
 1

Abstract

Focused random walk (FRW) is one of the most influential paradigm of stochastic local search (SLS) algorithms for the

propositional satisfiability (SAT) problem. Recently, an interesting probability distribution (PD) strategy for variable selection

was proposed and has been successfully used to improve SLS algorithms, resulting in state-of-the-art solvers. However, most

solvers based on the PD strategy only use polynomial function (PoF) to handle the exponential decay and are still unsatisfactory in

dealing with medium and huge k-SAT instances at and near the phase transition. The present paper is focused on handling all

k-SAT instances with long clauses. Firstly, an extensive empirical study of one state-of-the-art FRW solver WalkSATlm on a wide

range of SAT problems is presented with the focus given on fitting the distribution of the break value of variable selected in each

step, which turns out to be a Boltzmann function. Using theses case studies as a basis, we propose a pseudo normal function (PNF)

to fit the distribution of the break value of variable selected, which is actually a variation of the Boltzmann function. In addition, a

new tie-breaking flipping (TBF) strategy is proposed to prevent the same variable from being flipped in consecutive steps. The

PNF based PD strategy combined with the TBF strategy lead to a new variable selection heuristic named PNF-TBF. The PNF-TBF

heuristic along with a variable allocation value (Vav) function are used to significantly improve ProbSAT, a state-of-the-art SLS

solver, leads to a new FRW algorithm dubbed PNFSat, which achieves the state-of-the-art performance on a broad range of huge

random 7-SAT instance near the phase transition as demonstrated via the extensive experimental studies. Some further improved

versions on top of PNFSat are presented respectively, including PNFSat_alt, which achieves the state-of-the-art performance on

the medium 7-SAT instances at the phase transition; PN&PoFSat, which achieves the state-of-the-art performance on a broad range

of random 5-SAT benchmarks; as well as an integrated version of these three algorithms, named PDSat, which achieves the

state-of-the-art performances on all huge and medium random k-SAT instances with long clauses as demonstrated via the

comparative studies using different benchmarks.

Keywords: Probability Distribution · Satisfiability (SAT) · Focused random walk (FRW) · Stochastic local search (SLS)

1 Introduction

The propositional satisfiability (SAT) problem is one of the

most widely studied NP-complete problems and plays an

outstanding role in many domains of computer science and

artificial intelligence due to its significant importance in both

theory and applications [1]. Considering a propositional

formula F in the Conjunctive Normal Form (CNF) defined on a

set of Boolean variables, the SAT problem asks whether there

This work is supported by the National Natural Science Foundation of China

(Grant No. 61673320) and the Fundamental Research Funds for the Central

Universities (Grant No. 2682017ZT12, 2682016 CX119).

 H. Fu is with the Key Laboratory of National-Local Joint Engineering

Laboratory of System Credibility Automatic Verification of China, School of

Information Science and Technology, Southwest Jiaotong University, Chengdu,

China (email: fhm6688@my.swjtu.edu.cn)

 J. Liu is with the Key Laboratory of National-Local Joint Engineering

Laboratory of System Credibility Automatic Verification of China, and also

with the School of Computing, Ulster University, Northern Ireland, UK (email:

j.liu@ulster.ac.uk)

Y. Xu is with the Key Laboratory of National-Local Joint Engineering

Laboratory of System Credibility Automatic Verification of China, School of

Mathematic, Southwest Jiaotong University, Chengdu, China (email:

xuyang@swjtu.edu.cn)

exists a truth assignment to the variables of F that satisfies all

clauses in F. The SAT problem is fundamental in solving many
practical problems in combinatorial optimization, statistical

physics, circuit verification, mathematical logic, machine

learning, constraint satisfaction, real-time scheduling, and

computing theory [2].

Since SAT solving is a practical domain, we need SAT

instances to test different algorithms. The uniform random

k-SAT instances are a well-studied category of SAT. The class

of random k-SAT instances is a relatively unbiased sample for

algorithms [3]. Random k-SAT instances remain very difficult.

Indeed, such instances are challenging for all kinds of

algorithms and by controlling the instance sizes and the

clause-to-variable ratios, they provide adjustable hardness

levels to assess the solving capabilities. Moreover, the

performance of algorithm is usually stable on random k-SAT

instances, either good or bad. Actually, the class of random

k-SAT instances is one of the three main tracks in the

well-known SAT competitions [4].

There are many optimization algorithms dedicated to

different SAT solvers to solving SAT problems, which are

divided into two main classes: one is complete, the other is

incomplete. Complete algorithms are mainly based on DPLL [5,

6] and resolution principle [7]. The incomplete SAT solvers are

mainly based on stochastic local search (SLS) algorithms

which are among the best- known methods currently available

Focused Random Walk with Probability

Distribution for SAT with Long Clauses

Huimin Fu, Jun Liu and Yang Xu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/475654027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fhm6688@my.swjtu.edu.cn
mailto:j.liu@ulster.ac.uk

 2

for solving types of SAT problems. Although the incomplete

SAT solvers cannot guarantee either to find the solutions or

prove a given Boolean formula unsatisfiable, some of them are

surprisingly more effective than state-of-the-art complete

solvers on finding models of satisfiable formulae for random

k-SAT instances [8]. SLS strategies can also be applied to

solving traveling salesman problems by optimizing ant colony

algorithm [9].

An SLS algorithm starts by generating randomly a truth

assignment of the variables of F. Then it explores the search

space to minimize the number of falsified clauses. To do this, it

iteratively flips the truth value of a variable selected according

to some heuristic at each step until it seeks out a solution or

timeout. Hence, there are two main factors affecting SLS

algorithms, one is to generate a complete initial assignment,

and the other is a variable selection heuristic.

Among random k-SAT instances, random 3-SAT ones

exhibit some particular statistical properties and are easy to

solve, for example, by SLS algorithms and a statistical physics

approach called Survey Propagation [37]. It has been shown

that the famous SLS algorithm WalkSAT [36] scales linearly

with the number of variables for random 3-SAT instances near

the phase transition. The state-of-the-art FrwCB solves random

3-SAT instances near the phase transition (at ratio 4.2) with

millions of variables within 2-3 hours [12].

However, random k-SAT instances with long clauses remain

very difficult, and the performance of SLS algorithms on such

instances has stagnated for a long time. Indeed, such instances

are challenging for all kinds of algorithms, including the

Survey Propagation algorithm, which solves random 3-SAT

instances extremely fast [37]. Recently, a few progresses such

as, CScoreSAT [32], ProbSAT [18] and YalSAT [10], have

been made in this direction. In particular, when solving random

instances near the phase transition, CScoreSAT is good at

k-SAT with k>3, and ProbSAT is good at solving random

5-SAT and 7-SAT instances, and the YalSAT algorithm is good

at solving random 5-SAT instances.

Most SLS solvers improve different variable selection

heuristics to develop algorithms. Heuristics in SLS algorithms

for SAT can be divided into two categories: two-mode SLS

algorithms and focused random walk (FRW) algorithms.

Recent solvers usually combine these two kinds of heuristics,

such as the winners of random satisfiable category of SAT

Competition 2017 and the silver award of random satisfiable

category of SAT competition 2016 namely YalSAT [10] and

CSCCSat [11].

FRW algorithms always select a variable to be flipped from

an unsatisfied clause chosen randomly in each step [12]. On

solving random k-SAT instances, FRW framework performs

better than others. WalkSAT, regarded as the first FRW

algorithm, firstly uses both noise factor and random walk

strategy, then utilizes greedy strategy and still shows

state-of-the-art performance in solving 3-SAT instances.

WalkSATlm [13, 34] implemented several variants of

WalkSAT’s algorithm, and took a large step towards improving

SLS algorithm for random k-SAT instances with k> 3.

FrwCBlm [3] implemented a completely new configuration

checking (CC) strategy based on clause states and showed great

efficiency and robustness on random k-SAT instances with k>3.

Recently, one two-mode algorithm based on an interesting

probability distribution (PD) strategy for variable selection had

been proposed to handle the random k-SAT instances, resulting

in an efficient two-mode algorithm, such as Sparrow [15],

which is the winner of random satisfiable track of SAT

competition 2011. Whereas previous heuristics select the

flipping variable based on variables properties, the PD strategy

takes the circumstance of the variable into account. The PD

strategy for SAT in the literature [16] selects a variable x to be

flipped by deciding whether it has the best make or the lowest

break in an unsatisfied clause chosen randomly. Moreover, the

experimental results in the literature [16] indicate that the FRW

algorithms based on PD strategy dubbed ProbSATsc13, is more

effective than two-model SLS algorithms and the winner of the

random satisfiable track of SAT competition 2013. Afterwards,

the PD heuristic has been further developed, such as

polypower1.0 [17], which is the fourth place of random

satisfiable track of SAT competition 2016; YalSAT [10], which

implements several variants of ProbSAT’s algorithm, and win

the random satisfiable track of SAT competition 2017;

ProbSAT [18], which is the second-ranked solver among the

SLS solvers in terms of capability for the SAT competition

2018.

The literature [16] has showed that the exponential delay in

probability with growing break value might be too strong in the

case of 3-SAT, so the PD strategy selects a variable x to be

flipped according to the polynomial function (PoF) of break

value, and picks a variable x to be flipped according to the

exponential function of break value for k-SAT with k>3. The

FRW algorithm polypower1.0 [17] also deals with exponential

decay in some sense, and it uses a PoF to solve random k-SAT

instances. However, there are some limitations in previous

FRW algorithms based on the PD strategy, which only use PoF

to handle the exponential decay for random k-SAT instances,

and thus lose their power, especially for solving random k-SAT

instances with k>3. Empirical evidences, which present the

ineffectiveness of the PD strategy only based on the PoF, can be

found in Section 6. In this paper, we propose a new fitting

function strategy that works much better on the problem of

exponential delay.

The first contribution of the present work is summarized

below: we use an internationally renowned FRW algorithm

WalkSATlm [13] to test all medium and huge random k-SAT

instances from SAT competition 2017 and 2018, with the aim

to fit the distribution of the average ratio of the total times of

variables corresponding to each break value in all variables

selected and the total times of variables corresponding to each

break value in all randomly unsatisfied clauses selected in the

solution process for all random k-SAT instances that can be

solved by WalkSATlm, while the fitting function is consistent

with the so-called Boltzmann function. Since WalkSATlm

utilizes the noise strategy, there is a certain probability that the

variables are randomly selected. We found that the smaller the

probability in the noise strategy is, the smaller the error

between the distribution of the ratio of break value and the

 3

Boltzmann function is.

The second contribution of the present work is to adapt the

fitting function to make it applicable to FRW algorithms. A

new alternative PD strategy based on a new probability

function, called pseudo normal function (PNF), is proposed.

Then we propose a new variable selection heuristic, called

PNF-TBF, which combines the PNF and a new tie-breaking

flipping (TBF) strategy in a subtle way. Then we combine

PNF-TBF with the recently proposed variable allocation value

(Vav) function [20], resulting in a new FRW algorithm named

PNFSat. The experiments show that PNFSat exhibits the best

performance on huge random 7-SAT instances. Further

analysis for PNFSat indicates that the new tie-breaking strategy

is not suitable for solving medium 7-SAT instances at the

threshold ratio of the solubility phase transition, but the

alternation version PNFSat_alt (PNFSat without the new

tie-breaking strategy) significantly outperforms its FRW

competitors (which are based on the PD strategy), namely

ProbSAT [18] and YalSAT [10] as well as the currently best

two-mode SLS solver Score2SAT [19] on such instances.

The third contribution of the present work is to improve the

performance of PNFSat on solving medium and huge random

5-SAT instances with various ratios and sizes. Based on the

Boltzmann function, we propose two new variable selection

heuristics called PN-PoF and Po-PNF respectively, which

reflects a combined use of both PN-PoF and Po-PNF on top of

PNFSat, leading to a new FRW algorithm dubbed PN&PoFSat.

Significantly improving PNFSat, PN&PoFSat achieves

state-of-the-art performance on random 5-SAT instances.

Furthermore, our experiments show that PN&PoFSat exhibits

the best performance on huge and medium random 5-SAT

instances in terms of total success runs.

Additionally, the fourth contribution of the present work is

that we combine PNFSat, PNFSat_alt and PN&PoFSat, leading

to a new flexible FRW algorithms called PDSat. Our

evaluations present that PDSat dramatically outperforms

state-of-the-art SLS solvers on all huge and medium random

k-SAT instances with long clauses, including FRW algorithms

namely WalkSATlm, YalSAT and ProbSAT, and two-mode

SLS algorithms namely Sparrow [15], DCCASat [21],

CSCCSat [11], and Score2SAT.

Finally, we provide discussions about the implementation of

the PDSat algorithm in our work, and do further empirical

analyses on comparing PoF, PNF, PN-PoF and Po-PNF, Vav

function, and the new TBF mechanism. According to our

observations, PoF loses its effectiveness when applying to the

problem of exponential decay on random k-SAT instances with

long clauses, and to the best of our knowledge, PDSat is

currently the only PD strategy that can be used to improve the

problem of exponential decay and the performance of PD

strategy based FRW algorithms.

This paper is structured as follows. In Section 2, we provide

some necessary preliminaries. Section 3 discusses the fitting

function of the break value of variables selected in WalkSATlm,

i.e., a Boltzmann function. In Section 4, we propose the new

PNF distribution of the break value of variable selected, which

is actually a variation of the Boltzmann function. In Section 5, a

new TBF strategy is proposed, followed by the PNF-TBF

heuristic based on the PNF and TBF, which led to a new FRW

algorithm called PNFSat, an alternative version of PNFSat,

called PNFSat_alt is also provided, their performances are

demonstrated with the detailed experimental studies. In Section

6, we propose the Po-PNF heuristic and PN-PoF heuristic, and

introduce the PN&PoFSat algorithm which reflects a combined

use of the above two heuristics on top of PNFSat. The empirical

results of PN&PoFSat are also provided. Section 7 discusses

the integrated algorithm of PNFSat, PNFSat_alt and

PN&PoFSat, called PDSat, along with its experimental

evaluation. Further discussions on the approximate

implementation of PDSat and empirical analyzes on PNF,

Po-PNF, PN-PoF, PoF, Vav function and the new TFB scheme

applied to FRW algorithms are demonstrated in Section 8.

Finally, Section 9 concludes the paper and lists some future

work.

2 Preliminaries

A formula F of the SAT is defined by a pair F=(X, C) such that

X={x1, x2,…, xn} is a set of n Boolean variables (their values

belong to the set {true, false}) and C={c1, c2, …, cn} is a set of

m clauses. A clause ci ϵ C is a disjunction of literals and a literal

is either a variable xi (which is called positive literal) or its

negation ¬xi (which is called negative literal). We define

C(x)={c | c is a clause which x appears in}. A clause can also be

represented by the set of its literals. For a set of literals L, var(L)

is the set of the variables in L. Accordingly, var(ci) is the set

containing the variables appearing in ci. The size of a clause ci

is the number of its literals and it is denoted by | ci| =| var(ci)|.

If the size of each clause in C is equal to k (∀ci ϵ C, | ci|=k) then

the instance is a k−SAT instance and r = m/n is its clause-to-

variable ratio. An instance F=c1˄c2˄…˄cm is a conjunction of

clauses.
A satisfying assignment  for a formula F is an assignment

to its variables such that the formula evaluates to true. If xi is

true by  then xi belongs to  (otherwise ¬xi ϵ ). A set of all

unsatisfied clauses under a complete assignment a for a formula

F is defined by unsat(). Given an instance F, the SAT problem

is to find a satisfying assignment or prove that none exists. A

literal l is said to be satisfied by the current value of the variable

 if l ϵ  and falsified if ¬l ϵ . A clause is satisfied by  if at

least one of its literals is true literal and falsified otherwise. A

clause is t-satisfied if and only if it includes exactly t true

literals under  [13]. A solution of F is an assignment that

satisfies all the clauses of F.

The SLS algorithm generally generates a random complete

assignment. Recently, the variable allocation value (Vav)

function [31] is proposed to generate a greedy initial

assignment. The Vav function of a variable x is the number of

occurrences of literal x divided by the number of occurrences of

literal ⌐x. If the Vav function of the variable x is greater than the

specified parameter, the initial assignment of the variable x is

true; if the Vav function of the variable x is less than another

specified parameter, the initial the initial assignment of the

 4

variable x is false; otherwise the initial assignment of the

variable x is assigned randomly.

In each step, the mainly variable x properties used by SLS

algorithms for SAT are make(x) [13], [22] and break(x) [23],

which are the number of clauses that would become satisfied

and unsatisfied respectively, if variables x were to be flipped.

Usually, SLS algorithms for random k-SAT instances select a

variable x to be flipped based on its properties of score(x) [24],

[25], [26] and age(x) [27]. A scoring function which can be a

simple property or any mathematical expression with one or

more properties measures the increase in the number of

satisfied clauses by flipping x, and score(x) is defined as

make(x)−break(x). age(x) is defined as the number of steps

since the variable x was last flipped.

2.1 Probability distribution strategy review

Probability distribution (PD) techniques have proven

successful in FRW algorithms [10], [15], [17], [18]. PD

strategy is based on the PoF, which aims to handle the cycling
problem in local search [18]. When algorithms based on PD

strategy reached a local minimum, they compute a PD on the

variables from an unsatisfied clause. In the context of SAT,

originally state in the literature [15], given a formula F and a

complete assignment , the probability distribution of a

variable x takes into account the difference between the score(x)

and the age(x) of variables.

In addition to FRW SLS algorithms based on PD strategy,

previous SLS algorithms for SAT always utilize the greedy

strategy. They usually select the flipping variable according to

the properties of variables x, such as make(x), break(x),

score(x), and circumstance information [28], [29], [30]. Greedy

strategy is easy to fall into the local minimum. However,
compare with other state-of-the-art SLS algorithms, PD based

ones need neither noise nor a random walk or greedy strategy to

escape efficiently from cycles. The PD strategy is a simple and

efficient method [15]. This is the essential difference between

the PD strategy and previous works.

2.2 ProbSAT review

In this section, we briefly review the ProbSAT algorithm [18],

which serves as the basic of our proposed algorithms in the later

sections. The ProbSAT algorithm is a recent milestone in local

search for solving SAT. Just after it was proposed, it becomes

the basic framework of Dimetheus and YalSAT. Yalsat won the

random track of SAT Competition 2017, Dimetheus won the

RSC 2014 and 2016.

The PD strategy used in ProbSAT is based on a polynomial

function or an exponential shape, f(x, ), as listed below

respectively:

𝑓(𝑥,) = (ℇ + 𝑏𝑟𝑒𝑎𝑘(𝑥,))
−𝑐𝑏

 (1)

or

𝑓(𝑥,) = (𝑐𝑏)−𝑏𝑟𝑒𝑎𝑘(𝑥,) (2)

where 𝑐𝑏 and ℇ are two parameters.

The pseudo-code of ProbSAT is described in Algorithm 1

and can be found in the literature [18].

Agorithm 1: ProbSAT algorithm

Input: CNF-formula F, MaxTries, MaxSteps

 Output: A satisfying assignment  of F, or “UNKNOWN”

1 begin

2 for i = 1 to MaxTries do

3  ←a generated truth assignment randomly for F;

4 for j = 1 to MaxSteps do

5 if  satisfies F then Return ;

6 C ←an unsatisfied clause chosen at random;

7 for x in C do

8 compute f (x, );

9 x ←random variable x according to probability
𝑓(𝑥,)

∑ 𝑓(𝑧,)𝑧∈𝐶
;

10 end for

11  ←  with x flipped;

12 end for

13 end for

14 Return “UNKNOWN”;

15 end

In the beginning, ProbSAT algorithm performs the first loop

until it finds a satisfying assignment or reaches the first limited

steps denoted by MaxTries. Then ProbSAT algorithm generates

a complete assignment  randomly as the initial assignment

(line 3 in Algorithm 1). Then ProbSAT algorithm starts the

second loop until a satisfying solution is found or reaches the

second limited steps denoted by MaxSteps. During the search

process, ProbSAT algorithm selects an unsatisfied clause

randomly (line 6 in Algorithm 1), and then ProbSAT tries to

select a flipping variable based on probability (line 7-10in

Algorithm1) to be flipped (line 11 in Algorithm 1). Finally,

once the search process terminates, the ProbSAT reports  as

the solution; otherwise, ProbSAT reports UNKNOWN.

ProbSAT algorithm explores the search space to minimize

the number of unsatisfied clauses. To do this, it is natural for

ProbSAT algorithm to select a variable to be flipped.

3 Boltzmann fitting function of break value in

WalkSATlm

WalkSATlm is a typical and state-of-the-art FRW algorithm,

which utilizes greedy strategy and random walk. As
WalkSATlm and PD strategy based algorithms are two

completely different FRW algorithms, a natural question is

whether there exists an alternative function which can reflect

the dynamics of the variable in the solution process of

WalkSATlm, and can also be used to guide the solution of the

PD strategy based algorithms. The literature [16] has shown

that break value is the best important factor and PD strategy can

even do without the make value completely. Hence, in this

section we only fit the distribution of break value of variables

selected by WalkSATlm.

3.1 Experiment preliminaries

To test WalkSATlm, we set up four benchmarks:

1) 7-SAT_huge: The benchmark contains all 40 huge

random 7-SAT instances from SAT Competition 20171 and

1https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/

 5

SAT Competition 2018 2 (16.0 19.8r  , n= 250000, two

instances each size).

2) 7-SAT_medium: The benchmark includes all 50 medium

random 7-SAT instances (87.79r = , 90≤n≤ 168, one instance

each size except for 11 instances of n=120) from SAT

Competitions 2017 and 2018.

3) 5-SAT_huge: The benchmark contains all 40 huge

random 5-SAT instances (16.0 19.8r  , n=250000, two

instances each size) from SAT Competition 2017 and SAT

Competition 2018.

4) 5-SAT_medium: The benchmark includes all 50 medium

random 5-SAT instances (21.117r = , 220≤n≤ 590, one

instance each size except for 11 instances of n=250) from SAT

Competitions 2017 and 2018.

The binary of WalkSATlm is downloaded from the webpage

of SAT Competition 20163.

In this paper, all experiments are carried out on a machine

under a 64-bit Ubuntu Linux Operation System, using 2 cores

of Intel(R) Core (TM) i3-3240M 3.4 GHz CPU. WalkSATlm is

performed for ten runs on each instance within 2000s.

3.2 Fitting function of break value in WalkSATlm

In this section, we fit the distribution of the average ratio of the

total times of variables corresponding to each break value in all

variables selected and the total times of variables

corresponding to each break value in all randomly unsatisfied

clauses selected in the solution process for all random k-SAT

instances with long clauses that can be solved by WalkSATlm,

and the results are shown in Figs. 1-4. The boxes in Figs. 1-4

are the detailed information of the fitting function. When the

break value is greater than 19, the average ratio is 0, so we have

done a uniform sampling of break values belong to [0, 19].

Fig. 1. Average ratio of the average times of break value in all variables

selected and the average times of break value in all randomly unsatisfied

clauses selected. All black squares refer to the discrete distribution of the

average break value ratio of all 7-SAT_huge benchmark solved within the time

limit. The curve is the fitted distribution of all discrete points.

2http://sat2018.forsyte.tuwien.ac.at/
3https://baldur.iti.kit.edu/sat-competition-2016/

Fig. 2. Average ratio of the average times of break value in all variables

selected and the average times of break value in all randomly unsatisfied

clauses selected. All black squares refer to the discrete distribution of the

average break value ratio of all 7-SAT_medium benchmark solved. The curve

is the fitted distribution of all discrete points.

Fig. 3. Average ratio of the average times of break value in all variables

selected and the average times of break value in all randomly unsatisfied

clauses selected. All black squares refer to the discrete distribution of the

average break value ratio of all 5-SAT_huge benchmark solved. The curve is

the fitted distribution for all discrete points with break value from 0 to 11.

Fig. 4. Average ratio of the average times of break value in all variables

selected and the average times of break value in all randomly unsatisfied

clauses selected. All black squares refer to the discrete distribution of the

average break value ratio of all 5-SAT_medium benchmark solved. The curve

is the fitted distribution for all discrete points with break value from 0 to 11.

 6

Result summary: In the case of 7-SAT_huge benchmark

and 7-SAT_medium benchmark, a very good fit function which

is a Boltzmann function has been obtained, and the error of the

discrete points and the fitting function is very small. In the case

of 5-SAT_huge benchmark and 5-SAT_medium benchmark,

when the break value is less than 12, there is a good fitting

function, which also satisfies a Boltzmann function in addition

to the different parameter settings.

WalkSATlm utilizes random walk strategy by a noise factor

wp. In fact, wp is 0.390 on random 5-SAT_huge benchmark; wp

is 0.351 on random 5-SAT _medium benchmark; wp is 0.120

on random 7-SAT_huge benchmark; wp is 0.115 on random

7-SAT _medium benchmark in WalkSATlm algorithm. Hence,

when the break value is greater than 11, the bigger the wp is, the

more variables are randomly selected to flip. So, we just fit the

function for the discrete points with the break values from 0 to

11 on random 5-SAT_huge benchmark and 5-SAT_medium

benchmark.

Hence, when the break value is from 0 to 19, if wp

approaches to 0, the distribution of between the break value and

the utilization rate of break value, which is the average ratio of

the total times of variables corresponding to each break value in

all variables selected and the total times of variables

corresponding to each break value in all randomly unsatisfied

clauses selected in the solution process for all random k-SAT

instances that can be solved by WalkSATlm, tends to be a

Boltzmann function.

4 Pseudo normal function as a new probability

function

As PD strategy is still in its infancy for solving SAT problem, a
natural question is whether there exists an alternative PD

strategy for SAT which is more efficient and robust than PoF

based PD strategy on improving SLS algorithms for k-SAT

instances with long clauses. In this section, we propose a novel

probability function, called a pseudo normal function (PNF),

which is actually a variation of the Boltzmann function, which

forms a basis for an alternative PD strategy.

It has turned out that the influence of break is rather strong

[16]. Thus, it is reasonable if we only consider the break value

completely, it still leads to very good algorithms, while its

implementation is simple and has less overhead. On the other

hand, note that the Boltzmann function reflects the probability

distribution of the break value when WalkSATlm solves the

random k-SAT instances with long clauses, and is close to the

exponential distribution. The above considerations suggest two

principles in designing the new alternative PD strategy as

below:

1) The break value property plays a very important role;

2) When WalkSATlm solves the random k-SAT instances

with long clauses, the probability distribution of the break

value is close to exponential distribution.

As a result, the normal function of the break value is defined

firstly, followed by a new notion of pseudo normal function.

Definition 1: For a CNF formula F, a complete assignment α

to var(F), the normal function, denoted by NF, is a function on

var(F) such that

𝑁𝐹(𝑥, 𝛼) =
1

√2*𝜋
∗ 𝑒−

𝑏𝑟𝑒𝑎𝑘(𝑥,)2

2 (3)

Definition 2: For a CNF formula F, a complete assignment α

to var(F), the pseudo normal function, denoted by PNF, is a

function on var(F) such that

𝑃𝑁𝐹(𝑥, 𝛼) = 𝜋 ∗
1

√2∗𝜋
∗ 𝑒−

𝑏𝑟𝑒𝑎𝑘(𝑥,)2

2 = 𝜋 ∗ 𝑁𝐹(𝑥, 𝛼) (4)

PNF is an exponential function of the break value. This

function is so simple and can be computed with little overhead.

Note that PNF is different from the exponential function

utilized in ProbSAT [18]. Especially, the exponential function

of ProbSAT is based on the break value, while PNF is based on

the square of the break value. Moreover, ProbSAT has

parameter involved, while there is no parameter in the PNF.

5 Proposed algorithm PNFSat for random

7-SAT

In this section, we introduce the main ideas in the proposed

algorithm for random 7-SAT. We firstly apply a new PD

strategy based on PNF to the FRW SLS paradigm and then

present a new tie-breaking strategy, both of which leads to a

new variable selection heuristic, called a PNF-TBF heuristic.

5.1 Applying the PNF to the FRW SLS paradigm

In this section, we apply the PNF to the focused random

walking (FRW) SLS paradigm.

Previous PD strategy based SLS algorithm for random

7-SAT problems can be categorized into two classes: (i) some

early PD strategy based on PoF for random 7-SAT [17]; (ii)

recent studies, mainly including ProbSAT [18] and YalSAT [10]

as well as their variants, used the PD strategy based on the

exponential function for random 7-SAT. The exponential

function turns out to be more effective than PoF for solving

7-SAT problems. In the present work, we propose to utilize the

PD strategy based on the PNF described in Section 4 to identify

a “good” variable which has the minimum break value.

5.2 The new tie-breaking strategy

Currently, there are two most popular variable selection

strategies for solving SAT: probability function and

configuration checking (CC) strategy [30].

Adopting the probability based on the PNF to pick a variable

to be flipped may select the same variable in consecutive steps,

so that it makes useless search in consecutive steps. Therefore,

it is expected that the last flipping variable could not be the

current flipping variable based on the idea of configuration

checking (CC) strategy, which has proved to be effective in

SLS algorithms for solving SAT [11, 19]. Thus, it is reasonable

for us to employ a tie-breaking strategy that avoids selection of

 7

the same variable in consecutive steps.

The proposed tie-breaking strategy is inspired by the idea in

the literature [13], but they are essentially different from each

other. The latter may not be suitable for algorithms based on the

PD strategy. The main difference lines in that in our proposal, a

variable is mainly selected based on the PNF, there is no need

to select one from all those variables with the same minimum

break value in the selected clause.

Before introducing the new tie-breaking strategy, we

introduce the tie-breaking flipping (TBF) variable firstly.

Definition 3: For a CNF formula F, a complete assignment α

to var(F), and the last flipped variable y, for a set of all

unsatisfied clauses unsat(α), a variable x is tie-breaking

flipping (TBF) if and only if x ϵ var(unsat(α)) and x≠y.

Note that a variable x is a TBF of unsatisfied clause c if and

only if x ϵ var(c) and x y .

In this paper, we use TBFVar(α) to denote the set of all TBF

variables of F under α. The TBFVar (c) is denoted the set of all

TBF variables of an unsatisfied clause c.

The new tie-breaking strategy, called TBF, is described as

follows:

- When the TBF strategy is called, if there exists a variable

selected by the PNF based PD strategy which is the same as the

last flipped variable y, then if the number of unsatisfied clause

is less than parameter R, it prefers to pick a TBF variable of

clause c as the flipping variable randomly;

- Otherwise, the TBF strategy prefers to randomly pick a TBF

variable of F as the flipping variable, leading the algorithm to

search deeply, and preventing the algorithm from revisiting the

recently faced scenario.

5.3 The PNF-TBF heuristic

According to the PNF and the new tie-breaking strategy, we

design a new variable selection heuristic named PNF-TBF.

Specially, the PNF-TBF heuristic works as follows. After

randomly selecting an unsatisfied clause c, PNF-TBF switches

between two levels, i.e., the probability level and TBF level,

depending on whether the variable x selected by PD strategy

based on PNF is the same as the last flipped variable y or not. If

x ≠ y, PNF-TBF works in the probability level; otherwise it

works in the TBF level. In probability level, PNF-TBF prefers

to choose the variable x with the minimum break(x) in the

clause c. In the TBF level, if the number of unsatisfied clauses

(numFalse) is less than the parameter R, PNF-TBF chooses the

variable x randomly in TBFVar(c); otherwise, it chooses the

variable x randomly in TBFVar(α).

In brief, the new variable selection mechanism based on

PNF-TBF heuristic is achieved by selecting the variables by

probability based on PNF; once ties occur, a new tie-breaking

strategy breaks ties of variables and selects a variable by the

new tie-breaking strategy.

5.4 PNFSat algorithm

In this section, we utilize the PNF-TBF heuristic and the

Algorithm 2: PNFSat (F)

Input: CNF-formula F, MaxTries, MaxSteps

Output: A satisfying assignment α of F, or UNKNOWN

1 for i = 1 to MaxTries do

2 α ←a generated assignment for F by variable allocation value function;

3 for j = 1 to MaxSteps do

4 if α satisfies F then

5 return α;

6 C ←an unsatisfied clause selected randomly;

7 for x in C do

8 f(x, a) ←compute PNF(x, α);

9 v ←random variable x according to probability
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
;

10 if (v==bestVar) then

11 if (numFalse<R) then

12 bestVar ←random variable x in TBFVar(c);

13 else

14 bestVar ←random variable x in TBFVar(a);

15 else

16 bestVar=v;

17 flip(bestVar);

18 return UNKNOWN;

variable allocation value (Vav) function [20] to improve

ProbSAT algorithm and make a serious modification on

ProbSAT, resulting in a new FRW algorithm dubbed PNFSat.

The pseudo-code of the PNFSat algorithm is outlined in

Algorithm 2. Before getting into the details of the PNFSat

algorithm, we first introduce two modifications employed in

the algorithm.

PNFSat differs from ProbSAT in the following two aspects.

Firstly, although both algorithms utilize the PD strategy, the PD

strategy in PNFSat is based on the PNF for solving random

7-SAT, while ProbSAT use the PD strategy based on the

exponential function described in Section 2.2. Secondly,

PNFSat utilizes the new tie-breaking to break ties, while

ProbSAT does not use any tie-breaking strategies.

Initially, PNFSat performs the first loop until it finds a

satisfying assignment or reaches the first limited steps denoted

by MaxSteps. Then PNFSat generates a complete assignment 

by a Vav function as the initial solution. Then it executes the

second loop until a solution is found or reaches the second

limited steps denoted by MaxTries.

In each search step, PNFSat picks a variable to be flipped. It

performs the random walk to select an unsatisfied (line 6 in

Algorithm 2), and then picks a variable according to the

PNF-based PD strategy which is presented in Section 4 (lines

7-9 in Algorithm 2) and the new tie-breaking strategy (lines

(10-16 in Algorithm 2): PNFSat first picks a variable by the

PNF-based PD strategy, and then if the variable is the same as

the last flipped variable and the number of unsatisfied clause is

less than parameter R, PNFSat prefers to pick a TBF variable of

clause c to be flipped randomly (lines 11 and 12 in Algorithm 2);

otherwise, the new tie-breaking prefers to randomly pick a TBF

variable of F to be flipped (lines 13 and 14 in Algorithm 2).

After the variable to be flipped is selected, the PNFSat flips the

selected variable (line 17 in Algorithm 2), then the PNFSat

algorithm starts the next search step.

Finally, when the search terminates, if α satisfies all clauses

of F, PNFSat outputs α as the solution; otherwise, PNFSat

reports UNKNOWN.

 8

5.4.1 Experimental preliminaries of PNFSat

In this subsection, we evaluate PNFSat on extensive random

7-SAT instances. Some experiment preliminaries are given

below first.

Benchmarks: All the instances used in the following

experiments are generated according to the random k-SAT

model [35]. we adopt the following five benchmarks for

uniform random 7-SAT.

1) 7-SAT_huge_SC18: The benchmark includes all 20 huge

random 7-SAT instances with 55 59r  , 60 64r  ,
65 69r  , 70 74r  (n= 50000, five instances each group)

from SAT Competition 2018.

2) 7-SAT_huge_SC17: The benchmark contains all huge

7-SAT instances with 55 59r  , 60 64r  , 65 69r  ,

70 74r  (n= 50000, five instances each group) from SAT

Competition 2017.

3) 7-SAT _huge_SC16: The benchmark consists of all 20

huge random 7-SAT instances with various ratio (55 74r  ,

n=50000, one instance each ratio) from SAT Competition

2016.

4) 7-SAT_huge: Random 7-SAT instances near the

threshold ratio of phase transition, generated random by the

random k-SAT model (r=66.0, n=50000, 20 instances).

5) 7-SAT_medium _SC: The benchmark contains all 90

medium random 7-SAT instances with 90 108n  ,

110 128n  , 130 148n  and 150 168n  (r= 87.79,

30 instances expect for the second group, 20

instances the other

group) from SAT Competition 2016 , 2017 and 2018.

The medium k-SAT benchmarks have a clause-to-variable

ratio equal to the conjectured threshold ratio of the solubility

phase transition, for which 50% of the uniform k-SAT instances

are satisfiable, and a significant traction (about 50%) of the

medium k-SAT instances is unsatisfiable. For most algorithms,

instances generated closer to the phase-transition ratio are

harder to solve [4].

The PNFSat algorithm is implemented in C/C++. For the

parameters of the Vav function in PNASat, we utilize the

default parameter setting tuned in the literature [20]. The

parameter R for the TBF strategy in PNFSat are tuned

according to our experience, and the parameter setting is R=3.

We compare PNFSat with four state-of-the-art FRW solvers,

including WalkSATlm [13], FrwCBlm [3], YalSAT [10] and

ProbSAT [18], and one state-of-the-art two-mode solver

Score2SAT. WalkSATlm and FrwCBlm are still highly

competitive with the state-of-the-art on random k-SAT

instances with long clauses. YalSAT is the winner of the

random track of SAT Competition 2017. ProbSAT wins the

gold medal of the random SAT track in SAT Competition 2013,

is the second-ranked solver among the SLS solvers in terms of

capability for the SAT competition 2018 and the current best

FRW solver. Score2SAT wins the bronze of SAT Competition

2017, but its performance outperforms the winner of SAT

Competition 2017 on random k-SAT instances with long

clauses4 and it is the best two-mode SLS solver on random

4https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=results

k-SAT instances.

In this paper, for WalkSATlm and FrwCBlm the parameters

are set as the ones used in SAT Competition 2016. The source

code of FrwCBlm can be downloaded online 5. The YalSAT

and Score2SAT solvers we adopt are the two submitted to SAT

Competition 2017 6 . The binary of ProbSAT can be

downloaded online7 and we use the parameter setting as the one

used in SAT Competition 2018.

In this paper, for each solver on each instance group, we

report the number of success runs (#suc), as well as “par 10”,

which is a penalized average run time where an unsuccessful

run of a solver is penalized as 10 times cutoff time, and “Over

all” symbols averaged over all instances with each run per

instance. Note that PAR 10 is adopted in SAT Competitions

and has been widely used in the literature as a prominent

performance measure for SLS solvers [32]. If a solver has no

successful run on an instance class, the corresponding “par10”

is marked with “n/a”.

For the 7-SAT_huge_SC17 benchmark and 7-SAT_huge_

SC18 benchmark, each solver is performed for twenty runs for

each instance. For the 7-SAT_huge_SC16 benchmark and

7-SAT_medium_SC benchmark as well as 7-SAT_huge

benchmark, each solver is performed for five runs for each

instance. The cutoff time for all runs is set to 5000 seconds as

same as SAT competitions in 2016, 2017 and 2018.

5.4.2 Experiment results for PNFSat

1) Results on the 7-SAT_huge_SC18 benchmark: Table 1

illustrates comparative results of PNFSat and its competitors on

the huge random 7-SAT benchmark from SAT Competition

2018. None of the solvers can solve any huge 7-SAT instances

with ratios between 70 and 74, indicating that random 7-SAT

instances near the phase transition are so difficult.

Nevertheless, PNFSat shows significant superiority over

ProbSAT and performs much better than the other competitors

on the whole benchmark. Especially, on the random 7-SAT

instance with 65≤r≤69, PNFSat is the only solver that solves 20

runs. Actually, all the competitors become ineffective (among

which WalkSATlm, FrwCBlm and ProbSAT have the highest

success rate of 20%) on the random 7SAT instance

with65≤r≤69, whereas PNASat still achieves a success rate of

40% for this instance class. Also, PNFSat significantly

outperforms its competitors in terms of run time, which is more

obvious as the instances ratio increases.

2) Results on the 7-SAT_huge_SC17 benchmark: To show

the robustness of PNFSat, we compare PNFSat with its

competitors on the huge random 7-SAT benchmark from SAT

Competition 2017. Table 2 presents the results of PNFSat and

its competitors on this benchmark. According to the results,

PNFSat stands out the best solver and significantly performs

better than its competitors, which confirms the robustness of

PNFSat on huge random 7-SAT instances.

5https://baldur.iti.kit.edu/sat-competition-2016/solvers/
6https://baldur.iti.kit.edu/sat-competition-2017/solvers/
7http://sat2018.forsyte.tuwien.ac.at/solvers/random/

 9

Table 1: Comparative result of PNFSat and its competitors on the 7-SAT_huge_SC18

Instance
Class

WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

55≤r≤59 50 19 50 14 50 9 50 21 50 8

60≤r≤64 50 432 50 395 50 20 40 10062 50 15

65≤r≤69 10 40433 10 40521 10 40058 0 n/a 20 30079

70≤r≤74 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a

Over all 110 22721 110 22732 110 22522 90 27521 120 20026

Table 2: Comparative result of PNFSat and its competitors on the 7-SAT_huge_SC17

Instance
Class

WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

55≤r≤59 50 21 50 16 50 9 50 21 50 8

60≤r≤64 50 406 50 474 50 24 40 10236 50 16

65≤r≤69 10 40586 10 40621 10 40021 0 n/a 20 32092

70≤r≤74 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a

Over all 110 22754 110 22778 110 22514 90 27517 120 22220

Table 3: Comparative result of PNFSat and its competitors on the 7-SAT_huge_SC16

#Total runs
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

100 55 22729 55 22776 55 22512 50 26430 55 22508

Table 4: Comparative result of PNFSat and its competitors on the 7-SAT_huge

#Total runs
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

100 0 n/a 0 n/a 0 n/a 0 n/a 65 18368

Table 5: Comparative result of PNFSat and its competitors on the 7-SAT_medium_SC

Instance
Class

WalkSATlm FrwCBlm ProbSAT Yalsat Score2SAT PNFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

90≤n≤108 70 15345 65 17532 70 15056 70 15063 70 15077 70 15028

110≤n≤128 80 23791 80 23656 90 20584 75 25264 85 22044 85 22116

130≤n≤148 55 23558 35 33065 45 27984 40 30463 45 27812 45 28203

150≤n≤168 30 35369 10 45204 20 40187 15 42701 30 35507 10 45178

Over all 235 24435 190 29174 225 25359 200 28028 230 24769 210 27044

3) Results on the 7-SAT_huge_SC16 benchmark: To solve

the huge random 7-SAT instances, Table 3 presents the results

of PNFSat and its competitors on this benchmark. Although

PNFSat, ProbSAT, WalkSATlm and FrwCBlm succeed in 55

runs, the average time of PNFSat is 22508 s, whereas those of

ProbSAT, WalkSATlm and FrwCBlm are 22512, 22729 and

22776, respectively. Also, YalSAT succeeds in 50 runs within

the cutoff time. Therefore, PNFSat exhibits the best

performance among these state-of-the-art solvers on the huge

random 7-SAT instances.

4) Results on the 7-SAT_huge benchmark: As reported in

Table 4, the results show PNFSat dramatically outperforms its

competitors. ProbSAT, WalkSATlm, YalSAT and FrwCBlm

fail in all runs, while PNFSat succeeds in 65 runs, which

indicates the scalability of the PNFSat algorithm.

5) Results on the 7-SAT_medium _SC benchmark: Table 5

presents the experimental results of PNFSat and its competitors

on medium random 7-SAT instances at phase transition.

Although PNFSat solves a few less instances than other

competitors, PNFSat has similar performance with its

competitors on such instances.

6) Summarization for random 7-SAT: Tables 1, 2, 3, 4 and 5

present the results of comparing PNFSat with ProbSAT,

WalkSATlm, YalSAT, FrwCBlm as well as Score2SAT on

random 7-SAT instances from SAT Competition 2017, 2018

and 2019. PNFSat shows a substantial improvement over

ProbSAT on these random 7-SAT instances. On all instance

classes expect for the 7-SAT_ medium _SC, PNFSat achieves a

higher success rate than ProbSAT does. Particularly, on the

huge sized instances with 65≤r≤69, PNFSat succeeds in 40 runs

while ProbSAT only succeeds in 20 runs. Moreover, PNFSat

also significantly outperforms its competitions in terms of both

success rate and run time on huge random 7-SAT instances,

which indicates a substantial performance improvement of

PNFSat over its competitions on these huge random 7-SAT

instances. However, PNFSat does not show any notable

improvement for ProbSAT on medium random 7-SAT

instances (Table 5). On the other hand, PNFSat cannot rival

state-of-the-art SLS solvers, such as the winners of SAT

Competition 2017, on medium random 7-SAT instances at the

phase transition, and thus further improved version is

introduced in the subsequent section.

 10

5.5 Further analysis of PNFSat and its alternative

version PNFSat_alt

It might seem that TBF level is a relatively minor concern. In

effect, however, it has an essential impact on the PNFSat

algorithm. This is because when the algorithm based on the

PNF strategy selects a variable to be flipped, there is sometimes

more than one such selected variable, which is the same in two

adjacent steps. Thus, in order to demonstrate the effectiveness

of TBF in the PNF-TBF heuristic, we conducted experiments to

compare PNFSat with an alternative version, called PNFSat_alt,

as detailed below:

PNFSat_alt: this alternative version of PNFSat does not

utilize the TBF component. In another word, this alternative

version does not break ties of variables during the search

process (i.e., removing lines 10-16 in Algorithm 2).

The parameter settings of PNFSat_alt is the same as that of

PNFSat in the following experiments.

Empirical results for PNFSat and PNFSat_alt on all random

7-SAT instances from SAT Competition 2016, 2017 and 2018

are reported in Table 6. Each solver is performed for ten runs

for each instance, as the instances in each ratio are enough to

test the performance of the solvers [34]. The cutoff time for all

runs is set to 5000 seconds.

Table 6: Experimental results of PNFSat and its alternative version on

the random 7-SAT

Benchmark #inst.
PNFSat_alt PNFSat

#suc par 10 #suc par 10

7-SAT_huge_SC18 20 100 25012 120 20028

7-SAT_huge_SC17 20 100 25015 120 20112

7-SAT_huge_SC16 20 100 25013 110 20516

7-SAT_medium_SC 90 470 24364 420 25715

As is clear from Table 6, the performance of PNFSat_alt is

much worse than PNFSat on huge random 7-SAT instances.

Due to the TBF component, PNFSat gains a significant

improvement over PNFSat_alt on huge random 7-SAT

instances, while the performance of PNFSat_alt is better than

PNFSat on medium random 7-SAT instances, which suggests

that the new tie-breaking mechanism is likely suitable for

solving huge random 7-SAT instances and not suitable for

medium random 7-SAT instances at phase transition.

In order to demonstrate the effectiveness of PNFSat _alt, we

conducted experiments to compare PNFSat_alt with other

FRW solvers based on PD strategy including PNFSat,

ProbSAT and YalSAT on the following medium random

7-SAT instances at the phase transition.

7-SAT_medium_Random: 7-SAT instances generated

randomly according to the random k-SAT model (r=87.79,

n=160, 170, 180, 60 instances, 20 for each size).

Each solver is performed for ten runs for each instance, and

the cutoff time for all runs is set to 5000 seconds.

Empirical results for PNFSat_alt and other FRW solvers

based on PD strategy on the 7-SAT_medium_random

benchmark are reported in Table 7. As can be seen from Table 7,

PNFSat_alt performs generally better than other PD strategy

based FRW solvers, which indicates the effectiveness of

PNFSat_alt. Particularly, on the medium random 7-SAT

instances with n=160 and n=180, PNFSat_alt performs much

better than those FRW solvers in terms of metrics, which

confirms that our proposed PNF contributes to the performance

of PNFSat_alt on the medium random 7-SAT instances, and

TBF component is likely not suitable for medium random

7-SAT instances at phase transition, and indicates the

scalability of the PNFSat_alt.

Table 7: Comparative results of PNFSat_alt and other PD strategy

based FRW solvers on the 7-SAT_medium_random

Instance

Class

ProbSAT Yalsat PNFSat PNFSat_alt

#suc par 10 #suc par 10 #suc par10 #suc par 10

n=160 40 40318 40 40209 30 42718 50 35888

n =170 20 45108 0 n/a 0 n/a 20 45127

n =180 10 45507 10 45260 10 45525 20 45149

6 Improving PNFSat for random 5-SAT

The above section shows the excellent performance of PNFSat

on huge random 7-SAT near the phase transition, and its

variation PNFSat_alt on medium random 7-SAT at the phase

transition. However, the performance of PNFSat and

PNFSat_alt degrades on random 5-SAT instances (seen from

Tables 8-12).

This section discusses the improvement of PNFSat for

random 5-SAT instances with various sizes and ratios. To this

end, we propose two variable selection heuristics called

PN-PoF and Po-PNF respectively, which combine the PNF

with the PoF utilized in the PNFSat algorithm in different ways,

then they both are utilized to improve PNFSat, resulting in a

new FRW algorithm called PN&PoFSat for SAT, along with

detailed empirical evaluations of PN&PoFSat on a broad range

of random 5-SAT instances.

6.1 PN-PoF heuristic and Po-PNF heuristic

The literature [16] has showed that the exponential delay in

probability with growing break value might be too strong in the

case of 3-SAT, thus, the PD strategy selects a variable x to be

flipped according to the PoF of break value in the case of

3-SAT, and picks a variable x to be flipped according to the

exponential function of break value for k-SAT with k>3.

There have been some limitations in previous PoF based

FRW algorithms, which use PoF to handle the exponential

decay for random k-SAT instances, but lose their capability and

generality, especially for solving random k-SAT instances with

k>3. Therefore, it is inadvisable to utilize either the exponential

function or the PoF for random 5-SAT instances, which might

have the similar performance with ProbSAT and polypower1.0

so that the improvement of PNFSat has no effect. Thus, an

important issue in the PD based FRW algorithms is to seek a

balance solution between the exponential function and the PoF.

Based on the above discussions, in order to improve PNFSat

for random 5-SAT instances with various ratios, we propose

two new probability functions, named PN-PoF and Po-PNF

respectively, which reflect the different combination of the

 11

PNF described in Section 4.1 and the PoF described in Section

2.2 as defined below. The further lead to two new variable

selection heuristics respectively.

Definition 3: For a CNF formula F, a complete assignment α

to var(F), the pseudo normal-polynomial function of a variable

x, denoted by PN-PoF, is a function on var(F) such that

𝑃𝑁 − 𝑃𝑜𝐹(𝑥, 𝛼) = {
𝑃𝑁𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) < 𝑑1

𝑃𝑜𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) ≥ 𝑑1
 (5)

where d1 is a positive integer parameter.

Definition 4: For a CNF formula F, a complete assignment α

to var(F), the polynomial-pseudo normal function of a variable

x, denoted by Po-PNF, is a function on var(F) such that

𝑃𝑜 − 𝑃𝑁𝐹(𝑥, 𝛼) = {
𝑃𝑜𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) < 𝑑2

𝑃𝑁𝐹(𝑥, 𝑎), 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑎) ≥ 𝑑2
 (6)

where d2 is a positive integer parameter.

Note that since the distribution of the break value and the

utilization rate of break value tends to be a Boltzmann function

for solving k-SAT instances in WalkSATlm algorithm

(described in Section 3), we utilize the Boltzmann function as a

sample to guide the solution of the PD strategy based

algorithms. Thus, the parameter d1 or d2 is determined based on

the Boltzmann function.

Essentially PN-PoF and Po-PNF switch between two

function, i.e., the PNF and the PoF, depending on the break

value.

The PN-PoF heuristic or the Po-PNF heuristic prefers to

select the variable to be flipped by the PN-PoF based PD

strategy or the PN-PoF based PD strategy respectively.

Flipping a variable by either of them minimizes the number of

clauses from satisfiable to unsatisfied as soon as possible and

handles the exponential decay. These two heuristics are

described below:

In the PN-PoF heuristic:

-If the break value is less than the parameter d1, the PD

strategy is based on the PNF;

-otherwise, the PD strategy is based on the PoF.

In the Po-PNF heuristic:

- If the break value is less than the parameter d2, the PD

strategy is based on the PoF;

- otherwise, the PD strategy is based on the PNF.

Since the algorithm calls PN-PoF heuristic and Po-PNF

heuristic according to clause-to-variable ratio of SAT

respectively, the parameter settings for d1 and d2 may be

different from each other in two heuristics.

6.2 PN&PoFSat algorithm

In this section, we modify the PD strategy of PNFSat by

combined use of the PN-PoF and the Po-PNF and obtain a new

algorithm which refers to as PN&PoFSat. The pseudo-codes of

PN&PoFSat is given in Algorithm 3.

PN&PoFSat differs from PNFSat in the following aspect:

although both algorithms utilize the PD strategy, PN&PoFSat

uses both the PN-PoF heuristic (lines 8 and 9 in Algorithm 3)

and the Po-PNF heuristic (lines 10 and 11 in Algorithm 3), to

use which is dependent on the preset conjectured threshold ratio

of clause-to-variable for solving random 5-SAT instances,

while PNFSat only use the PNF based PD strategy.

Algorithm 3: PN&PoFSat (F)

Input: CNF-formula F, MaxTries, MaxSteps

Output: A satisfying assignment α of F, or Unknown

1 for i = 1 to MaxTries do

2 α ←a generated assignment for F by variable allocation value function;

3 for j = 1 to MaxSteps do

4 if α satisfies F then

5 return α;

6 C ←an unsatisfied clause selected randomly;

7 for x in C do

8 if r equal to the conjectured threshold ratio of the solubility

phase transition then

9 f(x, α)←compute PN-PoF (x, α);

10 else

11 f(x, α)←compute Po-PNF(x, α);

12 v ←random variable x according to probability
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
;

13 if v= =bestVar then

14 if numFalse<R then

15 bestVar ←random variable x in TBFVar(c);

16 else

17 bestVar ←random variable x in TBFVar(α);

18 else

19 bestVar=v;

20 flip(bestVar);

21 return Unknown;

6.3 Evaluations of PN&PoFSat on random 5-SAT

instances

In this subsection, we carry out extensive experiments to

evaluate PN&PoFSat on random 5-SAT instances at and near

phase transition. First, we compare PN&PoFSat with PNFSat

as well as state-of-the-art SLS solvers on random 5-SAT

instances at and near the phase transition from SAT

Competitions in 2016, 2017 and 2018. Then, we compare

PN&PoFSat with state-of-the-art SLS solvers on large-sized

threshold and 5-SAT_huge random instances generated

randomly at and near the threshold of phase transition.

6.3.1 Benchmark and experimental

preliminaries

In the experiments in this section, all benchmark instances are

generated according to the random k-SAT model at and near the

threshold ratio of the solubility phase transition. Specifically,

we adopt the following seven benchmarks.

1) 5-SAT_huge_SC18: The benchmark includes all 20

huge random 5-SAT instances with 16.0 ≤ 𝑟 ≤ 16.8 ,

17.0≤r≤17.8,18.0 ≤ 𝑟 ≤ 18.8 and19.0 ≤ 𝑟 ≤ 19.8 (n=250000,

five instances each class) from SAT Competition 2018.

2) 5-SAT_huge_SC17: The benchmark contains all huge

5-SAT instances with16.0 ≤ 𝑟 ≤ 16.8,17.0 ≤ 𝑟 ≤ 17.8,18.0

≤18.8 and 19.0 ≤ 𝑟 ≤ 19.8 (n=250000, five instances each

class) from SAT Competition 2017.

3) 5-SAT_huge _SC16: The benchmark consists of all 20

 12

huge random 5-SAT instances with various ratio (55 ≤ 𝑟 ≤ 74,

n=250000, one instance each ratio) from SAT Competition

2016.

4) 5-SAT_medium_SC18: The benchmark contains

medium random 5-SAT instances (r=87.79, n=250, ten

instances each size) from SAT Competition 2018.

5) 5-SAT_medium_ SC: The benchmark consists of all 80

random 5-SAT instances with 200 ≤ 𝑛 ≤ 290 , 300≤n≤390,
400 ≤ 𝑛 ≤ 490and 500≤n≤590 (r=21.117, 20 instances each

class) from SAT Competitions in 2016 and 2017.

6) Large-sized threshold: Random 5-SAT instances at the

threshold ratio of phase transition, generated random by the

random k-SAT generator8 utilized in SAT Competitions 2016,

2017 and 2018 (r=21.117, n=550, 600, 650, 120 instances, 40

for each size). These instances are divided into two categories:

the training set and test set, both of which have 20 instances for

each 5-SAT class.

7) 5-SAT_huge: Random 5-SAT instances near the

threshold ratio of phase transition, generated random by the

random k-SAT generator (r=18.2, 18.4, 18.6, n=250000, 120

instances, 40 for each size). These instances are divided into

two categories: the training set and test set, both of which have

20 instances for each 5-SAT class.

Note that the training set is only utilized to tune the

parameters in PN&PoFSat, and then PN&PoFSat with the

tuned parameters is evaluated on random 5-SAT instances at

and near the threshold ratio of phase transition from SAT

Competitions 2016, 2017 and 2018 and the test set in

large-sized threshold benchmark and 5-SAT_huge benchmark.

The PN&PoFSat algorithm is developed on the top of

PNFSat, and thus is implemented in C/C++. For the parameters

of Vav function in PN&PoFSat and PNFSat, we use the default

parameter setting tuned on random 5-SAT instances in the

literature [20]. For the three parameters R, ɛ and cb in

PN&PoFSat, we set R to 3, ɛ to 1 and cb to 3.7 as constants. The

parameter d1 and d2 for the PN-PoF heuristic and the Po-PNF

heuristic respectively in PN&PoFSat are tuned based on all

random 5-SAT instances from SAT Competitions 2016, 2107

and 2018 as well as the training set of the large-sized threshold

benchmark and 5-SAT_huge benchmark.

First, we observe the Boltzmann function in Fig. 3 to find

preferred parameter for huge random 5-SAT instances near the

threshold ratio of phase transition. The obvious monotonic

decreasing interval of the Boltzmann function is between 0 and

4, and when the break value is greater than 3, the trend of the

function is very flat, i.e., the difference in Boltzmann function

under different break values is small. Hence, the turning point

of the Boltzmann function trend is at the point where the break

value is equal to 3. Thus, we test d1 (also d2)=2, 3, 4 to find the

most efficient one for huge random 5-SAT instances, and test

the PN-PoF heuristic and the Po-PNF heuristic respectively in

PN&PoFSat to find the most efficient one for different ratios.

The preliminary results show that d1=4 for the PN-PoF

8https://sourceforge.net/projects/ksatgenerator/

heuristic is the best for huge random 5-SAT with r<18; d2=3

for the Po-PNF heuristic is the best for huge random 5-SAT

with 18.0 ≤ 𝑟 < 21.0.

Then we observe the Boltzmann function in Fig. 4 to find

preferred parameter for medium random 5-SAT instances at the

threshold ratio of phase transition. When the break value is

greater than 4, the difference in Boltzmann function under

different break values is small. The turning point of the

Boltzmann function trend is at the point where the break value

is equal to 4. Hence, we test d1 =2, 3, 4, 5 to find the most

efficient one for medium random 5-SAT instances, and test the

PN-PoF and the Po-PNF heuristic respectively in PN&PoFSat

to find the most efficient one for different sizes.

The preliminary results show that the d1=4 for the PN-PoF

heuristic is the best for medium random 5-SAT at the threshold

ratio of phase transition with n<330; d1=2 for the PN-PoF

heuristic is the best for medium random 5-SAT at the threshold

ratio of phase transition with330 ≤ 𝑛 < 430; d1=5 for the

PN-PoF heuristic is the best for medium random 5-SAT at the

threshold ratio of phase transition with 𝑛 ≥ 430.

For the 5-SAT_huge_SC18 benchmark, 5-SAT_huge_SC17

benchmark, 5-SAT_ huge_SC16 benchmark and 5-SAT_

medium_SC18 benchmark, each solver is performed for ten

runs for each instance. For the 5-SAT_medium_SC benchmark

and large-sized threshold benchmark as well as 5-SAT_huge

benchmark, each solver is performed for five runs for each

instance. For large-sized threshold benchmark and

5-SAT_huge benchmark, the cutoff time for all runs is set to

2000 s, and for other benchmarks, the cutoff time for all runs is

set to 5000 s (as in SAT Competition 2016, 2017 and 2018).

6.3.2 Experimental results

The experiments results are summarized below:

1) Results on the 5-SAT_huge_SC18 benchmark: Table 8

shows experimental results on the 5-SAT_huge benchmark. As

is clear from Table 8, PN&PoFSat shows significantly better

performance than other competitors on the whole instances

interms of both successful runs and average run time.

Particularly, on the random 5-SAT instances with 18.0≤r≤18.8

instances class, which are of the largest size in SAT

competitions on random 5-SAT instances, the runtime of

PN&PoFSat Sat is about 1.5 times less than of YalSAT, and

about 2 orders of magnitudes less than those of other

state-of-the-art SLS solvers. Also, for the whole benchmark,

PN&PoFSat solves 130 runs, compared to 120 for YalSAT, 110

for WalkSATlm, FrwCBlm and ProbSAT respectively.

2) Results on the 5-SAT_huge_SC17 benchmark: To show

the robustness of PN&PoFSat, we compare PN&PoFSat with

its competitors on the huge random 5-SAT benchmark from

SAT Competition 2017. Table 9 presents the results of

PN&PoFSat and its competitors on this benchmark.

According to the results, PN&PoFSat shows significant

superiority over PNFSat and significantly performs better than

its competitors, which confirms the robustness of PN&PoFSat

on huge random 5-SAT instances.

 13

Table 8: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge_SC18

Instance Class
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

16.0≤r≤16.8 50 25 50 35 50 18 50 44 50 18 50 15

17.0≤r≤17.8 50 295 50 376 50 63 50 106 50 111 50 62

18.0≤r≤18.8 10 40329 10 40057 10 40033 20 30156 0 n/a 30 20088

19.0≤r≤19.8 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a

Overall 110 22662 100 25211 110 22524 120 20077 100 25032 130 17542

Table 9: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge_SC17

Instance Class
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

16.0≤r≤16.8 50 34 50 40 50 18 50 57 50 17 50 15

17.0≤r≤17.8 40 10378 50 416 50 43 50 137 50 258 50 77

18.0≤r≤18.8 0 n/a 10 42119 10 40210 20 30394 0 n/a 30 20083

19.0≤r≤19.8 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a n/a n/a

Overall 90 27603 110 26900 110 22526 120 20147 100 25138 130 17544

Table 10: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge_SC16

Instance Class
WalkSATlm FrwCBlm ProbSAT Yalsat PNFSat PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

16.0≤r≤16.8 50 23 50 42 50 18 50 43 50 18 50 15

17.0≤r≤17.8 50 306 50 467 50 46 50 107 50 117 50 68

18.0≤r≤18.8 20 31320 10 40617 10 40062 10 40050 0 n/a 40 10396

19.0≤r≤19.8 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a 0 n/a

Overall 120 20412 110 22782 110 22531 110 22550 100 25034 140 15120

Table 11: Comparative results of PN&PoFSat and its competitors on the 5-SAT_medium_SC18

#Total runs
WalkSATlm FrwCBlm ProbSAT Yalsat Score2SAT PNFSat PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

100 70 15023 70 15070 80 10409 80 10222 70 15006 70 15010 90 5148

Table 12: Comparative results of PN&PoFSat and its competitors on the 5-SAT_medium_SC

Instance Class
WalkSATlm ProbSAT Yalsat Score2SAT PNFSat PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

200≤n≤290 60 20290 45 27503 55 22526 60 20050 45 27517 60 20021

300≤n≤390 35 32535 40 30014 40 30051 45 27624 40 30015 40 30014

400≤n≤490 15 42792 20 40163 20 40248 25 37782 20 40041 25 37665

500≤n≤590 15 37599 25 37795 20 40251 20 40242 20 40295 30 35302

Overall 125 34554 130 33868 135 33269 150 31424 125 34467 155 30750

Table 13: Comparative results of PN&PoFSat and its competitors on the large-sized threshold

Instance Class
WalkSATlm ProbSAT Yalsat Score2SAT PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

n =550 5 47598 10 45051 5 47581 10 45079 20 40278

n =600 10 45139 15 42587 10 45124 10 45124 15 42665

n =650 5 47571 5 47534 5 47568 25 37782 10 45127

Table 14: Comparative results of PN&PoFSat and its competitors on the 5-SAT_huge

Instance Class
WalkSATlm ProbSAT Yalsat FrwCBlm PN&PoFSat

#suc par 10 #suc par 10 #suc par 10 #suc par 10 #suc par 10

r=18.2 35 34089 0 n/a 0 n/a 5 47738 100 134

r=18.4 0 n/a 0 n/a 0 n/a 0 n/a 100 255

r=18.6 0 n/a 0 n/a 0 n/a 0 n/a 1 47661

 3) Results on the 5-SAT_huge_SC16 benchmark: To solve

the huge random 5-SAT instances, Table 10 presents the results

of PN&PoFSat and its competitors on this benchmark. In terms

of success runs, PN&PoFSat stands out the best solver. The

only instance class for which PNFSat does not give the best

performance is random 5-SAT instances with 17.0≤r≤17.8 in

terms of average run time. Nevertheless, on this instance class,

PN&PoFSat has similar performance as the best solver

ProbSAT, spending 22 more time. For the whole benchmark,

PN&PoFSat solves 30 runs more than FrwCBlm, ProbSAT and

 14

YalSAT do respectively, 20 runs more than WalkSATlm does.

Therefore, PN&PoFSat exhibits the best performance among

these state-of-the-art solvers on the huge random 5-SAT

instances.

4) Results on the 5-SAT_medium_SC18 benchmark: The

comparative results on the 5-SAT_medium_SC18 benchmark

are presented in Table 11. PN&PoFSat significantly

outperforms other solvers on all these medium random 5-SAT

instances of SAT Competition 2018 in terms of metrics.

Specially, PN&PoFSat achieves success runs of 90, which are

20 runs more than those of WalkSATlm, FrwCBlm, Score2SAT

and PNFSat respectively, and 10 runs more than those of

ProbSAT and YalSAT respectively.

5) Results on the 5-SAT_medium_SC benchmark: Table12

shows experimental results on the 5-SAT_medium_SC bench-

mark. PN&PoFSat solves a few more instances than its

competitors. Overall, PN&PoFSat succeeds in 155 runs,

compared to 125 for both WalkSATllm and PNFSat, 130 for

ProbSAT, 135 for YalSAT and 150 for Score2SAT. Further,

observation shows that, PN&PoFSat has similar performance

with Score2SAT on random 5-SAT instances with 300≤n≤390

instance class.

6) Results on the large-sized threshold benchmark: To

measure the performance of PN&PoFSat on random phase-

transition 5-SAT instances more accurately, we additionally

test PN&PoFSat on the test set of the Large-sized Threshold

benchmark, compared with WalkSATlm, FrwCBlm, YalSAT

Score2SAT and ProbSAT. The results are presented in Table 13.

For random 5-SAT instances with n=600, although

PN&PoFSat has more run time, PN&PoFSat and ProbSAT

solve the same number of instances. For the remaining instance

class, PN&PoFSat solves the most instances. Particularly,

PN&PoFSat shows significantly superior performance than

other solves on random 5-SAT instances with n=550, where it

succeeds in 20 runs, while ProbSAT and Score2SAT both

succeed in 10 runs and YalSAT and FrwCBlm both succeed in

5 runs, which indicates the scalability of the PN&PoFSat

algorithm.

7) Results on the 5-SAT_huge benchmark: The

experimental results on the 5-SAT_Huge benchmark are

presented in Table 14. It is encouraging to see the performance

of PN&PoFSat remains surprisingly good on these very huge

5-SAT instances, where state-of-the-art solvers show very poor

performance. PN&PoFSat solves these 5-SAT instances with

up to 18.4 ratio consistently (i.e., with 100% success rate).

Furthermore, PN&PoFSat succeeds in one run for the huge

5-SAT instances with r=18.6 respectively, whereas all its

competitors fail to find a solution for any of these instances,

which indicates the scalability of the PN&PoFSat algorithm.

In summary, the experimental results show PN&PoFSat

consistently outperforms WalkSATlm, FrwCBlm, ProbSAT,

YalSAT, Score2SAT and PNFSat on solving random 5-SAT

instances with various ratios and sizes. We believe that the

better performance of PN&PoFSat is mainly attributed to the

combination of both the PN-PoF heuristic and the Po-PNF

heuristic.

6.4 Experimental analysis on PN&PoFSat

We conduct further empirical analyses to study effectiveness of

the PN-PoF heuristic and the Po-PNF heuristic in PN&PoFSat.

We compare PN&PoFSat with its two alternatives on all

random 5-SAT instances from SAT Competitions in 2016,

2017 and 2018. Two alternative solvers are described below:

(i) PN&PoFSat1: this alternative version of PN&PoFSat

does not utilize the PN-PoF heuristic. In another word, this

alternative version only uses the Po-PNF heuristic during the

search process (i.e., replacing PN-PoF heuristic with Po-PNF

heuristic i.e., lines 10-11 in Algorithm 3).

(ii) PN&PoFSat2: this alternative version of PN&PoFSat

does not utilize the Po-PNF heuristic. In another word, this

alternative version only uses the PN-PoF heuristic during the

search process (i.e., replacing Po-PNF heuristic with PN-PoF

heuristic i.e., lines 8-9 in Algorithm 3).

We use of the default value of PN&PoFSat as the parameter

settings of PN&PoFSat1 and PN&PoFSat2, but they differ on

the variable selection heuristic based on PD. PN&PoFSat1 only

uses the Po-PNF heuristic, while PN&PoFSat2 only employs

the PN-PoF heuristic. Thus, the comparison between

PN&PoFSat1 and PN&PoFSat2 is interesting, as it can show the

contribution of the two heuristics propose in PN&PoFSat.

Empirical results for PN&PoFSat1, PN&PoFSat2 and

PN&PoFSat on all random 5-SAT instances from SAT

Competitions in 2016, 2017 and 2018 are reported in Table 15.

Each solver is performed for ten runs on each instance. The

cutoff time for all runs is set to 5000 seconds.

As is clear from Table 15, the performance of PN&PoFSat is

much better than PN&PoFSat1 and PN&PoFSat2 on random

5-SAT instances. The comparison between PN&PoFSat1 and

PN&PoFSat2 illustrates that Po-PNF heuristic and PN-PoF

heuristic have their superiority in different situations. For the

medium random 5-SAT instances at the phase transition,

PN&PoFSat1 performs worse than PN&PoFSat2. For the huge

random 5-SAT near the phase transition, PN&PoFSat1

outperforms PN&PoFSat2. Based on this observation, we

conjecture that for local search algorithms, if the ratio of

clause-to-variable is equal to the conjectured threshold ratio of

the solubility phase transition, it is better to utilize the PN-PoF

heuristic than the Po-PNF heuristic, and otherwise the Po-PNF

heuristic is of more benefit.

7 An integrated the PDSat solver and results on

random k-SAT instances with long clauses

As PNFSat, PNFSat _alt and PN&PoFSat are all PD st based

algorithms, we combine them and obtain a flexible local search

SAT solver called PDSat to handle different k-SAT instances.

Specifically, PDSat adopts PN&PoFSat to solve random

5-SAT, and PNFSat _alt to solve medium random 7-SAT

instances with r equal to the conjectured threshold ratio of the

solubility phase transition, and PNFSat to solve huge random

7-SAT instances near the phase transition.

 15

Table 15: Experimental results of PN&PoFSat and its alternative version on the random 5-SAT

Benchmark #inst.
PN&PoFSat PN&PoFSat1 PN&PoFSat2

#suc par 10 #suc par 10 #suc par 10

5SAT_huge_SC18 20 130 17545 130 17543 100 50042

5SAT_huge_SC17 20 130 17545 130 17546 100 50049

5SAT_huge_SC16 20 140 15123 140 15121 100 50043

5SAT_medium_SC18 10 90 5149 70 15061 90 5150

5SAT_medium_SC 80 310 30753 200 37615 310 30752

The PDSat is implemented in C/C++. The parameters for

PNFSat, PNFSat _alt and PN&PoFSat are set as the same as

those in the experiments in Sections 5 and 6 respectively.

In this section, we present the experimental results of PDSat

on random k-SAT instances with long clauses from the random

track of SAT Competitions in 2016, 2017 and 2018.

7.1 Experiment preliminaries of PDSat for random

k-SAT with long clauses benchmarks

SAT Competition is a competitive event for solvers of the SAT

problem. They have been held yearly 12 times starting from

2002. All random k-SAT with long clauses instances from the

SAT Competitions in 2017, 2018 and 2019 are generated

according to the random k-SAT generator at and near the

threshold ratios. We adopt the following three benchmarks

1) k-SAT_SC16: all medium and huge random k-SAT

instances with long clauses from SAT Competition 2016, and

each k-SAT, the instances contains various sizes and ratios. The

details of the benchmark are given in Table 16.

2) k-SAT_SC17: all 120 medium and huge random k-SAT

instances (all 60 huge and medium 5-SAT instances described

in Section 6, 60 huge and medium random 7-SAT instances

described in Section 5, from SAT Competition 2017.

3) k-SAT_SC18: all random k-SAT instances with long

clauses from SAT Competition 2018, and each k-SAT, the

instances have various sizes and ratios. The details of the

benchmark are given in Table 17

We compare PDSat with four state-of-the-art FRW solvers,

i.e., WalkSATlm, FrwCBlm, YalSAT, ProbSAT and four

two-mode SLS solvers, containing Sparrow [15], DCCASat

[21], CSCCSat [11], Score2SAT. Sparrow is the winner of

random track of SAT Competition 2011, and Sparrow

combined with a complete algorithm to form a new solver

Sparrow2Riss winning the random track of SAT competition

2018, but we did not compare the top three solvers of the

random track of SAT competition 2018 with PDSat. The top

five solvers mainly utilize the complete algorithms, but ours are

based on incomplete algorithms. These solvers did not solve

any instances for the medium and huge instances of the SAT

20189competition, except the champion solver Sparrow2Riss

can solve a small number of these instances, so these solvers

don't apply to the medium and huge random k-SAT instances.

DCCASat is still highly competitive with state-of-the-art

solvers on random k-SAT instances. CSCCSat won the bronze

medal and silver medal in the random track of SAT

9http://sat2018.forsyte.tuwien.ac.at/index.php?cat=results

Competitions in 2014 and 2016 respectively, but its

performance outperforms the winner of SAT Competition 2017

on medium and huge random k-SAT instances with various

ratios. For the k-SAT_SC16 benchmark and k-SAT_SC17,

each solver is performed for five runs for each instance. For the

k-SAT_SC18, each solver is performed for ten runs for each

instance. The cutoff time for all runs is set to 5000 s.

7.2 Experimental results of PDSat for random

k-SAT with long clauses benchmarks

The experiments results are summarized below:

1) Results on the k-SAT_SC16 benchmark: First, each

solver is performed for one run on each instance. We present

the CPU time distributions for PDSat and its competitors in Fig.

5 below. As can be seen from Fig. 5, PDSat outperforms its

competitors. Then to show the robustness of PDSat on random

k-SAT instances with long clauses and various sizes and ratios,

each solver is performed for five runs on each instance, and the

results are reported in Table 18. Seen from Table 18, PDSat

stands out as the best solver and significantly performs better

than its all FRW and two-mode competitors in terms of both

metrics. Overall, PDSat succeeds in 285 runs, and PDSat solves

the most instances, which illustrates its robustness.

2) Results on the k-SAT_SC17 benchmark: Table 19

reports the number of successful runs and PAR 10 for PDSat

and its competitors on the k-SAT_SC17 benchmark. The results

show PDSat significantly outperforms its competitors in terms

of both metrics. On the whole benchmarks, PDSat succeeds in

315 runs. Further observation in Fig. 6 below shows that PDSat

takes less than about 2000 seconds than other solvers do. More

encouragingly, PDSat solves 75 runs more Sparrow does, 60

runs more than YalSAT does, 50 runs more than both FrwCBlm

and WalkSATlm do, 45 runs more than DCCASat and

ProbSAT does respectively, 30 runs more than both Score2SAT

and CSCCSat do.

3) Results on the k-SAT_SC18 benchmark: To evaluate the

genuine solving ability on medium and huge (at and near the

phase transition) random k-SAT instances with long clauses,

we compare PDSat with its competitors on the k-SAT_SC18

benchmark, and the results are reported in Table 20. PDSat

stands out as the best solver and significantly outperforms its all

FRW and two-mode competitors in terms of both metrics on

this benchmark. PDSat succeeds in 450 (out of 900) runs, 70

more than the second solver namely ProbSAT does, which

indicates its robustness on medium and huge random k-SAT

instances with long clauses.

 16

Table 16 The instances numbers, ratio and sizes for each k-SAT with long clauses in the k-SAT_SC16 benchmark

 5-SAT 7-SAT

medium huge medium huge

#inst. 40 20 40 20

ratio 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0}

size 𝑛 ∈ {200, 210, …, 590} 250000 𝑛 ∈ {90, 92, …, 168} 50000

Table 17: The instances numbers, ratio and sizes for each k-SAT with long clauses in the k-SAT_SC18 benchmark

 5-SAT 7-SAT

medium huge medium huge

#inst. 10 20 10 20

ratio 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0}

size 250 250000 120 50000

Table 18: Comparative results of PDSat and its competitors on the k-SAT_SC16 benchmark

Instance

Class

DCCASat Sparrow FrwCBlm YalSAT CSCCSat ProbSAT WalkSATlm Score2SAT PDSat

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#Total
240

30187

200

33480

240

30191

255

28907

275

27325

270

27651

275

27430

275

27337

285

26430

Table 19: Comparative results of PDSat and its competitors on the k-SAT_SC17 benchmark

Instance

Class

DCCASat Sparrow FrwCBlm YalSAT WalkSATlm ProbSAT Score2SAT CSCCSat PDSat

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#Total
270

27773

240

30328

265

28220

255

28876

265

28235

270

27633

285

26502

285

26516

315

24007

Table 20: Comparative results of PDSat and its competitors on the k-SAT_SC18 benchmark

Instance

Class

DCCASat Sparrow YalSAT FrwCBlm WalkSATlm Score2SAT CSCCSat ProbSAT PDSat

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#suc

par 10

#Total
350

21175

290

26041

360

20162

350

21027

360

20200

340

10902

360

20205

380

18581

450

12676

Fig. 5 Comparison of run time distributions on the SAT Competition 2016

benchmark consisting of all medium and huge random k-SAT instances with

long clauses with a cutoff time of 5000 seconds.

The good performance of PDSat on the SAT Competition 2018

benchmark is also clearly illustrated by Fig. 7, which

summarizes the run time distributions of the solvers on this

benchmark, and each solver is performed for one run for each

instance. These promising results of PDSat confirm the

effectiveness of PNF, Po-PNF, PN-PoF, variable allocation

value function and the new tie- breaking mechanism.

Fig. 6 Comparison of run time distributions on the SAT Competition 2017
benchmark consisting of all medium and huge random k-SAT instances with

long clauses with a cutoff time of 5000 seconds.

In summary, the experiments show that PDSat consistently

outperforms WalkSATlm, FrwCBlm, ProbSAT, YalSAT,

Score2SAT CSCCSat, DCCASat and Sparrow on solving

medium and huge random k-SAT instances with long clauses

and various ratios and sizes in terms of both metrics, which

confirms the robustness of PDSat on k-SAT instances with long

clauses.

 17

Fig. 7 Comparison of run time distributions on the SAT Competition 2018

benchmark consisting of all medium and huge random k-SAT instances with

long clauses with a cutoff time of 5000 seconds.

8 Further discussions

Some further discussions are given below to clarify some issues

and highlight some important cases.

8.1 Links between different algorithms and their

capability and applicability

Fig. 8 below summarizes the strategies of each algorithm, their

links among each other and their capability and applicability.

threshold 7-SAT huge 7-SAT 5-SAT

 Applicable ranges of each algorithm

PNFSat_alt + PNFSat + PN&PoFSat PDSat

Strategies of each algorithm

 PNF tie-breaking PN-PoF Po-PNF

Fig. 8 The strategies of each algorithm and applicable ranges of each algorithm

on PDSat.

Note that threshold 7-SAT benchmark includes the 7-SAT

instances with r equal to the conjectured threshold ratio of the

solubility phase transition (i.e., r=87.79), and huge 7-SAT

benchmark contains the 7-SAT instances with r<87.79 and

n=50000, and 5-SAT benchmark includes the 5-SAT instances

with various ratios and variables. PN-PoF and Po-PNF is based

on PNF and PoF.

According to the Fig. 8, the PDSat algorithm includes four

implementation of strategies - PNF, the new tie-breaking,

PN-PoF, and Po-PNF respectively. Next, we provide further

discussion about each implementation of PDSat. Then we

conduct further analysis to provide more insights into the PD

strategy based on PNF, PN-PoF, Po-PNF, the Vav function and

the TBF mechanism. Specifically, further experiments are

conducted to reveal the relationships among the PD strategies

based on PNF, Po-PNF and PN-PoF and the other two related

heuristics. PD strategy based on the PoF itself is not suitable on

random k-SAT instances with long clauses.

8.2 Approximate implementation of PD strategies

based on PNF, Po-PNF, and PN-PoF

In this paper, the implementation of PNF described in Sections

5 and 6, and Po-PNF and PN-PoF described in Section 6 are

also approximate strategies.

Inspired by the approximate implementation of PD strategy

[16], and the fitting distribution of break value in WalkSATlm,

which significantly decrease the time complexity of the

accurate implementation of PD strategy, we firstly propose an

accurate implementation of PD strategies based on PNF,

Po-PNF and PN-PoF, which computes the probability of break

value of all variables in an unsatisfied clause c selected under a
complete assignment α. The maintenance of the accurate

implementation is described as follows: whenever a variable x

is flipped during the search, firstly x’s break value is stored.

Then each clause c ϵ C(x) is checked whether c’s state is

changed (from unsatisfied to 1-satisfied, from 1-satisfied to

2-satisfied, from 2-satisfied to 1-satisfied, or from 1-satisfied to

unsatisfied) by flipping a variable y. If it is the case (c’s state is

changed by flipping the variable y), for each variable x in c, x’s

break value is updated. Then if x appears in the subsequent

unsatisfied clause selected; x’s probability would be updated.

 We use L(x) to denote the occurrence number of a variable x.

As variable x appears in each clause for C(x), thus L(x) is equal

to |C(x)|.

 Note that the discussions below are based on the condition

that F is a random k-SAT instance with n variables and m

clauses (r=m/n). For each clause c, the number of all variables

is equal to k, i.e., E(|c|) =k. For each variable x ϵ var(F),

E(|L(x)|) is about equal to k * m/n= k*r, thus it is easy to derive

that E(|C(x)|) is also about equal to k*r.

For the accurate implementation of PD strategies based on

PNF, Po-PNF and PN-PoF, the time complexity of computing

the PNF, Po-PNF or Po-PNF is O(E(|c|)) = O(k), and the time

complexity of maintenance is O(E(|c|))+ O(E(|C(x)|)= O(k)+

O(k*r)= O(k*r). All the time complexities of maintenance of

the approximate implementation of PD strategy computed only

by the break value are O(k*r).

Since PNF is a potential idea for escaping the cycling

problem and the FRW paradigm shows efficiency on selecting

a flipping variable to be flipped in each search step, thus it is

interesting to apply PNF to FRW. While the existing PoF

strategy is ineffective to handle the exponential delay on

random k-SAT instances with long clauses when applying to

FRW, Po-PNF and PN-PoF show effectiveness when

combining into FRW. The possible reason is that the fitting

distribution of the break value in WalkSATlm helps FRW

algorithms to combine PoF strategy with the PNF strategy and

decrease the exponential delay, Vav function helps FRW

algorithms to decrease blind initial assignment, and the TBF

mechanism helps FRW algorithms to avoid the useless flips in

 18

adjacent steps and thus lead FRW algorithms to the promising

search spaces.

8.3 Empirical analyzes on PoF, PNF, TBF

mechanism and Vav function

To show the superiorities of PNF, Po-PNF and PN-PoF over

PoF on FRW algorithms for random k-SAT instances with long

clauses, and demonstrate the relationship among PD strategy,

TBF mechanism, and Vav function in the PDSat, we directly

replace PNF, Po-PNF, PN-PoF with PoF, resulting in an

alternative version called PDSat_PoF; only utilize PNF instead

of other Po-PNF, PN-PoF and PoF, resulting in an algorithm

called PDSat_PNF; do not use the Vav function, resulting in an

alternative version namely PDSat_nva; do not utilize the TBF

mechanism, resulting in an algorithm called PDSat_nTBF; and

do not use the TBF mechanism and Vav function, resulting in

another version namely PDSat_nvt.

For PDSat_PoF on solving k-SAT instances with long

clauses, we set the setting of cb as the ones used in ProbSAT

[16], and ɛ to 1 as the constant. The parameters of five

alternative algorithms are set according to PDSat. The cutoff

time for all runs is set to 5000 s. We run each solver ten times

for each instance, as the instances in each ratio are enough to

test the performance of the solvers [34].

Then, we compare PDSat with the five alternative versions

on extensive medium and huge random k-SAT instances,

including the k-SAT_SC16 benchmark, the k-SAT_SC17

benchmark and the k-SAT_SC18 benchmark described in

Section 7. The experimental results are presented in Table 21.

Table 21: Comparative results of PDSat and its alternative versions

on the k-SAT benchmark

Solver

#solved

par 10 5-SAT 7-SAT #Total Runs

#inst. 150 150 3000

PDSat 800 820 1620 23206

PDSAT _nva 760 730 1490 25397

PDSAT _nTBF 630 800 1430 26363

PDSAT _nvt 640 770 1410 26698

PDSAT _PoF 630 560 1190 30276

PDSAT _PNF 570 940 1510 25035

According to the experimental results, it is apparent that PNF

exists the exponential decay with growing break value in case

of random 3-SAT. Although PoF might handle the exponential

decay for random 3-SAT, PDSat_PoF’s performance is the

worst among five alternative algorithms for solving k-SAT with

long clauses. However, PDSat dramatically outperforms five

alternative algorithms on these benchmarks, indicating that

Po-PNF and PN-PoF combining PNF and PoF are much more

efficient and more effective than PoF itself in the FRW

algorithms. Furthermore, PDSat solves 162 instances, 22

instances more than PDSat_nvt does, 19 instances more than

PDSat_ntr does, 13 instances more than PDSat_nva does,

indicating that the TBF mechanism and Vav function are

effective to improve PD strategy based FRW algorithms. To the

best of our knowledge, the PD strategy based on Po-PNF and

PN-PoF are currently the only combination strategy that can be

used to improve performance of FRW algorithms.

9 Conclusions and future work

We proposed three completely new PD strategies for variable

selection based on different probability functions, namely PNF,

Po-PNF and PN-PoF, they all are based on the Boltzmann

function, which has been evaluated as a fitting function of the

break value’s distribution in the WalkSATlm during the search

process. Compared to the existing PoF based PD strategy which

loses power on random k-SAT instances with long clauses,

combining PNF, Po-PNF and PN-PoF has shown its efficiency

on random k-SAT instances with long clauses.

The main results are summarized below:

1) Based on the WalkSATlm algorithm, we found the

distribution of the break value and the utilization rate of break

value tends to be a Boltzmann function.

2) We proposed a PNF according to the Boltzmann function,

and then we combine the PNF strategy with a new TBF

mechanism to design a new variable selection heuristic called

PNF-TBF. It was further combined with the recently proposed

Vav function led to a new FRW algorithm dubbed PNFSat,

which has shown great efficiency and robustness on huge

random 7-SAT instances.

3) We did further analyses for PNFSat and found the new

tie-breaking strategy which is not suitable for solving medium

7-SAT instances at the threshold ratio of the solubility phase

transition, but the alternation version PNFSat_alt significantly

outperformed ProbSAT and Score2SAT on such instances.

4) In order to handle the exponential delay of PNF strategy,

we proposed two new heuristics called PN-PoF and Po-PNF

respectively, while the parameters were tuned by the

Boltzmann function. Combined use of PN-PoF and Po-PNF led

to a new FRW algorithm dubbed PN&PoFSat. PN&PoFSat

achieved state-of-the-art performance on a broad range of

random 5-SAT instances with various variables and ratios.

5) We did further analyses for PN&PoFSat. Sixthly, PNFSat,

PNFSat_alt and PN&PoFSat is combined to form flexible new

FRW algorithm called PDSat, which consistently outperformed

all competitors including state-of-the-art FRW algorithms and

two-mode SLS algorithms on solving medium and huge

random k-SAT instances with long clauses and various ratios as

well as sizes in terms of success runs.

6) Besides the efficiency, the experiments also demonstrated

that PNF is very robust on random k-SAT instances with long

clauses, as PNF can be applied to designing efficient FRW

algorithms, and cooperates well with several different strategies,

such as Vav function, TBF mechanism and PoF.

 For future work, we plan to combine the PNF, Po-PNF,

PN-PoF strategy with other algorithmic techniques, such as

linear make [13] and configuration checking [3], [14]. Also,

inspired by the success of PNF based on the fitting function

namely Boltzmann function, we would like to explore the

 19

fitting function among configuration checking and other

forbidden strategies, and thus combine them to develop more

efficient SLS algorithms for random SAT. Additionally, we

would like to apply the PNF, Po-PNF and PN-PoF strategies to

improving performance of SLS algorithms on solving the

structured instances in SAT competition.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Grant No.61673320) and the

Fundamental Research Funds for the Central Universities

(Grant No.2682019ZT16), and the Fundamental Research

Funds for the Central Universities (Grant No.2682020CX59).

The authors also gratefully acknowledge the helpful comments

and suggestions of the teachers and students from System

Credibility Automatic Verification Engineering Lab of Sichuan

Province, Southwest Jiaotong University in China, which have

improved the presentation and quality.

REFERENCES

[1] H. Fu, Y. Xu, G. Wu and X. Ning, "An improved genetic algorithm for

solving 3-SAT problems based on effective restart and greedy strategy,”

in Proc. 12th Intelligent Systems and Knowledge Engineering (ISKE),

Nanjing, Nov. 2017, pp. 1-6.

[2] H. Fu, Y. Xu, G. Wu, H. Jia, W. Zhang and R. Hu, “An improved

adaptive genetic algorithm for solving 3-SAT problems based on

effective restart and greedy strategy,” Inter. J. Com. Intell. Sys., vol. 11,

no. 1, pp.402-413, Jan. 2018.

[3] C. Luo, S. Cai, K. Su and W. Wu, “Clause states based configuration

checking in local search for satisfiability,” IEEE Trans. Cybernetic, vol.

45, no. 5, pp. 1028-1041, May, 2015.

[4] M. J. Heule, "Generating the uniform random benchmarks," in Proc.

SAT competition 2018, pp. 80.

[5] M. Davis, and H. Putnam. "A computing procedure for quantification

theory," J. ACM, vol.7, no. 3, pp: 201-215, Jul. 1960.

[6] M. Davis, G. Logemann, and D. W. Loveland, “A machine program for

theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962.

[7] C. Weidenbach, D. Dimov, A. Fietzke, et al, “Wischnewski P. SPASS

Version 3.5,” in Proc. on Automated Deduction, Springer, Berlin,

Heidelberg, Aug. 2009, pp. 140-145.

[8] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations &

Applications. San Francisco, CA, USA: Elsevier/Morgan Kaufmann,

Sep. 2004.

[9] M. Mavrovouniotis, F.M. Müller and S. Yang, "Ant colony optimization

with local search for dynamic traveling salesman problems," IEEE Trans.

Cybernetic, vol. 47, no. 7, pp. 1743-1756, Jul. 2017.

[10] A. Biere, “CADICAL, LINGELING, PLINGELING, TREENGELING

and YALSAT: Solver description,” in Proc. SAT Competition, 2017:

14-15.

[11] C. Luo, S. Cai, W. Wu, et al, “CSCCSat2014: Solver description,” in

Proc. SAT Challenge 2014, pp. 25–26.

[12] C. Luo, S. Cai, W. Wu, and K. Su, "Focused random walk with

configuration checking and break minimum for satisfiability," in Proc.

on Principles and Practice of Constraint Programming, Springer, Berlin,

Heidelberg, Sep. 2013, pp. 481-496.

[13] S. Cai, K. Su, and C. Luo, "Improving walksat for random k-satisfiability

problem with k> 3," in Proc. 27th AAAI Conf. on Artif. Intell, Jun. 2013,

pp. 145-151.

[14] S., Cai, and K., Su., “Local search for Boolean satisfiability with

configuration checking and subscore”. Artif. Intell., 2013, 204: 75–98.

[15] A. Balint and A. Fröhlich, “Improving stochastic local search for SAT

with a new probability distribution,” in Proc. SAT, Edinburgh, U.K., Jul.

2010, pp. 10–15.

[16] A. Balint and U. Schöning, “Choosing probability distributions for

stochastic local search and the role of make versus break,” in Proc. SAT,

Trento, Italy, Jun. 2012, pp. 16–29.

[17] S. Liu and A. Papakonstantinou. "Local search for hard sat formulas: the

strength of the polynomial law," in 30th AAAI Conf. Artif. Intell., Feb.

2016, pp. 732-738

[18] A. Balint and U. Schöning, “ProbSAT: Solver description,” in proc.

SAT-2018, pp. 35.

[19] S. Cai and C. Luo, “Score2SAT: Solver description,” in: Pro. SAT-2017,

pp. 34.

[20] H. Fu, W. Zhang, J. Liu, et al, “Improving Stochastic Local Search for

SAT by Generating Appropriate Initial Assignment,” unpublished.

[21] C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration checking in

stochastic local search for satisfiability,” in Proc. Amer. Assoc. Artif.

Intell., 2014, pp. 2703–2709.

[22] D. A. D. Tompkins, A. Balint, and H. H. Hoos, “Captain Jack: New

variable selection heuristics in local search for SAT,” in Proc. SAT, Ann

Arbor, MI, USA, Jun. 2011, pp. 302–316.

[23] S. Cai, C. Luo, and K. Su. "Improving WalkSAT By Effective

Tie-Breaking and Efficient Implementation." Computer Journal (2015).

[24] H. H. Hoos and T. Stützle, “Local search algorithms for SAT: An

empirical evaluation,” J. Autom. Reasoning, 24(4), pp. 421–481, 2000.

[25] D.A. Tompkins and H.H. Hoos, “Dynamic scoring functions with

variable expressions: New SLS methods for solving SAT,” in Pro.

SAT-2010, July 2010, pp. 278-292.

[26] C. M. Li and W. Q. Huang, “Diversification and determinism in local

search for satisfiability,” in Proc. SAT, St. Andrews, U.K., Jun. 2005, pp.

158–172.

[27] Ian P. Gent and W. Toby, "Towards an understanding of hill-climbi- ng

procedures for SAT," in Proc. AAAI, vol. 93, July 1993, pp. 28-33.

[28] S. Cai and K. Su, “Local search for Boolean satisfiability with

configuration checking and subscore,” Artif. Intell., vol. 204, pp. 75–98,

Nov. 2013.

[29] S. Cai and K. Su, “Local search with configuration checking for SAT,”

in Proc. 23rd IEEE Int. Conf. Tools Artif. Intell. (ICTAI), Boca Raton,

FL, USA, Nov. 2011, pp. 59–66.

[30] S. Cai and K. Su, “Configuration checking with aspiration in local search

for SAT,” in Proc. Amer. Assoc. Artif. Intell., 2012, pp. 434–440.

[31] H. Fu, Y. Xu, X. He and X. Ning, “GSAT Algorithm Based on Task

Allocation and Scheduling for 3-SAT Problem,” Chinese Journal of

Computer engineering& Science, vol.40, no.8, 1366-1374, Oct. 2018.

[32] S. Cai, C. Luo and K. Su, "Scoring functions based on second level score

for k-SAT with long clausess." Jour. Artif. Intell. Resea., vol. 51, no.

2014, pp. 413-441.

[33] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential modelbased

optimization for general algorithm configuration,” in Learning

and Intelligent Optimization. Springer, 2011, pp. 507–523.

[34] Comprehensive score: Towards efficient local search for SAT with long

clausess. In Proc. of IJCAI, pp, 489-495.

[35] D. Achlioptas,. Random satisfiability. In Handbook of Satisfiability, 2009,

pp. 245–270.

[36] B. Selman, H. . Kautz, & B. Cohen, “Noise strategies for improving local

search”. In Proc. of AAAI-94, 1994, pp. 337–343.

[37] A. Braunstein, M. Mézard & R. Zecchina. “Survey propagation: an

algorithm for satisfiability”. Random Struct. Algorithms, 2005, 27(2), pp.

201–226.

