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Abstract

Problem: Deep learning based vision systems have achieved

near human accuracy in recognizing coarse object categories from

visual data. But recognizing fine-grained sub-categories remains

an open problem. Tasks like fine-grained species recognition

poses further challenges: significant background variation com-

pared to subtle difference between objects, high class imbalance

due to scarcity of samples for endangered species, cost of domain

expert annotations and labeling, etc.

Methodology: The existing approaches, like transfer learning,

to solve the problem of learning small specialized datasets are

still inadequate in case of fine-grained sub-categories. The hy-

pothesis of this work is that collaborative filters should be incor-

porated into the present learning frameworks to better address

these challenges. The intuition comes from the fact that collabo-

rative representation based classifiers have been earlier used for

face recognition problems which present similar challenges.

Outcomes: Keeping the above hypothesis in mind, the thesis

achieves the following objectives: 1) It demonstrates the suit-

ability of collaborative classifiers for fine-grained recognition 2)

It expands the state-of-the-art by incorporating automated back-

ground suppression into collaborative classification formulation

3) It incorporates the collaborative cost function into supervised

learning (deep convolutional network) and unsupervised learning

(clustering algorithms) 4) Lastly, during the work several bench-

mark fine-grained image datasets have been introduced on NZ

and Indian butterflies and bird species recognition.
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Chapter 1

Introduction

1.1 Introduction

In this introductory chapter, the research problem is presented first: fine-

grained visual categorization (FGVC). Then the main genre of methodology

used in the thesis is discussed: collaborative representation classifiers (CRC).

The claim of this thesis is that CRC based methods should be good candidates

to solve FGVC tasks. The contributions, papers and chapter flow is also

summarised in this chapter.

1.1.1 Fine-grained Visual Categorization (FGVC)

Humans are naturally adept at the task of object detection and recognition

from visual scenes, but to replicate this ability in intelligent machines is one

of the core problems of artificial intelligence research. Computer vision or

machine vision, as the research area is commonly referred, encompasses the

related fields of digital image processing, pattern recognition and machine

learning. Within the scope of computer vision, object recognition research

has traditionally focused on solving the problem of detection (segmentation)

and recognition (classification) of sufficiently different object classes from

images.
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The focused research over the past thirty years, along with the exponen-

tial increase in capacity and power of computing machines, have resulted in

the development of sophisticated vision systems which can robustly detect

and categorize objects with sufficient visual differences (base category clas-

sification), even from natural scene images (Russakovsky et al. (2015)). In

fact, with rapid advancement in machine learning and neural networks (par-

ticularly deep convolutional nets in the last decade), state of the art vision

systems have recently achieved near human accuracy in recognizing base

categories (e.g. recognition of animal images as members of broad classes

like dogs, cats, horses, etc) even in large challenging datasets like ImageNet.

In the past five years, a new and challenging area of research has gained

popularity in machine vision, that of recognizing sub-categorical object classes

(e.g. identification of type/species of birds/fish/insects from images) with fine

grained differences in attributes. Fine Grained Visual Categorization (FGVC)

is currently one of the open problems of computer vision as it poses certain

interesting challenges (Chai (2015)).

A case in point is automated species recognition, which has emerged as

one of the representative problems of FGVC. In fine-grained species recog-

nition, the variability in background and pose can be high compared to the

subtle inter-class differences, thus making it a particularly challenging task

(Rodner et al. (2015)). Furthermore, there can be considerable intra-class

pose variation which may involve significant changes in object contour (for

example, shape change of same bird species between flight vs. roosting im-

ages). The above statements are further illustrated in Fig 1.2. Four images

each of the NZ endemic birds kaka and kea are shown. It can be readily ob-

served that the visual differences between the classes are subtle, especially

due to the strong confounding factors of background and pose variation.

These challenges may signify a possible necessity of new algorithmic ap-

proaches to tackle the problem of FGVC. There are interesting avenues of

novel research, especially in cases of higher intra-class variability, brought
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about by changes in object appearance (strong variations in illumination,

pose, deformation, etc.) and changes in background conditions (challenging

natural scenes, detection in crowd, cluttered scenes, etc).

1.1.2 Collaborative Representation Classifiers (CRC)

Collaborative filters are popular in recommender systems to effectively en-

code user trends (Schafer et al. (2007)). Collaborative representation clas-

sification (CRC) represent the test image as an optimal weighted average of

training images across all classes. The predicted label is the class having least

residual. The process is explained with relevant formulae in the next chapter.

This inter-class collaboration for optimal feature representation is novel,

considering the traditional purely discriminative approach. CRC has a closed

(a)

(b)

Figure 1.1: The first row has images of different types of vehicles, namely

helicopter, airplane, ship and motorbike. These can be taken as examples of

base object recognition or coarse categories. The second row gives images of

different types of aircrafts, that is it presents sub-categories of the same type

of vehicle. These may be taken as examples of fine-grained classes. Images

have been taken from object classes of public datasets. eg. the aircraft images

are from the Oxford FGVC-Aircraft dataset

3



form solution and does not need iterative or heuristic optimization; thus it is

efficient and analytic. It is also a general feature representation-classification

scheme and thus most off-the-shelf features and ensembles thereof are com-

patible with it.

In computer vision, CRC was first applied to the face recognition problem

(Zhang et al. (2011)). This is because human faces have subtle inter-class

differences and significant similarities across classes and CRC is effective

in encoding these attributes across classes as mentioned before. However,

most of the existing works on CRC based face recognition have reported

results on benchmarks having well aligned and centered images with minimal

background. Even the few works which have used face datasets in natural

scene backgrounds have mostly employed pre-processing steps to align and

crop the face region, thus removing the effect of the natural setting by manual

intervention (Taigman et al. (2009)).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.2: Sample images of NZ endemic birds Kaka (top row) and Kea

(bottom row) from the new NZBirds v1.0 dataset. The challenging nature

of the bird species recognition problem is evident from the images, due to

subtle inter-class differences and high variation in background and pose (in

flight vs. roosting).
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Face recognition, like FGVC, also involves the challenge of low inter-

class variation since all human faces share many similar characteristics, lead-

ing to a sparsity in discriminative parts and features. Hence, given the high

accuracies achieved by CRC in the face recognition problem, it seems logical

to expect a certain level of applicability to the FGVC problem. Another major

advantage of using the CRC framework is the fact that it is a feature repre-

sentation and classification paradigm and hence can be used in conjunction

with any state of the art features.

Thus it seems worthwhile to explore in depth the validity of the intuition

that CRC may be particularly suitable for the FGVC problem. CRC based

methods have been sporadically used in works that happen to involve some

experiments on FGVC datasets among other problems (Cai et al. (2016)).

But there has not been focused research to ascertain the appropriateness of

CRC for FGVC.

In this work, first the robust performance of existing CRC methods is

demonstrated in tackling FGVC tasks, taking species recognition as the rep-

resentative problem. After establishing the alignment of CRC methods to the

FGVC problem, a probabilistic collaborative representation of image patches

is presented to address the problem of high randomised background varia-

tion between classes in FGVC, compared to subtle differences in foreground

objects. Second, an improved local feature descriptor is introduced for bet-

ter representation of repeated object patterns. Third, the collaborative loss

function is embedded into an end-to-end deep convolutional network (Co-

CoNet). This helps in establishing a benchmark transfer learning protocol

to learn small specialised fine-grained image datasets. Fourth, we also intro-

duce a collaborative unsupervised learning technique as a generalisation of

the standard K-means clustering (Lloyd (1982)). Here the cluster centers are

updated using the colloborative weighted mean and hence K-means can be

viewed as a special case. Lastly, we also show how distance metric learning

may be used to enhance performance by improving discrimination of the col-
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laborative cost function. As part of the research, four benchmark fine-grained

species recognition dataset were compiled, those of NZ birds and butterflies

as well as Indian birds and butterflies. These are summarised in Table 1.1.

1.2 Thesis Objectives

This thesis has 3 main objectives as follows.

1.2.1 Advance Collaborative Fine-grained Recognition

The first aim of the work is to demonstrate the applicability of collaborative

representation classifiers (CRC) in fine-grained visual categorization (FGVC)

and advance the state-of-the-art of the current CRC methods. For this bench-

mark existing methods are first evaluated and then improved.

1.2.2 Collaborative Supervised/ Unsupervised Learning

If it can be shown that CRC methods work well for FGVC problems, the

next objective is to incorporate CRC into both supervised and unsupervised

machine learning. For unsupervised learning, this would result in a gener-

alised collaborative clustering method. For supervised learning, this would

result in a collaborative convolutional network for improved transfer learning

of fine-grained categories.

1.2.3 New Fine-grained Benchmark Image Datasets

The last objective as a natural by-product of the current research would be

compilation of new benchmark fine-grained image datasets. Given the unique

ecology of New Zealand, the aim is to compile species recognition datasets

for endemic New Zealand species.
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1.3 Thesis Overview

1.3.1 Thesis Structure and Chapter Linkages

The thesis consists of nine inter-related chapters presented below. The chap-

ter linkages are illustrated in Fig. 1.3.

1. Chapter 1 is the introductory chapter which outlines the research prob-

lem, the methodologies used, the project deliverables and summarises

the outcomes.

2. Chapter 2 serves as a literature review of the existing methods that

address the research problem, explores the links between the genre of

methods selected for this work and the earlier approaches, and gives

some preliminary results to justify the scope and approach of this work

based on the literature.

3. Chapter 3 presents the new benchmark fine-grained image datasets

for species recognition compiled as part of this research. We describe

and give examples images from all classes of these datasets. The four

datasets are of New Zealand Birds, New Zealand Lepidoptera (moths

and butterflies), Indian Birds and Indian Butterflies.

4. Chapter 4 presents a patch based probabilistic framework that incor-

porates background supression in the collaborative cost function itself.

Thus it addresses a very important issue of FGVC problems, that of

significant background variation compared to subtle differences in fore-

ground objects.

5. Chapter 5 presents a new binary descriptor that encodes repeated local

patterns effectively. It is an improvement over the binary local patterns

by incorporating rotational invariance. It retains a simple formulation

compared to some recent rotation invariant methods.
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6. Chapter 6 presents an end-to-end collaborative convolutional network

(CoCoNet) that improves transfer learning of fine-grained datasets by

adding a collaborative layer into the ConvNet architecture.

7. Chapter 7 presents a collaborative clustering method that maybe viewed

as a generalised formulation of the classical K-means clustering. In

each iteration, the cluster centers are updated as a weighted mean of

the data points belonging to those clusters. The optimal weights are

provided by the collaborative cost function; thus K-means would be a

special case with all weight unity.

8. Chapter 8 presents an algorithm to determine the best distance metric

in the collaborative cost function for better discrimination and hence

adds an additional layer of performance optimisation.

9. Chapter 9 concludes the thesis, summarizes the work and the out-

comes and outlines scope of future work.

1.3.2 Academic Papers

This doctoral thesis has resulted in seven academic papers that are in various

stages of peer-reviewed publication process. In accordance with the Uni-

versity of Otago norms about including publications in thesis, the candidate

would like to declare that he was the first author and main contributor (at least

90% of the research, analysis and writing) of the work presented in these pa-

pers. The contents of Chapters 4, 5, 6, 7 and 8 are mostly the compilation of

the contents of these papers. There is, of course, some modifications, more

detailed explanations, and reformatting as found appropriate by the candidate

to suit the style of the thesis. Chapter 2, mainly focusing on the literature re-

view, has been compiled for the thesis with only some parts taken from a

publication as outlined in Table 1.1. Also Chapter 3 gives details of the four
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new datasets compiled during this work. The table presents information about

the target outlets, the chapters that link to those papers, and current status at

the time of submission of this thesis.

Chapter 1: Introduction to the research problem 
FGVC and the method genre CRC

Chapter 2: Establishes, through literature survey 
and initial results, the hypothesis that 
CRC is suitable for FGVC

Chapter 4: Advance the state-of-the-art 
in CRC through automated 
background compensation

Chapter 5: Advance the state-of-the-art 
in FGVC through better encoding of 
repeated fine-grained patterns

Chapter 6: Supervised Learning of 
fine-grained classes by
Collaborative ConvNet (CoCoNet)

Chapter 7: Unsupervised grouping of 
fine-grained categories by 
Collaborative Clustering

Chapter 8: Learn optimal distance 
metric for better performance

Incorporation into Supervised and Unsupervised Learning

Chapter 3: Four new datasets 
for fine-grained species 
recognition of Indian and NZ 
birds, butterflies/moths

Chapter 9: Conclusion 

Figure 1.3: Thesis flow and chapter linkages
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Table 1.1: Research Outputs

Chap Paper Name Outlet Status

2 Collaborative representation based

fine-grained species recognition

Image and Vision Computing

New Zealand (IVCNV), 2016

published

4 A Generalised Formulation for

Collaborative Representation of

Image Patches (GP-CRC)

British Machine Vision

Conference (BMVC),

London, 2017

published

4 PProCRC: Probabilistic Collaboration

of Image Patches

IEEE Transactions in Image

Processing

under

review

5 LOOP Descriptor: Local

Optimal-Oriented Pattern

IEEE Signal Processing

Letters, 2018

published

6 CoCoNet: Collaborative ConvNet for

deep transfer learning of fine-grained

classes

Machine Vision and

Applications

under

review

7 Fine-grained Collaborative K-Means

Clustering

Image and Vision Computing

New Zealand (IVCNV), 2018

published

8 Distance Metric Learned

Collaborative Representation

Classifier

IEEE Transactions on Pattern

Analysis and Machine

Intelligence

under

review
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Chapter 2

Literature Review: Existing
Methods, Benchmark
Datasets and Preliminary
Results

2.1 Chapter Summary

There are two main parts to this chapter on existing literature. The first part

presents an account of existing research in fine-grained visual categorization

(FGVC). It sets up briefly the research problem and then goes on to trace

early research in the area. It then moves on to recount more recent trends,

categorizing the current research approaches, while illuminating the gaps and

scope for improvement. The second part focuses on collaborative represen-

tation classification (CRC) and the existing work in the topic, since that is

the main methodology adopted in this work. The original CRC formulation

is presented here along with some of its popular variants. The hypothesis is

that CRC works in a way that should make it particularly suitable for FGVC
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problems. The claim is intuitively justified in this chapter based on earlier

research in related problems. We also test out the hypothesis to obtain some

preliminary benchmark results using a few existing CRC methods.

2.2 Fine-grained Visual Categorization

This section presents a brief history of the FGVC problem. First we recount

the early work in the area and the formalization of the problem as well as the

initial datasets. Then we move on to elaborate on the current methodologies,

research groups and datasets in FGVC.

2.2.1 Early years of FGVC until 2010

Deep learning based vision systems have achieved human-like performance

in recognizing base categories. Hence research has been shifting towards

solving the more challenging task of recognizing finer sub-categories. Thus

research interest in FGVC has grown rapidly in the current decade, however

some early research can be traced back to more than 10 years back.

Oxford Visual Geometry Group. One of the earliest formal works in the

topic is that on flower category detection between 2006 to 2009 at the Oxford

Visual Geometry group by Maria-Elena Nilsback and Andrew Zissserman.

Flower type recognition was taken as the representative fine-grained recogni-

tion problem, because it presents all the characteristic challenges of the field.

Many flower species have high intra-species visual differences though they

are of the same type. On the other hand, two different flower species may

have quite similar appearances. Also, for images in the wild, significant vari-

ation in background can be a confounding factor across classes. Some flower

species may be much more rare than the others, thus causing an imbalance

in sample size of classes. These atrributes make flower species recognition a

good benchmark FGVC task. A benchmark dataset encompassing 17 major
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flower types (with 80 images per type) common to the UK was developed

in context of this work. This was later expanded to include 102 flower cate-

gories with 40 to 258 images per class.

The work addressed two major aspects of the problem: automated flower

segmentation and flower category recognition. For automated flower seg-

mentation, Nilsback et al. (2006) proposed a coupled model of two parts: a

color model for the foreground and background of the image, and a viewpoint

and deformation independent petal shape model. The final segmentation is

achieved by using a binarized Markov random field based cost function using

graph cuts. The work was later expanded by Nilsback et al. (2008), where

a training set was used to estimate the parameters of the model for optimal

performance. For flower type categorization, a visual bag of words was used

(Nilsback et al. (2007)) to characterize several global features like colour,

shape and texture. For classification, a nearest neighbour based architec-

ture is optimised for vocabulary selection and combination, using validation

datasets. The work was later extended in (Nilsback et al. (2009)) where a

multiple kernel based support vector machine was employed for classifica-

tion.

Ponce Research Group. Early contributions were made also by the

Ponce Research Group at Beckman Institute, University of Illinois at Urbana-

Champaign. Discriminating local parts were discovered using Laplacian blob

detectors which were then represented by scale invariant feature transform

(SIFT) descriptor and classification was achieved by a maximum entropy

based framework. Two datasets were developed in this regard: Ponce birds

dataset by Lazebnik et al. (2005) (6 classes with 100 samples per class) and

Ponce butterfly dataset by Lazebnik et al. (2004) (619 images of 7 butter-

fly classes). However, the algorithms were developed to address the general

object classification problem and hence were applied simultaneously to both

base class datasets (Caltech256 dataset by Griffin et al. (2007)) as well as the

above mentioned fine-grained classes and sub-categorical recognition was yet
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to be explored as a distinct research task.

Formalisation of FGVC. In 2007, Hillel and Weinshall published one

of the pioneering works (Hillel et al. (2007)) in FGVC in which subordinate

class recognition was addressed as a distinct research problem with unique

nuances, that deserved a new solution framework. The importance of iden-

tifying distinguishing object parts was discussed. In the first stage, the rep-

resentative parts of the base class are identified and modelled and those part

models are represented by feature vectors. These features are then used for

sub-categorical classification by a linear support vector machine (SVM). To

evaluate the method, the work considers 6 base classes with 2 sub-categories

each (collected from Caltech object datasets): Motorcycles (Cross, Sport),

Faces (Male, Female), Guitars (Classical, Electric), Tables (Dining, Coffee),

Chairs (Dining, Living), Pianos (Grand, Upright). Each class, say Motorcy-

cle, is characterised by a set of P representative parts, each of which is then

modelled to form a descriptor comprising of the first 15 DCT (discrete co-

sine transform) values of the image, location (x, y) co-ordinate and log-scale

size of the part, mean and standard deviation of feature value and the log-

likelihood of occurrence of that part model in the corresponding class. These

P representative parts would be different for different base classes. The parts

would be same for sub-categories, but the values are shown to be different

enough to achieve sub-categorical classification when fed into the SVM clas-

sifier.

ImageNet and Caltech-UCSD Birds (CUB) datasets.
The ImageNet project (Russakovsky et al. (2015)) has had a huge impact

in the general standardization and advancement of computer vision research

particularly related to object recognition, segmentation, classification tasks.

It has about 1.4 million image categories as of 2017. Research in FGVC has

picked up momentum in the present decade particularly after the publication

of the CUB birds datasets, which have now become one of the most popu-

lar benchmark datasets to evaluate FGVC algorithms. The CUB-200-2010
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dataset (Welinder et al. (2010)) has 6033 images of 200 mostly American

bird species and the extended CUB-200-2011 dataset (Wah et al. (2011)) has

11788 images with the same number of classes. Further details of the dataset

are provided later in this chapter.

2.2.2 Current Trends in FGVC from 2010

Following the work by Hillel et al. (2007) and other similar works by early

researchers, and particularly with the introduction of the CUB Birds bench-

mark datasets, FGVC now formed its own identity as a distinct research prob-

lem and a steady development of research methodology started particularly

designed to address the area.

Parts localization and alignment

Because of the close similarity between fine-grained object classes, proper

identification of discriminating object parts is an important step in FGVC.

This part localization is either done manually through expert annotation or in

an automated fashion by identifying keypoints. After localization, the next

step is part alignment, that is compensating for pose variation. This becomes

quite important for certain fine-grained recognition tasks like species recog-

nition where the objects are deformable and can vary a lot with different

poses. Consider the case of bird species recognition. The discriminating

parts among different bird species may be the beak, head, wings, tail and

feet. Depending on the camera angle, some parts may be partly visible and

also depending on whether the bird is in flight or roosting, the wings can look

quite different.

Manual annotation is not the option of choice for any computer vision sys-

tem since it involves cost, time and possibility of human error. This is com-

pounded in the case of specialised fine-grained recognition tasks like species

recognition. In that case domain experts are needed to make accurate anno-
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tation and labeling. Unlike bird species recognition where the discriminating

parts are more obvious and consistent, the case of flower species recognition

might be even more challenging. Only an expert can possibly point out the

exact features that separate two visually similar flowers. Thus the preferable

route would be automated part localization. On the other hand, for automated

part localization, one would be faced with precisely the same challenge: how

to robustly design a part detector and whether one can trust the part detector

in lieu of a human expert.

Part template detectors. One approach to discover parts in an automated

manner is to create and train part templates, that then extract the part features

from test images. One example is the work by Yang et al. (2012b). The

templates are first inititalised with different sizes and locations. The objective

function takes into account both the co-occurrence of the templates as well

as the diversity between them. These trained detector templates then extract

features from the test images and the features are concatenated into the final

feature vector for the classification phase.

Deformable part detectors. The success of part templates led to the ex-

tensive use of the more powerful deformable part models (DPM) for the next

five years. The first use of DPM in fine-grained recognition was by Zhang

et al. (2013). In DPM, more than one detector may describe the same part

unlike the previous part detectors. Each DPM is a combination of detectors.

Each detector has a root histogram of gaussians (HoG) filter and a series of

part HoG filters (Dalal et al. (2005)). This mixture helps cater to multi-modal

objects, like different views of a bird (front/side, flight/roosting). The root fil-

ter is moved as a sliding window through the image to detect parts at different

locations and at different scales. Parts are then placed optimally around the

detected root locations.

Poselet detectors. Suppose keypoints are known for at least a part of the

training set through either expert annotations or keypoint detectors. These

keypoints then might be used to construct what are known as poselets (Bour-
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dev et al. (2009)). Given keypoints in a training set, groups of patches with

similar keypoints are first searched, after which a template-based detector

(poselet) is configured for each of the patch groups. Several poselets may

then go on to describe one part of the object.

Birdlet detectors. DPM can be used for any object categorization tasks

and poselets are a specialisation of DPM that were developed for fine-grained

recognition. Farrell et al. (2011) further refined the concept of poselets to

form Birdlets, which are specialised poselets for species recognition, applied

to bird species categorization. The authors modeled the bird head and body

with two ellipsoids. The part detectors (birdlets) were trained on groups of

patches with similar pose using annotated keypoints. All detectors were ap-

plied to the test images to extract the ellipsoids of the head and the body and

the resulting features were used for classification.

Handling sparse detectors. One general drawback of discriminating

parts and deformable models, including specialised versions for FGVC like

poselets and birdlets, is that since only a few of these are activated per image

for fine-grained categories, this generates a sparse concatenated descriptor,

which then results in low classification accuracy. There can be various ways

to overcome this. One can be dimensionality reduction of the descriptor,

through pooling poselets that describe the same part of the objects. A sec-

ond general approach is collaboration between similar objects to make up

for missing parts, by taking an optimal average description (this approach is

explored in the present work using collaborative filters). The third approach

is to replicate missing parts by plugging them with corresponding available

poselets of similar objects, if pose relationship is known between poselets.

Zhang et al. (2012) used this in their work by applying warp kernel opera-

tions on neighbouring poselets to aggregate activations with similar locations

on the object, say, bird.

Foreground segmentation and background suppression. One major

challenge of FGVC, as mentioned earlier, is that the foreground objects may
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have subtle differences while the background can have large variations ran-

domised between classes. Thus backgrounds can become a confounding fac-

tor while learning the fine-grained classes and hence robust background com-

pensation or suppression is an important part of FGVC. One way of achieving

this compensation is by having a pre-processing step involving binary seg-

mentation of the foreground using methods like graph cut and then use parts

of the objects for classification. A weighted graph can be used for binary

segmentation of the foreground-background. Each vertex of the graph has a

prior probability of being background/foreground that serve as unary poten-

tials for graph-cut (Parkhi et al. (2011)). Edge detectors are used to compute

binary potentials which indicate whether two connected vertices will have

same label.

Without Part Annotations. We have seen getting human labels and an-

notations is costly for fine-grained species recognition since domain exper-

tise is required. Labels or annotations generated by citizen scientists may be

considered unreliable, due to the subtle differences in classes like say bird

species. The research by Jonathan Krause and Fei Fei Li at the Stanford AI

Lab has deals with this issue in a couple of ways. In one of their works, they

use crowdsourced annotations to limit the uncertainty (Deng et al. (2013)).

They use an online game called Bubbles to make humans interact and gen-

erate parts and the general consensus is used as a pseudo-expert. In another

work they try to achieve fine-grained recognition without part annotations

(Krause et al. (2015)). They generate parts in a fully automated fashion us-

ing co-segmentation and alignment, that they combine in a discriminative

mixture to achieve a competitive recognition rate.

Convolutional Networks for FGVC

Some of the most powerful vision systems now use deep convolutional neural

network (CNN) for the majority of visual tasks. It is therefore not surprising
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that they are fast gaining popularity in fine-grained recognition tasks. How-

ever, fine-grained categorization problems pose certain specific challenges

that warrants special considerations while using ConvNets to address them.

CNN Descriptors. Even with graphics processing unit (GPU) enabled

modern deep vision systems, training a full CNN from scratch is time con-

suming and for a large scale problem, often taking days or even weeks. This is

because deep convolutional networks by nature are data hungry, that is, they

need a large amount of training data to achieve good performance. This might

be a challenge in certain specialised FGVC tasks like endangered species

recognition, where the number of training samples available will be limited.

In such cases, one might choose to use a network that has been pre-trained

on a large dataset like ImageNet on a generic object recognition task. The

bottom/initial layers of a convolutional network (ConvNet) represent generic

low level patterns of images. The first layer may just be simple edge detec-

tors, and the patterns represented gradually increase in complexity over the

layers. Hence if one trains a ConvNet on a large dataset for generic object

recognition and then takes out the last few layers, it can be used as a fea-

ture extractor (Cai et al. (2016)). The output of the pre-trained ConvNet are

used as feature descriptors for the fine-grained classification task. Of course,

since the network is not trained on the target fine-grained smaller dataset, the

performance will not be optimal, but in many cases will still be sufficient.

Fine-tuning and Transfer Learning. An obvious improvement in ap-

proach is to fine-tune the pre-trained network on the fine-grained dataset

for the specific FGVC task. This will update the network weights, which

were previously trained on the larger source dataset like ImageNet for a more

generic object recognition task Simon et al. (2015). Then a validation set

may be used to tune the hyper-prameters of the network as well, before the

final testing phase. There has been recent research solely focusing on how

to use ImageNet best for transfer learning like the work by Kornblith et al.

(2019).
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Specialised CNNs. Some research has been put into developing deep

convolutional network (CNN) architectures with modifications to suit fine-

grained recognition. One example in that genre would be the Bilinear CNN

(BCNN) by Lin et al. (2015), where the authors present a CNN architecture

that uses translationally invariant interactions between neighbouring fine-

grained features. Another example is that of pose normalised deep convo-

lutional networks by Branson et al. (2014). Here the pose normalisation is

done first by patch wise alignment which are then used by a deep network.

Thus in both cases there is the element of achieving pose alignment or trans-

lational invariant which is very important for such fine-grained recognition

tasks like bird species recognition.

2.2.3 Major FGVC Applications and Datasets

The main task in FGVC is to recognize fine-grained sub-categories of objects

with subtle differences. Species recognition is the main representative prob-

lem of FGVC as it presents most of its characteristic challenges and hence

majority of the standard datasets pertain to that. We cover these in details

here and a few non-species benchmark datasets too.

The Cross Language Evaluation Forum (CLEF) is an yearly program

mostly based in Europe and ImageClef (Muller et al. (2010)) is a section

of that dealing with benchmarking image retrieval and object recognition al-

gorithms on standard datasets. As part of that every year since 2014, the

LifeClef challenge has been organised which has fish, bird and plant species

recognition datasets publicly available every year. Besides this, we discuss

below some task specific species recognition datasets. A FGVC workshop

dedicated to fine-grained visual problems is organised every year at the pre-

mier conference on computer vision CVPR. The first one was held at CVPR

2011 and the most recent sixth workshop on FGVC was held at CVPR 2019.
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Bird Species Recognition

Flower Species Recognition

Leaf Species Recognition

Butterflies Species Recognition

Fish Species Recognition

Dog Breed Recognition

Cat Breed Recognition

Figure 2.1: Fine-grained Species Recognition Tasks
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Shoe Type Recognition (Zap50k dataset)

Aircraft Type Recognition (Oxford FGVC Aircraft)

Car Type Recognition (Stanford Cars)

Figure 2.2: Other FGVC tasks besides species recognition

Bird Species Identification:

• The most popular benchmark FGVC dataset is the Caltech-UCSD Birds

database image dataset. The first version by (Welinder et al. (2010))

introduced in 2010, called CUB-200-2010, has 6033 images of 200

mostly North-American bird species. The CUB-200-2011 dataset by

(Wah et al. (2011)) introduced in 2011 is the extended version with the

same number of classes (200) but with a total of 11,788 images (almost

double).

• Ponce Birds dataset, created at the Ponce Research Group at University

of Illinois at Urbana-Champaign, consists of 600 images (100 samples

each) of 6 different categories of birds (Lazebnik et al. (2005)).

• The North American Birds dataset (NABirds) has been developed through

the joint collaboration of Cornell Tech, UCSD and CalTech. It has

70,000 images of 550 bird classes and hence, unlike most FGVC species
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datasets that are small in size, NABirds is large enough to train a CNN

effectively from scratch (Horn et al. (2015)15).

Insect Species Identification:

• The University of Jena has developed 2 datasets for fine-grained biodi-

versity analysis (Rodner et al. (2015)). The first one, Costa Rican but-

terfly dataset, contains around 3000 images of a broad range of moth

and butterfly taxa found in north western Costa Rica (female individu-

als with at least 5 samples per type). The second one, Ecuadorian moth

dataset, consists of around 2000 images of one single family (taxon) of

moths (Geometridae) found in southern Ecuador. One small drawback

of this dataset is that the paper with the typed species name attached to

the photograph is visible for some of the digitised images.

• The Leeds butterfly database (Wang et al. (2009)) consists of 832 im-

ages of 10 categories of butterflies with 55 to 100 images per category.

Text descriptions and segmentation masks are also provided.

• The Ponce Group butterfly database (Lazebnik et al. (2004)) created at

University of Illinois at Urbana-Champaign, consists of 619 images of

7 different classes of butterflies.

• Oregon State University fly database has 2 parts. The STONEFLY9

(Lytle et al. (2010)) dataset consists of 3826 images of 773 speci-

mens of 9 taxa of Stoneflies. The EPT29 dataset (Larios et al. (2011))

consists of 4842 images of 1613 specimens of 29 taxa of EPT flies:

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (cad-

disflies). It is a very high resolution dataset of large volume, however,

there is also a smaller curated front aligned cropped version (canonical

pose).
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Fish Species Identification:

• Croatian Fish species database (Jaeger et al. (2015)) developed by Uni-

versity of Jena, has around 800 images belonging to 12 classes.

• Fish4knowledge database (Boom et al. (2012)) is an EU funded inter-

national project involving several research labs and universities around

the world. It focuses on fish recognition from underwater video, but

also has a still images dataset for fine grained fish species recognition.

The dataset has 27,370 fish images of 23 classes.

Flower/Leaf Species Identification:

• Leafsnap database (Kumar et al. (2012)) developed at Columbia Uni-

versity covers 185 tree species found in Northeastern united States.

There are 23,147 oriented images taken in the lab as well as 7719 field

images taken in the wild.

• Kingston 100 Leaves database (Mallah et al. (2013)) is a fairly small

dataset developed at Kingston University, London. It has 100 classes

of leaf types with 16 images per class.

• Oxford Flower database developed at the Oxford Robotics Lab, has 2

parts. The 17 category dataset has 80 images per class (Nilsback et al.

(2006)), (Nilsback et al. (2007)). The number of images in the 102

category dataset varies between 40 and 258 per class. Both datasets

have scale, pose and light variations (Nilsback et al. (2008)), (Nilsback

et al. (2009)).

Cat/dog Species Identification:

• Oxford-IIIT Pets dataset (Parkhi et al. (2012)) compiled by the Oxford

Robotics Group and IIIT Hyderabad, consists of 37 category of pet
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cats and dogs with around 200 images belonging to each class, with

variations of pose, illumination and scale.

• Stanford Dogs dataset (Khosla et al. (2011)) has 20,580 images of 120

breeds of dogs from around the world.

Other non-species FGVC tasks:

• There may be other fine-grained recognition tasks not pertaining to

species recognition. One example is recognition of shoe types using

datasets like Zappos50k by University of Texas (Yu et al. (2014)). This

dataset has 50,025 images of different types of shoes taken from Zap-

pos.com (Yu et al. (2017)).

• There are similar datasets on vehicle type recognition. There is a fine-

grained aircraft dataset by University of Oxford Robotics Group (Maji

et al. (2013)). It is called the FGVC-Aircraft dataset and it has 100

images each of 102 aircraft models. There is a car model recognition

dataset by Stanford AI group with 16,185 images of 196 classes of cars

(Krause et al. (2013)).

2.3 Collaborative Representation Classifiers (CRC)

As mentioned in the previous chapter, the main hypothesis of the thesis is that

collaborative representation classifiers should be good candidate methods to

handle fine-grained recognition. In this section we present that overview of

CRC, its variants as well as baseline results to support the claim and setup

the rest of the thesis.

25



2.3.1 Overview of CRC and Formulation

The mathematical framework for CRC is described in brief below (Zhang

et al. (2011)). Consider a training dataset with images in the feature space

as X = [X1, . . . , Xc] ∈ <d×N where N is the total number of samples over c

classes and d is the feature dimension per sample. Thus Xi ∈ <
d×ni is the

feature space representation of class i with ni samples such that
∑c

i=1 ni = N.

The CRC model reconstructs a test image in the feature space y ∈ <d as

an optimal collaboration of all training samples, while at the same time limit-

ing the size of the reconstruction parameters, using the Lagrangian multiplier

λ.

The CRC cost function is given as:

α̂ = arg min
α

(‖y − Xα‖22 + λ‖α‖22) (2.1)

A least-squares derivation yields the optimal solution as:

α̂ = (XT X + λI)−1XT y (2.2)

The representation residual of class i for test sample y can be calculated as:

ri(y) =
‖y − Xiα̂i‖

2
2

‖α̂i‖
2
2

∀i ∈ 1, . . . , c (2.3)

The final class of test sample y is thus given by

C(y) = arg min
i

ri(y) (2.4)

Optimal λ may further be chosen using Generalized Cross Validation (GCV)

as follows:

We have α̂ = (XT X + λI)−1XT y from (2).

Let,

X# = (XT X + λI)−1XT (2.5)
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Then the GCV cost function is given by:

G(λ) =
‖y − Xαλ‖22

trace(I − XX#
λ)2

(2.6)

The optimal value of λ, for which G(λ) is minimum, is graphically deter-

mined from the plot of G(λ) vs (λ).

Some of the recent improvements and enhancements of the original CRC

are listed below. There are many more in the existing literature, but only those

that have been directly evaluated in the present work, have been mentioned

here.

2.3.2 CRC Variants and use in Computer Vision

Optimized Collaborative Representation (CROC)

Chi et al. (2012) suggested a collaborative representation optimized classifier

(CROC) to combine nearest subspace classifier (NSC) with either Collabo-

rative Representation based Classification (CRC) or Sparse Representation

based Classification (SRC) for multi-class classification. Nearest Subspace

Classifier defines the residual for determining class prediction as follows,

which is basically the nearest distance minimiser, but weighted across train-

ing samples across all classes:

rCR
i (y) = ‖y − Xiαi‖

2
2 ∀i ∈ 1, . . . , c (2.7)

The final residual is defined as a combination of NSC with either CRC or

SRC. CROC combining NSC and CRC would have the residual as:

ri(y) = rNS C
i (y) + λrCRC

i (y) (2.8)

Likewise, a combination of NSC and SRC would be given by:

ri(y) = (1 − λ)rNS C
i (y) + rCRC

i (y) (2.9)

The optimal value of λ can then be solved following the Generalised Cross-

Validation scheme explained before.
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Multi-scale Patch-based Collaborative Representation (PCRC)

Zhu et al. (2012) introduced a patch-based framework to achieve multi-scale

collaborative representation.

Let the query image y be divided into q overlapped patches y = {y1, . . . , yq}

From the feature matrix X, local dictionary M j is extracted corresponding to

patch y j. Thus the modified cost function for PCRC becomes:

p̂ j = arg min
p j
‖y j − M j p j‖

2
2 + λ‖p j‖

2
2 (2.10)

where M j = [M j1, . . . ,M jc] are the local dictionaries for the c classes and

p̂ j = [p̂ j1, . . . , p̂ jc] is the optimal reconstruction matrix for the jth patch. The

class of test sample is predicted as:

C(y j) = arg min
k

r jk(y) (2.11)

where

r jk =
‖y j − M jk p̂ jk‖

2
2

‖ p̂ jk‖
2
2

∀i ∈ 1, . . . , c (2.12)

The classification of the entire test sample y is determined by majority voting

of the classification labels of the patches y j.

Relaxed Collaborative Representation (RCRC)

Yang et al. (2012a) developed an improved CRC method (RCRC) with re-

laxed constraints assigning adaptive weights to features for controlled contri-

bution to final representation. The weights are so optimised that the variance

of representative features from mean is controlled, to add stability to the rep-

resentation.

Thus in the RCRC formulation, the cost function of CRC gets modified

to

α̂ = arg min
α
‖y − Xα‖22 + λ‖α‖22 + τw‖α − ᾱ‖22 (2.13)
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where τ is a positive constant and w is the weight vector such that w =

[w1, . . . ,wc] | wi ∈ < and c is the number of classes.

All other symbols have usual meaning from the CRC formulation. The

cost function is iteratively optimized.

Enhanced Collaborative Representation (ECRC)

Liu et al. (2014) enhanced the original CRC by incorporating the covariance

matrix R of the training samples into the cost function:

α̂ = arg min
α

(
(y − Xα)T R−1(y − Xα) + λ‖α‖22

)
(2.14)

Kernel Collaborative Representation (KCRC)

Zhao et al. (2014) introduced the kernel trick into the CRC framework.

The cost function for KCRC becomes:

α̂ = arg min
α
‖α‖lp subj. to ‖φ(y) − Φα‖lq ≤ ε (2.15)

Here the second term imposes the kernel condition in higher dimension.

Probabilistic Collaborative Representation (ProCRC)

Cai et al. (2016) recently proposed a probabilistic representation of the col-

laborative framework which jointly maximizes the likelihood that a test sam-

ple belongs to each of the multiple classes. The final classification is per-

formed by checking which class has the maximum likelihood.

Thus the predicted class label for a test sample y is given by (symbols

having usual meaning):

arg max
i

Prob[C(y)] = arg max
i

e−‖Xα̂−Xiα̂i‖
2
2 (2.16)
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Extended Probabilistic CRC (EProCRC):

Lan et al. (2017) recently extended the probabilistic CRC model by incor-

porating an additional prior information metric βc into the cost function that

measures the distance ‖X − Xk‖ between the centroid of the training set from

the centroid of the individual classes. Thus the predicted class label for a test

sample y is given by (symbols having usual meaning):

α̂ = arg min
α

(
‖y − Xα‖22 + λ‖α‖22 +

γ

K

K∑
k=1

βc‖Xα − Xkαk‖
2
2

)
(2.17)

2.3.3 Initial results of applicability of CRC in FGVC

In this section we make some initital exploratory tests on our main hypothesis

of this doctoral research, which is that collaborative filter classifiers should

be suitable for fine-grained recognition and if so, the state of the art should

be expanded and integrated into supervised and unsupervised learning frame-

works. With this in mind, we do some initial benchmarking of results here

using standard datasets, features and classifiers.

Datasets

Experiments are performed on two of the most popular and long-standing

benchmark FGVC datasets: CUB200-2011 Birds and Oxford 102 Flower

datasets.

• CUB200-2011 Birds dataset contains 11,788 images of 200 bird species

with around 30 training samples for each species (Wah et al. (2011)).

• Oxford 102 Flowers contains 8,189 images from 102 categories, with

each category having at least 40 images (Nilsback et al. (2008)).
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Features

The effectiveness of CRC based classification has been tested using several

popular descriptors namely GIST+Color, SIFT and CNN based features.

• Global Invariant Scale Transform (here referred as GIST) (Oliva et al.

(2001)) is a low level global feature that describes the spatial envelope

of the image using directional properties. Color descriptor (van de Wei-

jer et al. (2007)) converts the image to color bag of words and extracts

dense multi-scale overlapping patches. It finally forms a histogram of

color words. The features are concatenated and fed into the Bag of

Words and Spatial Pyramid pipeline.

• Scale Invariant Feature Transform (SIFT) features were proposed by

Lowe (1999). A dense variant of that is used with patch size 16 × 16

with a stride of 8 pixels. After the extraction of the local key-points

and the SIFT features, k-means clustering with a size of 1024 is used

to generate the codebook or Bag of Words (BoW). A 2-level Spatial

Pyramid representation is used for multi-scaling.

• CNN features pretrained on the VGG-19 architecture is used. The ac-

tivations of the penultimate layer are used as features (Simonyan et al.

(2014)).

Classifiers

Several classifiers have been adopted for comparative evaluation. They are

mainly divided into three categories as cited below.

• CRC based: A family of Collaborative Representation based classifiers

have been utilised including the original CRC implementation along

with some of its recent enhancements CROC, PCRC, RCRC and Pro-

CRC.
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• Softmax and SVM based: Probabilistic regression based Softmax clas-

sifier has been used along with linear and χ2 kernel based Support Vec-

tor Machines (SVM) Cortes et al. (1995). The binary SVM classifiers

have been used in one-vs-all format to achieve multi-class categoriza-

tion.

• NSC and SRC based: Sparse Representation based Classification (SRC)

is similar to CRC but uses `1 norm in the Lagrangian multiplier instead

of `2 while minimising the cost function. The Nearest Subspace Clas-

sifier (NSC) assigns a test sample to the class which has the minimum

Euclidean distance to it in feature space.

2.4 Results and Discussion

Average recognition accuracies in percentage over 5-fold cross-validation for

CUB200-2011 Birds dataset and Oxford 102 Flowers dataset are presented

in Table 2.1. Several interesting observations may be made from the results.

First, a gradual but consistent increase in accuracy can be observed as we

transition from initial NSC/SRC based classifiers to CRC and optimized CRC

(CRC) and then to more advanced modifications of CRC. Pro-CRC which is

one of the most recent and state-of-the-art version of CRC, gives the best

result in all of the cases among the CRC based classifiers. These trends are

consistent across all the features.

It can further be observed that Softmax does not perform at par with the

other classifiers but SVM still holds up as a strong contender against CRC.

However, the range of accuracy of SIFT and GIST+Color features for any

classifier/dataset is insignificant compared to the performance of deep con-

volutional network features (VGG-19). Thus with the modern CNN features,

CRC based classifiers, especially recent modifications like RCRC, PCRC and

Pro-CRC consistently outperform SVM.
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Table 2.1: Average accuracy (%) of CRC compared to other classifiers

CUB Birds Oxford Flowers

GIST SIFT Vgg-19 GIST SIFT Vgg-19

SoftMax 7.5 8.2 72.1 45.7 46.5 87.3

SVM 9.2 10.2 75.4 50.5 50.1 90.9

Kernel SVM 9.8 10.5 76.6 51.7 51.0 92.2

NSC 9.1 8.4 74.5 45.4 46.7 90.1

SRC 8.8 7.7 76.0 48.1 47.2 93.2

CRC 9.3 9.4 76.2 47.3 49.9 93.0

CROC 9.5 9.1 76.2 48.8 49.4 93.1

PCRC 9.9 9.7 76.9 49.7 50.3 94.3

RCRC 10.0 9.5 77.4 50.6 51.0 93.6

Pro-CRC 10.4 9.9 78.3 52.4 51.2 94.8

These initial results are encouraging for the hypothesis of this work that

the workings of collaborative representation classifiers should be aligned
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for fine-grained object recognition. At least these preliminary results us-

ing benchmark classifiers, features and datsets, warrant further investigation

which is carried out through the rest of this thesis, along with expansion of

the state of the art.

2.5 Notes on statistical analysis in this thesis

Three types of statistical tests have been used in the thesis, and since the asso-

ciated papers have already been published (or under review) in peer-reviewed

international outlets, I have not changed the test and kept them as is. These

are unpaired t-tests, signed binomial test and Wilcoxon signed rank test. Of

these, unpaired t-tests consider accuracy and standard deviation, whereas Bi-

nomial test is frequency based and Wilcoxon test is rank based. Care must

be taken while performing statistical analysis, particularly regarding experi-

mental design and whether the underlying assumptions of these tests conform

with the realities of the experimental data.

A good comparison of these three tests and relative merits/demerits and

where and when to use them is found in the work by Demsar (2006). Among

these tests, t-tests have the strongest/strictest assumption of normal distribu-

tion. T-tests also assume that the sample size is large enough and t-tests are

known to be susceptible to outliers.

Wilcoxon signed rank test offers a safer alternative to t-tests as it is less

prone to outliers and does not need the assumption of normal distribution.

However, when the assumptions of t-tests are satisfied, t-tests offer the stronger

indicator of statistical performance. Also like t-tests, Wilcoxon test needs the

commensurability of differences, but only qualitatively: greater differences

still count more, but the absolute magnitudes are ignored (different from t-

tests).

Signed binomial tests is also recommended for use when comparing clas-

sifiers over several datasets/features. It has the advantage that since only suc-
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cess/failure is measured, it does not assume any commensurability of scores

or differences nor does it assume normal distributions and is thus applicable

to any data (as long as the observations, i.e. the data sets, are independent).

On the other hand, it is much weaker than the Wilcoxon signed-ranks test,

since the sign test will not reject the null-hypothesis unless one algorithm

almost always outperforms the other.

A key point is rather to ensure is that for either binomial test or rank test,

each trial of the experiment is independent of the other trials. The other thing

to take care is the proper use of Bonferroni compensation when needed. Con-

sidering the relative safety of using Wilcoxon rank test and binomial sign test

compared to other statistical tests, these methods have been used extensively

in the present thesis, along with occasional use of the unpaired t-test.
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Chapter 3

New Fine-grained
Benchmark Datasets

Besides the development of new algorithms to deal with fine-grained recog-

nition problems, this work has also resulted in the compilation of several

benchmark image datasets for fine-grained species recognition. There are

two bird species datasets for Indian and NZ endemic birds. There are two

butterfly/moth species datasets for Indian and NZ Lepidoptera. These are

available for research on request.

3.1 New Zealand Birds Dataset

The New Zealand birds dataset (NZBirds) is a small benchmark dataset of

fine-grained images of NZ endemic birds, many of which are endangered.

Currently it contains 600 images of 20 species of NZ birds and has been com-

piled by University of Otago in collaboration with The National Museum of

NZ (Te Papa), the Department of Conservation (DOC) and the Ornitholog-

ical Society of NZ (Birds NZ). Sample images of the NZ Birds dataset are

presented in Figure 3.1.

Note that not all images in the dataset are of different birds. These images
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have been kindly made available for this study by individual birder photog-

raphers of New Zealand. So a photographer may have taken several shots of

an individual bird from different angles. So, though on one hand, this causes

repetition of data on the same bird, but on the other hand due to pose dif-

ference this acts as a sort of data augmentation and actually helps to avoid

overfitting. Same is true for the other datasets.

3.2 New Zealand Lepidoptera Dataset

NZ Lepidoptera dataset is a new benchmark built during this work at the

Department of Computer Science, University of Otago, NZ in collaboration

with the CVPR Unit, Indian Statistical Institute. It has eight classes of NZ

butterflies and moths, four categories each. The four butterfly classes are

Admiral, Blue, Copper and Ringlet. The four moth classes are Erebidae, Ge-

ometridae, Hepialidae and Noctuidae. Currently it has 640 images with 80

images per class, subject to expansion in near future. Images of NZ moths

have been partly compiled from the publicly available database of NZ Land-

care Research. Sample images of the NZ Lepidoptera dataset are presented

in Figure 3.2.

3.3 Indian Birds Dataset

The Indian Birds Dataset (IndBirds) was recently compiled at the Indian Sta-

tistical Institute in collaboration with the University of Otago, NZ. It has 14

classes of endemic Indian birds, with 100 images per species. Sample images

of the Indian Birds dataset are presented in Figure 3.3.
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3.4 Indian Butterflies Dataset

Indian Butterfly Dataset has been compiled as part of the present work in

collaboration between the Indian Statistical Institute and the University of

Otago, NZ. It is named Titli after the Hindi word for butterfly. The current

version 1 has 6 classes with 60 images per class. The six butterfly classes are

Papilionidae, Pieridae, Nymphalidae, Lycaenidae, Riodinidae and Hesperi-

idae. Sample images of the Indian Butterfly dataset are presented in Figure

3.4.
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Kiwi

Takahe

Tui

Kaka

Kea

Kokako

Kakapo

Weka

Figure 3.1: NZ Birds dataset: 8 out of 20 classes; images vary per classs
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NZ Admiral

NZ Blue

NZ Copper

NZ Ringlet

Erebidae

Geometridae

Hepialidae

Noctuidae

Figure 3.2: NZ Lepidoptera dataset:8 butterflies/moths;100 images per classs
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Nilgiri Wood Pigeon

Nigiri Fly Catcher

Malabar Grey Hornbill

Nilgiri Pipit

Forest Owlet

Rufous Babbler

Malabar Lark

Black and Orange Flycatcher

Figure 3.3: Indian Birds dataset: 8 out of 14 classes; 100 images per classs
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Figure 3.4: Indian Butterflies dataset: 6 classes; 100 images per classs
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Chapter 4

Background Suppression in
Fine-grained Categories

4.1 Chapter Summary and Linkage

This thesis explores applications of collaborative filters to solve four major

problems of fine-grained recognition: automated background compensation,

encoding local repeated patterns for categorization, supervised collabora-

tive classification, unsupervised collaborative clustering. The present chapter

tackles the first of these problems, that of robust background compensation.

Significant background variation across classes pose a significant confound-

ing effect due to subtle differences in the foreground objects. Furthermore, if

the objects of interest occupy a smaller non centrally aligned portion of the

image compare to the background, then there is a tendency of the algorithms

to learn the background, rather than the foreground. So robust background

suppression is an important part of effective fine-grained recognition and this

chapter covers that.
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4.2 Introduction

In the previous chapter, it was shown, through some preliminary experi-

ments, that collaborative representation classifiers (CRC) may be expected

to effectively represent and categorize fine-grained image datasets. However

it is known that the performance of collaborative representation classifiers

degrades considerably when there is significant background which is ran-

domised across classes (Chakraborti et al. (2016)). This may be found in

such fine-grained recognition problems like species recognition with varying

habitats. Many variations of CRC have been proposed but most, if not all,

carry this drawback. One particular approach of overcoming this is to use

majority voting by patches, where the background effect gets compensated if

it is randomly distributed across classes (Zhu et al. (2012)). However, these

methods still need to take into account several conditions like whether the

test patch itself is an outlier, etc.

This chapter tries to overcome these challenges. Two new CRC methods

are presented here which handle outlier background patches better than its

predecessors. These are the generalised patch based CRC (GP-CRC) and

the probabilistic patch based CRC (PProCRC). Background suppression is

formulated into the main cost function, thus doing away with the need for

initial pre-processing steps like detection/localisation (annotation, bounding

box, cropping). A closed form analytic solution of the cost function is derived

that is non-iterative and hence efficient.

4.3 Methods

The present work is an improvement on patch based CRC (PCRC) and prob-

abilistic CRC (ProCRC), which have been discussed in Chapter 2. We point

out the shortcomings of the existing methods and how the proposed modi-

fications overcomes them. The two new CRC methods presented here are
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generalised patch based CRC (GP-CRC) and probabilistic patch based CRC

(ProCRC).

4.3.1 Generalised Patch based CRC (GP-CRC)

GP-CRC addresses some of the inherent issues with the original patch based

CRC formulation (PCRC). These have been touched upon in brief in the in-

troduction, but here it is dealt in detail with concrete mathematical solutions.

In essence, a more generalised and robust patch based CRC is developed.

Case 1: According to equation 4.1, in PCRC, the dictionary is extracted

at the same corresponding position of the test patch, which means that the test

patch is only represented as a weighted collaboration of the training patches

at the exact same location in the images. This is quite a restricted formulation

and in fact, unless the foreground object in the image is well centred, aligned

and covers most of the image, this location matching of patches will rarely

occur. This disadvantage can affect the recognition rate to quite an extent.

Solution: An augmented dictionary M is generated considering all patches

across all classes. p j is the weight matrix for the image patch y j and hence

Mp j is the representation of y j as a weighted collaboration of all training

image patches.

Thus the modified cost function becomes:

p̂ j = arg min
p j

(‖y j − Mp j‖
2
2 + λ‖p j‖

2
2) (4.1)

Other symbols have same meaning as in PCRC, with dimensions of cor-

responding matrices being adjusted appropriately.

Case 2: If the test sample(s) happens to contain background patches that

are significantly different (new or rare) from the majority of patches in the

training set, then there is a high probability of wrong classification.

Solution: To address this an additional term is added to the cost function.

M j is a sub-matrix of M consisting of all the training image patches (can be
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in a transformed domain) at the same location j of the incoming test patch

y j in the test image y. p j j is a sub-matrix of p j constructed similarly and

hence M j p j j is the representation of y j as a weighted collaboration of all

training image patches which are at the same position j with respect to their

corresponding full images.

The representation of the current patch, M j p j j,is compared to the overall

representation of the dataset Mp j and the distance ‖Mp j − M j p j j‖
2
2 gives a

cost metric of how different the patch is from the overall nature of the image

dataset. This reduces the effect of outlier background patches on the system.

Thus the modified cost function becomes:

p̂ j = arg min
p j

(‖y j − Mp j‖
2
2 + λ‖p j‖

2
2 + γ‖Mp j − M j p j j‖

2
2) (4.2)

Case 3: If the images of the dataset are such that significant portions of

the images are background, then many of the generated patches will only

contain background, which may confound the system.

Solution: In general, the patch based collaborative representation frame-

work is quite robust against this challenge, due to the very fact that since the

test image is represented as a co-operation across all samples, it strengthens

the larger number of recurring objects, that is the foreground, rather than the

changing background which occurs in fewer patches. So it performs better

than purely discriminative approaches. In our formulation, the term intro-

duced for Case 2 also strengthens this aspect further.

Derivation of closed form solution: Let M′j be a matrix of same dimen-

sion as that of M with only the values in M j being the non-zero elements in

M′j. Then M j p j j may be replaced by M′j p j, the two expressions being equiv-

alent. Let M̄ j = M − M′j. So we have, ‖Mp j − M j p j j‖
2
2 = ‖Mp j − M′j p j‖

2
2 =

‖(M − M′j)p j‖
2
2 = ‖M̄ j p j‖

2
2 = M̄T

j M̄ j‖p j‖
2
2.

Thus equation 4.6 can be rewritten as

p̂ j = arg min
p j

(‖y j − Mp j‖
2
2 + λ‖p j‖

2
2 + γM̄T

j M̄ j‖p j‖
2
2) (4.3)
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Differentiating equation 4.7 with respect to p j and equating to zero to find p̂ j,

we have

− MT (y j − Mp j) + λp j + γM̄T
j M̄ j p j = 0 (4.4)

Hence,

p̂ j = (MT M + γM̄T
j M̄ j + λI)−1MT y j (4.5)

The projection matrix T j = (MT M +γM̄T
j M̄ j +λI)−1MT can be computed off-

line and the solution p̂ j = T jy j can thus be computed efficiently in a closed

form. The class of test sample is predicted similarly to PCRC, but M jk being

replaced by Mk in equation 4.3. Optimal values of γ and λ are found by

gradient descent.

Summary. In earlier work only patches at same locations were com-

pared, which only works well if the images are well aligned without much

background variation. So, in the present work, instead of constructing M

with patch features at same locations, an augmented M is constructed with

features of all patches over all training images (in Case 1). This solution

handles the case of misaligned foreground objects, but raises the chances

of the representation learning the background. To compensate, the second

term of the cost function (in Case 2) compares it to other location matched

patches (M j) in order to have a penalty if the query patch is too dissimilar

to other patches at the same location. This is like regularization, trading off

misaligned foreground objects with the risk of learning the background- all

integrated in the cost function.

4.3.2 Probabilistic Patch based CRC (PProCRC)

In this section the new PProCRC method is described in detail along with

some drawbacks of its predecessors, which it overcomes.

Drawbacks of earlier formulations. The proposed PProCRC method

overcomes a couple of drawbacks of the PCRC and ProCRC methods, on
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which it is based. ProCRC gives a logical probabilistic framework to the

CRC formulation, but suffers from the same drawback of most collaborative

formulations, that of randomized background variation across fine-grained

classes. Eg. in the case of sub-categorical species recognition, the collabora-

tive filter helps to get a robust representation of the fine-grained classes, but

these species classes often contain a wide range of background variation in

habitat which may be repeated across classes, thus acting as a confounding

factor for the inter-class collaborative representation.

PCRC and other patch based CRC methods tend to overcome the back-

ground challenge by having a majority voting based classification scheme as

described before. This might compensate for the effect of background patches

if they are in the minority or if the background patches are randomised across

classes which is often the case. However, the patch based methods are prone

to outliers that is if some images have rare backgrounds. Our patch based

probabilistic formulation of collaborative representation overcomes these chal-

lenges as discussed below.

PProCRC Formulation. The PProCRC cost function is as a maximi-

sation of the joint occurrence of three independent events that overcome the

drawbacks of the earlier methods, while preserving the strengths of each. The

main insight is that the predicted label of a patch (yi) and the entire test image

(Y) should be the same (that is equal to the label of one of the patches x of the

training set to which it is the most similar in the collaborative space). This

should be achieved under the condition that the patch yi belongs to the test

image Y (that is it is not an outlier patch) and that the training patch x also be-

longs to the training set and is not an outlier. An example of this can be a rare

background patch which is not commonly repeated in the dataset, and hence

is assigned low probability so as not to affect the voting outcome. These

probabilities are modeled as Gaussians and separated into three independent

events as follows.
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1. Probability of a test patch having same label as one of the training

patches, provided that training patch belongs to the training set (not an

outlier) is given by:

P[l(yi) = l(x) | x ∈ X]. P[x ∈ X] = e−‖yi−Xαi‖e−λ‖αi‖ (4.6)

2. Probability of the test patch having the same label as the total test im-

age, provided the test patch belongs to the test image (not an outlier) is

given by:

P[l(yi) = l(y) | y ∈ Y]. P[y ∈ Y] = e−‖yi−Yβi‖e−γ‖βi‖ (4.7)

3. Probability of the entire test image having the same label as the training

patch (which has same label as test patch) is given by:

P[l(y) = l(x)] = e−‖Yβi−Xαi‖ (4.8)

So the final cost function is given by the maximum of the joint occurrence

of these 3 events as:

max
αi,βi

[exp(−‖yi − Xαi‖ − ‖yi − Yβi‖ − λ‖αi‖ − γ‖βi‖ − ‖Yβi − Xαi‖)]

= min
αi,βi

[−‖yi − Xαi‖ − ‖yi − Yβi‖ − λ‖αi‖ − γ‖βi‖ − ‖Yβi − Xαi‖] (4.9)

Next a closed form solution of the cost function is obtained as follows:

• Differentiating cost function with respect to αi:

(2XT X + λI)α̂i − XT Y β̂i = XT yi (4.10)

• Differentiating cost function with respect to βi:

(2YT Y + γI)β̂i − YT Xα̂i = YT yi (4.11)

Solving the simultaneous equations 13 and 14, the optimal values of α̂i and β̂i

are calculated, which are then used for the classification phase through patch

majority voting as in the PCRC scheme.
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Figure 4.1: Sample images from the face recognition and species recognition

datasets. (a)-(f) and (g)-(l) are images of one individual from AR dataset and

LFW dataset respectively, showing variation in clothing, eyewear, headgear,

other faces in image, varying background and partial covering of face. (m)-(r)

are six images of different flowers from the Oxford 102 dataset showcasing

the challenge of low inter-class variation; (s) to (x) are three images each of

one breed/class of dogs and that of cats, showcasing the challenge of high

intra-class variation.
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4.4 Experiments and Results

4.4.1 Experimental Setup

Benchmark Datasets. The proposed method and its competitors have been

evaluated on four fine-grained image datasets: two face recognition bench-

marks (AR and LFW) and two species recognition benchmarks (Oxford Flow-

ers and Oxford-IIIT Pets). Results on the new fine-grained species recogni-

tion dataset IndBirds, compiled as part of this doctoral project, is also pre-

sented here.

Face recognition benchmark datasets have been chosen due to ready avail-

ability of performance data of collaborative representation based classifiers in

the existing literature. However, the major limitation of the published results

of CRC methods applied to the face recognition problem is that the bench-

mark datasets used are early ones. Hence these have the foreground object

(the human face) as the focus and covering most of the image, and hence are

not representative of real life scenarios. The proposed CRC methods are seen

to be more robust in performance compared to earlier variants when there is

such background variation.

• AR Face Dataset: It was developed at the Ohio State University and

contains more than 400 color face images of 126 people with changes in

illumination, emotion and occlusion (Martinez et al. (1998)). For fair com-

parison to reported results using CRC methods, a subset of 50 male and 50

female subjects were chosen and the images are resized to 32×32 for the

experiments.

• LFW Face Dataset: The Labeled Faces in the Wild (LFW) dataset

(Huang et al. (2007)), compiled by the University of Massachusetts Amherst

(UMass), contains unconstrained images of 5749 individuals in a natural set-

ting. The original dataset presents challenging backgrounds, along with pose

variation and partial occlusions. LFW-a (Taigman et al. (2009)) is a front
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aligned subset of it, which is used in some related works with other CRC

methods. In LFW-a, 158 subjects with at least 10 sample images each are

chosen and are resized to 121×121 pixels.

The AR dataset has front aligned faces with minimal background and

pose variation. The LFW dataset contains human images from natural set-

tings, but the experiments were performed on aligned and cropped version

(LFW-a) of the original dataset. Further experiments on the original LFW

dataset with images in the wild are performed, which demonstrate that the

performance of most CRC methods degrade considerably in a natural setting.

The decrease in accuracy for the proposed method is much less in compari-

son, which shows that it is more robust to background variation.

The problem of random background variation across classes is more sig-

nificant in the case of fine-grained sub-categorical object recognition. Here

the objects in different classes are quite similar visually and have only subtle

differences. Collaborative representation may help to better utilise the sim-

ilar foregrounds, but the diverse background can have a confounding effect.

Species Recognition has been chosen as the representative problem of fine-

grained classification, to showcase the superior performance of the proposed

PProCRC under these conditions.

For species recognition, Oxford flowers dataset, Oxford-IIIT pets dataset

and the Indian birds dataset (compiled as part of this thesis) have been used.

Descriptions of these datasets are provided in Chapter 2 and 3.

Competing Classifiers:
Non-CRC classifiers. The performance of the proposed PProCRC method

is compared with that of several competing classifiers, both CRC based as

well as non-CRC based. Three popular modern non-CRC classifiers are cho-

sen, namely support vector machines (SVM), adaptive boosting (AdaBoost)

and random decision forests (RDF).

• Support Vector Machines: Multiclass categorization is performed with
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the binary SVM (Cortes et al. (1995)) classifier with χ2 kernel in a

one-versus-all fashion.

• AdaBoost: The weak classifier generates an optimised threshold in or-

der to classify the data into two classes. The boosting part calls the

classifier iteratively, and updates the weights of misclassified examples

after each iteration. This creates a cascade of "weak classifiers" which

act as a "strong classifier" in a repeated one-versus-all strategy (Freund

et al. (1999)).

• Random Decision Forest: RDF (Ho (1999)) is an ensemble of Decision

Trees. Since individual decision trees are prone to over-fitting, boot-

strap aggregated (bagged) Classification and Regression Trees (CART)

are used to achieve better generalisation.

CRC based classifiers. First those CRC classifiers are taken that are di-

rectly related to the formulation of the present method. As has been described

in Section 4.2, these are the original CRC, patch based CRC (PCRC), general-

ized patch based CRC (GP-CRC) and probabilistic CRC (ProCRC). Besides

these several other recent variations of CRC have been used like Enhanced

CRC (ECRC) by (Liu et al. (2014)), Relaxed CRC (RCRC) by (Yang et al.

(2012a)), Kernel CRC (CRC) (Zhao et al. (2014)), and the state-of-the-art

Extended Probabilistic CRC (EProCRC) by (Lan et al. (2017)). These are

described briefly below. Details of these may be found in Chapter 2.

Feature Descriptors. Two popular feature descriptors have been used:

Dense SIFT and ensemble of GIST+HOG. But it should be noted that the

proposed algorithm is general and is agnostic to feature choice.

• Scale Invariant Feature Transform (SIFT): is extracted and a patch size

of 10 × 10 is chosen with overlap (Lowe (1999)).
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• Global Invariant Scale Transform (GIST): is a global feature that de-

scribes the spatial envelope of the image using directional properties.

It extracts dense multi-scale overlapping patches (Oliva et al. (2001)).

• Histogram of Oriented Gradients (HOG): features are extracted in a

dense grid fashion in 3×3 cells which are concatenated at each grid

location to generate the descriptor (Dalal et al. (2005)).

The Dense SIFT features are used separately, while the GIST and HOG

features are used as a concatenated ensemble.

4.4.2 Hyper-parameter Tuning

The hyper-parameters are tuned using stock implementations of optimiza-

tion algorithms like genetic algorithms and simulated annealing during cross-

validation.

• For SVM, the kernel parameter gamma and the regularization parame-

ter C are tuned.

• For Adaboost, the key is to strike a good balance between learning rate

and number of weak classifiers used. Lesser learning rate is better but

more the number of classifiers needed. We started with a learning rate

0.01 at first and then settled with 0.001 for the final model.

• For Random Forest, the main approach was to set the number of trees

high (10000) and then run a series of values for maximum depth pa-

rameter in an array to find the optimal value.

• For CRC based methods, the regularization parameter lambda is tuned

starting with a random number between 0 and 1.

Patch sizes of 16x16 were used. For example, in the case of SIFT features,

128-dimensional SIFT descriptors were computed over 16x16 pixel patches,
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sampled densely over a grid with a regular spacing of 8 pixels in both the

horizontal and vertical directions. Of course computation time would be n

times that speed per image, if the number of patches is n per image.

4.4.3 Results and Analysis

Results. For the AR dataset, images have been resized to 32×32, while for

the LFW-a benchmark the aligned face images are cropped to 121×121 to

eliminate background and then resized to 32×32. These conditions are main-

tained to have parity with reported results in earlier articles on CRC. Exper-

iments are also carried out on the original LFW images with just resizing

to 121×121. For all the three species recognition input images are resized

to 121×121, preserving the original background. A patch size of 10×10

is used for both the face recognition and species recognition datasets. For

each dataset, experiments are conducted with 5 fold cross validation and per-

centage classification accuracies along with standard deviation are presented

in Table 4.1 (face recognition) and Table 4.2 (species recognition) with the

highest accuracy in each column highlighted in bold.

Among the CRC-based methods, the basic CRC has the least accuracy

and then there is a consistent increase in the performance of the CRC vari-

ants. The proposed Probabilistic patch based CRC (PProCRC) comfortably

outperforms all the competing CRC methods including the two that it is based

on, that is the original patch based CRC (PCRC) and the probabilistic CRC

(ProCRC). It also has some improvement in performance over the state-of-

the-art enhanced probabilistic CRC (EProCRC). Compared to the non-CRC

methods, PProCRC has significantly better results than all three, SVM, Ad-

aBoost and RDF. These inferences are consistent for both tasks (face recog-

nition and species recognition) and across the 6 datasets and 2 features. The

other proposed method GP-CRC also outperfoms the competitors except the

very recent EProCRC.
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It may be further observed that there is a significant degradation in per-

formance on the original LFW compared to the less challenging LFW-a. The

results on the original LFW images preserve background, with only resizing

of the entire image. LFW-a has the images from LFW, but cropped to exclude

background and the faces are aligned to front, and in grayscale. It is seen that

the proposed PProCRC has the least deterioration in accuracy between LFW

and LFW-a among all the competing classifiers. This demonstrates the ro-

bustness of the proposed methods to changes in background and pose.

Evaluating Robustness of PProCRC on IndBirds dataset.
Effect of Feature Choice: Fine-grained species recognition datasets can

have significant variances in foreground and background color compared to

similar object contour (if pose is same). The effect of color as a confound-

ing attribute is illustrated in Fig. 4.2 using examples from the new IndBirds

dataset. Fig. 4.2(a) and 4.2(b) are of Nilgiri flycatcher (blue colored) and

Black-yellow flycatcher. Note that the shape of the birds are almost identical,

only major difference being the color. Experiments on the IndBirds dataset

are run using Dense SIFT and GIST+HOG features for PProCRC, EProCRC

and ProCRC classifiers with color images and grayscale images.

The results are presented in Table 4.3 and it may be observed that in pres-

ence of color information, the performance improves for both features and for

all classifiers. However, the percentage degradation in performance for PPro-

CRC is less than that of EProCRC and ProCRC. This example brings to light

the importance of feature choice for classifier performance and thus strength-

ens the case of integrating the collaborative representation into a CNN based

feature learning framework. This has been presented in Chapter 6.

Effect of Image Quality: Image quality can also play an important role in

feature-classifier performance. This is pertinent for fine-grained visual cat-

egorization problems involving species recognition, because in many cases

the images acquired in natural settings can be of poor quality. There may be

motion blur, poor illumination, partial obscuring in the wild, etc. The effect
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Figure 4.2: Example from IndBirds dataset with similar appearance with only

color difference: (a) Nilgiri flycatcher (Blue), (b) Black-yellow flycatcher

of deterioration in image quality is evaluated on the IndBirds dataset as fol-

lows. Gaussian Noise is added to each color component of each image pixel

separately. The standard deviation is varied from 0 to 0.09 in steps of 0.01.

Blur is imposed with a Gaussian kernel of standard deviation ranging from 0

to 9 in steps of 1. The size of the filter window is set to 4 times the standard

deviation.

The effects of these on the performance of ProCRC, EProCRC and PPro-

CRC is graphically represented in Fig. 4.3. Fig. 4.3(a) is the original image

of a Malabar Gray Hornbill and Fig.4.3 (b) and (c) are respectively the same

image with added Gaussian noise (standard deviation = 0.02) and Gaussian

blur (standard deviation = 4). Fig. 4.3(d) and (e) trace the fall of accuracy of

ProCRC, EProCRC and PProcRC with increase in Gaussian noise and blur

respectively using Dense SIFT features. It is seen that performance of all 3

classifiers falls off as expected, but PProCRC gives the most robust perfor-

mance among the three. Similar trends are noticed for GIST+HOG features.

Statistical Analysis. To test the statistical significance of the improve-

ment in performance of the proposed PProCRC over its competitors, statisti-

cal tests are conducted.
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(a) Original image (b) Gaussian noise (c) Gaussian blur

(d) accuracy vs. noise (e) accuracy vs. blur

Figure 4.3: Effect of noise and blur on classification accuracy in NZBirds.v2

dataset

Wilcoxon signed rank test is performed to compare the performance be-

tween PProCRC and EProCRC. Wilcoxon test is more generalised, since it

does not assume a normal distribution of data unlike the paired/unpaired t-

tests. This is more applicable to compare results across several classifiers,

features and datasets simultaneously, but for one particular task at a time (in

our case face recognition and species recognition separately). First the test is

conducted on the accuracy results for the face recognition tasks as presented

in Table 4.4. The ranks (R) are allocated according to the magnitude of dif-

ference in accuracy between the two methods. If there is a tie in the absolute

difference, then the rank is split between the two. Eg. if there is tie for the
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values for 3rd and 4th rank, then both are given 3.5 rank. The corresponding

signs (S ) are allocated depending on which method outperforms for that par-

ticular experimental setting. The ones for which PProCRC is better have sign

1; the rest have sign -1. The Wilcoxon parameter W =
∑

S R is calculated.

For the face recognition task W = 17. The same calculations are performed

for the species recognition task and presented in Table 4.5 and W = 19. For

each task, maximum possible rank value for n = 6 experiments (combina-

tion of 2 features and 3 datasets) is n(n + 1)/2 = 21. The Wilcoxon signed

rank test states that the null hypothesis (PProCRC and EProCRC are equally

good) may be rejected in one-direction (PProCRC better than EProCRC) at

5% level of significance if W ≥ 17. Hence for both tasks (face and species

recognition) it may be concluded that the proposed PProCRC performs sig-

nificantly better than the state-of-the-art EProCRC.

Signed binomial test is next carried out between PProCRC and EProCRC,

since it can be used across different tasks simultaneously because it consid-

ers frequency of success in the calculations rather than the accuracy values.

Again the null hypothesis is that the two are equally good, that is there is 50%

chance of each beating the other on any particular trial. Now over the 2 tasks

(face recognition and species recognition) there are 6 datasets, 2 descriptors

each (Dense SIFT and GIST+HOG) and 10-fold cross-validated results. Thus

in total we have 100 experiments, and out of these PProCRC outperformed

EProCRC 70 times (that is 70% of the trials). The signed binomial test yields

that given the assumption that both methods are equally good, then the prob-

ability of PProCRC outperforming EProCRC in 70% of the trials is 0.13%

(one-tail p-value of 0.0013). The two-tail p-value is 0.0027. Considering

a level of significance of α = 0.05, one has to apply the Bonferroni adjust-

ment. Here there are 2 descriptors and 6 datasets, hence 12 combinations of

experimental condition. So the 5% level of significance is divided by 12 to

get adjusted α = 0.0042. Since the one-tail and two-tail p-values obtained

are both less than 0.0042, it may be concluded that though improvement in
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mean accuracy of GP-CRC over ProCRC is marginal, it is still statistically

significant considering the frequency of out-performance.

4.5 Discussion

Two new collaborative representation classifiers were presented in this chap-

ter. The first one (GP-CRC) is a generalised patch based CRC that achieves

better background suppression. This is then extended into a probabilistic

patch based CRC (PProCRC) that outperforms the state-of-the-art (EPro-

CRC). Experiments have been performed on the species recognition problem

and a new benchmark fine-grained bird image dataset (IndBirds) has been

introduced.
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Table 4.1: Face Recognition Accuracy (%)

AR Face Dataset LFW Face Dataset LFW-a Face Data

DenseSIFT GIST/HoG DenseSIFT GIST/HoG DenseSIFT GIST/HoG

SVM 90.4 ± 5.1 88.5 ± 6.4 31.4 ± 3.0 25.0 ± 3.6 45.3 ± 2.6 41.7 ± 2.9

AdaBoost 91.8 ± 5.6 91.1 ± 5.9 33.1 ± 3.3 26.6 ± 3.1 47.7 ± 2.8 42.2 ± 2.7

RDF 91.5 ± 5.3 90.6 ± 6.0 33.6 ± 3.4 26.2 ± 3.2 48.1 ± 2.5 42.5 ± 2.8

CRC 91.2 ± 5.2 90.0 ± 6.1 31.5 ± 3.1 25.6 ± 3.8 44.9 ± 2.5 42.1 ± 3.0

ECRC 92.4 ± 5.0 91.6 ± 6.5 33.4 ± 3.5 26.3 ± 3.0 47.6 ± 2.7 42.5 ± 2.8

PCRC 93.5 ± 5.5 92.3 ± 6.3 33.6 ± 3.3 27.5 ± 3.4 48.3 ± 2.6 42.9 ± 2.5

RCRC 94.1 ± 5.3 92.8 ± 6.4 35.0 ± 3.2 29.9 ± 3.7 49.9 ± 2.4 43.2 ± 2.7

KCRC 94.6 ± 5.7 93.3 ± 6.6 35.3 ± 3.1 30.4 ± 3.3 50.7 ± 2.5 43.4 ± 3.0

ProCRC 95.0 ± 5.1 93.9 ± 5.8 38.7 ± 3.0 35.0 ± 3.5 52.6 ± 2.9 44.4 ± 3.0

GP-CRC 95.8 ± 5.6 94.2 ± 5.3 39.9 ± 3.2 38.5 ± 3.3 53.1 ± 2.7 45.0 ± 2.6

EProCRC 96.7 ± 3.0 95.7 ± 3.5 48.5 ± 3.6 43.2 ± 3.5 56.7 ± 2.4 47.1 ± 2.8

PProCRC 97.5 ± 2.3 96.2 ± 3.8 50.2 ± 3.4 44.3 ± 3.7 56.0 ± 2.6 47.9 ± 2.5
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Table 4.2: Species Recognition Accuracy (%)

Oxford Flowers Oxford-IIIT Pets Indian Birds

DenseSIFT GIST/HoG DenseSIFT GIST/HoG DenseSIFT GIST/HoG

SVM 64.4 ± 5.3 61.2 ± 5.5 60.2 ± 4.6 56.4 ± 4.3 66.7 ± 4.8 65.5 ± 5.0

AdaBoost 64.0 ± 5.7 63.1 ± 5.2 61.7 ± 4.2 58.5 ± 4.5 67.0 ± 4.7 65.9 ± 4.9

RDF 64.9 ± 5.4 63.6 ± 5.6 62.0 ± 4.2 58.1 ± 4.6 67.1 ± 5.1 66.3 ± 5.2

CRC 64.6 ± 5.9 60.5 ± 5.7 61.5 ± 4.8 56.3 ± 4.4 67.3 ± 4.9 66.0 ± 4.8

ECRC 66.1 ± 5.5 63.3 ± 5.4 62.2 ± 4.1 58.6 ± 4.7 67.9 ± 5.0 66.8 ± 5.1

PCRC 66.3 ± 5.2 65.8 ± 5.1 62.8 ± 4.5 60.5 ± 4.6 68.1 ± 5.2 67.2 ± 4.9

RCRC 68.8 ± 5.1 67.4 ± 5.3 64.1 ± 4.6 61.9 ± 4.5 69.4 ± 4.7 67.9 ± 5.0

KCRC 69.0 ± 5.3 67.7 ± 5.5 64.5 ± 4.5 62.2 ± 4.9 69.8 ± 4.9 68.0 ± 4.8

ProCRC 72.3 ± 5.7 69.4 ± 5.9 67.7 ± 4.9 63.6 ± 4.3 71.5 ± 5.0 69.7 ± 5.1

GP-CRC 73.7 ± 5.8 71.7 ± 5.8 68.9 ± 4.7 64.2 ± 4.8 72.3 ± 5.1 70.1 ± 4.9

EProCRC 78.1 ± 5.6 77.7 ± 5.4 73.6 ± 4.5 68.4 ± 4.7 75.0 ± 5.2 72.4 ± 4.8

PProCRC 79.9 ± 5.5 77.0 ± 5.2 75.1 ± 4.4 69.6 ± 4.3 77.3 ± 5.0 74.8 ± 4.7
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Table 4.3: Effect of Color (IndBirds dataset)

Color Images Grayscale Images Percentage Reduction

DenseSIFT GIST+HOG DenseSIFT GIST+HOG DenseSIFT GIST+HOG

ProCRC 71.5 69.7 68.1 67.4 4.8 3.3

EProCRC 75.0 72.4 72.9 70.5 2.8 2.6

PProCRC 77.3 74.8 76.6 74.2 0.9 0.8

Table 4.4: Face Recognition Wilcoxon Test

Oxford Flowers Oxford-IIIT Pets Indian Birds

DenseSIFT GIST+HOG DenseSIFT GIST+HOG DenseSIFT GIST+HOG

EProCRC 96.7 95.7 48.5 43.2 56.7 47.1

PProCRC 97.5 96.2 50.2 44.3 56.0 47.9

∣∣∣ Difference
∣∣∣ 0.8 0.5 1.7 1.1 0.7 0.8

Rank (R) 3.5 1 6 5 2 3.5

Sign (S ) 1 1 1 1 -1 1
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Table 4.5: Species Recognition Wilcoxon Test

Oxford Flowers Oxford-IIIT Pets Indian Birds

DenseSIFT GIST+HOG DenseSIFT GIST+HOG DenseSIFT GIST+HOG

EProCRC 78.1 77.7 73.6 68.4 75.0 72.4

PProCRC 79.9 77.0 75.1 69.6 77.3 74.8

∣∣∣ Difference
∣∣∣ 1.8 0.7 1.5 1.2 2.3 2.4

Rank (R) 4 1 3 2 5 6

Sign (S ) 1 -1 1 1 1 1
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Chapter 5

Encoding Repeated Local
Fine-grained Patterns

5.1 Chapter Summary and Linkage

This thesis explores the suitability of collaborative representation classifiers

(CRC) for fine-grained recognition. The previous chapter overcame one ma-

jor problem of existing CRC methods, that of lack of robustness in case of

background variation. This was a significant step since many fine-grained

visual categorization (FGVC) problems suffer from significant randomized

background variation. The next step is to focus on representation of fine-

grained objects themselves, before feeding them into the CRC for classifi-

cation. To do this, we develop in this chapter an improved way to represent

repeated local patterns which are characteristic of many fine-grained recogni-

tion problems, specially species recognition like those of flowers, butterflies,

etc.
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5.2 Introduction

Local binary descriptors have been shown to be effective encoders of repeated

local patterns for robust discrimination in several visual recognition tasks

(Huang et al. (2011)). He et al. (1990) in their seminal paper on the subject,

introduced the concept of textons. These encode localized textures/patterns

in an image into binary words, and the frequency histogram of these words

describes the image. The first popular implementation was local binary pat-

tern (LBP) (Ojala et al. (1994)). Since then, many interesting modifications

and improvements of these descriptors have been developed. A few of these

are modified census transform (MCT) (Frobaand et al. (2004)), local gradi-

ent pattern (LGP) (Jun et al. (2012)), local directional pattern (LDP) (Jabid

et al. (2010a)), uniform local binary pattern (ULBP) (Ming et al. (2015)),

etc. LBP encodes the local intensity variation in the neighborhood of each

image pixel into a binary word, the decimal equivalent of which then acts as

a representative feature encapsulating the pattern of local intensity variation

in that neighborhood. The histogram of the LBP values over all pixels of an

image serves as the descriptor for that image. MCT (Frobaand et al. (2004))

is a modified version of LBP, where instead of taking the central pixel inten-

sity of the neighborhood as the threshold, the average intensity over the entire

neighborhood is treated as the threshold while forming the binary word. LGP

(Jun et al. (2012)) considers the gradient of neighboring pixel intensities with

respect to the central pixel intensity to generate the binary word. Both MCT

and LGP were demonstrated to be more robust to noise than the original LBP

operator. LDP was proposed (Jabid et al. (2010a)) as a more noise invariant

alternative to LBP. It incorporates the outputs of the 3 × 3 Kirsch masks in 8

directions, for each pixel, into a binary word and its corresponding decimal

value is the desired LDP value, corresponding to that pixel.

An inherent shortcoming of both LBP and LDP, as well as many of the

other related descriptors like MCT, LGP, etc., is that each assigns an ad hoc
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bias while sequencing the generated binary digits to form the binary word.

This is because the choice of the initial pixel of this circular sequence of

bits determines the binary-to-decimal conversion weight assigned to each of

the binary digits, as explained later in the chapter. This adds an inherent

rotation variance. A few rotation invariant versions have also been suggested

in existing literature, like LDPri (Jabid et al. (2010b)) for LDP. But these

have their own set of limitations and the present work presents an alternative

rotation invariant scheme.

The main contributions of this chapter is a new binary local pattern, the

LOOP descriptor. Rotation invariance is added into the main formulation of

LOOP, thus overcoming a drawback of most existing descriptors of the genre.

In the process we decrease post processing time complexity and increase

accuracy of classification. Note that although the efficacy of the proposed

method is demonstrated here on butterfly and moth species recognition, the

methodology may be applied to other similar applications exhibiting repeated

local patterns/textures.

5.3 Methods

In this section we give a brief description of two popular binary descriptors:

local binary patterns (LBP) and local directional patterns (LDP). These two

are the methods on which the proposed LOOP descriptor is directly based.

Then we move on to describe the LOOP descriptor in detail along with how it

overcomes the drawbacks of LBP and LDP, both mathematically and visually

through illustrative examples. We also briefly mention the rotation invariance

of LOOP.
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5.3.1 Local Binary Pattern (LBP)

LBP (Ojala et al. (1994)) is a popular descriptor which captures the local

intensity variation patterns of an image and has good discrimination charac-

teristics.

Let ic be the intensity of an image I at pixel (xc, yc) and in (n = 0, . . . , 7)

be the intensity of a pixel in the 3 × 3 neighborhood of (xc, yc) excluding the

center pixel ic.

Then the LBP value for the pixel (xc, yc) is given by

LBP(xc, yc) =

7∑
n=0

s(in − ic).2n (5.1)

where

s(x) =

 1 if x ≥ 0

0 otherwise
(5.2)

A major disadvantage of LBP is the arbitrary sequence of binarization

weights. Depending on the chosen starting pixel of the sequence of binary

weights (2n, n = 0, . . . , 7), the 8 neighbors of the output 3 × 3 grid are allo-

cated subsequent weightage n sequentially. There is no clear logic behind the

proper assignment of weight and the result obtained is susceptible to rotation

variance. The same pattern rotated between images of the same class or even

within different parts of the same image will generate a different binary word,

thereby confounding the classification process. In fact, this bias has persisted

over to other related descriptors as well, like LDP, MCT, LGP, etc.

5.3.2 Local Directional Pattern (LDP)

LDP is an improved local pattern descriptor which incorporates a directional

component by using Kirsch compass kernels. It was shown to be less suscep-

tible to noise than the traditional LBP operator (Jabid et al. (2010a)).

Let ic be the intensity of an image I at pixel (xc, yc) and in , n = 0, 1, . . . , 7

be the intensity of a pixel in the 3 × 3 neighborhood of (xc, yc) excluding the
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center pixel ic. 3×3 Kirsch edge detectors centered at (xc, yc) in eight possible

directions are given in Fig. 5.1.

The 8 responses of the Kirsch masks are mn, n = 0, . . . , 7 corresponding

to pixels with intensity in, n = 0, . . . , 7 and let mk be the kth highest Kirsch

activation. Then all the neighboring pixels having Kirsch response higher

than mk are assigned 1, and others 0.

But the empirically assigned value of k is ad hoc. This fixes the possible

number of ones to k − 1 and number of zeros to (n + 1 − (k − 1) = n − k + 2

where n is as defined above by the neighborhood pixel number. Hence the

possible number of binary words is reduced from 2(n+1) to Cn+1
k−1 .

Then the LDP value for the pixel (xc, yc) is given by

LDPk(xc, yc) =

7∑
n=0

s(mn − mk).2n (5.3)

where

s(x) =

 1 if x ≥ 0

0 otherwise
(5.4)

Rotation Invariant LDP (LDPri): A rotation invariant version was intro-

duced in (Jabid et al. (2010b)). Here the neighbor pixel with highest Kirsch

mask output is assigned the highest order in the binary word, and then the

other bits are taken sequentially as in previous formulations. Thus it assigns

an empirical rule to the starting point of the binary word construction. How-

ever, it suffers from the self-imposed restriction of always having a leading

1, which immediately reduces the number of available combinations in the

binary word by half. The problem of fixed number of 1s and 0s also persists

from the original LDP, depending on the value of the threshold k.

5.3.3 Local Optimal Oriented Pattern (LOOP)

As discussed earlier, the major disadvantage of LBP and LDP is the arbitrary

sequence of binarization weights that adds dependancy to orientation. LDP
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also suffers from the empirical assignment of value to the threshold variable,

which puts an ad hoc restriction on the number of bits allowed to be 1, thus

reducing the number of possible words, as discussed before. LOOP presents

a non-linear amalgamation of LBP and LDP that overcomes these drawbacks

while preserving the strengths of each.

Let ic be the intensity of an image I at pixel (xc, yc) and in (n = 0, 1, . . . , 7)

be the intensity of a pixel in the 3 × 3 neighborhood of (xc, yc) excluding the

center pixel ic. The 8 Kirsch masks, as used in LDP previously, are oriented

in the direction of these 8 neighboring pixels in (n = 0, 1, . . . , 7) thus giving a

measure of the strength of intensity variation in those directions, respectively

(refer to Fig. 5.1).

This information is incorporated by assigning the binarization weight to

each neighboring pixel corresponding to the strength of Kirsch output in the

direction of that pixel. The underlying rationale behind this approach is that

the Kirsch mask output in a particular direction provides an indication of the

probability of occurrence of an edge in that direction. Since the LBP indicates

the intensity variation over the neighboring pixels in the same directions,

the value of the Kirsch output is employed to assign the decimal-to-binary

weights.

As discussed earlier, the 8 responses of the Kirsch masks are mn corre-

sponding to pixels with intensity in, n = 0, . . . , 7. Each of these pixels are

assigned an exponential wn (a digit between 0 and 7) according to the rank of

the magnitude of mn among the 8 Kirsch mask outputs.

Then the LOOP value for the pixel (xc, yc) is given by

LOOP(xc, yc) =

7∑
n=0

s(in − ic).2wn (5.5)

where

s(x) =

 1 if x ≥ 0

0 otherwise
(5.6)
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Thus the LOOP descriptor encodes rotation invariance into the main for-

mulation. Moreover, the proposed LOOP algorithm also negates the empiri-

cal assignment of the value of the parameter k in the traditional LDP method

(eqn. 5.3).

5.3.4 Scale and Rotation Invariance

A multi-scaled amalgamated histogram is constructed to achieve scale in-

dependence. This is done by forming a spatial gaussian pyramid and then

concatenating the histograms of LOOP values obtained at each scale to form

the final histogram which acts as the descriptor for the image.

Figure 5.1 illustrates the rotation invariance property of LOOP descriptor,

compared to the lack thereof in LBP and LDP. As demonstrated in Figure 5.1,

binary words are formed according to LBP rule and the weights are assigned

according to the LDP mask activations.

Tie break in weight assignment: Referring to Figure 5.1, the one with

more differing nearest neighbour is assigned higher weight. Eg. For the two

-2155 for pattern 2, nearest neighbours for one are -2155 and -275 (differ-

ence is 1880) while nearest neighbours for the other are -2155 and -2035

(difference is 120). So the former is assigned higher weight than latter (21 vs.

20).

5.4 Experiments and Results

5.4.1 Experimental Setup

Datasets. Three image datasets of moth and butterfly species have been used

to showcase the performance of the methods. Among these the Leeds and

Ponce butterfly datasets are pre-existing and have been discussed in Chapter

2 (few sample images provided here in Fig. 5.2). The NZ lepidoptera dataset
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Figure 5.1: Numerical Example to calculate LBP, LDP and LOOP.

has been collected as part of this thesis and has been discussed in details in

Chapter 3.

Classifiers. The collaborative representation classifier (CRC) (Zhang

et al. (2011)) has been shown recently to be effective in handling small fine-
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Figure 5.2: Sample images from the Leeds butterfly dataset (top row) and the

Ponce butterfly dataset (bottom row). Images from the new NZ Lepidoptera

dataset are provided in more details in Chapter 3.

grained datasets where the differences in objects between classes is subtle

compared to randomized significant background variation within and be-

tween classes (Chakraborti et al. (2016)). CRC represents the test image

as an optimal weighted average of training images of all classes and the sub-

sequent residual per class is used to calculate the predicted category. A recent

Probabilistic formulation of CRC called ProCRC (Cai et al. (2016)) is used

here.

For comparison with a popular off-the-shelf classifier, a support vector

machine (SVM) (Cortes et al. (1995)) with a χ2 kernel is chosen with settings

as in the ProCRC paper (Cai et al. (2016)) for fair comparison. Multiclass

categorization is performed with the binary SVM classifier in a one-versus-

all fashion in turns.

Descriptors. The performance of several local binary pattern encoders

like LBP, MCT, LDP, LDPri, LGP is compared with the proposed LOOP de-

scriptor. Among these, LOOP is built influenced by LBP and LDP, while

MCT and LGP are chosen as relevant modifications of these methods. LDPri

is a rotation invariant modification of LDP. It is also compared with three

popular modern binary descriptors: BRIEF (Binary Robust Independent Ele-

mentary Features) (Calonder et al. (2010)), BRISK (Binary Robust Invariant
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(a) Sample image (b) LOOP output

Figure 5.3: Standard test image (rice.png) and the LOOP output.

Scalable Keypoints) (Leutenegger et al. (2011)), and ORB (Oriented FAST

and rotated BRIEF) (Rublee et al. (2011)). BRIEF was the first of these

and presents a simple configuration similar to LBP, without rotation invari-

ance. ORB descriptor is rotation invariant and uses an optimal sampling pair.

BRISK has both of these attributes and also has the additional characteristic

of a more advanced hand-crafted sampling pattern composed of concentric

rings.

5.4.2 Results and Analysis

For each dataset, experiments are conducted with 5 fold cross validation and

percentage classification accuracies are presented in Table 1 with the highest

accuracy in each column highlighted in bold. The LOOP output on a standard

test image ‘rice.png’ is presented in Figure 5.3 as an illustrative example.

It is observed that LOOP performs much better than LBP and LDP, the

two descriptors on which it is based. Performance of LOOP is also better

than the competing LBP variants: MCT, LGP and LDPri. LOOP successfully

outperforms BRIEF, but has comparable results with BRISK and ORB, both

of which are rotation invariant. However, LOOP has a simpler formulation
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and lower execution time than ORB and BRISK. Using the standard tic-toc

functionalities of MATLAB, it is observed that ORB and BRISK have 21%

and 27% higher computation time respectively than LOOP.

Table 5.1: Classification Accuracy (%)

Leeds Ponce NZ

SVM ProCRC SVM ProCRC SVM ProCRC

LBP 62.1 64.7 68.4 70.5 55.6 59.3

MCT 63.9 65.8 69.9 72.3 58.7 61.1

LDP 66.6 68.5 71.7 74.1 60.9 64.5

LDPri 69.2 72.5 75.1 77.9 64.8 68.3

LGP 69.4 72.9 75.0 77.6 64.2 68.6

BRIEF 65.5 67.1 70.4 73.6 59.9 63.0

BRISK 69.8 73.5 77.7 79.3 66.2 69.5

ORB 71.0 73.8 78.4 79.9 65.8 70.1

LOOP 71.5 74.4 78.3 80.4 66.0 70.6

Among the competing classifiers listed in Table 5.1, only LDPri, BRISK

and ORB are rotation invariant. LOOP yields comparable results to BRISK

and ORB, but has lower run time due to simpler formulation. LOOP yields

only marginal improvement in performance compared to LDPri, but has simi-

lar complexity in formulation and comparable run time. Next it is determined

whether the increase in average accuracy of LOOP over LDPri is statistically

significant.
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Sign Binomial Test. For each descriptor, 2 classifiers and 3 datasets

are used, hence 6 combinations per descriptor. Also there are 5 fold cross-

validation per combination. So for each descriptor, there are 30 sets of ac-

curacy results. Assuming the null hypothesis to be that the two competing

methods (LOOP and LDPri) are equally good, then there is 50% chance of

each beating the other.

It is observed that of the 30 experimental runs, LOOP outperforms LDPri

22 times. The one-tail P value at 5% level of significance is 0.0081. Now

using Bonferroni correction, at 5% level of significance, the corrected α for

the 6 combinations (2 classifiers and 3 datasets per descriptor) is 0.05/6 =

0.0083. Since the calculated chance is 0.0081 (less than the corrected α),

one can reject the null hypothesis and conclude that LOOP has a statistically

significant better performance than LDPri.

Also as explained earlier, LDPri has the constraint of always having a

leading 1 thus halving the number of possible words, along with the restric-

tion of having a fixed number of 1s and 0s in the binary word. LOOP is free

from these limitations in design.

5.5 Discussion

A novel binary local pattern descriptor, LOOP, which overcomes some dis-

advantages of its predecessors LBP and LDP, is presented in this chapter. It

is tested on Lepidoptera species recognition with encouraging initial results

that warrant further exploration. It outperforms the descriptors on which it is

based, along with a few other variants. It has comparable results with pop-

ular binary descriptors like BRISK and ORB, but gains in time complexity.

This chapter has only presented experiments and results on one representa-

tive problem, that of Lepidoptera classification. But LOOP is a generalized

binary descriptor and may be used in further research for other small fine-

grained datasets.
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Chapter 6

Collaborative Fine-grained
Supervised Deep Learning

6.1 Chapter Summary and Linkage

Based on the available literature, it was indicated by preliminary results that

collaborative representation classifiers (CRC) are suitable for fine-grained vi-

sual categorization (FGVC). Then this work progressed the state-of-the-art in

both FGVC (by proposing a new way to represent fine-grained local repeated

patterns) as well as CRC (by automating background compensation into the

formulation). Thus the next step is to integrate CRC-like representations

into modern machine learning methods like convolutional neural networks.

The present chapter introduces a Collaborative ConvNet (CoCoNet) for bet-

ter transfer learning of small fine-grained datasets with limited samples.

6.2 Introduction

Deep convolutional networks have proven to be proficient in classifying base

image categories with sufficient generalization when trained with a large

dataset. However, many real life applications of significance (Chai (2015))
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may be characterized by fine-grained classes and limited availability of data,

like endangered species recognition (Rodner et al. (2015)) or analysis of

biomedical images of a rare pathology. In such specialized problems, it is

challenging to effectively train deep networks that are data hungry. Transfer

learning is a popular approach to train on small fine-grained image datasets

with limited samples (Simon et al. (2015)). The ConvNet architecture is

trained first on a large benchmark image dataset (eg. ImageNet) for the

task of base object recognition. The network is then fine-tuned on the tar-

get smaller dataset for fine-grained recognition. Since the target dataset is

small, there is an increased chance of overtraining. On the other hand, if the

dataset has fine-grained objects with varying backgrounds, this can cause dif-

ficulty in training convergence. This makes the optimal training of the dataset

challenging (Horn et al. (2017)). In case of small datasets with imbalanced

classes (Horn et al. (2017)), the problem is compounded by the probability

of training bias in favour of larger classes. A few specialized deep learning

methods have been proposed in recent times to cater to these issues, like low-

shot/zero-shot learning (Li et al. (2017)) for small datasets and multi-staged

transfer learning (Simon et al. (2015)) for fine-grained classes. In spite of

these advances, deep learning of small fine-grained datasets remains one of

the open popular challenges of machine vision (Krause et al. (2014))(Krause

et al. (2015)).

These challenges are addressed in the current chapter through a Collabo-

rative ConvNet (CoCoNet). It fine-tunes a pre-trained deep network through

a novel collaborative representation layer in an end-to-end fashion. This es-

tablishes a protocol for multi-stage transfer learning of fine-grained data with

limited samples. The intuition is that we have already seen that CRC methods

tend to work well for fine-grained recognition, so the logical next step be-

comes to incorporate the power of collaborative filtering into the current best

approach available for classification, that is, convolutional networks. This is

further strengthened by the findings of Chapter 2 and the works of Cai et al.
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(a) BCNN

Figure 6.1: Schematic Diagram of Collaborative ConvNet (CoCoNet).

(2016), who have recently shown that some modern versions of CRC give

better performance with CNN learned features from a pre-trained ConvNet

compared to a fully-connected softmax based classification layer.

6.3 Methods

6.3.1 The CoCoNet model

CoCoNet gives a collaborative loss which is back propagated through an end-

to-end model. The training set is divided into 2 sections p1 and p2. One pos-

sible split can be 2:1 between p1 and p2, having m and n images respectively

randomly selected with equal representation across classes.

Let y be the d × 1 feature vector of one image in p2, such that the feature

matrix for p2 is Y of dimension d× n. Let x be the d× 1 feature vector of one

image in p1, such that the feature matrix for p1 is X of dimension d × m.

The collaborative cost function is given by:
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P (A,W, X) = ‖(Y − XA)W‖22 + λ‖A‖22 + γ‖W‖22 (6.1)

The collaborative reconstruction matrix A is thus of dimension m × n.

The goal is to find an optimal feature representation of each sample in p2

with respect to the “training" images in p1 via a representation vector ~ai ∈ A.

The weight matrix W is used to compensate for imbalance of classes and

each of its elements is initialised with a weight proportional to the size of the

class to which the corresponding feature vector in Y belongs. W counteracts

the imbalance in classes as a penalty term for larger classes by increasing the

cost. W is of dimension n × 1.

After finding the initial optimal A through least squares, the weight ma-

trix W, reconstruction matrix A and the feature representation matrix X are

updated through partial derivatives for each backward pass of the CoCoNet

as presented in Algorithm 1.

Least squares minimization gives the initial optimal value of A as:

Â =
[
XT XWT W + λI

]−1
XT YWWT (6.2)

Fix
{
A, X

}
, update W:

∂P
∂W

= −(Y − XA)T (Y − XA)W + γW (6.3)

Fix
{
W, X

}
, update A:

∂P
∂A

= −XT (Y − XA)WWT + λA (6.4)

Fix
{
W, A

}
, update X:

∂P
∂X

= −(Y − XA)WWT AT (6.5)

Once all the partial derivatives are obtained, CNN weights are updated

by standard back-propagation of gradients for each batch in P1 and P2. A
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schematic is presented in Fig. 6.1..

Algorithm 1: Training with CoCoNet

1 Initiate weight matrix W with elements proportional to class size ;

2 Split the training set into two parts P1 and P2 ;

3 Extract feature matrix X of P1 through CNN section of CoCoNet. ;

4 Find initial optimal reconstruction matrix A by eqn. 6. ;

5 for each batch in P2 do
6 Fix

{
A, X

}
, update W by eqn. 7 ;

7 Fix
{
W, X

}
, update A by eqn. 8 ;

8 Fix
{
W, A

}
, update X by eqn. 9 ;

9 for each batch in P1 do
10 back-propagation of gradients to update weights of CoCoNet

;

11 end
12 end

6.3.2 Reducing computation cost through SVD.

The optimal representation weight matrix Â from eqn 6.2 has the term (XT XWT W+

λI)−1, where X is of dimension d×m. Here d is the dimension of the descrip-

tor and m is the total number of data points in the partition P1 of training

data. This poses the problem of high computation cost for large datasets (m

is large). So singular value decomposition (SVD) is used to reduce the ma-

trix inverse computation to dimension d × d, so as to make it independent of

dataset size. This is a crucial modification needed for applications like image

retrieval from large unlabeled or weakly labeled image repositories.
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Taking the singular value decomposition (SVD) of XT , one can factor

XT X as:

XT X = (US VT )T US VT = VS T UT US VT = V(S T S )VT (6.6)

Since S only has d non-zero singular values, one can truncate S T S and V

to be smaller matrices. So V is N × d, S is d × d and VT is d × N. Also note

that since W is of dimension n× 1. Thus WT W comes out as a scalar value w

in eqn. 6.6. w is absorbed in S to have Ŝ .

Using the Woodbury matrix inverse identity (Woodbury (1950)), the in-

verse term then becomes:

(VŜ T S VT + λI)−1 =
1
λ

+
1
λ2 V(Ŝ −1 +

1
λ

VT V)−1VT =
1
λ

+
1
λ2 V(Ŝ −1 +

1
λ

I)−1VT

(6.7)

Note that the inverse term (Ŝ −1 + 1
λ
I)−1 is only d × d, so it scales to many

data points.

6.3.3 Enhanced Learning by CoCoNet

CoCoNet uses the collaborative cost function in an end-to-end manner. So

one does not have the fully final classification layers. The CNN extracts fea-

tures and feeds it to the collaborative layer. The collaborative cost function

estimates error, updates its own parameters as well as feeds it back to the

CNN. The error and gradients are then back propagated through the CNN

to update the features. So CoCoNet is different from just cascading a CNN

based feature learner with a collaborative filter, because the parameters are

not updated in latter in an end-to-end fashion. For the same dataset and same

number of given samples, the collaborative layer represents all samples to-

gether as an augmented feature vector. Thus after error is found out, the error

gradient may be found with respect to each of the image vectors in the fea-

ture matrix and the gradients are then back propagated. This collaborative
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representation is not just the augmented feature matrix with all samples, it

is also optimised by the collaborative filter. This adds an additional level of

optimisation besides the CNN learned features and tuned parameters.

6.4 Experiments and Results

6.4.1 Experimental Setup

Datasets. Five benchmark image datasets are used in this work for pre-

training and fine-tuning in total. ImageNet (Russakovsky et al. (2015)) has

about 1.4 million image categories as of 2017 and has been used for pre-

training the networks as base category classifiers. Then for transfer learn-

ing, four bird species recognition datasets have been used: two pre-existing

NABirds and CUB datasets (described in Chapter 2) and two new NZbirds

and IndBirds datasets (described in Chapter 3 and compiled as part of this

thesis).

Competing Classifiers. The performance of CoCoNet is evaluated against

two popular recent methods both among collaborative representation classi-

fiers (CRC) and deep convolutional neural networks (CNN), besides testing

against constituent components as ablation study. Among current CRC meth-

ods, comparison is made against the state-of-the-art Probabilistic CRC (Pro-

CRC) (Cai et al. (2016)). Among recent deep CNN models, the popular

Bilinear CNN is chosen (Lin et al. (2018)), (Lin et al. (2015)) as the bench-

mark competitor. Of course, there are a few more recent variants of ProCRC,

like enhanced ProcCRC (EProCRC) (Lan et al. (2017)), as well as of BCNN,

like improved BCNN (Lin et al. (2017)). But the vanilla versions have been

deliberately chosen here because the aim is to establish a benchmark evalua-

tion in this work. For the same reason comparisons have also been made with

the original CRC formulation plus two well-known benchmark CNN archi-

tectures: AlexNet (Krizhevsky et al. (2012)) and the more recent VGG16 and
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Table 6.1: CUB 200-2011 Test Accuracy (%)

ImageNet→ CUB

(1 stage)
NABirds→ CUB

(1 stage)
ImageNet→ NABirds→

CUB

(2 stage)

AlexNet 52.2 ± 5.4 55.4 ± 5.3 58.6 ± 5.5

AlexNet+CRC 57.5 ± 5.1 59.9 ± 5.0 61.3 ± 5.6

AlexNet+ProCRC 60.8 ± 5.3 63.5 ± 5.2 65.5 ± 5.6

CoCoNet1 64.4 ± 5.2 67.0 ± 5.2 69.4 ± 5.5

Vgg16 60.1 ± 5.8 63.9 ± 5.9 66.4 ± 5.7

Vgg16+CRC 66.3 ± 5.7 70.2 ± 5.9 72.9 ± 5.8

Vgg16+ProCRC 69.4 ± 5.9 72.6 ± 5.8 77.7 ± 5.4

CoCoNet2 73.7 ± 5.7 75.8 ± 5.7 81.5 ± 5.6

Vgg19 71.9 ± 5.5 74.1 ± 5.7 77.5 ± 5.9

Vgg19+CRC 76.2 ± 5.6 79.0 ± 5.5 80.2 ± 5.9

Vgg19+ProCRC 79.3 ± 5.4 82.5 ± 5.5 83.8 ± 5.8

CoCoNet3 83.6 ± 5.5 87.4 ± 5.6 89.1 ± 5.6

Bilinear-CNN 84.0 ± 5.3 85.7 ± 5.8 87.2 ± 5.5

VGG19 (Simonyan et al. (2014)). These help to conduct the ablation study.

The VGG and AlexNet architectures are presented in Fig 6.2. A description
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Table 6.2: IndBirds Test Accuracy (%)

ImageNet→

IndBirds

(1 stage)

NABirds→

IndBirds

(1 stage)

ImageNet→ NABirds→

IndBirds

(2 stage)

AlexNet 60.1 ± 4.4 63.2 ± 4.7 66.6 ± 4.5

AlexNet+CRC 65.8 ± 4.8 68.5 ± 4.5 71.7 ± 4.8

AlexNet+ProCRC 70.5 ± 4.5 73.9 ± 4.9 75.4 ± 4.7

CoCoNet1 73.3 ± 4.6 77.0 ± 4.7 80.4 ± 4.4

Vgg16 69.7 ± 4.8 74.2 ± 4.1 77.7 ± 4.5

Vgg16+CRC 74.5 ± 4.7 79.3 ± 4.4 83.0 ± 4.6

Vgg16+ProCRC 78.6 ± 4.1 82.8 ± 4.3 85.7 ± 4.1

CoCoNet2 81.9 ± 4.7 86.5 ± 4.4 89.9 ± 4.3

Vgg19 76.2 ± 4.2 82.5 ± 4.7 84.8 ± 4.2

Vgg19+CRC 80.6 ± 4.4 86.3 ± 4.0 87.4 ± 4.4

Vgg19+ProCRC 84.0 ± 4.9 89.1 ± 4.1 91.0 ± 4.2

CoCoNet3 87.4 ± 4.3 92.9 ± 4.4 94.7 ± 4.5

Bilinear-CNN 85.1 ± 4.7 88.6 ± 4.2 91.5 ± 4.3

of ProCRC may be found in Chapter 2. Maji et al. introduced the BCNN

architecture for fine-grained visual recognition (Lin et al. (2018))(Lin et al.
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Table 6.3: NZBirds Test Accuracy (%)

ImageNet→

NZBirds

(1 stage)

NABirds→

NZBirds

(1 stage)

ImageNet→ NABirds→

NZBirds

(2 stage)

AlexNet 49.9 ± 5.6 52.3 ± 5.4 55.0 ± 5.8

AlexNet+CRC 54.4 ± 5.5 58.1 ± 5.7 60.4 ± 5.8

AlexNet+ProCRC 57.5 ± 5.8 61.9 ± 5.9 65.8 ± 5.5

CoCoNet1 62.2 ± 5.2 66.6 ± 5.6 69.7 ± 5.7

Vgg16 55.7 ± 5.9 57.9 ± 5.6 59.8 ± 5.3

Vgg16+CRC 59.6 ± 5.6 60.4 ± 5.5 62.7 ± 5.1

Vgg16+ProCRC 63.1 ± 5.7 66.5 ± 5.8 68.1 ± 5.5

CoCoNet2 68.3 ± 5.1 69.8 ± 5.3 71.6 ± 5.4

Vgg19 61.5 ± 5.0 63.7 ± 5.1 65.6 ± 5.7

Vgg19+CRC 63.9 ± 5.3 66.1 ± 5.5 68.7 ± 5.6

Vgg19+ProCRC 66.2 ± 5.5 71.3 ± 5.1 72.9 ± 5.8

CoCoNet3 71.8 ± 5.2 74.4 ± 5.2 77.2 ± 5.6

Bilinear-CNN 69.4 ± 5.6 71.8 ± 5.5 73.3 ± 5.0

(2015)). These networks represent an image as a pooled outer product of fea-

tures learned from two CNNs and encode localized feature interactions that
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(a) VggNet

(b) AlexNet

Figure 6.2: Architectures of Benchmark ConvNets: AlexNet and VggNet

are translationally invariant. BCNN is a type of orderless texture representa-

tion that can be trained in an end-to-end manner.

Experiments. Each of the three target datasets (CUB, NZBirds, Ind-

Birds) is trained through a combination of one stage and two stage transfer

learning. For one stage transfer learning, two separate configurations have

been used: 1) the network is pre-trained for general object recognition on Im-

ageNet and then fine-tuned on the target dataset; 2) the network is pre-trained

for bird recognition on the large North American bird dataset (NABirds)

and then fine-tuned on the target dataset. For 2 stage training, the network
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is trained successively on ImageNet, NABirds and then the target dataset.

Note that for pre-training, always the original architecture (AlexNet/VggNet)

is used, CoCoNet only comes into play during fine-tuning. Note that the

configurations with AlexNet, VGG16 and VGG19 are named CoCoNet1,

CoCoNet2 and CoCoNet3 respectively. During both pre-training and fine-

tuning, 0.001 learning rate is taken at the start, but shifts to 0.0001 once there

is no change in loss anymore, keeping the total number of iterations/epochs

constant at 1000. The Adam (Kingma et al. (2014)) optimiser is chosen and

single-stage fine-tuning of a pre-trained network took on an average 10 hrs,

4 hrs and 4.5 hrs respectively for the CUB, NZBirds and IndBirds dataset

respectively on a iMac machine with 8GB RAM, 2GB AMD Radeon GPU,

3.2GHz Intel i5 processor. Next it is investigated how the end-to-end formu-

lation of CoCoNet fares in controlled experiments with competing configu-

rations. The same experiments are repeated using the original architecture

(AlexNet/VggNet), and then the change in accuracy is observed with cas-

caded CNN+CRC and the end-to-end CoCoNet. The results with cascaded

CNN+ProCRC as well as Bilinear CNN are then tabulated. For each dataset,

images are resized to 128×128 and experiments are conducted with 5 fold

cross validation and percentage classification accuracies along with standard

deviation are presented in Table 6.1 (CUB), Table 6.2 (IndBirds) and Table

6.3 (NZBirds) with the highest accuracy in each column highlighted in bold.

Before fine-tuning, the pre-trained network was truncated before the output

layer in order to change the number of classes according to the target fine-

grained dataset.

6.4.2 Results and Analysis

Results. It may be readily observed from the tabulated results, that the pro-

posed method overall easily outperforms the vanilla architectures (AlexNet/

VggNet) as well as the cascaded configurations (AlexNet/ VggNet+CRC).
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CoCoNet also yields higher accuracy than the recent collaborative method

ProCRC, when the latter is cascaded with a ConvNet. CoCoNet also gives

better results than the popular Bilinear CNN, which is considered a bench-

mark for fine-grained recognition. This trend in the performance is reflected

across the three datasets and for both one stage and two stage transfer learn-

ing. It may also be noted that there is an increase in accuracy for two stage

learning over single stage learning (over all datasets and architectures). The

ablation study in the tables also reveals that the proposed method outperforms

its constituent parts considerably and consistently.

Statistical Analysis. The Signed Binomial Test is performed to inves-

tigate the statistical significance of the improvement in performance of Co-

CoNet (best among the configurations) vs. BCNN. This can be used across

different datasets and methods simultaneously because it considers frequency

of success in the calculations rather than assuming a gaussian distribution of

accuracy values (like t-tests). CoCoNet3, the configuration using VGG-19

network, is chosen as that is the best performing. The null hypothesis is that

the two are equally good, that is there is 50% chance of each beating the other

on any particular trial. For each of the three datasets (CUB, NZBirds and

Indbirds), there are three transfer learning configurations (two single stage

and a double stage) and five-fold cross-validated results. Thus over the three

datasets, in total we have 45 experiments of CoCoNet vs. BCNN, and out

of these CoCoNet outperformed the latter 33 times (that is 73.33% of the

trials). The signed binomial test yields that given the assumption that both

methods are equally good, then the probability of CoCoNet outperforming

BCNN in 73.33% of the trials is 0.12% (one-tail p-value of 0.0012). Consid-

ering a level of significance of α = 0.05, the Bonferroni adjustment is applied.

There are 3 transfer learning protocols and 3 datasets: hence 9 combinations

of experimental condition. So we divide the 5% level of significance by 9

to get adjusted α = 0.0055. Since the one-tail p-value obtained is less than

0.0055, it may be concluded that the improvement in accuracy is statistically
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significant considering the frequency of out-performance.

Qualitative Results. Fig. 6.3(a) is that of a Malabar Lark, which is one

of the species in the IndBirds dataset. One of the key distinguishing parts of

the Malabar Lark is its head crest. Fig. 6.3(b) is an image of the Nilgiri Pipit

from the same dataset. Fig. 6.3(c) presents a test image of the Malabar Lark

that was misclassified as a Nilgiri Pipit by the proposed CoCoNet as well as

its nearest competitors: Bilinear CNN as well as cascaded CNN+ProCRC.

It can be seen that in that image, due to the pose of the bird, the head crest

is not clearly visible. Fig. 6.3(d) and 6.3(e) are those of Nilgiri Pipit, while

6.3(f) is that of Rufous Babbler. It can be seen from 6.3(d) that the Nilgiri

Pipit is characterised by distinct dark patterns on its back, which is not clearly

visible from the front, as shown in Fig. 6.3(e). The image in Fig. 6.3(e) was

correctly classified by the proposed CocoNet as Nilgiri Pipit but was mis-

classified by its competitors (cascaded CNN+ProCRC and BCNN) as Rufous

Babbler.

6.5 Discussion

An end-to-end collaborative convolutional network (CoCoNet) architecture

is presented in this chapter for fine-grained visual recognition with limited

samples. The new architecture adds a collaborative layer which adds an addi-

tional level of optimization based on collaboration of images across classes,

the information is then back-propagated to update CNN weights in an end-

to-end fashion. This collaborative representation exploits the fine-grained

nature of the data better with fewer training images. The proposed network is

evaluated for the task of fine-grained bird species recognition, but the method

is general enough to be used in other fine-grained classification tasks like de-

tection of rare pathology from medical images. The other major advantage

is that most existing CNN architectures can be easily restructured into the

proposed configuration. Results indicate that the proposed algorithm per-
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Classification and Misclassification Examples from the new In-

dBirds dataset: (a) Malabar Lark, (b) Nilgiri Pipit, (c) Malabar Lark, mis-

classified as Nilgiri Pipit by both proposed CoCoNet and competitors, due to

obfuscation of the discriminating head crest. (d) Nilgiri Pipit with character-

istic dark pattern on back (e) Front-facing image of Nilgiri Pipit with back

patterns not visible. Correctly classified by proposed CoCoNet but misclas-

sified by competitors as Rufous Babbler (f).

forms much better than its constiutent parts, a recent CRC method (prob-

abilistic CRC: ProCRC) and a benchmark deep network method (Bilinear-

CNN: BCNN).
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Chapter 7

Collaborative Fine-grained
Unsupervised Clustering

7.1 Chapter Summary and Linkage

The previous chapter incorporated collaborative filters into a generic CNN

architecture for better transfer learning of fine-grained datasets with limited

samples. So it looked at supervised learning through a novel Collaborative

ConvNet (CoCoNet). The present chapter takes the next logical direction

of investigating the incorporation of collaborative filters into unsupervised

learning. So here a new collaborative clustering algorithm is presented where

the cluster centers are updated iteratively as a weighted average of the as-

signed data points (generalisation of k-means) and these weights are opti-

mally obtained from the collaborative cost function.

7.2 Introduction

Supervised deep learning based vision systems are considered the state-of-

the-art and they have achieved near human accuracy in recent years. How-

ever, these methods work best when a large amount of well labeled and an-
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notated data is available and there are many applications of practical signif-

icance where these prerequisites are not adequately met (Chai (2015)). Au-

tomated recognition of endangered species in the wild (Rodner et al. (2015))

and detection of a rare pathology from medical images are examples of prob-

lems that may be characterized by scarcity of training images and imbalance

of classes. Furthermore, these are highly specialized applications requiring

labeling/annotations by domain experts. This might not be readily available

and would be cost prohibitive to acquire in adequate quantity for deep learn-

ing. Thus unsupervised (weakly labeled or unlabeled) clustering methods are

still pertinent for such applications.

In this chapter we present a collaborative clustering algorithm for fine-

grained data, as an optimal weighted generalization of the classic k-means.

The collaborative clustering method encodes the distances of each data point

to the cluster centres and this function is optimised to find the representation

weights. These weights are then used to update the cluster centers in each

iteration. k-means is a special case (Lloyd (1982)) of this, where the repre-

sentation weights are unity and hence the distance between data points are

Euclidean and the cluster centers are updated by a simple mean. There are

other methods referred to as "collaborative clustering" in existing literature,

but these refer to a collaboration or ensemble of clustering methods (Cornue-

jols et al. (2018)), rather than using the collaborative filter analytically.

The proposed collaborative clustering algorithm is compared with k-means

and several of its major variants: k-modes (Chaturvedi et al. (2001)), k-

medians (Jain et al. (1998)) and k-medoids (Park et al. (2009)). Performance

is also compared against DBSCAN (Ester et al. (1996)), which is currently

the most cited clustering method, as well as against a state-of-the-art vari-

ation of DBSCAN called DSets-DBSCAN (Hou et al. (2016)), where the

authors present a non-parametric formulation based on dominant sets using

similarity matrix of input data. Fine-grained species recognition is chosen as

the representative problem like in the rest of this thesis. The tasks are bird
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species recognition and butterfly species recognition. A dense variant of SIFT

(Lowe (1999)) is taken as the first feature descriptor, as well as an ensemble

of GIST (Oliva et al. (2001)) and HoG (Dalal et al. (2005)) features as the

second descriptor. It is seen that the proposed collaborative clustering eas-

ily outperforms k-means and its variants, and also gives overall improvement

against DBSCAN.

7.3 Methods

In this section we present the proposed collaborative clustering method in de-

tails, its formulation and derivation. We also present the competing methods

in brief.

7.3.1 Collaborative k-means Clustering

Collaborative filters represent the query sample as a weighted average of

available data points across all categories of the dataset. The representation

weights are then optimised via the collaborative cost function and the final

categorization is assigned according to the sample with least residual. Col-

laborative filters should be well suited to represent fine-grained clusters with

subtle differences and limited samples, since it finds optimal representation

of data across clusters. The intuition is to incorporate this co-operative ap-

proach within the k-means clustering framework in this work. For clustering,

this would translate to the cluster centers being represented as weighted mean

of data points, where these weights are optimised via the collaborative cost

function as analysed below.

Let the number of required clusters be K. Consider a dataset with N im-

ages in the feature space of d dimensions each, such that the feature matrix

is X ∈ �d×N . Choose K samples out of the N samples as a random initial-

isation of the cluster centres as Y ∈ �d×K. Each cluster center is yk, where
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k = 1, . . . ,K. αk is the representation weight vector of dimension d for the

cluster k.

The collaborative cost function is given by:

P(αk) = ‖yk − Xαk‖
2
2 + λ‖αk‖

2
2 (7.1)

The optimal value of αk for each cluster center yk are given by:

α̂k = (XT X + λI)−1XT yk (7.2)

The residual for sample i with respect to yk (kth cluster) is given by:

ri(yk) =
‖yk − Xiα̂ki‖

2
2

α̂2
ki

(7.3)

Calculate ri(yk)∀i = 1, . . . ,N and k = 1, . . . ,K.

The sample i is allocated to the cluster center with lowest residual as

follows:

C(Xi) = arg min
k

ri(yk) (7.4)

This concludes the first pass.

Let Xk be nk number of columns of X ∈ kth cluster, k = 1, . . . , n. Xk =

[Xk
1, . . . , X

k
nk

] ∈ �d×nk where
∑K

k=1 nk = N. Let α̂k j be the representation

weight corresponding to Xk
j ∈ Xk, k = 1, . . . , nk.

In the next iteration, the new cluster centres are computed through:

yk =
1
nk

nk∑
j=1

Xk
j α̂ jk (7.5)

Same steps are repeated until the termination condition is reached.

95



Reducing computation cost through SVD. The optimal representation

weight matrix α̂ from eqn 7.2 has the term (XT X + λI)−1, where X is of di-

mension d × N. Here d is the dimension of the descriptor and N is the total

number of data points in the dataset. This poses the problem of high com-

putation cost for large datasets (N is large). So singular value decomposition

(SVD) is used to reduce the matrix inverse computation to dimension d × d,

so as to make it independent of dataset size. This is a crucial modification

needed for applications like image retrieval from large unlabeled or weakly

labeled image repositories.

The singular value decomposition (SVD) of XT is used as:

XT X = (US VT )T US VT = VS T UT US VT = V(S T S )VT (7.6)

Since S only has d non-zero singular values, S T S and V are truncated to

be smaller matrices. So V is N × d, S is d × d and VT is d × N.

Using the Woodbury matrix inverse identity (Woodbury (1950)), the in-

verse term then becomes:

VS T S VT + λI)−1 =
1
λ

+
1
λ2 V(S −1 +

1
λ

VT V)−1VT =
1
λ

+
1
λ2 V(S −1 +

1
λ

I)−1VT

(7.7)

Note that the inverse term (S −1 + 1
λ
I)−1 is only d × d, so it will scale to

many data points.

7.3.2 Competing Clustering Methods

k-means and its variants. Collaborative clustering may be looked upon

as a generalization of the k-means algorithm (Lloyd (1982)). Collaborative
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Algorithm 2: Collaborative k-Means Clustering

1 Choose number of clusters K

2 Initiate the cluster centers randomly from the data points

3 Form the feature matrix X and the cluster center matrix Y

4 Find initial reconstruction vector α by eqn. 7.2.

5 while Termination condition is not reached do
6 for each cluster center yk ∈ Y do
7 Find the collaborative weights α by eqn. 7.2.

8 for each image x ∈ X do
9 Find the distances of x from cluster center yk using eqn.

7.3 and 7.4.
10 end
11 end
12 Update cluster centers by eqn. 7.5.

13 Continue from Step 5 till termination condition reached.

14 end
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clustering represents cluster centers as optimal weighted sums of data points.

Thus, k-means is a specialized case where these weights are all unity and only

the Euclidean distance from cluster centers is hence considered. The per-

formance of collaborative clustering is evaluated against k-means and three

of its major variants: k-modes (Chaturvedi et al. (2001)), k-medians (Jain

et al. (1998)), k-medoids (Park et al. (2009)). k-modes and k-medians, as the

names suggest, utilise the cluster modes and medians instead of the means

during the updates. The k-medoids algorithm chooses datapoints as centers

(medoids or exemplars) and uses a generalization of the Manhattan Norm in-

stead of the Euclidean distance.

DBSCAN. Density-based spatial clustering of applications with noise

(DBSCAN) (Ester et al. (1996)) is currently the most cited clustering al-

gorithm. It groups together densely packed data points (with many nearby

neighbours) and marks points in low density areas as outliers. Thus DB-

SCAN is somewhat robust to noise and unlike the k-means algorithms, does

not require apriori knowledge of required number of cluster centers. A recent

state-of-the-art variation of DBSCAN, named D-Sets DBSCAN (Hou et al.

(2016)), is also taken for comparison. D-Sets DBSCAN is a non-parametric

formulation based on dominant sets using similarity matrix of input data.

7.4 Experiments and Results

In this section, the experimental setup is presented: the datasets, the feature

descriptors, and the competing clustering methods for comparison.

7.4.1 Experimental Setup

Benchmark Datasets. The proposed clustering algorithm is tested on four

species recognition datasets. Of these two are for bird species recognition and
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the other two for butterfly species recognition. The Ponce birds and butterfly

datasets are pre-existing benchmark datasets (described in Chapter 2). The

Indian birds and butterfly datasets are new and compiled as part of this thesis

(described in Chapter 3).

Feature Descriptors. 2 popular feature descriptors are used: Dense SIFT

and ensemble of GIST+HoG. But it should be noted that the proposed algo-

rithm is general and is agnostic to feature choice. A dense variant of scale

invariant feature transform (SIFT) (Lowe (1999)) is extracted and a patch

size of 10 × 10 is chosen with overlap. Global invariant scale transform, here

referred to as GIST (Oliva et al. (2001)), is a global feature that describes the

spatial envelope of the image using directional properties. It extracts dense

multi-scale overlapping patches. Histogram of oriented gradients (HoG) fea-

tures (Dalal et al. (2005)) are extracted in a dense grid fashion in 3×3 cells

which are concatenated at each grid location to generate the descriptor. The

Dense SIFT features are used separately, while the GIST and HoG features

are used as a concatanated ensemble.

7.4.2 Results and Analysis

Experimental Results. Clustering is performed on each combination of de-

scriptor, dataset and algorithm. The average percentage accuracy is presented

in Table 7.1 for bird and butterfly species recognition. The highest results in

each column are highlighted in bold. It is observed from both tables that col-

laborative clustering significantly outperforms its direct competitors, that is

the baseline k-means algorithm and its major variants. Also for both tasks,

for the majortiy of algorithms, DenseSIFT based features yields better results

than GIST+HoG. It is also noticed that collaborative clustering outperforms

the original DBSCAN and also gives slight improvement overall over the re-

cent variant DSets-DBSCAN (Hou et al. (2016)). Though the improvements

are marginal, it should be noted that the proposed algorithm has a much more
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lightweight formulation and implementation than DSets-DBSCAN. More-

over, Wilcoxon rank test is also performed to further explore the performance

of collaborative clustering vs. DSets-DBSCAN.

Statistical Analysis. Wilcoxon signed rank test is performed across both

tasks (bird and butterfly recognition) between collaborative clustering and

DSets-DBSCAN and presented through Table 7.2. The ranks (R) are allo-

cated according to the magnitude of difference in accuracy between the two

methods. If there is a tie in the absolute difference, then the rank is split be-

tween the two. For example, if there is a tie for the values for 3rd and 4th

rank, then both are given 3.5 rank. The corresponding signs (S ) are allocated

depending on which method outperforms for that particular experimental set-

ting. The ones for which collaborative clustering is better have sign 1. the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: Mis-clustering examples: (a)-(b) are Lycaenidae and (c)-(d) are

Hesperiidae from the new Indian Butterfly dataset; these are fine-grained

classes. Both DSets-DBSCAN and collaborative clustering wrongly assigned

3(c) to the Lycaenidae cluster. (e)-(f) are of Wood Duck and (g)-(h) are of

Mandarin from the Ponce Duck Dataset. DSets-DBSCAN wrongly assigned

3(h) to Wood Duck cluster, but collaborative clustering correctly identified it

as Mandarin.
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Table 7.1: Clustering Accuracy %

datasets→ Ponce Birds Indian Birds Ponce Butterflies Indian Butterflies

methods ↓ Gist/HoG SIFT Gist/HoG SIFT Gist/HoG SIFT Gist/HoG SIFT

k-Means 72.6 73.5 70.0 72.7 67.4 69.2 65.3 68.4

k-Medians 77.7 78.4 74.3 76.6 70.8 73.9 69.9 73.5

k-Modes 77.1 78.8 74.6 76.2 71.1 73.7 70.3 73.1

k-Medoids 79.0 80.3 76.9 79.5 74.0 75.3 73.6 75.0

DBSCAN 83.6 84.1 80.5 84.8 79.4 81.8 78.5 80.8

DSet-DBSCAN 87.5 88.6 85.0 89.2 74.5 85.4 83.7 85.5

Collab. Clust. 88.8 88.1 86.3 89.9 75.3 87.2 84.9 85.2

Table 7.2: Wilcoxon Signed Rank Test

datasets→ Ponce Birds Indian Birds Ponce Butterflies Indian Butterflies

methods ↓ Gist/HoG SIFT Gist/HoG SIFT Gist/HoG SIFT Gist/HoG SIFT

DSet-DBSCAN 87.5 88.6 85.0 89.2 74.5 85.4 83.7 85.5

Collab. Clust. 88.8 88.1 86.3 89.9 75.3 87.2 84.9 85.2∣∣∣ Difference
∣∣∣ 1.3 0.5 1.3 0.7 0.8 1.8 1.2 0.3

Rank (R) 6.5 2 6.5 3 4 8 5 1

Sign (S ) +1 -1 +1 +1 +1 +1 +1 -1

rest have sign -1. The Wilcoxon parameter W =
∑

S R is calculated for the 8

pairs of values and W = 30. Maximum possible rank value for n = 8 experi-

ments is n(n + 1)/2 = 36. The Wilcoxon signed rank test states that the null

hypothesis (collaborative clustering and DSets-DBSCAN are equally good)

101



may be rejected (collaborative clustering better than DSets-DBSCAN) at 5%

level of significance if W ≥ 30. Hence, it may be concluded that the proposed

collaborative clustering performs significantly better than DSets-DBSCAN.

Normalised Mutual Information (NMI). NMI is considered to be a

standard procedure to investigate the performance of two closely perform-

ing clustering methods. It is given by:

NMI(Y,C) =
2 × I(Y,C)

[H(Y) + H(C)]
(7.8)

Here Y are expected/class labels and C are estimated/cluster labels. H

and I are entropy and mutual information functions respectively. The entropy

function H(Y) is given by

H(Y) = −
∑

y

P(Y = y) × log[P(Y = y)] (7.9)

The function takes the similar corresponding form for H(C). The mutual

information is given by

I(Y,C) = H(Y) − H(Y |C) (7.10)

where H(Y |C) is the entropy of expected labels within each cluster. Fol-

lowing the calculations described in (Vinh et al. (2010)), the NMI between

the proposed Collaborative Clustering against the closest competitor DSet-

DBSCAN is calculated. It is observed that

NMI(Y,DsetsDBS CAN)
NMI(Y,Collab.Clust.)

< 1 (7.11)

This signifies that Collaborative Clustering outperforms DSets-DBSCAN

by normalised mutual information.

Qualitative Example. One of the challenges of fine-grained image cat-

egorization is utilising discriminating parts which may be obfuscated due to

pose variation, bad illumination, partial obstruction by surrounding objects,
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etc. In Fig. 7.2, examples of correct and wrong performance of collabora-

tive clustering are provided. Fig 7.2. (a)-(b) are Lycaenidae and (c)-(d) are

Hesperiidae from the new Indian Butterfly dataset (Titli.v1); these are fine-

grained classes. Both DSets-DBSCAN and collaborative clustering wrongly

assigned 7.2(c) to the Lycaenidae cluster. (e)-(f) are of Wood Duck and (g)-

(h) are of Mandarin from the Ponce Duck Dataset. DSets-DBSCAN wrongly

assigned 7.2(h) to Wood Duck cluster, but collaborative clustering correctly

identified it as Mandarin.

7.5 Discussion

Collaborative clustering is presented as a generalization of the benchmark

k-means algorithm. The contribution is to find out cluster centroids in each

iteration as weighted mean of data points, where the weights are optimized

using a collaborative filter. The data points are given this weighted represen-

tation with respect to the cluster centers. Thus k-means may be considered as

a specialized case where the weights are unity and hence the distance from

the cluster centers are Euclidean. Recent research has shown that collobo-

rative filters are well suited in representing fine-grained image data and give

good results even with limited labels/annotations. So in this work, the pro-

posed collaborative clustering is used to categorize fine-grained species im-

ages (birds and butterflies) and compare results with k-means and its variants

as well as the highly cited DBSCAN algorithm, along with its recent variant

DSets-DBSCAN.

The application of collaborative clustering is demonstrated to the task

of categorizing fine-grained image data for species recognition. However,

collaborative clustering is a generalized algorithm which may be applied to

any similar tasks and with non-image data. Also it would be interesting to

investigate incorporating automated evaluation of number of cluster centers

into the framework. As expansion of this work, one can explore the case of
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retrieval of poorly labeled images from large datasets. Consider the case of

a specialised problem like endangered species recognition requiring labeled

images from domain experts. Large image repositories may have unlabeled

data or unreliably labeled data from citizen scientists. In those cases the

collaborative clustering algorithm may provide a more robust representation

to retrieve similar images.
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Chapter 8

Collaborative Distance
Metric Learning

8.1 Chapter Summary and Linkage

The earlier chapters have demonstrated the use of CRC methods in the FGVC

problem. In particular, CRC has been used for deep supervised learning and

unsupervised clustering. CRC methods have also been developed for effec-

tive background compensation and representation of repeated local patterns.

But in all these CRC formulations in previous chapters, always l2 norm was

used. In fact in most of CRC literature, mostly Euclidean distance and some-

times Frobenius distantce have been invariably used. In this chapter, we re-

place the Eucledian distance by the Mahalanabis distance and learn an opti-

mal distance metric from there. This adds an additional layer of abstraction

and improves results.

8.2 Introduction

Any neural network inspired machine learning algorithm basically fits a func-

tion to given data using many parameters so as to learn discriminatory fea-
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tures from the input in an end-to-end manner. These features are then used

to do the final discrimination operation using a standard distance metric.

Though the network tries to learn the optimal feature space, it seldom tries

to learn an optimal distance metric in the cost function, and hence misses out

on an additional layer of abstraction (Mensink et al. (2013)).

The intuition for this work is that if the deep learned features are fed

into a cost function with a distance metric which is also learned in tandem

in an end-to-end manner, then it might help to further maximize the inter-

class distance and help for such advanced classification tasks like fine-grained

visual categorization. Deep convolutional networks are already proficient at

recognizing base classes with sufficient data, but robust classification of sub-

classes with fine-grained differences is still an open problem (Chai (2015)).

Thus as the representative problem to demonstrate the method, fine-grained

species recognition is chosen (Rodner et al. (2015). As the cost function, a

collaborative representation classifier (CRC) is used as a natural progression

from earlier chapters.

The main contribution is to learn a generic distance metric in the cost

function of a deep network in tandem with the learned features in an end-

to-end manner. An analytical derivation of the partial derivatives is pro-

vided. It is needed to optimise the distance metric and then back-propagate

the gradients. The resulting system has wide generalisation since it is ag-

nostic of the deep architecture and so can be used for any classification

task. The method achieves state-of-the art results on three benchmark fine-

grained species recognition datasets with the standard VGG-19 (Simonyan

et al. (2014)) deep network. Standard publicly available models pre-trained

on ImageNet (Russakovsky et al. (2015)) are used and fine-tuned on the three

datasets, CUB Birds (Wah et al. (2011)), Oxford Flowers (Nilsback et al.

(2007)) and Oxford-IIIT Pets (Parkhi et al. (2012)), for fair comparison and

ready reproducibility.
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8.3 Distance Metric Learned CRC (DML-CRC)

Most CRC methods, if not all, use the Eucledian l2 norm or the Frobenius

norm in the cost function. It is replaced here by a general Mahalanobis dis-

tance metric Σ which can be optimised analytically, giving:

J(α,Σ) = (y − Xα)T Σ−1(y − Xα) + λ‖α‖22 + γ‖Σ‖22 (8.1)

Let X be the training set in some feature domain using the pre-trained

deep model. Now, y is each incoming image in the same feature domain,

being used to fine-tune the network. The aim is to find optimal Σ, α so as to

minimize the cost function during the fine-tuning process.

Differentiating J with respect to α, keeping Σ constant:

∂J
∂α

= −2XT Σ−1(y − Xα) + 2λα = 0 (8.2)

Differentiating J with respect to Σ, keeping α constant:

∂J
∂Σ

= −Σ−1(y − Xα)(y − Xα)T Σ−1 + 2γΣ = 0 (8.3)

Solving the simultaneous equations 8.2 and 8.3, the new values of Σ and

α are:

Σ =
Σ−1(y − Xα)(y − Xα)T Σ−1

2γ
(8.4)

α = (XT Σ−1X + λI)−1XT Σ−1y (8.5)

During a specific round of back-propagation, once the new Σ and α are

set, the weights are then propagated back using the partial derivative with X

as follows.

∂J
∂X

= −2Σ−1(y − Xα)α−1 (8.6)
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For further details on similar back-propagation schemes, the reader may

refer to the work by Wang et al. (2016).

8.4 Experimental Setup

In this section, the experimental setup is described: the datasets, chosen deep

network and competing classifiers.

8.4.1 Benchmark Datasets

Three benchmark fine-grained species recognition datasets have been used.

These are CUB birds, Oxford flowers and Oxford pets. These have been

described in Chapter 2.

8.4.2 Training on VGG-19 Deep Convolutional Network

The standard VGG-19 deep convolutional network has been used from the

Oxford Robotics group (Simonyan et al. (2014)). It has 19 layers, is trained

on more than one million images from the ImageNet (Russakovsky et al.

(2015)) dataset, and can classify up to 1000 object categories. The pre-trained

VGG-19 model has been fine-tuned on the target datasets. For details of

the training protocol, please directly refer to the benchmark work by Simon

et al. (2015) on neural constellation activations. For fair comparison, the

baseline models provided by Simon et al. (2015) in their GitHub repository

have been used: pre-trained VGG-19 models on ImageNet and well as fine-

tuned models on CUB Birds, Oxford Flowers and Oxford-IIIT Pets dataset

using the CAFFE deep learning framework.
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8.4.3 Competing Classifiers

Two CRC based and two non-CRC based methods have been used here for

comparison. Note that all the methods have been used with VGG-19 features,

but can be applied with any learned features.

CRC based deep network classifiers

There are many variants of CRC available; patch based CRC (PCRC) (Zhu

et al. (2012)) as a major sub-class and probabilistic CRC (ProCRC) (Cai et al.

(2016)) as a recent variant are chosen. Further details of these two methods

may be found in Chapter 2.

Non-CRC based classifiers used with VGG-Net

Constellation models are chosen due to the popularity of the paper in fine-

grained recognition and also because their pre-trained models have been used

here directly for fair comparison. The other choice is the very recent paper

on part attention models to compare against the state-of-the-art.

Constellation Neural Activations by Simon et al. (2015) finds activa-

tion patterns with the help of convolutional networks in a completely unsu-

pervised manner (no annotation or bounding box) to identify discriminatory

parts for fine-grained classification. This is one of the popular baseline works

in fine-grained classification and also provides the pre-trained models used in

the current work.

Object Part Attention Models by Peng et al. (2018) is a very recently

published work in fine-grained recognition and can be considered state-of-

the-art. It reports results on the same datasets used in this work with VGG-19

features. This work combines an object level and a part level attention models

with a spatial constraint that preserves spatial patterns.
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Table 8.1: Classification results of proposed DML-CRC versus competitors.

CUB
Birds

Oxford
Flowers

Oxford-
IIIT Pets

CRC [4] 75.24 91.83 83.30

PCRC [12] 76.95 93.06 84.88

ProCRC [13] 78.33 94.87 86.92

Constellation [11] 81.01 95.34 91.60

OPAM [14] 85.83 97.10 93.81

DML-CRC 88.49 98.65 95.12

DML-ProCRC 89.95 99.33 96.58

8.5 Experimental Results

For each dataset, experiments are conducted with five fold cross validation

and percentage classification accuracies are presented in Table 8.1 with the

accuracy of our method highlighted in bold. Among the CRC-based meth-

ods, basic CRC has the least accuracy and then there is an increase in the

performance of the CRC variants. The proposed DML-CRC outperforms

the original CRC and its variants comfortably. DML-CRC is also compared

against two deep learning based methods, Constellation Model (Simon et al.

(2015)) and OPAM (Peng et al. (2018)). The rationale of choosing these two
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(a) (b) (c)

(d) (e) (f)

Figure 8.1: Qualitative results from the Oxford-IIIT Pets dataset. It has fine-

grained image classes of cats and dogs. Row 1 gives a misclassification ex-

ample: (a) Basset Hound, (b) Beagle (characterised by longer ear) (c) Beagle,

misclassified as Basset Hound by the proposed DML-CRC and its competi-

tors, due to partial obfuscation of the discriminating longer ear of Beagle

(both dogs have similar colored patchy skin). Row 2 gives an example of cor-

rect classification: (d) Bombay Cat (e) British Shorthair (f) British shorthair

correctly classified by proposed DML-CRC but misclassified by its competi-

tors due to outlier black color of the cat (Bombay cat is generally black with

narrower mouth while British Shorthair is gray with broader mouth).

particular methods, have been discussed in previous section. The proposed

DML-CRC gives better results than both of these methods, thus establishing

a new state-of-the-art. Fig. 8.1 presents qualitative results from the Oxford-

IIIT Pets dataset.

It is important to note here that the original CRC cost function has been

used deliberately, to emphasize the contribution of the distance metric learn-

ing. This is demonstrated by the fact that even with vanilla CRC, the state-

of-the-art is outperformed albeit marginally in few cases. So it might be

expected, that if a more recent version of CRC is used (like ProCRC), the

margin of outperformance might increase. So the ProCRC cost function is
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plugged in, in place of the original CRC and the results are reported in Table

8.1, and as expected the performance improves further.

8.6 Conclusion

It has been shown that learning the distance metric for final discrimination of

a convolutional network in an end-to-end manner enhances the performance

of the system, keeping other factors like network architecture, data and train-

ing protocol constant. State-of-the-art results are achieved on several fine-

grained recognition datsets, but the method is architecture agnostic and can

be adopted for most visual classification tasks.

112



Chapter 9

Conclusion

9.1 Summary of Research

In this doctoral research, my main aim has been to advance the state-of-the-

art in fine-grained visual categorization (FGVC) especially for those applica-

tions where number of training samples are limited. Recent developments in

deep learning based vision systems have almost solved the task of base cat-

egory recognition if ample data is available. But recognition of fine-grained

categories with limited data and/or imbalanced classes remains an open prob-

lem. The challenge is compounded by the fact that in many cases the subtle

differences in foreground objects are confounded by significant background

variation across classes.

As the main genre of methods to tackle these challenges, I chose col-

laborative representation classifiers (CRC). Collaborative filters have been

popular in recommender systems, where for example, they may be used to

track user trends to suggest transactions in online shopping. They are found

to be good at representing corroborative data for intelligent decision making.

In computer vision, they have mainly been used in face recognition problems

before this work. Human faces have distinguishing features but also have

lot of similarities with each other. Thus it also poses the problem of high
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inter-class similarities and subtle inter-class differences. This inspired me

to look into CRC methods as possible candidates for improving fine-grained

recognition.

So in this work, I first demonstrated the robust performance of existing

CRC methods in tackling FGVC tasks, taking species recognition as the rep-

resentative problem. The reason for choosing species recognition was mainly

that my base of research, New Zealand, due to its unique geographical loca-

tion, has many endemic species due to evolution in isolation, quite a few of

which are endangered. Thus the problem has real life significance in ecolog-

ical conservation and bio-diversity of New Zealand. The project is directly

aligned with the NZ Government national bio-diversity strategies 2020, par-

ticularly for building a Terrestrial and Freshwater Biodiversity Information

System (TFBIS). However, the techniques developed in this work are also

directly applicable to other similar FGVC tasks, like say, biomedical image

analysis of rare pathologies.

9.2 Outcomes and Contributions

The present work has several major contributions. After establishing the

alignment of CRC methods to the FGVC problem, I advanced the state-of-the

art in CRC methods by proposing a probabilistic collaborative representation

of image patches for robust background suppression. This helps in account-

ing for the problem of high randomised background variation between classes

in FGVC, compared to subtle differences in foreground objects. Secondly, we

incorporate the collaborative loss function into an end-to-end deep convo-

lutional network. This collaborative convnet (CoCoNet) helps in establish-

ing transfer learning protocol to learn small specialised fine-grained image

datasets. We also introduce a collaborative unsupervised learning technique

as a generalisation of the standard K-means clustering. Here the cluster cen-

ters are updated using the colloborative weighted mean and hence K-means
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can be viewed as a special case. We also show how learning an optimal dis-

tance metric can improve the performance of the collaborative cost function.

As part of the research, I also compiled several benchmark fine-grained

image datasets for automated species recognition. The New Zealand Birds

dataset was compiled at University of Otago, with contributions from the De-

partment of Conservation, the Ornithological Society of New Zealand (Birds

NZ), and the National Museum (Te Papa). The New Zealand lepidoptera

(butterflies and moths) dataset was built with help from NZ Landcare Re-

search. The Indian Birds dataset and Indian butterflies dataset were compiled

through ongoing collaboration with the Indian Statistical Institute.

The work has resulted in several peer-reviewed publications through well

known outlets in the field. The project won the Diane Campbell Hunt Memo-

rial Award 2017. A part of the field work was conducted through funded

visits to the International Computer Science Institute (ICSI), University of

California, Berkeley, through the Kevin Novins Travelling Scholarship. An-

other part was concluded at the Computer Vision and Pattern Recognition

(CVPR) Unit, Indian Statistical Institute.

115



References

Boom, B. J. et al. (2012). Supporting Ground-Truth annotation of image

datasets using clustering. In Proc. Int. Conf. on Pattern Recognition

(ICPR.

Bourdev, L. D. et al. (2009). Poselets: Body part detectors trained using 3d

human pose annotations. In Proc. Intl. Conf. on Computer Vision (ICCV).

Branson, S. et al. (2014). Improved Bird Species Recognition Using Pose

Normalized Deep Convolutional Nets. In Proc. British Machine Vision

Conference (BMVC).

Cai, S. et al. (2016). A Probabilistic Collaborative Representation based

Approach for Pattern Classification. In Proc. IEEE Intl Conf. on Computer

Vision and Pattern Recognition (CVPR).

Calonder, M. et al. (2010). Brief: Binary robust independent elementary

features. In Proc. European Conference on Computer Vision (ECCV)).

Chai, Y. (2015). Advances in Fine-grained Visual Categorization. Thesis:

University of Oxford.

Chakraborti, T. et al. (2016). Collaborative representation based fine-grained

species recognition. In Proc. IEEE Intl. Conf. on Imaging and Vision Com-

puting New Zealand (IVCNZ).

116



Chaturvedi, A. et al. (2001). K-modes Clustering, Volume 18 (1): 35–55.

Journal of Classification.

Chi, Y. et al. (2012). Connecting the dots in multi-class classification: From

nearest subspace to collaborative representation. Proc. IEEE Intl. Conf.

on Computer Vision and Pattern Recognition (CVPR).

Cornuejols, A. et al. (2018). Collaborative clustering: Why, when, what and

how, Volume 39 (2): 81–95. Information Fusion.

Cortes, C. et al. (1995). A support vector networks, Volume 20(3):273–297.

Machine Learning).

Dalal, N. et al. (2005). Histograms of oriented gradients for human detection.

In Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recognition

(CVPR).

Demsar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data

Sets, Volume 7, 1-30. Journal of Machine Learning Research (JMLR).

Deng, J. et al. (2013). Fine-Grained Crowdsourcing for Fine-Grained Recog-

nition. In Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recog-

nition (CVPR).

Ester, M. et al. (1996). A density-based algorithm for discovering clusters

in large spatial databases with noise. In Proc. Intl. Conf. on Knowledge

Discovery and Data Mining.

Farrell, R. et al. (2011). Birdlets: Subordinate categorization using volu-

metric primitives and posenormalized appearance. In Proc. Intl. Conf. on

Computer Vision (ICCV).

Freund, Y. et al. (1999). A Short Introduction to Boosting, Volume 14(5):771–

780. Journal of Japanese Society for Artificial Intelligence.

117



Frobaand, B. et al. (2004). Face Detection with the Modified Census Trans-

form. In Proc. IEEE Conf. on Face and Gesture Recognition.

Griffin, G. et al. (2007). Caltech-256 object category dataset. Technical

Report 7694, California Institute of Technology.

He, D. et al. (1990). Texture Unit, Texture Spectrum, And Texture Analysis,

Volume 28:509–512. IEEE Trans. on Geoscience and Remote Sensing.

Hillel, A. B. et al. (2007). Subordinate class recognition using relational ob-

ject models. In Proc. Intl. Conf. on Neural Information Processing Systems

(NIPS).

Ho, T. K. (1999). Random Decision Forests. In Proc. Intl. Conf. on Document

Analysis and Recognition.

Horn, G. V. et al. (2015). Building a bird recognition app and large scale

dataset with citizen scientists: The fine print in fine-grained dataset collec-

tion. In Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recogni-

tion (CVPR).

Horn, G. V. et al. (2017). The Devil is in the Tails: Fine-grained Classifica-

tion in the Wild. arXiv:1709.01450 [cs.CV]).

Hou, J. et al. (2016). DSets-DBSCAN: A Parameter-Free Clustering Algo-

rithm, Volume 25 (7): 3182–3193. IEEE Trans. on Image Processing.

Huang, D. et al. (2011). Local Binary Patterns and Its Application to Fa-

cial Image Analysis: A Survey, Volume 41(6):765–781. IEEE Trans. on

Systems, Man and Cybernetics- Part C.

Huang, G. B. et al. (2007). Labeled Faces in the Wild: A Database for

Studying Face Recognition in Unconstrained Environments. University of

Massachusetts, Amherst, Technical Report.

118



Jabid, T. et al. (2010a). Gender Classification using Local Directional Pat-

tern (LDP). In Proc. Intl. Conf. Pattern Recognition.

Jabid, T. et al. (2010b). Local directional pattern (LDP)–A robust image

descriptor for object recognition. Proc. IEEE Intl. Conf. on Advanced

Video and Signal Based Surveillance (AVSS).

Jaeger, J. et al. (2015). Croatian Fish Dataset: Fine-grained classification

of fish species in their natural habitat. In Proc. of British Machine Vision

Conference (BMVC).

Jain, A. K. et al. (1998). Algorithms for Clustering Data. Prentice-Hall.

Jun, B. et al. (2012). Robust face detection using local gradient patterns and

evidence accumulation, Volume 45(9):3304–3316. Pattern Recognition.

Khosla, A. et al. (2011). Novel dataset for Fine-Grained Image Categoriza-

tion. First Workshop on Fine-Grained Visual Categorization (FGVC). In

Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Kingma, D. P. et al. (2014). Adam: A Method for Stochastic Optimization.

In Proc. Intl. Conf. on Learning Representations (ICLR).

Kornblith, S. et al. (2019). Do better Imagenet models transfer better? In

Proc. Intl. Conf. on Computer Vision and Pattern Recognition (CVPR).

Krause, J. et al. (2013). 3D Object Representations for Fine-Grained Cat-

egorization. IEEE Workshop on 3D Representation and Recognition, at

ICCV (3dRR-13).

Krause, J. et al. (2014). Learning Features and Parts for Fine-Grained

Recognition. In Proc. Intl. Conf. on Pattern Recognition.

119



Krause, J. et al. (2015). Fine-grained recognition without part annotations.

In Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recognition

(CVPR).

Krizhevsky, A. et al. (2012). ImageNet Classification with Deep Convolu-

tional Neural Networks. In Proc. Neural Information Processing Systems

(NIPS).

Kumar, N. et al. (2012). Leafsnap: A Computer Vision System for Automatic

Plant Species Identification. In Proc. European Conf. on Computer Vision

(ECCV).

Lan, R. et al. (2017). An extended probabilistic collaborative represen-tation

based classifier for image classification. In Proc. IEEE Intl. Conf.on Mul-

timedia and Expo (ICME).

Larios, N. et al. (2011). Stacked Spatial-Pyramid Kernel: An Object-Class

Recognition Method to Combine Scores from Random Trees. IEEE Work-

shop on Applications of Computer Vision.

Lazebnik, S. et al. (2004). Semi-Local Affine Parts for Object Recognitionn.

In Proc. British Machine Vision Conference (BMVC).

Lazebnik, S. et al. (2005). A Maximum Entropy Framework for Part-Based

Texture and Object Recognition. In Proc. IEEE Intl. Conf. on Computer

Vision (ICCV).

Leutenegger, S. et al. (2011). BRISK: Binary robust invariant scalable

keypoints. In Proc. IEEE International Conference on Computer Vision

(ICCV).

Li, A. et al. (2017). Zero-Shot Fine-Grained Classification by Deep Feature

Learning with Semantics. arXiv:1707.00785 [cs.CV].

120



Lin, T.-Y. et al. (2015). Bilinear CNN Models for Fine-Grained Visual Recog-

nition. In Proc. IEEE Intl. Conf. on Computer Vision (ICCV).

Lin, T.-Y. et al. (2017). Improved Bilinear Pooling with CNNs. In Proc.

British Machine Vision Conference (BMVC).

Lin, T.-Y. et al. (2018). Bilinear Convolutional Neural Networks for Fine-

Grained Visual Recognition, Volume 40(6):1309–1322). IEEE Trans. Pat-

tern Analysis and Machine Intelligence (PAMI).

Liu, Z. et al. (2014). Enhanced collaborative representation based classifi-

cation. In Proc. IEEE Intl. Conf. on Information and Automation (ICIA).

Lloyd, S. (1982). Least squares quantization in PCM, Volume 28 (2): 129–

137. IEEE Trans. in Information Thoery.

Lowe, D. G. (1999). Object recognition from local scale-invariant features.

In Proc. IEEE Intl. Conf. on Computer Vision (ICCV).

Lytle, D. et al. (2010). Automated processing and identification of benthic

invertebrate samples, Volume 29(3), 867-874. Journal of the North Amer-

ican Benthological Society.

Maji, S. et al. (2013). Fine-Grained Visual Classification of Aircraft.

arXiv:1306.5151 [cs.CV]).

Mallah, C. et al. (2013). Plant Leaf Classification Using Probabilistic Inte-

gration of Shape, Texture and Margin Features. In Proc. SPPRA.

Martinez, A. et al. (1998). The AR Face Database, Volume 24. CVC Tech-

nical Report.

Mensink, T. et al. (2013). Distance-Based Image Classification: Generaliz-

ing to New Classes at Near-Zero Cost, Volume 35(11), 2624-2637. IEEE

Trans. Pattern Analysis and Machine Learning.

121



Ming, Y. et al. (2015). Uniform Local Binary Pattern Based Texture-Edge

Feature for 3D Human Behavior Recognition, Volume 10(5):1–15. Plos

One.

Muller, H. et al. (2010). ImageCLEF: Experimental Evaluation in Visual

Information Retrieval. Springer.

Nilsback, M.-E. et al. (2006). A Visual Vocabulary for Flower Classification.

In Proc. Computer Vision and Pattern Recognition (CVPR).

Nilsback, M.-E. et al. (2007). Delving into the whorl of flower segmentation.

In Proc. British Machine Vision Conference (BMVC).

Nilsback, M.-E. et al. (2008). Automated flower classification over a large

number of classes. In Proc. Indian Conference on Computer Vision, Graph-

ics and Image Processing (ICVGIP).

Nilsback, M.-E. et al. (2009). Delving Deeper into the Whorl of Flower

Segmentation, Volume 28(6):1049–1062. Image and Vision Computing.

Ojala, T. et al. (1994). Performance evaluation of texture measures with

classification based on Kullback discrimination of distributions. In Proc.

Intl Conf. on Pattern Recognition (ICPR).

Oliva, A. et al. (2001). Modeling the Shape of the Scene: A Holistic Repre-

sentation of the Spatial Envelope, Volume 42 (3): 145–175. Ineternational

Journal of Computer Vision (IJCV).

Park, H. et al. (2009). A simple and fast algorithm for K-medoids clustering,

Volume 18 (1): 35–55. Expert Systems with Applications.

Parkhi, O. M. et al. (2011). The truth about cats and dogs. In Proc. IEEE

Intl. Conf. on Computer Vision (ICCV).

122



Parkhi, O. M. et al. (2012). Cats and Dogs. In Proc. IEEE Intl. Conf. on

Computer Vision and Pattern Recognition (CVPR).

Peng, Y. et al. (2018). Object-Part Attention Model for Fine-Grained Image

Classification, Volume 27(3), 1487-1500. IEEE Trans. Image Processing.

Rodner, E. et al. (2015). Fine-grained Recognition Datasets for Biodiver-

sity Analysis. In Proc. IEEE Intl. Conf. on Computer Vision and Pattern

Recognition (CVPR).

Rublee, E. et al. (2011). ORB: an efficient alternative to SIFT or SURF. In

Proc. IEEE International Conference on Computer Vision (ICCV).

Russakovsky, O. et al. (2015). ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV).

Schafer, J. B. et al. (2007). Collaborative Filtering Recommender Systems,

Volume 4321 (291): 291–234. The Adaptive Web, Lecture Notes in Com-

puter Science, Springer.

Simon, M. et al. (2015). Neural Activation Constellations: Unsupervised

Part Model Discovery with Convolutional Networks. In Proc. IEEE Intl.

Conf. on Computer Vision (ICCV).

Simonyan, K. et al. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv:1409.1556 [cs.CV].

Taigman, Y. et al. (2009). Multiple One-Shots for Utilizing Class Label In-

formation. In Proc. British Machine Vision Conference (BMVC).

van de Weijer, J. et al. (2007). Learning color names from real-world im-

ages. Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recognition

(CVPR).

123



Vinh, N. X. et al. (2010). Information Theoretic Measures for Cluster-

ings Comparison: Variants, Properties, Normalization and Correction for

Chance, Volume 11: 2837–2854. The Journal of Machine Learning Re-

search.

Wah, C. et al. (2011). The caltech-ucsd birds-200-2011 dataset. Computation

and Neural Systems Technical Report, CNS-TR-2011-001.

Wang, J. et al. (2009). Learning Models for Object Recognition from Natu-

ral Language Descriptions. In Proc. British Machine Vision Conference

(BMVC).

Wang, K. et al. (2016). Dictionary Pair Classifier Driven Convolutional Neu-

ral Networks for Object Detection. In Proc. Intl. Conf. on Computer Vision

and Pattern Recognition (CVPR).

Welinder, P. et al. (2010). Caltech-UCSD Birds 200. California Institute of

Technology. CNS-TR-2010-001. 2010.

Woodbury, M. A. (1950). Inverting modified matrices, Volume 42 (106): 336.

Memorandum report.

Yang, M. et al. (2012a). Relaxed collaborative representation for pattern

classification. In Proc. IEEE Intl. Conf. on Computer Vision and Pattern

Recognition (CVPR).

Yang, S. et al. (2012b). Unsupervised template learning for fine-grained

object recognition. In Proc. Intl. Conf. on Neural Information Processing

Systems (NIPS).

Yu, A. et al. (2014). Fine-Grained Visual Comparisons with Local Learning.

In Proc. Intl. Conf. on Computer Vision and Pattern Recognition (CVPR).

124



Yu, A. et al. (2017). Semantic Jitter: Dense Supervision for Visual Com-

parisons via Synthetic Images. In Proc. Intl. Conf. on Computer Vision

(ICCV).

Zhang, L. et al. (2011). Sparse Representation or Collaborative Represen-

tation: Which Helps Face Recognition? In Proc. IEEE Intl. Conf. on

Computer Vision (ICCV).

Zhang, N. et al. (2012). Pose pooling kernels for sub-category recognition.

In Proc. Intl. Conf. on Computer Vision and Pattern Recognition.

Zhang, N. et al. (2013). Deformable part descriptors for fine-grained recog-

nition and attribute prediction. In Proc. Intl. Conf. on Computer Vision.

Zhao, J. et al. (2014). Kernel collaborative representation for face recogni-

tion. In Proc. Intl. Conf. on Signal Processing (ICSP).

Zhu, P. et al. (2012). Multi-scale patch based collaborative representation for

face recognition with margin distribution optimization. In Proc. European

Conf. on Computer Vision (ECCV).

125



Appendix A

End Plate: Magazine Article

Figure A.1: Featured in Spring 2018 edition of Forest and Bird Magazine.
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