFSat does not 

utilize the TBF component. In another word, this alternative 

version does not break ties of variables during the search 

process (i.e., removing lines 10-16 in Algorithm 2). 

The parameter settings of PNFSat_alt is the same as that of 

PNFSat in the following experiments. 

Empirical results for PNFSat and PNFSat_alt on all random 

7-SAT instances from SAT Competition 2016, 2017 and 2018 

are reported in Table 6. Each solver is performed for ten runs 

for each instance, as the instances in each ratio are enough to 

test the performance of the solvers [34]. The cutoff time for all 

runs is set to 5000 seconds. 

Table 6: Experimental results of PNFSat and its alternative version on 

the random 7-SAT 

Benchmark #inst. 
PNFSat_alt PNFSat 

#suc par 10 #suc par 10 

7-SAT_huge_SC18 20 100 25012 120 20028 

7-SAT_huge_SC17 20 100 25015 120 20112 

7-SAT_huge_SC16 20 100 25013 110 20516 

7-SAT_medium_SC 90 470 24364 420 25715 

As is clear from Table 6, the performance of PNFSat_alt is 

much worse than PNFSat on huge random 7-SAT instances. 

Due to the TBF component, PNFSat gains a significant 

improvement over PNFSat_alt on huge random 7-SAT 

instances, while the performance of PNFSat_alt is better than 

PNFSat on medium random 7-SAT instances, which suggests 

that the new tie-breaking mechanism is likely suitable for 

solving huge random 7-SAT instances and not suitable for 

medium random 7-SAT instances at phase transition. 

In order to demonstrate the effectiveness of PNFSat _alt, we 

conducted experiments to compare PNFSat_alt with other 

FRW solvers based on PD strategy including PNFSat, 

ProbSAT and YalSAT on the following medium random 

7-SAT instances at the phase transition. 

7-SAT_medium_Random: 7-SAT instances generated 

randomly according to the random k-SAT model (r=87.79, 

n=160, 170, 180, 60 instances, 20 for each size). 

Each solver is performed for ten runs for each instance, and 

the cutoff time for all runs is set to 5000 seconds. 

Empirical results for PNFSat_alt and other FRW solvers 

based on PD strategy on the 7-SAT_medium_random 

benchmark are reported in Table 7. As can be seen from Table 7, 

PNFSat_alt performs generally better than other PD strategy 

based FRW solvers, which indicates the effectiveness of 

PNFSat_alt. Particularly, on the medium random 7-SAT 

instances with n=160 and n=180, PNFSat_alt performs much 

better than those FRW solvers in terms of metrics, which 

confirms that our proposed PNF contributes to the performance 

of PNFSat_alt on the medium random 7-SAT instances, and 

TBF component is likely not suitable for medium random 

7-SAT instances at phase transition, and indicates the 

scalability of the PNFSat_alt. 

Table 7: Comparative results of PNFSat_alt and other PD strategy 

based FRW solvers on the 7-SAT_medium_random 

Instance  

Class 

ProbSAT Yalsat PNFSat PNFSat_alt 

#suc par 10 #suc par 10 #suc par10 #suc par 10 

n=160 40 40318 40 40209 30 42718 50 35888 

n =170 20 45108 0 n/a 0 n/a 20 45127 

n =180 10 45507 10 45260 10 45525 20 45149 

 

6 Improving PNFSat for random 5-SAT 

The above section shows the excellent performance of PNFSat 

on huge random 7-SAT near the phase transition, and its 

variation PNFSat_alt on medium random 7-SAT at the phase 

transition. However, the performance of PNFSat and 

PNFSat_alt degrades on random 5-SAT instances (seen from 

Tables 8-12).  

This section discusses the improvement of PNFSat for 

random 5-SAT instances with various sizes and ratios.  To this 

end, we propose two variable selection heuristics called 

PN-PoF and Po-PNF respectively, which combine the PNF 

with the PoF utilized in the PNFSat algorithm in different ways, 

then they both are utilized to improve PNFSat, resulting in a 

new FRW algorithm called PN&PoFSat for SAT, along with 

detailed empirical evaluations of PN&PoFSat on a broad range 

of random 5-SAT instances. 

6.1 PN-PoF heuristic and Po-PNF heuristic 

The literature [16] has showed that the exponential delay in 

probability with growing break value might be too strong in the 

case of 3-SAT, thus, the PD strategy selects a variable x to be 

flipped according to the PoF of break value in the case of 

3-SAT, and picks a variable x to be flipped according to the 

exponential function of break value for k-SAT with k>3.  

There have been some limitations in previous PoF based 

FRW algorithms, which use PoF to handle the exponential 

decay for random k-SAT instances, but lose their capability and 

generality, especially for solving random k-SAT instances with 

k>3. Therefore, it is inadvisable to utilize either the exponential 

function or the PoF for random 5-SAT instances, which might 

have the similar performance with ProbSAT and polypower1.0 

so that the improvement of PNFSat has no effect. Thus, an 

important issue in the PD based FRW algorithms is to seek a 

balance solution between the exponential function and the PoF. 

Based on the above discussions, in order to improve PNFSat 

for random 5-SAT instances with various ratios, we propose 

two new probability functions, named PN-PoF and Po-PNF 

respectively, which reflect the different combination of the 
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PNF described in Section 4.1 and the PoF described in Section 

2.2 as defined below. The further lead to two new variable 

selection heuristics respectively. 

Definition 3: For a CNF formula F, a complete assignment α 

to var(F), the pseudo normal-polynomial function of a variable 

x, denoted by PN-PoF, is a function on var(F) such that 

   

𝑃𝑁 − 𝑃𝑜𝐹(𝑥, 𝛼) = {
𝑃𝑁𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) < 𝑑1

𝑃𝑜𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) ≥ 𝑑1
        (5)          

where d1 is a positive integer parameter. 

Definition 4: For a CNF formula F, a complete assignment α 

to var(F), the polynomial-pseudo normal function of a variable 

x, denoted by Po-PNF, is a function on var(F) such that  

𝑃𝑜 − 𝑃𝑁𝐹(𝑥, 𝛼) = {
𝑃𝑜𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) < 𝑑2

𝑃𝑁𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) ≥ 𝑑2
        (6) 

where d2 is a positive integer parameter. 

Note that since the distribution of the break value and the 

utilization rate of break value tends to be a Boltzmann function 

for solving k-SAT instances in WalkSATlm algorithm 

(described in Section 3), we utilize the Boltzmann function as a 

sample to guide the solution of the PD strategy based 

algorithms. Thus, the parameter d1 or d2 is determined based on 

the Boltzmann function. 

Essentially PN-PoF and Po-PNF switch between two 

function, i.e., the PNF and the PoF, depending on the break 

value.  

The PN-PoF heuristic or the Po-PNF heuristic prefers to 

select the variable to be flipped by the PN-PoF based PD 

strategy or the PN-PoF based PD strategy respectively. 

Flipping a variable by either of them minimizes the number of 

clauses from satisfiable to unsatisfied as soon as possible and 

handles the exponential decay. These two heuristics are 

described below:  

In the PN-PoF heuristic: 

-If the break value is less than the parameter d1, the PD 

strategy is based on the PNF;  

-otherwise, the PD strategy is based on the PoF.  

In the Po-PNF heuristic: 

- If the break value is less than the parameter d2, the PD 

strategy is based on the PoF;  

- otherwise, the PD strategy is based on the PNF.  

Since the algorithm calls PN-PoF heuristic and Po-PNF 

heuristic according to clause-to-variable ratio of SAT 

respectively, the parameter settings for d1 and d2 may be 

different from each other in two heuristics. 

6.2 PN&PoFSat algorithm 

In this section, we modify the PD strategy of PNFSat by 

combined use of the PN-PoF and the Po-PNF and obtain a new 

algorithm which refers to as PN&PoFSat. The pseudo-codes of 

PN&PoFSat is given in Algorithm 3. 

PN&PoFSat differs from PNFSat in the following aspect: 

although both algorithms utilize the PD strategy, PN&PoFSat 

uses both the PN-PoF heuristic (lines 8 and 9 in Algorithm 3) 

and the Po-PNF heuristic (lines 10 and 11 in Algorithm 3), to 

use which is dependent on the preset conjectured threshold ratio 

of clause-to-variable for solving random 5-SAT instances, 

while PNFSat only use the PNF based PD strategy. 

 
Algorithm 3:  PN&PoFSat (F) 

Input: CNF-formula F, MaxTries, MaxSteps 

Output: A satisfying assignment α of F, or Unknown 

1  for i = 1 to MaxTries do 

2    α ←a generated assignment for F by variable allocation value function; 

3         for j = 1 to MaxSteps do                         

4                if α satisfies F then 

5     return α; 

6                C ←an unsatisfied clause selected randomly; 

7                  for x in C do 

8      if r equal to the conjectured threshold ratio of the solubility  

phase transition then 

9                          f(x, α )←compute PN-PoF (x, α); 

10     else 

11       f(x, α)←compute Po-PNF(x, α); 

12                 v ←random variable x according to probability
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
; 

13              if   v= =bestVar then 

14                     if  numFalse<R then 

15           bestVar ←random variable x in TBFVar(c);  

16                   else 

17               bestVar ←random variable x in TBFVar(α); 

18             else 

19                bestVar=v; 

20                flip(bestVar);   

21 return Unknown; 

6.3 Evaluations of PN&PoFSat on random 5-SAT 

instances 

In this subsection, we carry out extensive experiments to 

evaluate PN&PoFSat on random 5-SAT instances at and near 

phase transition. First, we compare PN&PoFSat with PNFSat 

as well as state-of-the-art SLS solvers on random 5-SAT 

instances at and near the phase transition from SAT 

Competitions in 2016, 2017 and 2018. Then, we compare 

PN&PoFSat with state-of-the-art SLS solvers on large-sized 

threshold and 5-SAT_huge random instances generated 

randomly at and near the threshold of phase transition. 

6.3.1 Benchmark and experimental 

preliminaries 

In the experiments in this section, all benchmark instances are 

generated according to the random k-SAT model at and near the 

threshold ratio of the solubility phase transition. Specifically, 

we adopt the following seven benchmarks. 

1) 5-SAT_huge_SC18: The benchmark includes all 20 

huge random 5-SAT instances with 16.0 ≤ 𝑟 ≤ 16.8 , 

17.0≤r≤17.8,18.0 ≤ 𝑟 ≤ 18.8 and19.0 ≤ 𝑟 ≤ 19.8 (n=250000,  

five instances each class) from SAT Competition 2018.  

2) 5-SAT_huge_SC17: The benchmark contains all huge 

5-SAT instances with16.0 ≤ 𝑟 ≤ 16.8,17.0 ≤ 𝑟 ≤ 17.8,18.0 

≤18.8 and 19.0 ≤ 𝑟 ≤ 19.8  (n=250000, five instances each 

class) from SAT Competition 2017.  

3) 5-SAT_huge _SC16: The benchmark consists of all 20 
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huge random 5-SAT instances with various ratio (55 ≤ 𝑟 ≤ 74, 

n=250000, one instance each ratio) from SAT Competition 

2016. 

4)  5-SAT_medium_SC18: The benchmark contains 

medium random 5-SAT instances (r=87.79, n=250, ten 

instances each size) from SAT Competition 2018.  

5) 5-SAT_medium_ SC: The benchmark consists of all 80 

random 5-SAT instances with 200 ≤ 𝑛 ≤ 290 , 300≤n≤390, 
400 ≤ 𝑛 ≤ 490and 500≤n≤590 (r=21.117, 20 instances each 

class) from SAT Competitions in 2016 and 2017.  

6) Large-sized threshold: Random 5-SAT instances at the 

threshold ratio of phase transition, generated random by the 

random k-SAT generator8 utilized in SAT Competitions 2016, 

2017 and 2018 (r=21.117, n=550, 600, 650, 120 instances, 40 

for each size). These instances are divided into two categories: 

the training set and test set, both of which have 20 instances for 

each 5-SAT class. 

7) 5-SAT_huge: Random 5-SAT instances near the 

threshold ratio of phase transition, generated random by the 

random k-SAT generator (r=18.2, 18.4, 18.6, n=250000, 120 

instances, 40 for each size). These instances are divided into 

two categories: the training set and test set, both of which have 

20 instances for each 5-SAT class. 

Note that the training set is only utilized to tune the 

parameters in PN&PoFSat, and then PN&PoFSat with the 

tuned parameters is evaluated on random 5-SAT instances at 

and near the threshold ratio of phase transition from SAT 

Competitions 2016, 2017 and 2018 and the test set in 

large-sized threshold benchmark and 5-SAT_huge benchmark. 

The PN&PoFSat algorithm is developed on the top of 

PNFSat, and thus is implemented in C/C++. For the parameters 

of Vav function in PN&PoFSat and PNFSat, we use the default 

parameter setting tuned on random 5-SAT instances in the 

literature [20]. For the three parameters R, ɛ and cb in 

PN&PoFSat, we set R to 3, ɛ to 1 and cb to 3.7 as constants. The 

parameter d1 and d2 for the PN-PoF heuristic and the Po-PNF 

heuristic respectively in PN&PoFSat are tuned based on all 

random 5-SAT instances from SAT Competitions 2016, 2107 

and 2018 as well as the training set of the large-sized threshold 

benchmark and 5-SAT_huge benchmark. 

First, we observe the Boltzmann function in Fig. 3 to find 

preferred parameter for huge random 5-SAT instances near the 

threshold ratio of phase transition. The obvious monotonic 

decreasing interval of the Boltzmann function is between 0 and 

4, and when the break value is greater than 3, the trend of the 

function is very flat, i.e., the difference in Boltzmann function 

under different break values is small. Hence, the turning point 

of the Boltzmann function trend is at the point where the break 

value is equal to 3. Thus, we test d1 (also d2)=2, 3, 4 to find the 

most efficient one for huge random 5-SAT instances, and test 

the PN-PoF heuristic and the Po-PNF heuristic respectively in 

PN&PoFSat to find the most efficient one for different ratios. 

The preliminary results show that d1=4 for the PN-PoF 

 
8https://sourceforge.net/projects/ksatgenerator/  

heuristic is the best for huge random 5-SAT with r<18; d2=3 

for the Po-PNF heuristic is the best for huge random 5-SAT 

with 18.0 ≤ 𝑟 < 21.0.  

Then we observe the Boltzmann function in Fig. 4 to find 

preferred parameter for medium random 5-SAT instances at the 

threshold ratio of phase transition. When the break value is 

greater than 4, the difference in Boltzmann function under 

different break values is small. The turning point of the 

Boltzmann function trend is at the point where the break value 

is equal to 4. Hence, we test d1 =2, 3, 4, 5 to find the most 

efficient one for medium random 5-SAT instances, and test the 

PN-PoF and the Po-PNF heuristic respectively in PN&PoFSat 

to find the most efficient one for different sizes.  

The preliminary results show that the d1=4 for the PN-PoF 

heuristic is the best for medium random 5-SAT at the threshold 

ratio of phase transition with n<330; d1=2 for the PN-PoF 

heuristic is the best for medium random 5-SAT at the threshold 

ratio of phase transition with330 ≤ 𝑛 < 430; d1=5 for the 

PN-PoF heuristic is the best for medium random 5-SAT at the 

threshold ratio of phase transition with 𝑛 ≥ 430.  

For the 5-SAT_huge_SC18 benchmark, 5-SAT_huge_SC17 

benchmark, 5-SAT_ huge_SC16 benchmark and 5-SAT_ 

medium_SC18 benchmark, each solver is performed for ten 

runs for each instance. For the 5-SAT_medium_SC benchmark 

and large-sized threshold benchmark as well as 5-SAT_huge 

benchmark, each solver is performed for five runs for each 

instance. For large-sized threshold benchmark and 

5-SAT_huge benchmark, the cutoff time for all runs is set to 

2000 s, and for other benchmarks, the cutoff time for all runs is 

set to 5000 s (as in SAT Competition 2016, 2017 and 2018).  

6.3.2 Experimental results 

The experiments results are summarized below:  

1) Results on the 5-SAT_huge_SC18 benchmark: Table 8 

shows experimental results on the 5-SAT_huge benchmark. As 

is clear from Table 8, PN&PoFSat shows significantly better 

performance than other competitors on the whole instances 

interms of both successful runs and average run time. 

Particularly, on the random 5-SAT instances with 18.0≤r≤18.8 

instances class, which are of the largest size in SAT 

competitions on random 5-SAT instances, the runtime of 

PN&PoFSat Sat is about 1.5 times less than of YalSAT, and 

about 2 orders of magnitudes less than those of other 

state-of-the-art SLS solvers. Also, for the whole benchmark, 

PN&PoFSat solves 130 runs, compared to 120 for YalSAT, 110 

for WalkSATlm, FrwCBlm and ProbSAT respectively. 

2) Results on the 5-SAT_huge_SC17 benchmark: To show 

the robustness of PN&PoFSat, we compare PN&PoFSat with 

its competitors on the huge random 5-SAT benchmark from 

SAT Competition 2017. Table 9 presents the results of 

PN&PoFSat and its competitors on this benchmark.   

According to the results, PN&PoFSat shows significant 

superiority over PNFSat and significantly performs better than 

its competitors, which confirms the robustness of PN&PoFSat 

on huge random 5-SAT instances. 
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Table 8: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge_SC18 

Instance Class 
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

16.0≤r≤16.8 50 25 50 35 50 18 50 44 50 18 50 15 

17.0≤r≤17.8 50 295 50 376 50 63 50 106 50 111 50 62 

18.0≤r≤18.8 10 40329 10 40057 10 40033 20 30156 0 n/a 30 20088 

19.0≤r≤19.8 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a  0 n/a 

Overall 110 22662 100 25211 110 22524 120 20077 100 25032 130 17542 

 

Table 9: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge_SC17  

Instance Class 
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

16.0≤r≤16.8 50 34 50 40 50 18 50 57 50 17 50 15 

17.0≤r≤17.8 40 10378 50 416 50 43 50 137 50 258 50 77 

18.0≤r≤18.8 0 n/a 10 42119 10 40210 20 30394 0 n/a 30 20083 

19.0≤r≤19.8 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a n/a n/a 

Overall 90 27603 110 26900 110 22526 120 20147 100 25138 130 17544 

 

Table 10: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge_SC16 

Instance Class 
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

16.0≤r≤16.8 50 23 50 42 50 18 50 43 50 18 50 15 

17.0≤r≤17.8 50 306 50 467 50 46 50 107 50 117 50 68 

18.0≤r≤18.8 20 31320 10 40617 10 40062 10 40050 0 n/a 40 10396 

19.0≤r≤19.8 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 

Overall   120 20412 110 22782 110 22531 110 22550 100 25034 140 15120 

 

Table 11: Comparative results of PN&PoFSat and its competitors on the 5-SAT_medium_SC18 

#Total runs 
WalkSATlm FrwCBlm ProbSAT Yalsat Score2SAT PNFSat PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

100 70 15023 70 15070 80 10409 80 10222 70 15006 70 15010 90 5148 

 

Table 12: Comparative results of PN&PoFSat and its competitors on the 5-SAT_medium_SC 

Instance Class 
WalkSATlm ProbSAT Yalsat Score2SAT PNFSat PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

200≤n≤290 60 20290 45 27503 55 22526 60 20050 45 27517 60 20021 

300≤n≤390 35 32535 40 30014 40 30051 45 27624 40 30015 40 30014 

400≤n≤490 15 42792 20 40163 20 40248 25 37782 20 40041 25 37665 

500≤n≤590 15 37599 25 37795 20 40251 20 40242 20 40295 30 35302 

Overall 125 34554 130 33868 135 33269 150 31424 125 34467 155 30750 

 
Table 13: Comparative results of PN&PoFSat and its competitors on the large-sized threshold 

Instance Class 
WalkSATlm ProbSAT Yalsat Score2SAT PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

n =550 5 47598 10 45051 5 47581 10 45079 20 40278 

n =600 10 45139 15 42587 10 45124 10 45124 15 42665 

n =650 5 47571 5 47534 5 47568 25 37782 10 45127 

 

Table 14: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge 

Instance Class 
WalkSATlm ProbSAT Yalsat FrwCBlm PN&PoFSat 

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 

r=18.2 35 34089 0 n/a 0 n/a 5 47738 100 134 

r=18.4 0 n/a 0 n/a 0 n/a 0 n/a 100 255 

r=18.6 0 n/a 0 n/a 0 n/a 0 n/a 1 47661 

 

 3) Results on the 5-SAT_huge_SC16 benchmark: To solve 

the huge random 5-SAT instances, Table 10 presents the results 

of PN&PoFSat and its competitors on this benchmark.  In terms 

of success runs, PN&PoFSat stands out the best solver. The 

only instance class for which PNFSat does not give the best 

performance is random 5-SAT instances with 17.0≤r≤17.8 in 

terms of average run time. Nevertheless, on this instance class, 

PN&PoFSat has similar performance as the best solver 

ProbSAT, spending 22 more time. For the whole benchmark, 

PN&PoFSat solves 30 runs more than FrwCBlm, ProbSAT and 
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YalSAT do respectively, 20 runs more than WalkSATlm does. 

Therefore, PN&PoFSat exhibits the best performance among 

these state-of-the-art solvers on the huge random 5-SAT 

instances. 

4) Results on the 5-SAT_medium_SC18 benchmark: The 

comparative results on the 5-SAT_medium_SC18 benchmark 

are presented in Table 11. PN&PoFSat significantly 

outperforms other solvers on all these medium random 5-SAT 

instances of SAT Competition 2018 in terms of metrics. 

Specially, PN&PoFSat achieves success runs of 90, which are 

20 runs more than those of WalkSATlm, FrwCBlm, Score2SAT 

and PNFSat respectively, and 10 runs more than those of 

ProbSAT and YalSAT respectively.  

5) Results on the 5-SAT_medium_SC benchmark: Table12 

shows experimental results on the 5-SAT_medium_SC bench- 

mark. PN&PoFSat solves a few more instances than its 

competitors. Overall, PN&PoFSat succeeds in 155 runs, 

compared to 125 for both WalkSATllm and PNFSat, 130 for 

ProbSAT, 135 for YalSAT and 150 for Score2SAT. Further, 

observation shows that, PN&PoFSat has similar performance 

with Score2SAT on random 5-SAT instances with 300≤n≤390 

instance class. 

6) Results on the large-sized threshold benchmark: To 

measure the performance of PN&PoFSat on random phase- 

transition 5-SAT instances more accurately, we additionally 

test PN&PoFSat on the test set of the Large-sized Threshold 

benchmark, compared with WalkSATlm, FrwCBlm, YalSAT 

Score2SAT and ProbSAT. The results are presented in Table 13. 

For random 5-SAT instances with n=600, although 

PN&PoFSat has more run time, PN&PoFSat and ProbSAT 

solve the same number of instances. For the remaining instance 

class, PN&PoFSat solves the most instances. Particularly, 

PN&PoFSat shows significantly superior performance than 

other solves on random 5-SAT instances with n=550, where it 

succeeds in 20 runs, while ProbSAT and Score2SAT both 

succeed in 10 runs and YalSAT and FrwCBlm both succeed in 

5 runs, which indicates the scalability of the PN&PoFSat 

algorithm. 

7) Results on the 5-SAT_huge benchmark: The 

experimental results on the 5-SAT_Huge benchmark are 

presented in Table 14. It is encouraging to see the performance 

of PN&PoFSat remains surprisingly good on these very huge 

5-SAT instances, where state-of-the-art solvers show very poor 

performance. PN&PoFSat solves these 5-SAT instances with 

up to 18.4 ratio consistently (i.e., with 100% success rate). 

Furthermore, PN&PoFSat succeeds in one run for the huge 

5-SAT instances with r=18.6 respectively, whereas all its 

competitors fail to find a solution for any of these instances, 

which indicates the scalability of the PN&PoFSat algorithm. 

In summary, the experimental results show PN&PoFSat 

consistently outperforms WalkSATlm, FrwCBlm, ProbSAT, 

YalSAT, Score2SAT and PNFSat on solving random 5-SAT 

instances with various ratios and sizes. We believe that the 

better performance of PN&PoFSat is mainly attributed to the 

combination of both the PN-PoF heuristic and the Po-PNF 

heuristic. 

6.4 Experimental analysis on PN&PoFSat 

We conduct further empirical analyses to study effectiveness of 

the PN-PoF heuristic and the Po-PNF heuristic in PN&PoFSat. 

We compare PN&PoFSat with its two alternatives on all 

random 5-SAT instances from SAT Competitions in 2016, 

2017 and 2018. Two alternative solvers are described below: 

(i)  PN&PoFSat1: this alternative version of PN&PoFSat 

does not utilize the PN-PoF heuristic. In another word, this 

alternative version only uses the Po-PNF heuristic during the 

search process (i.e., replacing PN-PoF heuristic with Po-PNF 

heuristic i.e., lines 10-11 in Algorithm 3). 

(ii) PN&PoFSat2: this alternative version of PN&PoFSat 

does not utilize the Po-PNF heuristic. In another word, this 

alternative version only uses the PN-PoF heuristic during the 

search process (i.e., replacing Po-PNF heuristic with PN-PoF 

heuristic i.e., lines 8-9 in Algorithm 3). 

We use of the default value of PN&PoFSat as the parameter 

settings of PN&PoFSat1 and PN&PoFSat2, but they differ on 

the variable selection heuristic based on PD. PN&PoFSat1 only 

uses the Po-PNF heuristic, while PN&PoFSat2 only employs 

the PN-PoF heuristic. Thus, the comparison between 

PN&PoFSat1 and PN&PoFSat2 is interesting, as it can show the 

contribution of the two heuristics propose in PN&PoFSat. 

Empirical results for PN&PoFSat1, PN&PoFSat2 and 

PN&PoFSat on all random 5-SAT instances from SAT 

Competitions in 2016, 2017 and 2018 are reported in Table 15. 

Each solver is performed for ten runs on each instance. The 

cutoff time for all runs is set to 5000 seconds. 

As is clear from Table 15, the performance of PN&PoFSat is 

much better than PN&PoFSat1 and PN&PoFSat2 on random 

5-SAT instances. The comparison between PN&PoFSat1 and 

PN&PoFSat2 illustrates that Po-PNF heuristic and PN-PoF 

heuristic have their superiority in different situations. For the 

medium random 5-SAT instances at the phase transition, 

PN&PoFSat1 performs worse than PN&PoFSat2. For the huge 

random 5-SAT near the phase transition, PN&PoFSat1 

outperforms PN&PoFSat2. Based on this observation, we 

conjecture that for local search algorithms, if the ratio of 

clause-to-variable is equal to the conjectured threshold ratio of 

the solubility phase transition, it is better to utilize the PN-PoF 

heuristic than the Po-PNF heuristic, and otherwise the Po-PNF 

heuristic is of more benefit. 

7 An integrated the PDSat solver and results on 

random k-SAT instances with long clauses 

As PNFSat, PNFSat _alt and PN&PoFSat are all PD st based 

algorithms, we combine them and obtain a flexible local search 

SAT solver called PDSat to handle different k-SAT instances. 

Specifically, PDSat adopts PN&PoFSat to solve random 

5-SAT, and PNFSat _alt to solve medium random 7-SAT 

instances with r equal to the conjectured threshold ratio of the 

solubility phase transition, and PNFSat to solve huge random 

7-SAT instances near the phase transition. 
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Table 15: Experimental results of PN&PoFSat and its alternative version on the random 5-SAT 

Benchmark #inst. 
PN&PoFSat PN&PoFSat1 PN&PoFSat2 

#suc par 10 #suc par 10 #suc par 10 

5SAT_huge_SC18 20 130 17545 130 17543 100 50042 

5SAT_huge_SC17 20 130 17545 130 17546 100 50049 

5SAT_huge_SC16 20 140 15123 140 15121 100 50043 

5SAT_medium_SC18 10 90 5149 70 15061 90 5150 

5SAT_medium_SC 80 310 30753 200 37615 310 30752 

 

The PDSat is implemented in C/C++. The parameters for 

PNFSat, PNFSat _alt and PN&PoFSat are set as the same as 

those in the experiments in Sections 5 and 6 respectively. 

In this section, we present the experimental results of PDSat 

on random k-SAT instances with long clauses from the random 

track of SAT Competitions in 2016, 2017 and 2018. 

7.1 Experiment preliminaries of PDSat for random 

k-SAT with long clauses benchmarks 

SAT Competition is a competitive event for solvers of the SAT 

problem. They have been held yearly 12 times starting from 

2002. All random k-SAT with long clauses instances from the 

SAT Competitions in 2017, 2018 and 2019 are generated 

according to the random k-SAT generator at and near the 

threshold ratios. We adopt the following three benchmarks 

1) k-SAT_SC16: all medium and huge random k-SAT 

instances with long clauses from SAT Competition 2016, and 

each k-SAT, the instances contains various sizes and ratios. The 

details of the benchmark are given in Table 16. 

2) k-SAT_SC17: all 120 medium and huge random k-SAT 

instances (all 60 huge and medium 5-SAT instances described 

in Section 6, 60 huge and medium random 7-SAT instances 

described in Section 5, from SAT Competition 2017. 

3) k-SAT_SC18: all random k-SAT instances with long 

clauses from SAT Competition 2018, and each k-SAT, the 

instances have various sizes and ratios. The details of the 

benchmark are given in Table 17 

We compare PDSat with four state-of-the-art FRW solvers, 

i.e., WalkSATlm, FrwCBlm, YalSAT, ProbSAT and four 

two-mode SLS solvers, containing Sparrow [15], DCCASat 

[21], CSCCSat [11], Score2SAT. Sparrow is the winner of 

random track of SAT Competition 2011, and Sparrow 

combined with a complete algorithm to form a new solver 

Sparrow2Riss winning the random track of SAT competition 

2018, but we did not compare the top three solvers of the 

random track of SAT competition 2018 with PDSat. The top 

five solvers mainly utilize the complete algorithms, but ours are 

based on incomplete algorithms. These solvers did not solve 

any instances for the medium and huge instances of the SAT  

20189competition, except the champion solver Sparrow2Riss 

can solve a small number of these instances, so these solvers 

don't apply to the medium and huge random k-SAT instances. 

DCCASat is still highly competitive with state-of-the-art 

solvers on random k-SAT instances. CSCCSat won the bronze 

medal and silver medal in the random track of SAT 

 
9http://sat2018.forsyte.tuwien.ac.at/index.php?cat=results  

Competitions in 2014 and 2016 respectively, but its 

performance outperforms the winner of SAT Competition 2017 

on medium and huge random k-SAT instances with various 

ratios. For the k-SAT_SC16 benchmark and k-SAT_SC17, 

each solver is performed for five runs for each instance. For the 

k-SAT_SC18, each solver is performed for ten runs for each 

instance. The cutoff time for all runs is set to 5000 s. 

7.2 Experimental results of PDSat for random 

k-SAT with long clauses benchmarks 

The experiments results are summarized below: 

1) Results on the k-SAT_SC16 benchmark: First, each 

solver is performed for one run on each instance. We present 

the CPU time distributions for PDSat and its competitors in Fig. 

5 below. As can be seen from Fig. 5, PDSat outperforms its 

competitors. Then to show the robustness of PDSat on random 

k-SAT instances with long clauses and various sizes and ratios, 

each solver is performed for five runs on each instance, and the 

results are reported in Table 18. Seen from Table 18, PDSat 

stands out as the best solver and significantly performs better 

than its all FRW and two-mode competitors in terms of both 

metrics. Overall, PDSat succeeds in 285 runs, and PDSat solves 

the most instances, which illustrates its robustness. 

2) Results on the k-SAT_SC17 benchmark: Table 19 

reports the number of successful runs and PAR 10 for PDSat 

and its competitors on the k-SAT_SC17 benchmark. The results 

show PDSat significantly outperforms its competitors in terms 

of both metrics. On the whole benchmarks, PDSat succeeds in 

315 runs. Further observation in Fig. 6 below shows that PDSat 

takes less than about 2000 seconds than other solvers do. More 

encouragingly, PDSat solves 75 runs more Sparrow does, 60 

runs more than YalSAT does, 50 runs more than both FrwCBlm 

and WalkSATlm do, 45 runs more than DCCASat and 

ProbSAT does respectively, 30 runs more than both Score2SAT 

and CSCCSat do.  

3) Results on the k-SAT_SC18 benchmark: To evaluate the 

genuine solving ability on medium and huge (at and near the 

phase transition) random k-SAT instances with long clauses, 

we compare PDSat with its competitors on the k-SAT_SC18 

benchmark, and the results are reported in Table 20. PDSat 

stands out as the best solver and significantly outperforms its all 

FRW and two-mode competitors in terms of both metrics on 

this benchmark. PDSat succeeds in 450 (out of 900) runs, 70 

more than the second solver namely ProbSAT does, which 

indicates its robustness on medium and huge random k-SAT 

instances with long clauses. 
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Table 16 The instances numbers, ratio and sizes for each k-SAT with long clauses in the k-SAT_SC16 benchmark 

 5-SAT 7-SAT 

medium huge medium huge 

#inst. 40 20 40 20 

ratio 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0} 

size 𝑛 ∈ {200, 210, …, 590} 250000 𝑛 ∈ {90, 92, …, 168} 50000 

 
Table 17: The instances numbers, ratio and sizes for each k-SAT with long clauses in the k-SAT_SC18 benchmark 

 5-SAT 7-SAT 

medium huge medium huge 

#inst. 10 20 10 20 

ratio 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0} 

size 250 250000 120 50000 

 

Table 18: Comparative results of PDSat and its competitors on the k-SAT_SC16 benchmark 

Instance 

Class 

DCCASat Sparrow FrwCBlm YalSAT CSCCSat ProbSAT WalkSATlm Score2SAT PDSat 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#Total 
240 

30187 

200 

33480 

240 

30191 

255 

28907 

275 

27325 

270 

27651 

275 

27430 

275 

27337 

285 

26430 

 

Table 19: Comparative results of PDSat and its competitors on the k-SAT_SC17 benchmark 

Instance 

Class 

DCCASat Sparrow FrwCBlm YalSAT WalkSATlm ProbSAT Score2SAT CSCCSat PDSat 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#Total 
270 

27773 

240 

30328 

265 

28220 

255 

28876 

265 

28235 

270 

27633 

285 

26502 

285 

26516 

315 

24007 

 

Table 20: Comparative results of PDSat and its competitors on the k-SAT_SC18 benchmark 

Instance 

Class 

DCCASat Sparrow YalSAT FrwCBlm WalkSATlm Score2SAT CSCCSat ProbSAT PDSat 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#suc 

par 10 

#Total 
350 

21175 

290 

26041 

360 

20162 

350 

21027 

360 

20200 

340 

10902 

360 

20205 

380 

18581 

450 

12676 

 
Fig. 5 Comparison of run time distributions on the SAT Competition 2016 

benchmark consisting of all medium and huge random k-SAT instances with 

long clauses with a cutoff time of 5000 seconds. 

The good performance of PDSat on the SAT Competition 2018 

benchmark is also clearly illustrated by Fig. 7, which 

summarizes the run time distributions of the solvers on this 

benchmark, and each solver is performed for one run for each 

instance. These promising results of PDSat confirm the 

effectiveness of PNF, Po-PNF, PN-PoF, variable allocation 

value function and the new tie- breaking mechanism. 

 

Fig. 6 Comparison of run time distributions on the SAT Competition 2017 
benchmark consisting of all medium and huge random k-SAT instances with 

long clauses with a cutoff time of 5000 seconds. 

In summary, the experiments show that PDSat consistently 

outperforms WalkSATlm, FrwCBlm, ProbSAT, YalSAT, 

Score2SAT CSCCSat, DCCASat and Sparrow on solving 

medium and huge random k-SAT instances with long clauses 

and various ratios and sizes in terms of both metrics, which 

confirms the robustness of PDSat on k-SAT instances with long 

clauses. 

 



 17 

 
Fig. 7 Comparison of run time distributions on the SAT Competition 2018 

benchmark consisting of all medium and huge random k-SAT instances with 

long clauses with a cutoff time of 5000 seconds. 

8 Further discussions 

Some further discussions are given below to clarify some issues 

and highlight some important cases.  

8.1 Links between different algorithms and their 

capability and applicability  

Fig. 8 below summarizes the strategies of each algorithm, their 

links among each other and their capability and applicability. 

 

threshold 7-SAT             huge 7-SAT                5-SAT 

 

 Applicable ranges of each algorithm 

 

 

PNFSat_alt  + PNFSat  +   PN&PoFSat                    PDSat 

 

Strategies of each algorithm 

 

 

  PNF                  tie-breaking              PN-PoF         Po-PNF 

Fig. 8 The strategies of each algorithm and applicable ranges of each algorithm 

on PDSat. 

Note that threshold 7-SAT benchmark includes the 7-SAT 

instances with r equal to the conjectured threshold ratio of the 

solubility phase transition (i.e., r=87.79), and huge 7-SAT 

benchmark contains the 7-SAT instances with r<87.79 and 

n=50000, and 5-SAT benchmark includes the 5-SAT instances 

with various ratios and variables. PN-PoF and Po-PNF is based 

on PNF and PoF. 

According to the Fig. 8, the PDSat algorithm includes four 

implementation of strategies - PNF, the new tie-breaking, 

PN-PoF, and Po-PNF respectively. Next, we provide further 

discussion about each implementation of PDSat. Then we 

conduct further analysis to provide more insights into the PD 

strategy based on PNF, PN-PoF, Po-PNF, the Vav function and 

the TBF mechanism. Specifically, further experiments are 

conducted to reveal the relationships among the PD strategies 

based on PNF, Po-PNF and PN-PoF and the other two related 

heuristics. PD strategy based on the PoF itself is not suitable on 

random k-SAT instances with long clauses. 

8.2 Approximate implementation of PD strategies 

based on PNF, Po-PNF, and PN-PoF 

In this paper, the implementation of PNF described in Sections 

5 and 6, and Po-PNF and PN-PoF described in Section 6 are 

also approximate strategies. 

Inspired by the approximate implementation of PD strategy 

[16], and the fitting distribution of break value in WalkSATlm, 

which significantly decrease the time complexity of the 

accurate implementation of PD strategy, we firstly propose an 

accurate implementation of PD strategies based on PNF, 

Po-PNF and PN-PoF, which computes the probability of break 

value of all variables in an unsatisfied clause c selected under a 
complete assignment α. The maintenance of the accurate 

implementation is described as follows: whenever a variable x 

is flipped during the search, firstly x’s break value is stored. 

Then each clause c ϵ C(x) is checked whether c’s state is 

changed (from unsatisfied to 1-satisfied, from 1-satisfied to 

2-satisfied, from 2-satisfied to 1-satisfied, or from 1-satisfied to 

unsatisfied) by flipping a variable y. If it is the case (c’s state is 

changed by flipping the variable y), for each variable x in c, x’s 

break value is updated. Then if x appears in the subsequent 

unsatisfied clause selected; x’s probability would be updated. 

 We use L(x) to denote the occurrence number of a variable x. 

As variable x appears in each clause for C(x), thus L(x) is equal 

to |C(x)|.  

 Note that the discussions below are based on the condition 

that F is a random k-SAT instance with n variables and m 

clauses (r=m/n).  For each clause c, the number of all variables 

is equal to k, i.e., E(|c|) =k. For each variable x ϵ var(F), 

E(|L(x)|) is about equal to k * m/n= k*r, thus it is easy to derive 

that E(|C(x)|) is also about equal to k*r. 

For the accurate implementation of PD strategies based on 

PNF, Po-PNF and PN-PoF, the time complexity of computing 

the PNF, Po-PNF or Po-PNF is O(E(|c|)) = O(k), and the time 

complexity of maintenance is O(E(|c|))+ O(E(|C(x)|)= O(k)+ 

O(k*r)= O(k*r). All the time complexities of maintenance of 

the approximate implementation of PD strategy computed only 

by the break value are O(k*r). 

Since PNF is a potential idea for escaping the cycling 

problem and the FRW paradigm shows efficiency on selecting 

a flipping variable to be flipped in each search step, thus it is 

interesting to apply PNF to FRW. While the existing PoF 

strategy is ineffective to handle the exponential delay on 

random k-SAT instances with long clauses when applying to 

FRW, Po-PNF and PN-PoF show effectiveness when 

combining into FRW. The possible reason is that the fitting 

distribution of the break value in WalkSATlm helps FRW 

algorithms to combine PoF strategy with the PNF strategy and 

decrease the exponential delay, Vav function helps FRW 

algorithms to decrease blind initial assignment, and the TBF 

mechanism helps FRW algorithms to avoid the useless flips in 
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adjacent steps and thus lead FRW algorithms to the promising 

search spaces. 

8.3 Empirical analyzes on PoF, PNF, TBF 

mechanism and Vav function 

To show the superiorities of PNF, Po-PNF and PN-PoF over 

PoF on FRW algorithms for random k-SAT instances with long 

clauses, and demonstrate the relationship among PD strategy, 

TBF mechanism, and Vav function in the PDSat, we directly 

replace PNF, Po-PNF, PN-PoF with PoF, resulting in an 

alternative version called PDSat_PoF; only utilize PNF instead 

of other Po-PNF, PN-PoF and PoF, resulting in an algorithm 

called PDSat_PNF; do not use the Vav function, resulting in an 

alternative version namely PDSat_nva; do not utilize the TBF 

mechanism, resulting in an algorithm called PDSat_nTBF; and 

do not use the TBF mechanism and Vav function, resulting in 

another version namely PDSat_nvt. 

For PDSat_PoF on solving k-SAT instances with long 

clauses, we set the setting of cb as the ones used in ProbSAT 

[16], and ɛ to 1 as the constant. The parameters of five 

alternative algorithms are set according to PDSat. The cutoff 

time for all runs is set to 5000 s. We run each solver ten times 

for each instance, as the instances in each ratio are enough to 

test the performance of the solvers [34]. 

Then, we compare PDSat with the five alternative versions 

on extensive medium and huge random k-SAT instances, 

including the k-SAT_SC16 benchmark, the k-SAT_SC17 

benchmark and the k-SAT_SC18 benchmark described in 

Section 7. The experimental results are presented in Table 21.  
 

Table 21: Comparative results of PDSat and its alternative versions 

on the k-SAT benchmark 

Solver 

#solved 

par 10 5-SAT 7-SAT #Total Runs 

#inst. 150 150 3000 

PDSat  800 820 1620 23206 

PDSAT _nva 760 730 1490 25397 

PDSAT _nTBF 630 800 1430 26363 

PDSAT _nvt 640 770 1410 26698 

PDSAT _PoF 630 560 1190 30276 

PDSAT _PNF 570 940 1510 25035 

 

According to the experimental results, it is apparent that PNF 

exists the exponential decay with growing break value in case 

of random 3-SAT. Although PoF might handle the exponential 

decay for random 3-SAT, PDSat_PoF’s performance is the 

worst among five alternative algorithms for solving k-SAT with 

long clauses. However, PDSat dramatically outperforms five 

alternative algorithms on these benchmarks, indicating that 

Po-PNF and PN-PoF combining PNF and PoF are much more 

efficient and more effective than PoF itself in the FRW 

algorithms. Furthermore, PDSat solves 162 instances, 22 

instances more than PDSat_nvt does, 19 instances more than 

PDSat_ntr does, 13 instances more than PDSat_nva does, 

indicating that the TBF mechanism and Vav function are 

effective to improve PD strategy based FRW algorithms. To the 

best of our knowledge, the PD strategy based on Po-PNF and 

PN-PoF are currently the only combination strategy that can be 

used to improve performance of FRW algorithms. 

9 Conclusions and future work 

We proposed three completely new PD strategies for variable 

selection based on different probability functions, namely PNF, 

Po-PNF and PN-PoF, they all are based on the Boltzmann 

function, which has been evaluated as a fitting function of the 

break value’s distribution in the WalkSATlm during the search 

process. Compared to the existing PoF based PD strategy which 

loses power on random k-SAT instances with long clauses, 

combining PNF, Po-PNF and PN-PoF has shown its efficiency 

on random k-SAT instances with long clauses.  

The main results are summarized below:  

1) Based on the WalkSATlm algorithm, we found the 

distribution of the break value and the utilization rate of break 

value tends to be a Boltzmann function. 

2) We proposed a PNF according to the Boltzmann function, 

and then we combine the PNF strategy with a new TBF 

mechanism to design a new variable selection heuristic called 

PNF-TBF. It was further combined with the recently proposed 

Vav function led to a new FRW algorithm dubbed PNFSat, 

which has shown great efficiency and robustness on huge 

random 7-SAT instances.  

3) We did further analyses for PNFSat and found the new 

tie-breaking strategy which is not suitable for solving medium 

7-SAT instances at the threshold ratio of the solubility phase 

transition, but the alternation version PNFSat_alt significantly 

outperformed ProbSAT and Score2SAT on such instances.  

4) In order to handle the exponential delay of PNF strategy, 

we proposed two new heuristics called PN-PoF and Po-PNF 

respectively, while the parameters were tuned by the 

Boltzmann function. Combined use of PN-PoF and Po-PNF led 

to a new FRW algorithm dubbed PN&PoFSat. PN&PoFSat 

achieved state-of-the-art performance on a broad range of 

random 5-SAT instances with various variables and ratios.  

5) We did further analyses for PN&PoFSat. Sixthly, PNFSat, 

PNFSat_alt and PN&PoFSat is combined to form flexible new 

FRW algorithm called PDSat, which consistently outperformed 

all competitors including state-of-the-art FRW algorithms and 

two-mode SLS algorithms on solving medium and huge 

random k-SAT instances with long clauses and various ratios as 

well as sizes in terms of success runs.  

6) Besides the efficiency, the experiments also demonstrated 

that PNF is very robust on random k-SAT instances with long 

clauses, as PNF can be applied to designing efficient FRW 

algorithms, and cooperates well with several different strategies, 

such as Vav function, TBF mechanism and PoF. 

 For future work, we plan to combine the PNF, Po-PNF, 

PN-PoF strategy with other algorithmic techniques, such as 

linear make [13] and configuration checking [3], [14]. Also, 

inspired by the success of PNF based on the fitting function 

namely Boltzmann function, we would like to explore the 
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fitting function among configuration checking and other 

forbidden strategies, and thus combine them to develop more 

efficient SLS algorithms for random SAT. Additionally, we 

would like to apply the PNF, Po-PNF and PN-PoF strategies to 

improving performance of SLS algorithms on solving the 

structured instances in SAT competition. 
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