21 research outputs found

    Object detection, recognition and re-identification in video footage

    Get PDF
    There has been a significant number of security concerns in recent times; as a result, security cameras have been installed to monitor activities and to prevent crimes in most public places. These analysis are done either through video analytic or forensic analysis operations on human observations. To this end, within the research context of this thesis, a proactive machine vision based military recognition system has been developed to help monitor activities in the military environment. The proposed object detection, recognition and re-identification systems have been presented in this thesis. A novel technique for military personnel recognition is presented in this thesis. Initially the detected camouflaged personnel are segmented using a grabcut segmentation algorithm. Since in general a camouflaged personnel's uniform appears to be similar both at the top and the bottom of the body, an image patch is initially extracted from the segmented foreground image and used as the region of interest. Subsequently the colour and texture features are extracted from each patch and used for classification. A second approach for personnel recognition is proposed through the recognition of the badge on the cap of a military person. A feature matching metric based on the extracted Speed Up Robust Features (SURF) from the badge on a personnel's cap enabled the recognition of the personnel's arm of service. A state-of-the-art technique for recognising vehicle types irrespective of their view angle is also presented in this thesis. Vehicles are initially detected and segmented using a Gaussian Mixture Model (GMM) based foreground/background segmentation algorithm. A Canny Edge Detection (CED) stage, followed by morphological operations are used as pre-processing stage to help enhance foreground vehicular object detection and segmentation. Subsequently, Region, Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) features are extracted from the refined foreground vehicle object and used as features for vehicle type recognition. Two different datasets with variant views of front/rear and angle are used and combined for testing the proposed technique. For night-time video analytics and forensics, the thesis presents a novel approach to pedestrian detection and vehicle type recognition. A novel feature acquisition technique named, CENTROG, is proposed for pedestrian detection and vehicle type recognition in this thesis. Thermal images containing pedestrians and vehicular objects are used to analyse the performance of the proposed algorithms. The video is initially segmented using a GMM based foreground object segmentation algorithm. A CED based pre-processing step is used to enhance segmentation accuracy prior using Census Transforms for initial feature extraction. HOG features are then extracted from the Census transformed images and used for detection and recognition respectively of human and vehicular objects in thermal images. Finally, a novel technique for people re-identification is proposed in this thesis based on using low-level colour features and mid-level attributes. The low-level colour histogram bin values were normalised to 0 and 1. A publicly available dataset (VIPeR) and a self constructed dataset have been used in the experiments conducted with 7 clothing attributes and low-level colour histogram features. These 7 attributes are detected using features extracted from 5 different regions of a detected human object using an SVM classifier. The low-level colour features were extracted from the regions of a detected human object. These 5 regions are obtained by human object segmentation and subsequent body part sub-division. People are re-identified by computing the Euclidean distance between a probe and the gallery image sets. The experiments conducted using SVM classifier and Euclidean distance has proven that the proposed techniques attained all of the aforementioned goals. The colour and texture features proposed for camouflage military personnel recognition surpasses the state-of-the-art methods. Similarly, experiments prove that combining features performed best when recognising vehicles in different views subsequent to initial training based on multi-views. In the same vein, the proposed CENTROG technique performed better than the state-of-the-art CENTRIST technique for both pedestrian detection and vehicle type recognition at night-time using thermal images. Finally, we show that the proposed 7 mid-level attributes and the low-level features results in improved performance accuracy for people re-identification

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    An evaluation of partial differential equations based digital inpainting algorithms

    Get PDF
    Partial Differential equations (PDEs) have been used to model various phenomena/tasks in different scientific and engineering endeavours. This thesis is devoted to modelling image inpainting by numerical implementations of certain PDEs. The main objectives of image inpainting include reconstructing damaged parts and filling-in regions in which data/colour information are missing. Different automatic and semi-automatic approaches to image inpainting have been developed including PDE-based, texture synthesis-based, exemplar-based, and hybrid approaches. Various challenges remain unresolved in reconstructing large size missing regions and/or missing areas with highly textured surroundings. Our main aim is to address such challenges by developing new advanced schemes with particular focus on using PDEs of different orders to preserve continuity of textural and geometric information in the surrounding of missing regions. We first investigated the problem of partial colour restoration in an image region whose greyscale channel is intact. A PDE-based solution is known that is modelled as minimising total variation of gradients in the different colour channels. We extend the applicability of this model to partial inpainting in other 3-channels colour spaces (such as RGB where information is missing in any of the two colours), simply by exploiting the known linear/affine relationships between different colouring models in the derivation of a modified PDE solution obtained by using the Euler-Lagrange minimisation of the corresponding gradient Total Variation (TV). We also developed two TV models on the relations between greyscale and colour channels using the Laplacian operator and the directional derivatives of gradients. The corresponding Euler-Lagrange minimisation yields two new PDEs of different orders for partial colourisation. We implemented these solutions in both spatial and frequency domains. We measure the success of these models by evaluating known image quality measures in inpainted regions for sufficiently large datasets and scenarios. The results reveal that our schemes compare well with existing algorithms, but inpainting large regions remains a challenge. Secondly, we investigate the Total Inpainting (TI) problem where all colour channels are missing in an image region. Reviewing and implementing existing PDE-based total inpainting methods reveal that high order PDEs, applied to each colour channel separately, perform well but are influenced by the size of the region and the quantity of texture surrounding it. Here we developed a TI scheme that benefits from our partial inpainting approach and apply two PDE methods to recover the missing regions in the image. First, we extract the (Y, Cb, Cr) of the image outside the missing region, apply the above PDE methods for reconstructing the missing regions in the luminance channel (Y), and then use the colourisation method to recover the missing (Cb, Cr) colours in the region. We shall demonstrate that compared to existing TI algorithms, our proposed method (using 2 PDE methods) performs well when tested on large datasets of natural and face images. Furthermore, this helps understanding of the impact of the texture in the surrounding areas on inpainting and opens new research directions. Thirdly, we investigate existing Exemplar-Based Inpainting (EBI) methods that do not use PDEs but simultaneously propagate the texture and structure into the missing region by finding similar patches within the rest of image and copying them into the boundary of the missing region. The order of patch propagation is determined by a priority function, and the similarity is determined by matching criteria. We shall exploit recently emerging Topological Data Analysis (TDA) tools to create innovative EBI schemes, referred to as TEBI. TDA studies shapes of data/objects to quantify image texture in terms of connectivity and closeness properties of certain data landmarks. Such quantifications help determine the appropriate size of patch propagation and will be used to modify the patch propagation priority function using the geometrical properties of curvature of isophotes, and to improve the matching criteria of patches by calculating the correlation coefficients from the spatial, gradient and Laplacian domains. The performance of this TEBI method will be tested by applying it to natural dataset images, resulting in improved inpainting when compared with other EBI methods. Fourthly, the recent hybrid-based inpainting techniques are reviewed and a number of highly performing innovative hybrid techniques that combine the use of high order PDE methods with the TEBI method for the simultaneous rebuilding of the missing texture and structure regions in an image are proposed. Such a hybrid scheme first decomposes the image into texture and structure components, and then the missing regions in these components are recovered by TEBI and PDE based methods respectively. The performance of our hybrid schemes will be compared with two existing hybrid algorithms. Fifthly, we turn our attention to inpainting large missing regions, and develop an innovative inpainting scheme that uses the concept of seam carving to reduce this problem to that of inpainting a smaller size missing region that can be dealt with efficiently using the inpainting schemes developed above. Seam carving resizes images based on content-awareness of the image for both reduction and expansion without affecting those image regions that have rich information. The missing region of the seam-carved version will be recovered by the TEBI method, original image size is restored by adding the removed seams and the missing parts of the added seams are then repaired using a high order PDE inpainting scheme. The benefits of this approach in dealing with large missing regions are demonstrated. The extensive performance testing of the developed inpainting methods shows that these methods significantly outperform existing inpainting methods for such a challenging task. However, the performance is still not acceptable in recovering large missing regions in high texture and structure images, and hence we shall identify remaining challenges to be investigated in the future. We shall also extend our work by investigating recently developed deep learning based image/video colourisation, with the aim of overcoming its limitations and shortcoming. Finally, we should also describe our on-going research into using TDA to detect recently growing serious “malicious” use of inpainting to create Fake images/videos

    Collaborative Learning of Fine-grained Visual Data

    Get PDF
    Problem: Deep learning based vision systems have achieved near human accuracy in recognizing coarse object categories from visual data. But recognizing fine-grained sub-categories remains an open problem. Tasks like fine-grained species recognition poses further challenges: significant background variation compared to subtle difference between objects, high class imbalance due to scarcity of samples for endangered species, cost of domain expert annotations and labeling, etc. Methodology: The existing approaches, like transfer learning, to solve the problem of learning small specialized datasets are still inadequate in case of fine-grained sub-categories. The hypothesis of this work is that collaborative filters should be incorporated into the present learning frameworks to better address these challenges. The intuition comes from the fact that collaborative representation based classifiers have been earlier used for face recognition problems which present similar challenges. Outcomes: Keeping the above hypothesis in mind, the thesis achieves the following objectives: 1) It demonstrates the suitability of collaborative classifiers for fine-grained recognition 2) It expands the state-of-the-art by incorporating automated background suppression into collaborative classification formulation 3) It incorporates the collaborative cost function into supervised learning (deep convolutional network) and unsupervised learning (clustering algorithms) 4) Lastly, during the work several benchmark fine-grained image datasets have been introduced on NZ and Indian butterflies and bird species recognition

    Visual and Camera Sensors

    Get PDF
    This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors
    corecore