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Resumo

A Biometria, reconhecimento de um indivíduo através das suas características físicas ou com-
portamentais, é utilizada nos países ricos principalmente para fins de segurança como por exem-
plo, controlo de acesso. Nos países subdesenvolvidos, nomeadamente os países que constituem a
África Subsariana, existem indivíduos em pobreza extrema que estão socialmente excluídos por
não possuírem nenhum documento oficial de identificação. Na aplicação de técnicas de biometria,
pode estar a solução para a identificação destas pessoas.

A situação precária dessas populações e a falta de recursos como instalações e equipamento
próprio para realizar o processo de aquisição de imagem são um entrave ao estabelecimento de
tecnologias mais avançadas nesses países. Estes factores motivaram o estudo do uso de imagens
recolhidas por smartphones na identificação de um indivíduo, proporcionando assim uma alterna-
tiva mais económica e robusta.

Neste trabalho é avaliada a capacidade de um dado algoritmo ser capaz de reconhecer indi-
víduos através de imagens de baixa qualidade, adquiridas em ambientes pouco propícios. Além
disso, é também avaliado o impacto da variação dessas condições de aquisição na performance do
mesmo algoritmo. Os testes são efectuados recorrendo a uma base de dados já existente que com-
preende imagens da região periocular de 50 pessoas, captadas em diferentes ambientes e fazendo
uso de diferentes telemóveis.

Tendo em vista a aplicação destas soluções em África, foi avaliado o comportamento do al-
goritmo quando aplicado em indivíduos de origem africana. Para tal, foi construída uma base de
dados que junta imagens da mão, da orelha e também da região periocular de 50 indivíduos, onde
metade das amostras provêm de sujeitos africanos e outra metade de caucasianos. Optou-se por
recolher amostras de diferentes traços para estudar de que forma a multimodalidade poderia mel-
horar a performance deste tipo de sistemas e também para avaliar a robustez do algoritmo quando
aplicado a outros traços.

O algoritmo revelou elevada robustez no reconhecimento de indivíduos, principalmente quando
utilizado o GIST para descrever imagens em escala de cinzentos. Os métodos de fusão estudados
não trouxeram melhorias significativas ao sistema conferindo-lhe apenas um maior nível de com-
plexidade computacional. Foram ainda identificados vários factores externos, como por exemplo
o nível de luminosidade ambiente ou a etnia do indivíduo, que podem ter um elevado impacto do
desempenho do sistema.

A metodologia apresentada mostrou-se apta para ser aplicada num contexto real. Contudo
e devido à complexidade deste tipo de sistemas, muitas áreas ficaram por explorar, motivando a
continuidade deste estudo num trabalho futuro.

i



ii



Abstract

Biometrics, the automated recognition of individuals based on their behavioral and biological
characteristics, is mostly used in developed countries with forensic and security proposes, as well
as to regulate interactions between the citizens and the state. In developing countries, namely Sub-
Saharan African (SSA) countries, some individuals are not officially identified and since they do
not formally exist, they are completely excluded from the citizen life. The solution to this identity
gap can lie in the usage of a biometric system.

The underprivileged situation that these populations face and the lack of resources, like facili-
ties and proper equipment to perform a controlled data acquisition, are barriers to the implementa-
tion of more advanced techniques. This situation motivates the use of smartphone-based biometric
systems to perform individual recognition, providing a more economic and robust alternative.

In this work, an algorithm is evaluated regarding its use on individual recognition, using low
quality images acquired on unconstrained environments. The impact of this kind of environments,
in the system performance, is also assessed by using an available dataset, with data from 50 indi-
viduals, comprising images captured from distinct smartphones.

Having in mind these systems’ implementation in SSA, the algorithm was assessed when it
is computed on images from African subjects. This was achieved by building a new dataset, that
comprises periocular, hand, and ear images from 50 individuals also. However, half of the subjects
is African while the other half is Caucasian. The multimodality characteristic of the dataset allow
the study of multimodal systems, as well as the evaluation of the algorithm’s behaviour when
applied to different traits.

The algorithm showed high robustness regarding individual recognition, particularly when
grayscale images and GIST descriptor were used. The applied fusion methods brought no signifi-
cant improvements to the system, contributing just to an increase in its computational complexity.
Also, some external factors, such as the environment brightness level or the individual’s ethnicity,
were identified as having an high impact on the system performance.

The presented methodology proved to be capable of being applied in a real context. How-
ever and due to the complexity of such systems, many areas were to explore, encouraging the
continuation of this work in the future.
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Chapter 1

Introduction

With the marked advance of technology, smartphones are becoming faster and more powerful,

with new features and capabilities arriving to the market each year. Among these features built-in

sensors, such as high resolution cameras and accurate microphones, can be accounted for. For

many, these capabilities are used to gather information about the surrounding world, as well as to

record quotidian situations, so they can share them later, as a means of social interaction. How-

ever, these mobile devices’ potential goes far beyond such entertainment and ordinary applications.

This Master’s thesis work aims to conceptualize the idea of using smartphones as part of a mobile

identification system based on biometric traits to be applied in Sub-Saharan Africa (SSA) devel-

oping countries. This development was carried out under the scope of a Master’s Thesis project

for the Integrated Master in Electrical and Computers Engineering at Faculty of Engineering of

University of Porto and in association with Fraunhofer Portugal Research Center for Assistive

Information and Communication Solutions (AICOS).

This chapter begins with an introduction to the problem that motivated this work. Then, the

objectives for the mobile system solution and its expected innovative contributions are presented.

Finally, the various steps to be taken are outlined.

1.1 Motivation

In SSA, the lack of official individual identification [1] promotes poverty and social exclusion

for many. Hundreds of millions of poor people have no birth certificates, no addresses and no

more than single-word names. With the over-growing of SSA population more and more people

will be in total exclusion outside the society’s boundaries. This identity gap makes development

more difficult and less inclusive. However, there are already many programs that aim to provide

individuals a more robust official identity, usually in the context of the delivery of services [1].

Despite the existence of such methods, governments do not answer timely and efficiently to

deprived people’s needs. Therefore, it is urgent to conceive new methods to quickly answer the

population’s needs, as well as to cover the large identity gap that is pointed out as one of the

biggest obstacles to the development of SSA countries.

1



2 Introduction

1.2 Objectives

During the last decade, biometric industry has “boomed” in the SSA market, mainly for non-

security applications. The role of this work is to contribute for that expansion with a multimodal

biometric identification solution tailored to be used in unconstrained environments. Multimodal

biometric solutions can greatly improve the results in identification over their unimodal counter-

parts, as they can handle much more information regarding an individual, significantly improving

their robustness when facing unfavorable conditions.

In SSA, the majority of the population, with no means to travel, have to be assisted on the

field rather than being received within dedicated facilities. With this in mind, the hardware used is

restricted to portable devices, which may prove too expensive and sparse to be travelling around

from village to village. In order to prevent that, the proposed work is to be developed within a

commercial smartphone using only the provided built-in features for data acquisition. Thus, the

whole biometric identification process should be prepared to be integrated in such scenarios.

These imposed hardware limitations demand a solid algorithm, so that the developed solution

can represent a reliable and plausible alternative to be used in a real-life situation. If the solution

fails to improve the identification process, it will further contribute to the social exclusion of even

more people.

With all these restrictions, the available biometric algorithms and techniques will be evaluated

and studied with the goal of gathering enough information to build a satisfactory solution, adapted

to the situation context.

1.3 Contributions

The work developed on the scope of this Master’s Thesis resulted in several contributions such as:

• The construction of an image dataset composed by Ear, Hand and Periocular samples ac-

quired from both Africans and Caucasian individuals under unconstrained scenarios.

• Study of the impact of mobile setups variations on individual recognition using a periocular

region-based algorithm.

• Study of five different descriptors and its performance evaluation when used to analyse

images acquired in highly unconstrained scenarios.

• Evaluation of a novel algorithm’s behavior when applied to a dataset acquired under uncon-

strained environments and making use of different biometric traits.

1.4 Outline

After this introduction follows a review of the literature in biometric identification. All the in-

formation needed to understand the system regarding its context and design will be presented, as
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well as a comprehensive review of already developed methods. Still in Chapter 2, follows a brief

comparison between the available solutions in the market. In the 3rd Chapter, work regarding the

dataset acquisition setup will be presented. Already in Chapter 4, the studied algorithm will be

presented and its performance will be compared with a state-of-the-art algorithms. In order to test

the proposed methodology’s robustness to varying conditions, in Chapter 5, the algorithm will be

applied over different traits, including the ones collected on the dataset described in Chapter 3. In

Chapter 6, the main conclusions achieved through this work will be stated and suggestions will be

given about possible future work.
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Chapter 2

Literature Review

This chapter starts with a discussion regarding biometric identification problems in the specific

application scenario of the SSA situation. Then, commercial solutions already available in the

market will be presented and analysed. In a more technical topic, typical biometric systems will

be described, as well as some research done over different biometric traits.

2.1 Context

During the 1990’s, biometrics’ market was established almost only on developed countries, due to

the improvement of technological solutions verified during those years. However, mostly due to

recent advances in digital biometric identification, barriers are being broken, and the main markets

have, in recent years, been expanding their products to developing countries, as depicted in Figure

2.1. It is estimated that, in these countries, more than one billion people had their biometrics taken

for at least one purpose. As a result, biometrics industry is "booming" with an estimated growth

of more than 25% during the last 10 years [1].

Among the fifty-three African countries, thirty-four are among the world’s least developed

countries. One of the regions where many of these developing countries lie is the SSA. Sub-

Saharan Africa gathers all countries located south of the Sahara desert, excluding Sudan. This

term is usually used to distinguish these countries from the North-Africa Arab ones since they

represent a different reality, with respect to their societies, economics and ethnographic character-

istics [1]. Biometric-based implementations in developing countries differ completely from those

provided in developed ones. Even if such countries have access to the same technologies, these

groups’ social context demands different implementations aimed to fulfill distinct objectives. In

rich countries, biometrics is used mostly with forensics and security proposes and it is well estab-

lished to regulate interactions between the citizens and the state (voting, passports) or non-state

institution (buying houses and make use of bank accounts). In SSA countries, where many people

do not even have any official ID documentation, the purpose of biometrics is to help cover the

existing identity gap: civil registers, voter rolls, health records, social transfers, among many oth-

ers. Individuals that are not officially identified do not formally exist and are completely excluded

5
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Figure 2.1: Survey of the Use of Biometrics Technologies for Development, Low middle-Income Countries
(2012). [1]

from the citizen life. They cannot register property, have bank accounts and receive public trans-

fers or services and they see their opportunities for economic, social and political development

limited [1]. In order to implement this kind of solutions, complex systems need to be established

within those countries. In the next section, a brief introduction of traditional biometric strategies

will be carried out, in order to understand the true needs and challenges when developing such a

system.

2.2 Introduction to Biometrics

Biometrics can be defined as the automated recognition of individuals based on their behavioral

and biological characteristics [14]. There are several traits that can be used in order to identify an

individual, each one with its own distinctive features. In order to qualitatively evaluate a trait [15],

some requirements are preferable to be satisfied and should be taken into account:

• Universality. Everyone among the target population should have it;

• Distinctiveness. It should be unique in each individual;

• Permanence. It should be invariant over a given period of time;

• Collectability. Data, from the chosen trait, should be easy to capture.

Usually, three more requirements [15] are considered in real life systems: Performance (the

accuracy, speed and resource requirements), Acceptability (harmless to users), and Circumvention

(robust to fraudulent methods). Depending on what the context demands, different boundaries to

each requirement should be established. For example, if a biometric identification system is to be
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applied on infants in a neighbour school, a trait like the hand fulfills the universality requirement.

However for retired war veterans identification, the hand cannot be considered a universal trait,

since past soldiers could have lost a hand in war.

Figure 2.2: Steps of the enrollment stage [2].

Figure 2.3: Steps of the verification stage [2].

Once the trait is defined, the system has to be planned. A generic biometric system operates

in two different stages. The first stage, which is usually called Enrollment, Figure 2.2, is where an

individual is added into a previously existing system database, by capturing and storing data sam-

ples to use as future references. On the second stage, the Recognition, new samples are captured

and compared with the data stored in the previous stage.

Biometric systems can be grouped in two different types, each one with their purpose. In

identification systems, Figure 2.4, the new data is matched with the stored data related to all the

subjects enrolled in the dataset, in order to find the most probable identities. In authentication

systems, Figure 2.3, the new data is compared only with a single claimed identity, so that the

individual identity can be validated. Although differing in their purpose, both systems are struc-

tured the same way. Typically, they are composed by four modules [15], each one with defined

boundaries and roles:

• Sensor module, which acquires the biometric data;
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Figure 2.4: Steps of the identification stage [2].

• Feature extraction module, responsible for the processing of the acquired data in order to

extract the distinctive features and save them in a feature vector;

• Matching module, which matches the new data feature vectors against those kept in the

database;

• Decision-making module, on which the user’s identity is established or a claimed identity is

accepted or rejected.

Now that the system is overviewed, it is important to understand how automatic image recog-

nition systems work and how it is possible to encode an image, so that it can be seen and analysed

by a computer.

2.3 Computer Vision in Biometrics

Computer vision is a field that includes methods for acquiring, processing, analyzing and under-

standing images [16]. A biometric system based on image analysis makes use of all these methods

in order to identify an individual. In this section, follows a brief explanation on those methods and

a review on some state of the art algorithms related to image processing, that will prove of interest

in further sections.

2.3.1 Data Acquisition

Data acquisition is the first step of a computer vision system. Conditions in which the data is

collected have a great influence in the system performance. Each trait demands an architecture

that can be chosen from a vast variety of possibilities. As an example for fingerprint identification,

one can use a specific contact sensor [17] made for that purpose or simply take a photo of the finger

with an ordinary camera [18]. Both methods will provide data with completely different degrees of

information and noise. In the context of this research, the main focus is on mobile-phone solutions

based on built-in cameras, as detailed in further sections.
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2.3.2 Pre-processing

The acquisition of different samples poses challenges in the form of format, size of images, distor-

tion, differences in orientation and variation of gray scale values. During the pre-processing, raw

data acquired during the previous stage is processed and filtered in order to minimize any existing

noise and highlight the relevant characteristics, promoting and favoring the quality of the features

to be extracted. This stage saves time and processing power that, in other way, would be expended

in later stages. In biometrics, the region of interest (ROI) is usually the region that contains the

trait itself and the noise areas are usually undesirable information like backgrounds, badly illumi-

nated areas, and extra objects (like rings, sunglasses, and earrings) [19]. There is a wide variety

of pre-processing methods, each one serving its own purposes, like contrast enhancement, feature

highlighting and segmentation.

Segmentation is the process of partitioning a digital image into multiple segments. The goal is

to highlight the ROI in order to make it easier to analyse, simplifying the image and establishing

boundaries to the region where the main features are contained [20]. To highlight some features

one method usually applied on systems that rely on the clarity and detail of ridges (e.g. fingerprint

and knuckle), is Binarization [3]. As shown in Figure 2.5, Binarization differentiates the finger-

print ridges and valleys by simply applying a threshold on the image intensity values, replacing

each pixel in an image with a black pixel if the image intensity is less than some fixed constant

T , or a white pixel, if the image intensity is greater than that constant. A variation of this method

is called Adaptive Binarization [21], where the Binarization threshold is locally defined in each

pixel.

Figure 2.5: A grayscale fingerprint (left) and the corresponding binarized image (right) [3].

For color correction there are some useful tools commonly used in biometrics. For example,

Histogram equalization [22, 23, 3] algorithms increase the global contrast of images. The Canny

edge detector [24, 8] is widely used tool to locate sharp intensity changes and object boundaries

in an image. This detector classifies a pixel as an edge if the gradient magnitude of that pixel is

larger than the neighbour pixels in the direction of maximum intensity change. Another example

are Gabor filters [24, 8, 25] and their variations like Log-Gabor filters that are suitable when

feature details are to be acquired from high-frequency areas. Regarding each application and its
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expected performance, there are several image processing methods to be used. The difficulty is in

adjusting them to the, sometimes wide, variation of samples.

2.3.3 Feature Extraction

Feature extraction is the process where meaningful information is obtained from the processed im-

age. The extracted features contain the relevant information from the input data, so that the match-

ing can be performed by using only this reduced representation. Feature extraction is achieved by

means of descriptors which are capable of encoding the image in a more compact representation,

making it possible to make an efficient comparison, using only a reduced portion of the original

information. Some descriptors will be explored in further detail on Section 2.6, since they are

of great importance in this study. Features are related to pixel intensities, as well as their spatial

position, shape, orientation, and textures and they are stored within a set of features, commonly

called feature vector [26].

2.3.4 Matching

The feature vector, which serves as an image descriptor, is ready to be compared with other feature

vectors representing the previously enrolled images, stored in a database. The response of this

biometric matching system is typically a matching score, s, that quantifies the similarity between

the input and the database template representations. The better the results, the more certain it is

that the two samples refer to the same individual. After the new data is matched against a stored

template, it is classified given their degree of similarity. On Figure 2.6, a matching result on

magazine identification is presented.

Figure 2.6: Matching result on real-world images with viewpoint change. Green lines are valid matches;
red circles indicate unmatched points [4].

In machine learning, the science field responsible for the study of algorithms that can learn

from and make predictions on data, the matched sample is classified as belonging to a specific

class. A multiclass classification is the method of classifying a sample into one among more

than two classes. If, on the other hand, the classification is done between two classes only, it is

called binary classification. In biometrics, the multiclass classification is present on identification

systems, in which the new data is matched with all the stored data related to all the subjects
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enrolled in the dataset. However, in authentication systems binary classification occurs, since the

new data is compared with a single claimed identity.

2.4 System Performance

As stated before, biometric systems are grouped in two different types: Identification (1:N) and

Verification (1:1). In order to evaluate a verification biometric system, its performance can be

measured by the trade-off between the probability that the incorrect individual is falsely recog-

nized, the false positive rate (FPR), and the probability that the correct individual is falsely not

recognized, the false negative rate (FNR). Two other error rates can be used to evaluate system

performance at a different level: failure to capture (FTC) and failure to enroll (FTE). FTC mea-

sures the device failure rate when capturing a sample (e.g. in the presence of noise), and FTE

measures whether the user is or is not successfully enrolled in the system [26].

Figure 2.7: The Neyman-Pearson/ROC decision strategy curve [5]

Another common description of the error rate of a verification system is the equal error rate

(EER). EER is observed at the decision threshold where false positive and false negative errors

occur with equal frequency. The lower the EER the higher the performance of the algorithm.

This error relation can be visually analysed through the Receiver Operating Characteristic (ROC)

curve (Figure 2.7) [26, 5]. Although they are important, error rates sometimes are not enough to

evaluate in detail the performance of an algorithm. A different metric used to evaluate decision-

making power is decidability (DEC). DEC was first introduced by Daugman [27] and quantifies

intra and inter-class separability by relating their mean, µ , and standard deviation, σ , as it follows:
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DEC =
|µgenuine −µimpostor|

√

0.5(σ2
genuine +σ2

impostor)

This metric does not depend on the decision threshold used when selecting the trade-off be-

tween falsely positive and negative errors. It represents the separability of two distributions, quan-

tifying the separation between genuine and impostor likelihood score distributions.

When it comes to the evaluation of an identification biometric system, different approaches are

needed, like the Ranking Error Rate (RER) and Cumulative Match Curves. In identification, the

goal is to find the most similar template in a stored database of templates from several individuals.

The expected behavior of an ideal similarity function is that highest values are always assigned

to genuine comparisons. Ranking is the metric that measures the error rate of select impostors

templates as most similar. The Rank-N version of the RER is the ratio of query templates for which

genuine comparisons are among the N comparisons with highest similarity value in database [28].

2.4.1 Biometric Traits

The first decision to make before start developing a biometric system is the choice of the trait.

Having in mind the requirements presented on Section 2.2 and the purpose of this Master’s Thesis,

it is necessary to study which traits are most suitable in the SSA context and easier to be acquired

by built-in smartphone sensors. Given that, follows a brief review and analysis of the research

developed about the most commonly used traits in scenarios similar to the described one.

Fingerprints

The fingerprint is probably the most famous trait because of its use in forensic investigation. Fin-

gerprint based methods consist on analysing the fingertip pattern of ridges and furrows, as seen in

Figure 2.5. It is widely used because the fingertip pattern is established during the fetal period,

which makes it a lifetime characteristic, and it is expected that all fingers in the world have dif-

ferent patterns [26]. Usually, fingerprint data is collected using an appropriate in-contact sensor.

There are some problems related with this kind of approach: the physical contact of a finger with

a scanner generates pressure and induces distortions of the fingerprint [3], deteriorating the ex-

tracted information and making more difficulting the feature extraction. Fingerprint features [6]

are presented on Figure 2.8.

Some studies have explored contactless acquisition techniques. Kumar et al. [25] developed

a system where 3D fingerprint surface is reconstructed from 2D images using the shape from

shading technique. Then, the 3D minutiae templates, as well as the 2D templates, are both used

for identification. The result was an EER of 1.17% from 240 clients’ fingerprints using 3600

genuine and 2064960 impostor scores. In the work of Jain et al. [29], images were acquired using

two recent mobile models (Iphone 5S and Samsung Galaxy S4) but they had not sufficient quality

for feature extraction and matching. Probably, this is the reason why there are not many studies
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Figure 2.8: Fingerprint Features [6].

on fingerprint identification systems on mobile phones, despite the already available commercial

solutions on the market, which will be described later on.

Palmprint

Palmprint identification systems are similar to the fingerprint ones. However, they can lead to

even more distinctive results, mainly due to its larger size and, thus, amount of meaningful in-

formation. In addition, palmprint has additional distinctive features such as principal lines and

wrinkles. These traces are easily acknowledged and can be captured with a lower resolution scan-

ner providing a cheaper solution [30].

(a) Raw Imag.e (b) After pre-processing.

Figure 2.9: Palmprint [7].

Several authors [31, 30, 32] present algorithms based on in-touch palmprint scanners to data

acquisition. Others [2, 33] have developed solutions based on contactless scanners to implement

complex 3D solutions for palmprint verification systems. Instead of a scanner, a built-in camera

of mobile phone can be used for a simple mobile contactless solution as shown in Figure 2.9. The

pre-processing algorithm purposed by Aoyama et al. [7], using a HTC Nexus One, consists in

applying skin-color thresholding and region growing. The algorithm was compared with previous
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ones and better results were achieved. The EER was near 4% when a database obtained using a

mobile phone camera was used. Moço et al. [34], developed a native biometric recognition system

for the Android platform. The proposed system is based on palmprint features extraction using

Orthogonal Line Ordinal Features (OLOF). From ROI extraction technique, the result were images

representing a region similar to Figure 2.9 (b).

Hand geometry

Contrary to palmprint, which is similar to fingerprint, hand geometry identification systems are

based on the dimensions and shape of fingers, palm and the location of joints [15]. Although they

are not known to be very distinctive and should not be able to identify an individual among a large

population, they can be used to authenticate and verify a subject [15]. Santos-Sierra et al. [35]

implemented a Java-Android mobile phone identification system with EER around 6.8%. Images

are taken with an uncontrolled background and captured freely by the user in very unconstrained

conditions.

Finger Knuckle

The finger segment joints of human hand generate distinct texture patterns on the finger back

surface. Given its uniqueness [36], knuckle features should be considered in biometrics too. In

mobile domain, some research has been done with very interesting results like the work done by

Cheng and Kumar [8] where the finger knuckle is captured using an Android Smartphone-based

system.

Figure 2.10: Finger Knuckle Pre-processing [8]

The image is captured and then pre-processed as seen in Figure 2.10. Features are, then,

extracted by means of Gabor filters, which are highly suitable when the feature details are to be

acquired from high-frequency areas [8]. For template matching, the similarity of the two templates

is measured using Hamming distance method. This experiment had an EER below 10%, which

is acceptable for personal mobile verification. However, for individual identification in a larger

population it can contribute to consecutive system failures.
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Another research that successfully implemented a contactless identification finger knuckle

system was carried out by Zaw and Khaing [24]. Feature extraction is performed by Canny edge

detector and Principal Components Analysis (PCA) methods. The extracted features are trained

using Artificial Neural Networks (ANN) and the identification is done by the same ANN.

Face

Face is a commonly used biometric trait to perform personal identification. The process can be

done by analysing the different facial attributes, such as eyebrows, nose, lips and chin shapes,

together with their spatial relationship [26]. Illumination, pose, and age variations are the three

major problems among face recognition systems [37]. Face identification mobile systems have

been developed, but solely aimed to authentication [38] and face detection [39]. However, face

is composed by the anatomical arrangement of several other traits, with potential to be used as

singles traits themselves [9, 40]. Some of those traits are iris, periocular region and ear. Even

being positioned laterally, ears can be considered as a region of the face, too.

Iris and Pupil

The iris is the annular region of the eye, having the pupil and the sclera (white zone) as its bound-

aries, Figure 2.11. Its visual texture stabilizes during the first 2 years of life and its complex

structure gives very distinctive and useful information for personal identification. A mobile-phone

implementation has been developed by Cho et al. [9] for iris and pupil localization only, by using

the built-in cellular cameras and software.

Figure 2.11: Human Iris [9]

First, corneal specular reflection (SR) is used to extract the eye region. Then, with Circular

Edge Detection methods, the pupil and iris boundary are found. Cho et al.’s implementation

does not cover iris identification. However, Jeong et al. [41] present a method, based on iris

code extraction, with EER between 0.08 and 1.5% (depending on Indoor/Outdoor acquisition

scenarios). The method is based on Adaptive Gabor Filter (AGF). The kernel size, frequency

and amplitude of the filter are determined by the amount of blurring and sunlight in input image,
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adaptively. Problems related with iris image capture quality are among this trait cons, creating

an high demand for high quality cameras and stable environments to be collected. In order to

surpass this, a new trait has become the focus of some studies during the last few years, as it will

be explained in the following section.

Periocular

Periocular region is commonly described as the region in the immediate vicinity of the eye [42,

43, 44]. It can be motivated as a middle point between iris and face recognition. This trait has

been the target of several research works [44, 42, 45, 13] with different motivations. Monteiro

and Cardoso [44] present the periocular region as an alternative to face and iris recognition under

unconstrained image acquisition conditions. They propose a novel automatic modeling of Scale

Invariant Feature Transform (SIFT) descriptors, using a Gaussian Mixture Model Universal Back-

ground Model (UBM). UBM is a common strategy in the field of voice recognition [46]. Another

research was carried out by Oh et al. [40], where periocular features, combined with sclera, are

used for identity verification. Their approach is based on Local Binary Patterns for template gen-

eration. Santos et at. [13] proposed the application of well-known periocular and iris recognition

strategies to overcome the issues associated with mobile environments. Although the main goal

was to prove the improvements made by fusing both traits, periocular region based recognition

showed promising results as a standalone trait. Another relevant study was carried out by Santos

and Proença [45] where an overview of the most relevant research works related to periocular

recognition is presented.

Figure 2.12: Example of periocular region from right eye

A common conclusion on the work developed by several authors is that the periocular region

has potential to be an alternative to the most classical traits in unconstrained environments. Its ease

of accessibility and high discriminating ability [45] make it a trait to take into account in mobile

based applications.

Ear

The increasing attention that ear has received in the literature over the last decade is motivated by

the fact that the detailed structure of the ear is not only unique [10], but also presents almost no

degradation due to aging effect. It is usually fully grown at the age of eight and stays constant
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until around the age of seventy [47]. Ear recognition, like in fingerprint, can be based on the

analysis of several features, presented in Figure 2.13, as well as based on its geometry or space

relation between its components. Pflug and Busch [10], divide ear recognition approaches into

four different subclasses, namely holistic approaches, local approaches, hybrid approaches and

statistical approaches. Abaza et al. [47] provide a detailed survey of research carried over on the

fields of ear detection and recognition. Hurley et al. [48] present the Force Field Transform in

which the ear image is transformed by considering an array of Gaussian attractors, which act as

the source of a force field. Yuizono et al. [49] approach is based on Genetic Local Search and

presents a recognition rate for the identification of registered persons of approximately 100%, and

a rejection rate for unknown samples of 100%. However, the indoor data acquisition was done by

using a face-fixed instrument, so that illumination condition are almost the same and the distance

between the camera and the trait is almost constant.

Figure 2.13: Human ear features [10].

Ballprints

Ballprints (the hallucal area under the big toe) possess important properties. If adjusted accord-

ingly, their similarity to fingerprints allows the use of algorithms designed for fingertip biometric

systems. However, this parameter is mostly suitable for newborns since the significant advantage

is that newborns do not clench their toes contrary to fingers [50].

Voice

Voice is a combination of physical and behavioral biometric characteristics [28] that are used to

create a sound. Among the physical characteristics are such like vocal tracts, nasal cavities, mouth

and lips. Even if these characteristics were invariant over life-time, the behavioral part changes

in time due to age, medical conditions and emotional states [15]. Voice identification systems

acquire and match particular voice traits against templates stored previously, in a similar way to

face recognition and other related-traits methods. In this work, only image-based systems will be
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studied, however it is important to understand that biometrics is not only limited to image-based

applications.

Other

The last sections served as a small introduction to the most commonly studied biometric traits.

Besides those, there are still some alternatives which are being the target of research studies and

even applied in real-life situations, like graphometric signature, finger vein pattern [51] and gait

evaluation [52]. However, they are not suitable for this project’s context or are still in a very initial

stage of research. For example, graphometric signature in the SSA context, where great portion

of the population is illiterate, could be hard to implement; Finger vein pattern demands specific

hardware and proper light conditions; Identification by gait and other behavioral evaluations are

non static methods, taking extra time, as well as demanding complex systems to be acquired and

analysed.

Comparison Table

As seen before, no single biometric is the gold standard recognition tool. Some of the aforemen-

tioned techniques are compared within Table 2.1, taking into account the parameters presented in

section 2.2: Universality (Univ.), Distinctiveness (Dist.), Permanence (Perm.), Collectability (Col-

lec.), Performance (Perf.), Acceptability (Accept.) and Circumvention (Circ,). The evaluation is

made by crossing some authors’ [53, 23, 15, 26, 16] opinions with conclusions taken from the

previously mentioned reviews [16]. Parameters are evaluated with a Good (G), Medium (M) and

Bad (B) score that represent the recommendation level of the given trait for the specific parameter.

For example, face characteristic is good in terms of collectibility, however it has low performance

compared with others.

Biometric characteristic Collec. Perm. Dist. Perf. Univ. Circ. Accept.
Face G M B B G B G
Periocular G G M M G M G
Iris B G G G G G B
Ear G G M M M B G
Contacless Fingerprint G G M M M M M
Contacless Palmprint G G M M M M M
Hand Geometry G M M M M M M
Finger Knuckle G M M M M M G
Voice M B B B M B G

Table 2.1: Traits comparison based on evaluation parameters presented on chapter 2.2

The parameters are presented by order of importance within this work context. Collectiveness

is very important, since the data acquisition is made using a mobile phone system sensors that are

not designed specifically to biometrics. Permanence is truly important because people are subject

to marked physical changes during life. Distinctiveness is relevant when the target population is a
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country with millions of people. Performance was considered of medium importance because, if

the identification fails, a new data acquisition can be made to double check the results. Universality

must be considered as well since the main goal is to develop a mean of integration for SSA people.

Circumvention has lower importance within the given context since it is not a security system.

Lastly, comes acceptability. This parameter is hard to evaluate and is presented based mostly on

the trait’s intrusion level during acquisition.

By looking into Table 2.1, voice can be easily excluded. Although it is good in terms of ac-

ceptance, it presents the worst scores in several parameters of high relevance. Another trait that is

highlighted is the iris. Iris difficulties are inherent to the data acquisition, since it is hard to capture

a good quality image with a low budget sensor. Face brings some problems on performance and

distinctiveness, but should not be discarded. In order to surpass iris collectiveness and face per-

formance related problems, the periocular region could be chosen due to its medium-high scores

over the evaluated parameters. Similarly, the ear is presented as a very balanced trait, too. At

last, the four traits related to hand features have an acceptable overall score, with fingerprint and

palmprint taking advantage in terms of distinctiveness and permanence. From this overview, it can

be concluded that there is no optimal trait. As it is shown in the next section, in order to improve

the system performance, multiple traits can be used, in what is called a multimodal system, so that

failures of some may be offset by the others.

2.5 Multimodal Systems

Overview

Multimodal biometrics does not only refer to the use of two or more separate biometric traits [11],

it means, as presented in Figure 2.14, that the system inputs come from different sources:

• Single trait acquired by multiple Sensors;

• Single trait with multiple classifiers;

• Multiple instances of a single trait;

• Single trait and multiple units;

• Multiple Biometric Traits.

Multimodal biometric strategies are adopted in order to improve matching performance so that

some of the unimodal limitations, like universality and spoof problems, can be surpassed.

System architectures

Usually, two main types of multimodal biometric system architectures are considered: serial and

parallel. In serial (also known as cascade) architecture the evaluation of the different inputs is

carried out sequentially. Therefore, the processing of the second input will be affected by the first
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Figure 2.14: Multimodal biometrics [11].

one. In the parallel architecture, the different traits are processed independently and the resulting

outputs are then combined [11].

Fusion levels

Depending on the design, the integration of two or more inputs can occur at different levels of the

system . These fusion levels are: the sensor module, the feature extraction module, the matching

module and the decision module. Due to the ease in accessing and consolidating matching scores,

fusion at the matching module is the most popular mechanism [25, 54]. In the matching module,

the independently constructed subsystems output scores can be consolidated into a single output.

At decision level, the fusion can be seen as a classification problem where the feature vector is

constructed by mean of the output matching scores by the individual matchers. This vector is

then classified as an impostor (if rejected) or a genuine (if accepted). A different approach can be

taken by considering fusion as a combination problem: matching scores are combined to generate

a single score which is then used to make the final decision. Sometimes, a simple sum rule is

sufficient to obtain a significant performance improvement, but techniques to incorporate user-

specific weights can be integrated to further improve system performance [54].

Related work

Along the years, research has been made to evaluate the combination of different traits to achieve

enhanced system performance under less ideal acquisition conditions. With all the available traits,

plus new alternatives emerging every year, there are numerous possible combinations deserving
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the attention of the biometrics research community. The hand itself can be used in order to ex-

tract multiple traits from a subject. For example, the dorsal hand surface is rich in key features

like fingernail, vein pattern, knuckles, and hand geometry and it is widely used by researchers

targeting multimodal systems. In Kale et al. [36] research, a knuckle and fingernail based identifi-

cation system is implemented with the analysis of a single hand per subject. Features are extracted

using Mel Frequency Cepstral Coefficient (for knuckle prints), wavelet decomposition (for nails)

and a multi-Layer perceptron neural network is used as a classifier. The fusion is done at feature

level, and the authors refer to some difficulties in implementation. However, the presented results

prove the high efficiency in applying fusion algorithms. Other works have also explored the idea

of multimodal biometric fusion. For example, Uhl and Wild [23] show that the combination of

fingerprints, palmprints and hand geometry from single palm images of the human hand can suc-

cessfully increase recognition rates. Multimodality can improve the performance of a biometric

system, however, the way the information encoded in an image is represented also plays an impor-

tant role. On the next section four well-known descriptors will be presented to motivate its use in

the present work.

2.6 Descriptors

Descriptors encode images so that they can be compared and matched to other images. Global

descriptors describe the whole image, while local descriptors describe a defined region or points

within the image. Compared with multiple local descriptors, global descriptors are not very robust

as a change in a small portion of the image may cause the system to fail as it will affect the

resulting descriptor. Another characteristic that distinguish descriptors is its representation. There

are binary descriptors like BRIEF [19], BRISK [55], ORB [4], and FREAK [56], and histogram

descriptors like the ones presented next.

Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) local feature descriptor was introduced by Lowe [12].

Although many algorithms have been proposed after Lowe’s, SIFT still prevails as one of Com-

puter Vision’s algorithms that provides a more stable performance regardless of the image’s real-

world acquisition conditions. Computation of local feature descriptors and feature detection are

usually seen as independent steps. However, Lowe proposes the SIFT descriptor for features de-

tected with the Difference of Gaussians (DoG) operator, allowing a rotation and scale invariance

of the resulting representation. Although the scale invariance is guaranteed by the stable set of

candidate features points across different scales obtained with DoG, the orientation invariance is

provided separately, as an effective method of assigning a repeatable orientation to the feature

points is required. To that end, SIFT takes the feature points, also known as keypoints, as well as

the detected scales and finds, from the scale-space pyramid, the image L associated to the clos-

est scale to the actual scale of the keypoint. Given a keypoint at location (x,y) and scale s, the
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gradient magnitude m and orientation θ are computed using pixel differences, as described by the

following equations:

M(x,y) =
√

Ix(x,y)2 + Iy(x,y)2

Θ(x,y) = tan−1(Iy(x,y)/Ix(x,y))

SIFT’s final step is the concatenation of sub-regional histograms of gradients around each key-

point, resulting in a 128-dimensional descriptor that summarizes the local gradient information.

This descriptor is built by first computing a set of 8-bin orientation histogram in 4× 4 sample

regions, as presented in the rightmost image of Figure 2.15, and then concatenating all those his-

tograms into the 4×4×8 = 128-dimensional descriptor. As the keypoint dominant orientation is

known, a offset can be applied to the histograms in order to secure rotation invariance. Robustness

to illumination changes is improved by cropping and renormalizing the resulting vector to unit

length.

Figure 2.15: Gradient magnitude and orientation computation of a single keypoint using SIFT descriptor
(adapted from [12]).

Lately, the SIFT descriptor has also been applied at dense grids, referred as dense SIFT. Ex-

perimental evaluations show that better classification results are often obtained by computing the

SIFT descriptor over dense grids [57] in the image domain, as opposed to sparse interest points.

This approach has been shown to lead to better performance for tasks such as object categorization,

texture classification, image alignment, and biometrics.

Local Binary Pattern

The basic local binary pattern (LBP) operator, introduced by Ojala et al. [58], was based on the as-

sumption that local texture has two complementary aspects: a local spatial pattern and its strength.

The original LBP labels the pixels of an image by thresholding the 3× 3 neighbourhood of each

pixel with its center value considering, then, the result as a binary number. This histogram of

28 different labels is then used as a texture descriptor. Later, the LBP operator was extended so
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that neighbourhoods of different sizes and shapes could be used, for example, applying circular

neighborhoods and bilinearly interpolating values. Another variation of LBP is the uniform local

binary pattern (ULBP) [59], which results in a more compact version of the feature vector. Such

alternative was motivated by the fact that some binary patterns occur more often in texture images

than others. Uniform patterns are those where, at most, two bitwise transitions from 0 to 1, or

vice-versa, take place. For example, in a 3× 3 neighbourhood there are a total of 256 possible

patterns, 58 of which are uniform, leading to 59 different labels (58 for uniform patterns plus 1

label for non-uniform pattern). Ojala et al. [59] refer in one of their experiments that nearly 90%

of all patterns in the 3× 3 neighbourhood and around 70% for a circular neighbourhood, with

radius 2 and 16 sample pixels, are uniform. Due to its contribution to the significant progress in

texture analysis, LBP methodologies have been widely used and studied. This fact led to the rise

of numerous new approaches. For example, the Volume Local Binary Pattern proposed by Zhao

and Pietikäinen [60] in which the original LBP operator, once defined to only deal with spatial

information, was extended to a spatiotemporal representation for dynamic texture analysis. An-

other example is the Center-Symmetric Local Binary Pattern, proposed by Heikkilä et al. [61],

which integrates a novel descriptor that combines the strengths of both SIFT and LBP. CS-LBP

replaced the gradient operator used by SIFT. Mäenpää and Pietikäinen [62] proposed an opponent

color LBP by investigating joint and separate use of color and texture in classification. Other

approaches, Tan et al. [63] and Wang et al. [64], were taken by combining LBP and Gabor fea-

tures, the second work focusing on facial age classification. Heikkilä and Pietikäinen [65] were

the first to developed a texture-based method for object tracking using background subtraction.

The wide range of applications and the research made around LBP have proven its potential and

its importance in Computer Vision and in its related fields.

Histogram of Oriented Gradients

Swain and Ballard [66] initiated a research on histogram-based image descriptors by showing

that good performance could be achieved by comparing RGB histograms of pictures of objects

not having in account the spatial relation between image features at different points. Almost 15

years later, and after several improvements and new approaches on histogram-based descriptors,

Dalal and Triggs [67] developed a descriptor defined from a set of gradient orientation histograms.

Similar to SIFT, their approach was inspired by the discriminatory property of local position-

dependent gradient orientation histograms computed over a grid in the image domain. Compared

to SIFT, which is a local image descriptor, Histogram of Oriented Gradients (HOG) descriptor is

a regional image descriptor. As the HOG descriptor is not normalized with respect to orientation,

it is not rotationally invariant, however, it is normalized with respect to image contrast. Dalal and

Triggs showed that this descriptor allows a robust detection of humans in natural environments.

HOG divides the image into small connected regions, which are called cells. For each cell, a

histogram of gradient directions or edge orientations is computed for the pixels within that cell.

Each cell is then discretized into angular bins according to its gradient orientation. The gradient

magnitudes of the pixels in the cell are used to vote into the orientation histogram. Adjacent cells
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are grouped as a spatial region, which is called a block. Grouping the cells into a block is the

basis for normalization of the histograms. A normalized group of histograms represents the block

histogram, and the set of these block histograms is the called HOG descriptor.

GIST

The global descriptors are used to obtain a basic and superordinate level description of the per-

ceptual dimensions. Some experiments have demonstrated that Humans can integrate enough

information about the meaning of a scene in less than 200ms and in fact we recognize its “gist”

as quickly and accurately as a single object. In its first appearance [68], GIST was used to de-

scribe real world scenes. GIST descriptor encodes the image scenes where the distance between

the observer and a fixated point is larger than 5 meters. At that point, 5 perceptual dimensions are

used to give a low dimensional and holistic representation of the image [69]. Naturalness, where

scenes having a distribution of edges commonly found in natural landscapes would have a high

degree of naturalness whereas scenes with edges based toward vertical and horizontal orientations

would have a low degree of naturalness. Openness where the existence of a horizon line and the

lack of visual references and boundary elements confer to the scene a high degree of Openness.

Roughness which is correlated with the fractal dimension of the scene and thus, its complexity.

Expansion which describes the depth in the gradient of the space within the image. Ruggedness

which gives the deviation from horizontal by assessing the orientation of the contours of the image.

2.7 Commercial Solutions

As previously stated, biometrics is booming in SSA. A lot of new biometric applications are start-

ing to appear in those countries especially for governmental purposes like e-passports, immigration

control, and voter registration. In BiometricUpdate’s website [70], news can be found about so-

lutions implemented in countries like Nigeria, Gambia, Namibia, Ghana and Uganda since 2014.

However, most of them are not smartphone based and they make use of dedicated devices instead,

like the ones brought by Suprema [71] and Zete [72]. Among the solutions emerging in SSA, there

are enterprises that brought reliable mobile phone related solutions that are already being adopted

by some of those countries. Comes next, a review of some available multimodal solutions on the

market related to the main objectives of this work.

MorphoTrak

SAFRAN’s [73] is one of many worldwide enterprises that provides biometrics technology. It

makes use of fingerprint, palm print, unsolved latents, facial, iris, and others, to fight crime, pro-

tect identity and enhance security. To match the acquired data, a fast and accurate matching soft-

ware called MetaMatcher is used. However, these technologies are only supported by a specific

hardware, providing an almost ideal acquisition environment. MorphoTrak is already on the SSA



2.7 Commercial Solutions 25

market: in Senegal, it is being used for digital identification and smart transactions, and in South

Africa for individual identification.

MegaMatcher

Neurotechnology’s [74] software developer kit (SDK) provides technologies that combine fast

algorithms with high reliability. MegaMatcher deals with fingerprint, face, eye iris, and voice.

These four solutions can be implemented in MegaMatcher SDK and they support mobile android

applications, too. The solution is paid and the use of software requires a license. Some solutions

based on MegaMather have been already implemented with success in some SSA countries like

Republic Democratic of Congo [75], South Africa [76] and Kenya [77]. In Kenya, the voter

registration system is based on MegaMatcher multi-biometric technologies.

BioComponents

Aware’s [78] BioComponents are modular configurable biometric enrollment software compo-

nents with a built-in user interface. Each component is independent and self-contained, and

each of the modules is specific to a biometric task: data capture and validation, biometric im-

age capture and processing, hardware abstraction, quality assurance, or networking. These APIs

are well-established within the Aware SDK and they can be used within either Microsoft C# or

Java applications. Aware software is also suitable for supporting multimodal biometric enrollment

applications from a single platform. From the same company comes AwareXM Mobile [79]. This

SDK includes C libraries and reference applications for performing fingerprint minutiae extrac-

tion, template generation, and 1:1 matching on mobile devices running Android, iOS, Blackberry,

or Windows Phone operating systems. Fingerprint templates generated on a mobile device can

either be matched on-device or transmitted to a server-based application for verification against a

central template database.

In Table 2.2, the commercial solutions presented before are compared in terms of: Purpose,

if they aim to authentication or identification; Mobility, if it is implemented on a mobile phone;

SDK, if there is an available software development kit; Price, what is the cost of the solution or if it

is free; SSA Market, if the company has some solution implemented in any of the SSA countries.

Product Purpose Mobile SDK Price (euros) SSA Market

BioComponents Authent. Yes Yes Not-Free Unknown
MegaMatcher Identif./Authent. Yes Yes 2500+ Yes
MorphoTrak Identif./Authent. No No Not-Free Yes

Table 2.2: Comparison table of some the available commercial solutions

Some conclusions can be taken from the analysis of Table 2.2 and the literature review. Com-

panies found a market that offers a lot to explore in terms of biometrics; some of them, are already

providing products for verification and identification purposes; companies offer personalized so-

lutions (like SDKs) to let the client shape the solution to his needs; SSA governments are very
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receptive to those solutions since these automatic systems greatly improve the society organiza-

tion when compared with the traditional methods.

2.8 Summary

In order to achieve the optimal performance, a biometric system should be designed within the

context. In this project, due to considering that the solution is to be designed for SSA countries,

where poverty prevails in several regions, the acquisition conditions are confined to open fields or

small vilages, and not to proper facilities with controlled ambiance light and environment. Given

that, a lot of noise is expected and a robust solution must be adopted to bring real benefits. To

mitigate that noise, a multimodal system must be implemented, making use of more than one

trait to gather enough meaningful and discriminative information about a subject. To evaluate

the best available traits many parameters can be taken into account. However permanence, as

identification should be able to be performed over a life time, distinctiveness, since the system

will be implemented for identification purposes, and collectability, given the limitations of mobile

phone hardware, are the most relevant characteristics to be taken into consideration. The image

codification to optimize comparison and get a more compact representation of the image data

is achieved by means of feature descriptors. SIFT, HOG, LBP, and GIST are among the most

used histogram descriptors, which already proven their value in biometrics. These descriptors’

performance can be evaluated by the decidability for verification and by Rating Error Rate for

identification systems. On the next chapter, a dataset, called MoBIAC, acquired to study SSA

oriented algorithms, will be presented and described. Then, on the following chapter, the chosen

algorithm will be explained and its performance will be tested over CSIP, a periocular dataset.

Afterwards, that algorithm will be extrapolated to the MoBIAC dataset to evaluate its performance

over different traits.
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MoBIAC Dataset

It should be always taken into account that the most effective way to test an algorithm is to apply

it directly in the target population. However, that is not always possible to achieve and, usually,

it restrains the development time. In order to surpass that problematic, available datasets can be

used to carry system tests in a first phase when the target population is not reachable. Given this

work’s context, a good SSA representative dataset should contain at least images from African

individuals under variable lighting conditions. Next comes a brief review of the available datasets

for some of the traits presented in Section 2.4.1.

On Grgic and Delac’s Face Recognition Webpage [80], more than 70 databases of face images

are available with all kinds of characteristics from people around the world: Asian, Middle-East,

South-American, etc. Some of them are almost noise-free, while others contain images where

the individuals are wearing glasses, for example. However, no African individual is stated on

databases’ description, except for one that contains 15 African-American faces from 18 to 30

years old. Bosphorus [81] is a database of hand images available for free download with pictures

of more than 600 hands. The hand geometry, plus texture data, was acquired using a commercial

scanner, with hands placed flat on the glass plate and, according to the description, 180 of the

subjects have hand images with time lapses of several months. There are more databases on

CVonline [82], some of them with respect to face, fingerprint, voice, and some non-biometric

objects. Sequeira et al. [83] proposed a dataset composed by three modalities: iris, face, and

voice. Iris and face images from 105 subjects were captured with an ordinary tablet under real

unconstrained working conditions. Santos et al. [13] built an iris and periocular dataset of 50

subjects, with images captured from 10 different mobile phone setups under unconstrained pose,

illumination, and Expression (PIE) conditions. IIT Delhi ear image database [84] was acquired

from 121 different subjects, with at least three ear images per subject. All the images were acquired

from a distance (touch-less) using simple imaging setup and the imaging is performed in the indoor

environment. A more complete ear dataset is presented by Frejlichowski and Tyszkiewicz [85]

with 3000 images from both ears of more than 500 subjects. There is a large variation in image

quality in respect to PIE, earrings, and hair covered areas.

In order to compare some of the available free datasets, it is presented a table that takes into
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account some important characteristics: chosen traits; if data was acquired through a mobile phone

or not (web-cams were considered equal in quality to mobile phones); level of freedom in data

acquisition; number of subjects presented in the dataset.

Dataset Trait Mobile Constrain Level Subj. Number African

ChokePoint [86] Face No Low 25 Unknown
MOBIO [83] Face and Iris Yes Low 105 No
JAMBDC [78] Face Yes Medium 200 Unknown
BioID [87] Face Yes Low 23 No
JAMBDC [78] Palmprint No High 350 Unknown
CSIP [13] Periocular Yes Low 50 No
IIT Delhi [84] Ear Unknown High 121 No
WPUTEDB [85] Ear Unknown Low 501 No

Table 3.1: Comparison between some of the available datasets

Analysing Table 3.1, it can be concluded that there are a lot of freely available datasets on

the Internet provided by research groups. The dataset search was focused on low quality data

acquired in mobile-based setups. All the reviewed datasets are missing an important keypoint for

this work, as they lack on images acquired from SSA subjects. Here lies a motivation to build

a new dataset that allows a performance comparison on biometrics algorithms between different

ethnicities. The existing gap on African mobile images datasets can be filled by the data collected

within the scope of this work, representing an important contribution for related future works.

Some conclusions can be taken from the dataset analysis resumed on Table 3.1: several samples

should be taken from the same subject, from different positions, and in different light conditions

enhancing the dataset variability. The more subjects, the more relevant is the dataset to a real-

life situation context. Regarding the scope of this work, the development of a SSA-based dataset

represented a serious challenge, given the amount of time and the difficulty to communicate and

coordinate an acquiring process in one SSA country. With such limitations in mind, a different

solution was taken. MoBIAC was created by gathering information about both Caucasian and

African subjects, to assess the performance of algorithms aiming worldwide applications.

3.1 Dataset Overview

MoBIAC multimodal database construction was motivated, on one hand, by the raising worldwide

interest in mobile biometrics and the increasing interest in multimodal systems and, on the other

hand, by the lack of biometric information regarding SSA individuals. This motivation led to

the creation of a dataset comprising periocular, ear, and hand samples, acquired in unconstrained

conditions using a mobile device camera. As stated in Section 2.4.1, hand can be analysed by its

geometry or by its texture (palmprint). Both modalities have proven promising results in individual

identification, but a study on its performance on SSA countries was never performed. In Figure 3.1,

hands from several ethnicities may be observed, with marked differences being easily noticed.
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Figure 3.1: Hands from different ethnicities. The top-left photo is a typical SSA individual photo while
others are related to different ethnicities. There are obviously marked differences on principal lines contrast.

Periocular region has been target of several studies aiming image analysis of samples acquired

in unconstrained conditions using a mobile device, as previously mentioned in Section 2.4.1. Once

again, the novelty of MoBIAC concerns its target population. With samples from both African and

Caucasian subjects, it is possible to compare the systems performance on those two groups and to

evaluate how well an algorithm can perform when applied on a mixed group. To finalize, the ear

was chosen to be part of this dataset, on one hand, for its ease of capture and high acceptability

by people and, on the other hand, for its increasing relevance in individual identification. The

creation of this dataset will be a relevant resource for future research and its value goes beyond its

application in this Master’s Thesis work.

3.2 Dataset Description

In order to perform a comparison between some biometric recognition algorithms performance

on Caucasians and on SS African individuals, the dataset was made half caucasian representative,
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half SSA representative, totalling 50 volunteer individuals. The nationality of the 25 Caucasians

was Portuguese, with ages between 20 and 30 years old. For the SSA individuals, there were 5

Mozambicans, 3 Angolans, 2 South African and 15 Cape Verdeans, with ages comprising between

20 and 30 years, except for 2 subjects older than 30. There are 4 and 3 females on Caucasians

and Africans groups, respectively. From each volunteer, at least 6 images per trait were extracted,

performing a total of 1148 images. Only the right ear, hand, and periocular region were considered.

Images were acquired by using the Lumia 830 10MP rear camera, without flash. The flash

choice was made based on the idea that the flash itself represents an imposed condition. Photos

were acquired with a resolution of 3840× 2160 with auto-focus. Blurry images were sometimes

acquired by the natural difficulty on the phone to focus on dark environments and sometimes

acquired by not giving time to the the lens to focus.

Each volunteer was asked to come near a window, to be exposed to natural light. There were

2 different acquisition scenarios: one at Fraunhofer AICOS and another one at FEUP. However,

there was an attempt to provide similar acquisition environments in both places. Samples from

the 3 traits were acquired sequentially and were all taken by the same person. The illumination

variance was achieved by the rotation of the volunteer in approximately 60 degrees. One photo is

granted to be taken in counter-light and other in front-light and there is at least one blurred photo

as well. Singularities related to each trait acquisition will be briefly described next.

Hand

For hand acquisition, it was asked of each subject to elevate its forearm in a vertical position.

Photos were taken so that all the hand and palm was captured, but it was not said to the volunteers

how they should open or join their fingers. It was noticed that each subject had a very personal

manner of showing his hand. On Figure 3.2, are presented some examples of observed hand poses.

(a) (b) (c) (d) (e) (f)

Figure 3.2: MoBIAC Hand samples.

By analysing Figure 3.2, it is possible to distinguish a certain level of pose variation. Even for

the same subject, images (c) and (d), there is a difference on finger’s position. Image (a) presents

an hand slightly turned to the left while image (f) presents an hand with a rotation of approximately

30 degrees. These kind of variations fulfill the objectives of the MoBIAC dataset by imposing a

low level of constraints.
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Periocular

Periocular region photos captured almost half of the individuals’ head. As it is not a well defined

region it was captured more information, than could be later needed, instead of later concluding

that pertinent information was left out. For the periocular region the only applied constraint was

that the phone should capture the whole eye. There were no demands regarding where the eye was

looking at. With that in mind, it was observed that, in some of the photos, the eye was closed at the

moment of capture. In some photos the eye was looking directly to the camera while on others it

was looking left or right. It was noticed that in some photos acquired in counter light, the amount

of information related to the eye is almost none. In the following Figure 3.3, some examples of

photo variations, observed during the acquisition of periocular images, are presented.

(a) (b) (c) (d)

Figure 3.3: MoBIAC Periocular examples.

As it is possible to notice, on Image (a) the individual is almost impossible to be recognised,

due to the low luminosity observed on the face region. On Image (b), the subject’s gaze is not ori-

ented towards the camera which, for example, can eliminate important information in the recogni-

tion process. Images (c) and (d) represent the best-case scenario, with information from the area

within the eye and its boundaries properly retrieved. These kinds of variations serve the purpose

of this dataset, as a challenge to assess the robustness of a given algorithm.

Ear

Ear photos were captured simply by taking a photo of the right ear with the only imposed constraint

being that all the ear should be presented within the image and placed in front of the camera with

an inclination of no more than 30 degrees. Some images contain earrings and others are partially

covered by hair. In these cases, hair was only removed partially from the image when it was

almost impossible to retrieve the ear information. On Figure 3.4, a brief representation of some

MoBIAC’s ear images is presented.

On Figure 3.4, some characteristic examples of unconstrained scenarios can be observed. On

Image (a), a blurry photo from a subject is depicted. On Image (b) a situation where the ear is

partially covered by hair and on Image (c) there is a piercing in the top-left region. Image (d) is

representative of a captured noise-free image. Different light conditions are, however, still notice-

able from photo to photo. This variation was imposed by taking an unique approach regarding the

acquisition setup, which will be detailed in the following section.
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(a) (b) (c) (d)

Figure 3.4: MoBIAC Ear examples.

3.3 Acquisition environment

Figure 3.5: Example scheme to illustrate the light variance approach. Region 1 is enlightened by the
external light while region 2 is darker because of the counter-light effect.

The MoBIAC dataset was acquired in cooperation with the student community within FEUP

and Fraunhofer. The data was collected throughout 5 different days, depending on the availability

of each subject. To capture images with different light conditions in a strict and constrained time-

period, a unique approach had to be taken to speed-up the collection. The approach to collect

data for the MoBIAC was based on varying the position of the subject, with respect to a fixed

light source. Each subject was asked to approach a window, wall sized, and then to rotate while

the photos were taken. As stated before, at least an image from 6 different positions, from each

trait, from each subject, were captured. On Figure 3.5, a scheme of the method to simulate light

variance, used, as described above, for image acquisition, may be observed.
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Periocular Recognition System

Periocular recognition under unconstrained scenarios has been the target of several studies over

the last few years as stated in Chapter 2.4.1. Some studies focus on understanding how the en-

vironment itself can influence the system, by assessing its performance in different conditions,

while others focus on developing novel approaches that can handle with most environment varia-

tions. What it is proposed, on this chapter, is the analysis of a novel algorithm and its application

regarding data captured in unconstrained scenarios, but also the evaluation of how those external

variations relate to its performance.

The algorithm proposed by Monteiro and Cardoso [44] was chosen to be evaluated for periocu-

lar recognition under unconstrained scenarios. Their algorithm is based on Universal Background

Model (UBM) using Gaussian Mixture Models (GMM). Although UBM is more commonly ap-

plied in the field of voice biometrics [46], the authors proposed its application in periocular recog-

nition, with some interesting results. The algorithm makes use of SIFT keypoint descriptors to

perform individual recognition based on periocular region images. Performance was assessed on

both MobBIO [83] and UBIRIS.v2 [88] datasets, presenting state-of-the-art performance [44]. In

this chapter, an adaptation of the Monteiro and Cardoso’s algorithm will be proposed to make use

not only of SIFT but also of HOG, ULBP, and GIST descriptors. The comparative performance

of such descriptors will be assessed on the Cross Sensor Iris and Periocular (CSIP) database [13].

Furthermore, the results of some score-level fusion methods are presented, evaluating how the

system behaves when using combined information from multiple descriptors. This chapter starts

with a brief analysis of the proposed algorithm by Monteiro and Cardoso. Then, the CSIP dataset

is presented, regarding its main features and detailing its unconstrained acquisition conditions. On

the last section, a comparative analysis of the performance using multiple descriptors and fusion

scenarios is carried out.

4.1 Algorithm overview

The algorithm presented next follows the typical architecture of biometric systems, as described

in Section 2.3.1. It is composed by two main blocks: an enrollment stage followed by, depending
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on the functioning mode, an identification or verification stage. During the enrollment stage,

individual data is added to a previously existing system database. During the enrollment, a set of N

models which describe the unique statistical distribution of biometric features for each individual,

is trained by maximum a posteriori (MAP) adaptation of a Universal Background Model (UBM).

This UBM gathers information from all the individuals, and MAP adaptation adjusts its parameters

into a set of individual specific model (IDSM), based on each individual’s specific data. This idea

of adapting a UBM using MAP was first introduced by Reynolds et al. [89] for the field of speaker

recognition. After the training of IDSM and UBM, the recognition phase can be carried out.

During this phase, the extracted features from an individual are projected onto both IDSM and

UBM. The final recognition score is obtained by the output of the likelihood-ratio between both

projections, and identification is then carried out by maximum likelihood-ratio.

4.1.1 Universal Background Model

UBM can be understood, if the problem of biometric verification is interpreted as a basic hypoth-

esis test [44]. Considering the hypothesis, H0, of a given sample, Y , belonging to a claimed ID, S,

and the alternative hypothesis of not belonging to it, H1, the optimal decision can be achieved by

a likelihood-ratio test:

p(Y |H0)

p(Y |H1)







≥ θ accept H0

< θ accept H1

(4.1)

where θ represents the decision threshold for accepting or rejecting H0, and p(Y |Hi) is the likeli-

hood of observing sample Y when hypothesis i is considered true. The problem resides, therefore,

in computing the likelihood values p(Y |H0) e p(Y |H1). Monteiro and Cardoso [44] stated that H0

should be represented by a model λhyp that characterises the hypothesized individual, while, on

the other hand, a λhyp model should be also designed, to characterize all the alternatives, H1, to

the hypothesized individual.

In order to represent the space of all alternatives to the hypothesized identity, Reynolds et

al. [89] proposed the Universal Background Model (UBM). By training the UBM on a large set of

data, it is expected to cover a representative user space, including a relevant amount of sources of

variability. On the next section, the strategy to efficiently model the UBM and adapt it to individual

models is presented.

4.1.2 Hypothesis Modeling

The authors chose Gaussian Mixture Models (GMM) to model both UBM and IDSM. This choice

was motivated by its capability of capturing the empirical probability density function (PDF) of

a given set of feature vectors. On their approach, GMM are trained using diagonal covariance

matrices which are then trained on sets of SIFT keypoints descriptors. Their choice is mainly

motivated due to the observation that local descriptors work better than global ones when dealing

with data acquired under non-uniform conditions. Monteiro and Cardoso propose performing a
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Principal Component Analysis [90] (PCA) on the descriptor. PCA is a standard technique for di-

mensionality reduction and has been applied to a broad class of computer vision problems. It is

a statistical procedure that uses an orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of values of linearly uncorrelated variables, called principal

components. By applying this technique, they reduce the SIFT descriptor from 128 to 32 dimen-

sions, significantly reducing computational complexity of the training phase, as well as improving

the distinctiveness and robustness of the extracted feature vector.

4.1.3 Modeling UBM and IDSM

To efficiently train the UBM, a set composed of data from a vast array of individuals should be

used, so as to cover a wide range of possibilities in the individual search space (Shinoda and

Inoue [91], Monteiro and Cardoso [44]). Therefore, the UBM train is performed by fitting a k-

mixture GMM to the set of PCA-reduced feature vectors extracted from all the individuals. As

the UBM should represent the whole group of individuals, the IDSM should focus on individual

data. This specialization of the UBM is performed by tunning the UBM parameters in a MAP

approach, using individual specific data. This IDSM creation method surpasses the challenge of

the determination of appropriate initial values of the parameters of a GMM. This step is important

because a poor initialization may result in a weak model, especially if the amount of available data

is small.

In order to understand the adaptation process of the UBM into the IDSM, proposed by Reynolds

et al. [92], a comparison with the traditional Expectation-Maximization algorithm [93] can be

made. The first step is similar to the Expectation step, where a set of sufficient statistics are com-

puted from a set of M individuals specific feature vectors, for each mixture of the UBM. Then,

considering diagonal covariance matrices, each UBM mixture is adapted using the newly com-

puted sufficient statistics.

When both the IDSM and UBM have been trained, the system is ready to recognise new data

from an unknown source. The identity recognition of the new data, represented by a PCA-reduced

feature vector, is performed through its projection onto both the UBM and all the IDSM, on identi-

fication mode, or on the claimed IDSM, on verification mode. The recognition is computed as the

average likelihood-ratio obtained for each tested feature vector, and then the decision is carried

out by checking the conditions presented on Section 4.1.1, for verification, or by detecting the

maximum likelihood-ratio value for all enrolled IDs, for identification. As some subjects are more

likely to generate high likelihood-ratio values, using both UBM and IDSM is a sharp advantage,

since the ratio between the IDSM and the UBM probabilities is a more robust decision criterion

than relying only on the IDSM probability. Moreover, finding a global optimal value is simpli-

fied by using the likelihood-ratio with an universal reference. This works as a normalization step,

mapping the likelihood values in accordance to their global optimal projection.

As already stated, the purpose of this chapter is to present a follow up of the described algo-

rithm, by assessing its performance on periocular recognition under unconstrained environments,
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but by using different descriptors as alternatives to SIFT. In order to accomplish this goal, a dataset

composed of periocular images, obtained with a variety of acquisition setups, is needed. In the

next section, the adopted CSIP dataset is detailed.

4.2 CSIP Dataset

Monteiro and Cardoso’s algorithm showed state of the art results when assessed on both UBIRIS.v2

and MobBIO datasets. On this section, the same algorithm’s performance is also assessed, but us-

ing the descriptors presented on Section 2.6: LBP, HOG and GIST, as well as SIFT. A different

dataset, Cross Sensor Iris and Periocular (CSIP) database [13], was also chosen for its wide vari-

ability regarding mobile setups, posing a new challenge to the robustness of the algorithm.

The CSIP [13] database is a dataset of periocular region images, including iris information too.

The CSIP dataset is composed of images from 50 participants, acquired regarding several mobile

setups and varying acquisition scenarios. Iris segmentation masks are also provided allowing the

assessment of performance of both iris and periocular segmentation and recognition algorithms on

mobile environments. On Figure 4.1, the different acquisition setups used in the development of

the CSIP database are presented.

Figure 4.1: Details related to each CSIP’s acquisition setup [13].

Images were acquired from a total of 10 different setups, using default settings for both focus

and white-balance. The dataset comprehends information from 50 participants, all Caucasians, 9

women and 41 men. CSIP dataset takes into account 8 different noise factors: multiple scales,

chromatic distortions, image rotation, poor lighting, off-angle acquisition, out-of-focus images,

deviated gaze, and iris obstruction, for example by reflection. On Figure 4.2, image samples from

the CSIP database regarding each of the 10 different setups are presented.

4.3 Proposed methodology

The work of this Master’s Thesis is based on the algorithm outlined in Section 4.1. On the schemat-

ics presented in Figure 4.3, the main steps of the followed methodology are presented. The 4 steps

presented on Section 2.3 are represented by the dashed blocks, with the exception of data acquisi-

tion, which was previously detailed on the Section 4.2. The first step, pre-processing, comprises

two stages: segmentation and resizing. During the segmentation, CSIP periocular region images



4.3 Proposed methodology 37

Figure 4.2: CSIP samples from 2 different subjects representing different setups [13].

are cropped using a similar method to the one proposed by Santos et al. [13]. On their work, the

ROI is defined as a total of 35 square patches forming a 7×5 grid. The grid is placed accordingly

to the iris segmentation mask, and each patch has an area equivalent to 1.4r2
i . On this work, and

using the provided segmentation mask, the ROI is centered in the eye and the size of each grid

patch is defined as a r× r square region, where r is the maximum measured radius within an iris

mask. Resulting ROIs can be observed on Figure 4.4.

After ROI segmentation, each image is sized to 12.5% of its original size. The value of 12.5%

was chosen by performing a serie of tests. Using images with 12.5% of their original size resulted

in an improvement of 71% on R1 performance. Although excluding a huge part of information

when performing a reduction of this size, the resizing step also removes a lot of noise, summarizing

the image to its main features. Resizing is also motivated by the significant reduction in the

computational complexity, resulting in shorter processing periods.

A great portion of the novelty of this work resides in the feature extraction and description

steps. Instead of describing the image using only SIFT, 3 additional descriptors were implemented

into the previously existing UBM-MAP framework. Similar to SIFT, the feature vector of LBP,

HOG and GIST descriptors also represents an histogram. The challenge in the adaptation of the

algorithm lies mostly on understanding how each descriptor works so it is possible to accurately

use it. Although the original version of SIFT [12] was implemented, for HOG and LBP some
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Figure 4.3: Schematic of the proposed methodology .

variations were used. Instead of the original LBP [58], the chosen descriptor was ULBP [59] since

it is demands less computing power as described in Section 2.6. As far as HOG is concerned, two

versions were evaluated. The original one [67], proposed by Dalal and Triggs (HOG-DT), and an

alternative version proposed by Felzenszwalb et al. [94] (HOG-F). This variation differs from the

original since it computes both directed and undirected gradients, as well as a four dimensional

texture-energy feature. At last, GIST was performed as described by its original authors [68]. The

5 descriptors, including SIFT, were processed independently and a PCA reduction was performed

on the resulting feature vectors. On Table 4.1, are presented the specific dimensionality reductions

applied to each descriptor.

Descriptors Before PCA After PCA
SIFT 128 32
Dalal-Triggs HOG 36 18
Felzenszwalb HOG 31 18
ULBP 59 16
GIST 32 32

Table 4.1: Feature vector dimension before and after PCA for each one of the 5 descriptors.

The UBM and IDSM are then created according to Monteiro and Cardoso’s algorithm. The

models are trained with half of the dataset regarding each individual. The other half is used to test

the algorithm’s performance.

The last step consists in assessing the system performance. For that purpose, two measures

were taken into account: Decidability (DEC) and Rank-1. Both measures are described on Sec-

tion 2.4. These two measures give information regarding performance on both verification (DEC)

and identification (R1) modes. DEC represents the separability of two distributions, quantifying

the separation between genuine and impostor likelihood score distributions. Higher DEC means
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(a) (b)

Figure 4.4: ROI cropped by Santos et al. method (b) and by this work’s approach (b) regarding the same
CSIP image.

higher aptitude to distinguish two IDs. R1 is the ratio of query templates for which genuine com-

parisons have the highest similarity values in database.

The process explained in the previous paragraphs was repeated for different descriptors, on

different acquisition setups, for a variable number of GMM mixtures, k = 2,4,8,16,32,64,128,

for each image color channel plus gray-scale, resulting in a vast amount of information to analyse.

All of the presented results are the product of 10-fold cross-validation.

4.4 Experimental Results

During this section, relevant results related to the algorithm’s performance are discussed. How-

ever, the full set of all the results obtained during this work may be consulted on Appendix A.

Given the large amount to information, this section was divided by objectives, with each subsec-

tion concerning conclusions obtained regarding a specific objective. Although tests were taken

regarding different aspects like setups, descriptors, and fusion scenarios, the presentation of the

results will be carried out in a similar way for each of such aspects. To make it easier to anal-

yse the results presented in Appendix A, an example of a result presentation table is shown next

(Table 4.2), as well as a brief explanation on its most relevant information.

a) SETUP b) DESCRIPTOR
i) N d) R | G | B e) GS f) RGB

g) R1 % h) DEC R1 % Dec R1 % Dec
c) GMM mean std mean std mean std mean std mean std mean std

2
4
8

16
32
64
128
256

Table 4.2: Example table to access Rank-1 ratio and decidability performance regarding SETUP images
using DESCRIPTOR.
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The previous table is similar to the ones gathered in the Appendix A. Each table has, on the

top-left corner, an indication on the setup (a) in which a descriptor (b) was used. The leftmost

column (c) indicates the number of GMM mixtures used to obtain the results performed in each

respective row. The algorithm was tested for each of the color channels (d) (concatenated in this

example to fit the page), to grayscale images (e) and by fusing the three color channels (f). For

each combination the Rank-1 ratio (g) and Decidability (h) were assessed, and the average result

among the N (i) tests is presented as well, as the corresponding standard deviation. Bold values

represent top results.

4.4.1 k-Mixture GMM

Before starting the comparison of the chosen descriptors’ performance, it is important to analyse

the effect that the number of mixtures, k, in a k-mixture GMM has, globally, over the system’s

performance. By giving an overall look over the results presented in Appendix A, it is possible

to understand that the best results are usually achieved on either k = 8, k = 16 or k = 32. At first

sight, it could be expected that a larger k would originate better performance, but the results show

that when k reaches a certain value, a break in the performance is noticed. This occurrence can be

explained mostly by the too high complexity of a k mixture GMM chosen to train both the UBM

and IDSM, resulting in a loss of generalization capacity due to overfitting of the training data.

With respect to GIST with k higher than 16 the algorithm fails to compute. This can be explained

by the fact that during GIST computation, the image is described only in 16 data points (one for

each sub-image), a number that is smaller than the number, k, of mixtures in the GMM, hindering

the training of the models for k > 16.

Motivated by the previous conditions, the comparison of the descriptors was carried out re-

garding the algorithm performance for k = 16, except when it becomes pertinent to analyse results

obtained for different values of k.

4.4.2 Setup comparison

As presented on Section 4.2, there are 10 different mobile setups on CSIP comprising data acquired

under different conditions. In order to evaluate the algorithm’s performance on each setup, images

were divided in 10 sets of data, each one regarding a setup. For each set, the algorithm previously

presented was performed using one of the 5 descriptors at a time. Results obtained on each of

these iterations will be discussed from now on.

By looking into the R1 and DEC values presented on Table 4.3 and Table 4.4, it is possible to

conclude that AR1 setup performed the best results for both DEC and R1. This is explained by

taking into account some aspects. By comparing AR1 and AR0 results, as well as other available

mobile-phone related pairs namely (CR1,CR0) and (BR1,BR0), the single variation of using flash

nearly doubled both R1 and DEC values. Flash can enhance certain features while uniforming the

image lighting, by compensating otherwise shadowed areas. Still, it is important to have in mind
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that designing a system limited by the use of a flash light is adding a constraint related to the image

acquisition device.

R1 %
ULBP HUG-F HOG-DT SIFT GIST

AR0 45.3 ±2.3 52.2 ±2.0 45.1 ±2.6 58.8 ±2.9 84.4 ±3.0
BR0 37.0 ±2.6 37.7 ±1.6 42.7 ±1.6 37.3 ±2.9 85.6 ±1.9
CR0 29.9 ±2.4 42.2 ±2.5 28.4 ±2.7 39.6 ±2.6 73.2 ±1.6
DR0 45.6 ±2.3 43.6 ±3.3 35.9 ±3.0 36.4 ±4.2 78.4 ±0.8
AR1 78.1 ±1.8 83.7 ±1.2 80.9 ±2.8 96.6 ±0.8 95.9 ±0.8
BR1 66.4 ±1.4 78.4 ±1.6 67.3 ±2.1 89.4 ±2.1 91.5 ±1.1
CR1 49.5 ±1.2 65.0 ±0.9 58.5 ±2.4 82.6 ±1.3 86.3 ±1.4
BF0 36.6 ±1.3 38.2 ±2.5 34.0 ±1.1 39.5 ±2.3 72.8 ±3.7

Table 4.3: R1 performance comparison between setups for 16-mixture GMM using GS images

DEC
ULBP HUG-F HOG-DT SIFT GIST

AR0 1.86 ±0.06 2.22 ±0.07 1.87 0±.10 2.53 ±0.06 3.73 ±0.09
BR0 1.64 ±0.03 1.86 ±0.17 1.94 ±0.04 1.77 ±0.04 3.54 ±0.13
CR0 1.49 ±0.07 1.90 ±0.07 1.63 ±0.03 1.98 ±0.04 2.87 ±0.12
DR0 1.56 ±0.06 2.31 ±0.04 1.98 ±0.03 1.70 ±0.09 2.84 ±0.15
AR1 3.27 ±0.08 3.06 ±0.06 2.91 ±0.10 5.06 ±0.07 5.13 ±0.21
BR1 2.07 ±0.05 2.74 ±0.11 2.40 ±0.11 3.86 ±0.13 3.98 ±0.09
CR1 1.99 ±0.05 2.44 ±0.04 2.35 ±0.09 3.54 ±0.05 3.76 ±0.12
BF0 1.55 ±0.04 1.90 ±0.17 1.63 ±0.10 2.19 ±0.05 3.15 ±0.04

Table 4.4: DEC performance comparison between setups for 16-mixture GMM using GS images

Resolution could be another highly influencing factor over performance. By comparing dif-

ferent setups, it can be concluded that higher resolutions are not directly related to better perfor-

mances, sometime even contributing to its deterioration. It is true that higher resolution photos

present more data regarding individuals, however, a non-negligible part of such information might

present only noise to the system. In a large pool of IDs, the descriptor codes a higher amount of

information and, thus, a larger amount of noise, resulting in a loss in performance. Given this,

images are submitted to a size reduction of 12.5%, reducing the high amount of undesired infor-

mation. With this lowered resolution, performance showed to be almost independent to the new

images’ size, exemplified on Table 4.3 by comparing BF0 and CR0 performances, which pre-

sented similar results despite their completely different resolutions, 640× 480 and 3264× 2448

respectively.

The system performance when using rear or frontal cameras was assessed as well. Since

the resolution is not the cause of performance loss, it could be assumed that it is mostly related

to auto-focus features and by the absence of the flash on frontal cameras. These statements are

supported also by the comparison between results from the BF0, frontal cam, with BR0, rear cam,

which present similar performance. Still, given the application context there is no special interest
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in performing tests regarding frontal cameras and so these setups will not be considered from now

on.

4.4.3 Color channel

The description of the image was performed for all the color channels, on the RGB (red, green and

blue) color system, plus a fourth alternative obtained by gray-scale (GS) transformation. The RGB

values are converted to grayscale by performing a weighted sum of the R, G, and B components:

0.2989×R+0.5870×G+0.1140×B

For setups without flash the R channel prevailed on achieving better results over G, B and

even GS. However, for flash setups no direct relation was observed between performance and

RGB color channels. The GS images resulted, usually, in good performances, achieving, at least,

results near the best color channel, as presented on Table 4.5.

R1 % DEC
AR0 AR1 AR0 AR1

R | G | B GS R | G | B GS R | G | B GS R | G | B GS
SIFT 58.5 58.8 98.1 96.6 2.64 2.53 4.79 5.06

HOG-DT 46.4 45.1 80.7 80.9 2.00 1.87 2.96 2.91
HOG-F 55.3 52.2 83.7 83.7 2.23 2.22 3.16 3.06
ULBP 47.8 45.3 75.9 78.1 2.07 1.86 3.10 3.27

GIST 86.6 84.4 97.0 95.9 3.81 3.73 5.22 5.13

Table 4.5: Comparison between the best color channel and GS for the 5 descriptors, with a 16-mixture
GMM, for AR1 and AR0 setups.

In Table 4.6, a comparison between GS and the worst performing color channel can be ob-

served. GS results are clearly better than the worst performing color channel, but only slightly

worse than the best channel. Given this, GS can be a good alternative to the RGB colorspace on

cases where there is not an obvious best channel, like in the flash setups. For setups in which im-

ages were taken without flash, the R channel prevailed. However, such observation does not lead

to the conclusion that the red channel is the best for all the applications. The GS transformation,

with results similar to the best channel with both flash and without flash, seems to be an interesting

alternative in the design of a more robust recognition system.
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R1 % DEC
AR0 AR1 AR0 AR1

R | G | B GS R | G | B GS R | G | B GS R | G | B GS
SIFT 51.3 58.8 95.5 96.6 2.29 2.53 4.45 5.06

HOG-DT 41.4 45.1 77.0 80.9 1.95 1.87 2.91 2.91

HOG-F 51.5 52.2 83.2 83.7 1.90 2.22 3.07 3.06
ULBP 37.8 45.3 73.6 78.1 1.64 1.86 3.02 3.27

GIST 83.2 84.4 95.2 95.9 3.55 3.73 4.91 5.13

Table 4.6: Comparison between the worst color channel and GS for the 5 descriptors, with a 16-mixture
GMM, for AR1 and AR0 setups.

Also, to avoid performing the proposed algorithm for all 3 color channels, choosing the one

that performs the best, transforming the image into GS can be a solution to reduce computational

processing time. The full set of results can be consulted on Appendix A. Another approach, based

on score-level fusion, was also tested in an attempt to further improve the performance in the worst

observed setups. The next section will serve to detail such approach.

RGB

As an alternative to using a single channel color or GS images, the performance related to the

fusion of the R, G and B channels was also assessed, by averaging the likelihood-ratio scores of

the 3 separate channels. Results, exemplified on Table 4.7, suffered a significant improvement in

individual identification reaching higher values for both R1 and DEC ratios.

R1 % DEC
AR0 AR1 AR0 AR1

Best RGB Best RGB Best RGB Best RGB
SIFT 58.8 73.2 98.1 99.7 2.64 3.01 5.06 5.32

HOG-DT 46.4 50.8 80.9 81.7 2.00 2.10 2.96 3.06

HOG-F 55.3 56.8 83.7 85.0 2.23 2.23 3.16 3.22

ULBP 47.8 48.9 78.1 78.7 2.07 1.98 3.27 3.37

GIST 86.6 89.2 97.0 98.4 3.81 3.83 5.22 5.42

Table 4.7: Comparison between the best color channel plus GS (left column) and RGB for the 5 descriptors
and, with a 16-mixture GMM, for AR1 and AR0 setups.

These results illustrate how much fusion can improve the system performance. Both GS and

RGB represent two different fusion scenarios. The first, a feature-level fusion, achieved by sum-

ming the three original images and the second, a score-level fusion, based on the recognition scores

obtained for each feature (i.e. color channel) individually. GS fusion can also be understood as a

method of achieving multimodality, since it results from the fusion of 3 different sources. Without

highly increasing the complexity of the system, this simple multimodality approach may lead to

an improve in system performance.
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4.4.4 Descriptors comparison

On Figure 4.8, the most relevant results obtained for the AR1 setup, with respect to the GS col-

orspace, are presented.

k R1 Dec
SIFT 64 99.0 ±0.93 4.90 ±0.11
GIST 16 95.9 ±0.78 5.13 ±0.21

HOG-F 64 87.7 ±1.35 3.17 ±0.06
HOG-DT 32 81.2 ±1.67 3.20 ±0.17

ULBP 16 78.1 ±1.82 3.27 ±0.08

Table 4.8: Results performed using the best k for each descriptor, on GS images from AR1 setup.

There is an obvious gap between GIST/SIFT and ULBP/HOG’s results. Both HOG modal-

ities (HOG-F and HOG-DT), ULBP and GIST global descriptors describe the entire image. On

the other hand SIFT is a local descriptor, which computes over specific interest points, called

keypoints. The enhanced SIFT performance over the other algorithms, except GIST, can be ex-

plained by its rotation invariance characteristic. CSIP’s photos, taken under unconstrained scenar-

ios, present individual periocular region with variable poses regarding the camera. As a conse-

quence of these pose variations, the distance and relative position between the periocular region

elements changes, affecting the global description and clearly impairing both HOG and ULBP’s

performance. However, the discriminative power of GIST seems able to surpass those limitation,

at the cost of a higher computation complexity. GIST performed the best results in terms of DEC

among all the descriptors, proving to have the best discriminative power among them. However,

an interesting observation can be made while comparing SIFT’s performance over different setups.

R1 % DEC R1 % DEC
AR0 58 2.30 AR1 100 5.32
BR0 73 3.01 BR1 93 4.40
CR0 50 2.09 CR1 93 4.00
mean 61 2.47 mean 95 4.57

Table 4.9: SIFT performance on non-flash (left) and flash (right) images.

On setups in which the flash was used, SIFT’s R1 and DEC values are significantly higher than

those without flash, as presented in Table 4.9. Flash enhances keypoint detection and serves as a

methodology of image illumination normalization, thus influencing SIFT performance. ULBP

and both HOG descriptors are also influenced by flash, a fact that can also be explained by the

aforementioned image normalization process.
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R1 % DEC R1 % DEC
AR0 89 3.83 AR1 97 5.42
BR0 90 3.73 BR1 94 4.26
CR0 78 2.95 CR1 88 3.78
mean 86 3.50 mean 93 4.49

Table 4.10: GIST performance on non-Flash (left) and Flash (right) images.

Moreover, as presented in Figure 4.10, GIST does not suffer such a marked performance loss

as SIFT and other descriptors, for images acquired without flash. This observation further proves

the potential value of GIST in biometrics under unconstrained settings.

4.4.5 Descriptors Fusion

Fusion scenarios can contribute, in some complex situations, to an overall improvement of system

performance, as seen by the simple averaging of the three RGB individual results presented in

Section 4.4.3. On this work, six fusion strategies at score level were evaluated, for three combi-

nations of descriptors: maximum, minimum and median, which take into account only the higher,

lower, and median, respectively, values among the descriptors likelihood-ratios; sum, in which

the matrices of likelihood-ratios are summed in a final score matrix; multiplication, instead of

summing, likelihood-ratios are multiplied, contributing to empathize their differences; and per-

formance. On performance fusion, each likelihood-ratio matrix is multiplied by a weight value,

calculated by taking into account the individual descriptor performance. The three combinations

evaluated, presented on Table 4.11, were the fusion of all the descriptors, first column, the fusion

of all descriptors except GIST (which could not be performed on k’s above 16), second column,

and the the fusion between the 2 descriptors which performed significantly better than the others,

SIFT and GIST, last column.

Interesting results can be observed on table regarding fusion scenarios. In fact, there is only

one case in which the fusion performed a better R1 ratio than the best algorithm, among the fusion,

alone: GIST and SIFT performance-base sum-rule fusion, improving in 1% R1 ratio. However, by

analysing the DEC results, it seems like the fusion of certain descriptors has a more relevant impact

for verification proposes. Another conclusion can be made related to the best fusion method. Top

results were performed mainly on performance-base fusion scenarios and the worst DEC resulted

in the three combinations by performing a multiplication of the likelihood-ratios.

Two interesting analysis can be performed regarding the fusion strategies including GIST and

the ones which do not include such feature. By comparing the top performances, mostly obtained

through performance-base sum-rule fusion, with the results observed in Tables 4.3 and 4.4, it is

possible to observe that fusion comprising GIST descriptor does not improve the R1 performance

except for the CR0 setup. However, there is a general improvement in DEC, possibly given by the

fusion of the descriptive power of the 5 algorithms. Hereupon, the implemented fusion strategies

seem more relevant in verification than in identification systems, as they allow a better distinction

between genuine and impostor samples, rather than identifying an individual among a pool of
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GIST SIFT ULBP HOG’s SIFT ULBP HOG’s GIST SIFT
R1 % DEC R1 % DEC R1 % DEC

AR0

Max 62.5 2.68 54.6 2.31 79.6 3.66
Min 64.8 2.68 55.7 2.41 77.3 3.16
Sum 54.6 2.24 61.4 2.76 81.8 3.77
Mult 73.9 2.12 61.4 2.19 83.0 3.24

Median 62.5 3.48 59.1 2.68 81.8 3.77
Performance 76.1 3.67 62.5 2.81 80.7 3.87

BR0

Max 51.2 2.71 45.1 2.48 56.1 2.73
Min 52.4 2.41 41.5 1.88 79.3 3.46
Sum 72.0 3.23 52.4 2.61 78.1 3.42
Mult 67.1 1.94 53.7 2.06 80.5 3.09

Median 59.8 2.98 51.2 2.50 78.1 3.42
Performance 79.3 3.57 53.7 2.61 85.4 3.76

CR0

Max 40.9 2.08 40.9 2.09 37.6 2.11
Min 72.0 3.13 44.1 1.85 73.1 3.07

Sum 61.3 2.76 52.7 2.36 67.7 2.87
Mult 65.6 2.08 52.7 2.09 76.3 2.70

Median 43.0 2.23 45.2 2.30 67.7 2.87
Performance 67.7 3.00 51.6 2.41 78.5 3.01

DR0

Max 48.0 2.29 46.7 2.30 45.3 2.13
Min 72.0 2.92 56.0 2.23 73.3 3.09
Sum 72.0 3.00 57.3 2.59 72.0 2.88
Mult 73.3 1.95 57.3 2.04 74.7 2.69

Median 62.7 2.78 57.3 2.42 72.0 2.88
Performance 76.0 3.22 57.3 2.61 74.7 3.16

Table 4.11: Fusion scenarios performed on rear-camera related setups, for GS images.

possibilities. Another comparison, still regarding the same Tables, takes into consideration only

the combination of SIFT, ULBP and HOG’s. The best observed result of the fusion scenarios is

always higher, between 4% and 12% regarding R1, than the best results among the single descrip-

tors. This observation demonstrates that fusion can positively contribute to the enhancement of

the system’s overall performance.

4.4.6 Full Dataset

During the previous section, performance regarding different setups was presented with respect to

each descriptor. In a real-system, images captured with different devices can be all mixed-up, so,

models may be trained with images from the same subject but captured with devices presenting

different characteristics. In order to assess how a system, based on this algorithm will behave

in such conditions, all datasets (AR1−DR0) were mixed in a single larger setup, gathering all

the available images. The results obtained by using the different descriptors are presented on

Table 4.12.
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R1 Dec
SIFT 38.5 ±0.61 2.15 ±0.01
ULBP 31.8 ±1.32 1.83 ±0.03
HOG-DT 22.7 ±0.82 1.36 ±0.05
HOG-F 25.8 ±0.49 1.40 ±0.04
GIST 72.1 ±0.91 3.25 ±0.05

Table 4.12: Results obtained regarding the full CSIP dataset, for GS colorspace

Images were trained using a scenario similar to the one performed on each setup. Half of each

setup was used to train the models, while the other half was kept apart for testing. In order to save

some time, given the high complexity related to the amount of images, only 5 tests were made

being presented in Table 4.12 the average results.

There is a marked performance drop in all the descriptors, with HOG-DT presenting the worst.

Although GIFT suffers from the variability in the computed data, the results are still comparable to

the ones obtained with individual setups, performing better than each other descriptor individually.

Having in consideration that CSIP comprises data from only 50 individuals, different approaches

should be taken to guarantee a good performance in a pool representative of a larger population

like in a city or even a country.

4.4.7 Computational Performance

During the previous sections, the algorithm was assessed by comparing the R1 and DEC results.

Nevertheless, it is important to consider also, the computing time taken by each descriptor in order

to evaluate its efficiency. Since IDSM and UBM have the same amount of points, the time taken by

the projection of new data on each model is similar. On Figures 4.5 is presented the time spent, in

seconds, for each descriptor, to perform a single projection regarding different k-mixtures GMM.

The comparison is not totally fair because each descriptor’s feature vector has different length and

different dimensions what will directly affect the projection time.

Figure 4.5: Average time, in seconds, taken to perform a single projection for each descriptor regarding
AR0 setup and for GS colorspace.
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A more relevant comparison can be made by calculating the average time that each descriptor

takes to process a single CSIP image. Results are graphically presented on Figure 4.6, serving

Table 4.13 to make a more detailed time analysis.

Figure 4.6: Visual comparison of the time taken by each descriptor computation regarding the AR0 for GS
colorspace.

Time (s)
GIST 1.25E-01 ±2.97E-02
SIFT 2.16E-02 ±7.90E-03

HOG-F 2.30E-03 ±1.50E-03
HOG-DT 2.30E-03 ±1.50E-03

ULBP 7.83E-04 ±3.64E-04

Table 4.13: Time taken by each descriptor computation regarding the AR0 for GS colorspace

By looking into both the table and the figure it is possible to conclude that GIST takes longer to

describe an image than the others. SIFT also presents a high description time even if significantly

smaller than GIST’s. These two descriptors presented the best performance results, as seen in the

previous sections, however at the cost of more computational power. For ULBP and both HOG’s

modalities, the description takes only, approximately, twice the time took by a single projection.

While for SIFT and GIST the projection time is almost irrelevant when compared to the feature

extraction time.

Having both projection time (PT) and feature extraction time (ET), the algorithm’s recognition

time (RT) can be calculated for a single sample by using the following equation:

RT = 2×PT +ET

The recognition times for each descriptor, calculated based on the previous equation, are pre-

sented on Table 4.14.
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RT
GIST 2.50E-01
SIFT 4.36E-02

HOG-F 5.80E-03
HOG-DT 5.70E-03

ULBP 1.86E-03

Table 4.14: Average recognition times for each descriptor regarding a single sample, using 16-mixture
GMM for AR0 setup and GS colorspace.

By the table analysis it is possible to conclude that ULBP can contribute to the fastest algorithm

architecture while GIST can clearly slow the process.

4.4.8 Implementation Details

The algorithm was performed on MATLAB R2013a and on three different computers with similar

characteristics. However, for time comparison all the results were obtained performing on the

same computer. To train the GMM’s, Netlab toolbox [95] was used. SIFT, HOG’s and ULBP

description was performed using VLFeat toolbox [96], while GIST was performed using code

made available by the authors [68].

In this chapter several characteristics regarding a recognition system were evaluated and the

related algorithm behavior was studied in order to gather information about its performance regard-

ing images acquired in unconstrained scenarios. The algorithm proved to be suitable for individual

recognition regarding the periocular region achieving the best when SIFT or GIST are used. GIST

was also positioned side by side with the most conventional descriptors, presenting outstanding

results during the performance assessments. It was also observed that flash can greatly influence

image quality and that GS colorspace image transformation can be an interesting approach in the

design of a more robust recognition system. Despite GS’s performance, RGB channels fusion

presented top results at the cost of high computing complexity. System performance regarding

descriptors fusion was also evaluated and showed to be of lower relevance, specially when GIST

is combined with other descriptors. The results obtained motivated the algorithm extrapolation to

different traits, but also to a different dataset comprising periocular images acquired with worse

quality. Given this, in Chapter 5, the presented methodology will be replicated to the MoBIAC

dataset presented in Chapter 3.
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Chapter 5

Preliminary results on MoBIAC dataset

On this chapter, an evaluation of the performance of the algorithm presented during the previous

chapter over the MoBIAC dataset will be presented. The goal is to evaluate its robustness if

applied in a context similar to the SSA scenario presented in Section 2.1. In each section, two

points will be discussed. The first is related to the algorithm’s performance when computed on the

full dataset. The second is related to the performance comparison when considering Caucasian and

African groups independently. This is important to gain insight as to how the algorithm and each

descriptor behave regarding ethnicity variations. Furthermore, the MoBIAC images were acquired

in an even less constrained environment than CSIP and also contain data regarding handprint and

ear in addiction to the periocular region.

5.1 Periocular Region

The MoBIAC dataset comprises periocular region images of the right side of the face. However,

a lot of background noise is also contained within each photo. Given this, it is important to crop a

region that excludes the background while defining the region containing relevant data regarding

the individual.

Segmentation

The ROI definition step is important to highlight important information but also to normalize the

segmented region. In this work, the periocular region was segmented in a rectangular region

centered in the eye with 8r × 6r, where r stands for iris radius. The region was automatically

cropped by manually signalizing in each image the iris center and a point in its boundary. Given

the low constrained acquisition scenarios, some eyes are closed while in others the gaze is not

pointing towards the camera. In these cases two points were annotated where, theoretically, the

iris would be in a normal situation. In Figure 5.1 are presented the results of the cropping method,

regarding images acquired on different scenarios. After ROI segmentation, each image is sized to

12.5% of its original size. This value was chosen based on the results, as stated in the Chapter 6.1,

regarding CSIP images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: MoBIAC Periocular samples.

Full dataset Results

As previously stated, at least one image per subject presents considerable low illumination, as

exemplified in images 5.1a, 5.1b, whereas others were acquired under heavily unconstrained

environments, which resulted in some images lacking information, as exemplified in images 5.1c,

5.1d and 5.1e. The first presents a blurred nature while the others regard distinct challenges such

as eye obstruction and gaze variations. However, these images were all used in the algorithm

computation, so as to realistically replicate the greatest number of possible challenging scenarios.

The details related to the algorithm computation are similar to the ones applied on CSIP. For each

individuals, half of the available images were used to train the model while the other half was kept

aside to test its behavior. The results presented on Table 5.1 are related to GS colorspace which,

like in the previous Chapter, present a more balanced overall performance than a specific color

channel.

R1 Dec
SIFT 33.9 ±1.73 1.87 ±0.97
GIST 56.5 ±0.89 2.81 ±0.07

HOG-F 25.3 ±1.52 1.50 ±0.02
HOG-DT 16.7 ±1.17 1.13 ±0.03

ULBP 19.6 ±2.79 0.77 ±0.07

Table 5.1: Results obtained regarding periocular region related to the full MoBIAC periocular dataset.

Comparing the results obtained in Section 4.4.6, regarding all the CSIP dataset, with the ones

obtained on MoBIAC, the R1’s were worse as well as the DEC’s. Better results could be probably

achieved by filtering the set, removing the images with less quality in a process commonly called,

quality assessment [97] (QA). QA of an image measures its degradation during acquisition, com-

pression, transmission, processing, and reproduction. Give the unconstrained acquisition scenario,

QA dataset entries could improve the ratio of relevant information presented in all the dataset. A
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simple method could be easily implemented by, for example, threshold the image contrast, dis-

carding samples like Images 5.1a and 5.1b.

Ethnicity comparison

Another study was made on the MoBIAC periocular dataset by assessing the algorithm’s perfor-

mance for both Caucasians and Africans sets, separately. Details related to the dataset distribution

were similar to the ones performed to the full dataset, with half of the images serving for train the

models while the other half to test it. The results presented on Tables 5.2 and 5.3 are related to

GS colorspace.

R1 Dec
SIFT 30.4 ±1.88 1.47 ±0.02
GIST 56.1 ±0.97 2.57 ±0.06

HOG-F 24.4 ±1.46 1.06 ±0.07
HOG-DT 18.0 ±2.25 0.88 ±0.02

ULBP 20.4 ±1.42 0.59 ±0.09

Table 5.2: Performance results regarding periocular region related to the African individuals of the Mo-
BIAC dataset

R1 Dec
SIFT 38.9 ±1.53 1.85 ±0.08
GIST 67.1 ±3.81 3.04 ±0.06

HOG-F 38.1 ±2.14 1.63 ±0.04
HOG-DT 25.7 ±2.55 1.30 ±0.03

ULBP 32.9 ±2.63 0.84 ±0.09

Table 5.3: Performance results regarding periocular region related to the Caucasian individuals of the
MoBIAC dataset

By looking into the Tables it is possible to conclude that the algorithm performed significantly

better for the Caucasian group, outperforming, also, the results related to the full dataset. However,

for the African group, results were even worse than the ones achieved by the full dataset compu-

tation. This interesting behavior shows that full dataset computing was adversely affected by the

African set. The weak performance can be related by the fact that African related images acquisi-

tion was more affected by the lack of light given the skin-color of the eye boundaries, resulted in

less contrasted features. However, to support this explanation, a bigger dataset is needed.

5.2 Contactless Palmprint

MoBIAC dataset also contains images of the right hand. Human hand contains a large amount of

information, as seen in Chapter 3, and can be used in several ways to perform individual recogni-

tion. For this work, palmprint was chosen for hand analysis, to evaluate how the different features
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between African’s and Caucasian’s hand patterns can affect the system performance. Furthemore,

palmprint segmentation is easier to be applied than, for example, hand geometry in which is nec-

essary to highlight the whole hand region.

Segmentation

A simple, manual method, based on Aoyama et al. [7] work was applied to crop the ROI of the

MoBIAC hand images. Some resulting images are presented in Figure 5.2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: MoBIAC palmprint samples.

The segmentation was done manually by cropping a rectangular region with a corner situated

on the bottom-middle of the little-finger and the opposite corner situated on the bottom middle

of the thumb. Given some hand geometry and rotation variations, the method was not always

precisely applied.

Full dataset Results

On Figure 5.2 it is possible to observe how light conditions can vary within the MoBIAC dataset.

Light condition is the less constrained variable regarding this hand study. The results performed

on MoBIAC hand dataset, regarding the different descriptors, are presented in Table 5.1. The

algorithm was computed like previously, with an image reduction of 12.5% with half the dataset

serving model training while other half was kept to test. Results are related to GS colorspace.

R1 Dec
SIFT 30.8 ±1.39 1.52 ±0.05
GIST 62.5 ±1.58 2.80 ±0.03

HOG-F 16.2 ±0.57 1.32 ±0.04
HOG-DT 21.4 ±2.12 1.33 ±0.05

ULBP 22.9 ±0.94 1.32 ±0.03

Table 5.4: Results obtained regarding contactless palmprint related to the full MoBIAC hand dataset.
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Ethnicity comparison

On Figure 5.2 the top row is composed of images regarding Caucasian subjects while the bottom

row is composed of images regarding African subjects. There is a noticeable difference, specially

in the principal lines, in the hand lines contrast. African hands’ lines are natural highlighted by

the skin contrast. Results obtained from computing the algorithm on each group of individuals are

presented in Tables 5.5 and 5.6.

R1 Dec
SIFT 37.7 ±3.69 1.52 ±0.05
GIST 81.3 ±1.46 3.45 ±0.12

HOG-F 24.1 ±2.11 1.37 ±0.07
HOG-DT 36.9 ±5.08 1.56 ±0.07

ULBP 40.5 ±2.33 1.25 ±0.03

Table 5.5: Performance results regarding contactless palmprint related to the African individuals of the
MoBIAC dataset.

R1 Dec
SIFT 31.8 ±4.01 1.23 ±0.08
GIST 58.5 ±4.45 2.42 ±0.03

HOG-F 13.5 ±0.56 0.47 ±0.04
HOG-DT 17.8 ±1.85 0.54 ±0.06

ULBP 16.3 ±0.88 0.84 ±0.02

Table 5.6: Performance results regarding contactless palmprint related to the Caucasian individuals of the
MoBIAC dataset.

Contrary to periocular, palmprint perfomed better for African than for Caucasian images, fact

that can be explained by that difference in hand lines contrast. For some descriptors, R1 ratio and

DEC doubled regarding the African images. As usual, GIST performed the best scores. However,

for the African set, SIFT performed similar to the other 3 descriptors and even being outperformed

by ULBP regarding R1 results.

An interesting fact can be observed by comparing GIST and SIFT likelihood-ratio matrices.

On Figure 5.3 is presented a color representation of those likelihoods.

As can be seen by the existing linear division on Figure 5.3a, SIFT seems to be able to dis-

tinguish the two groups among the dataset, presenting difficulties in recognizing a certain identity

among those groups separately. However, even presenting a stronger recognition capability and

better performance, GIST’s results shown that this descriptor makes use of other individual char-

acteristics than ethnicity, during its computation.
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(a) SIFT (b) GIST

Figure 5.3: GIST and SIFT likelihood-ratio matrices comparison on GS colorspace. Y and X axis represent
the project sample and the identity number, respectively.

5.3 Ear

The last trait present in MoBIAC dataset is the ear, more precisely, the right ear. Human ear’s

unique structure and ease of capturing its data were the motivation to this experiment. The fol-

lowed methodology is similar to the one used on the previous sets. Half of the dataset samples are

used to train the models while the other half is kept aside for test purposes. Also, two scenarios are

evaluated. One in which the two groups, Caucasians and Africans, are computed apart and other

in which all the dataset is used.

Segmentation

Before proceeding with the algorithm computation it is necessary to crop each MoBIAC ear im-

age in order to highlight the ROI: removing noise and normalizing its data. Images were manually

segmented by cropping a rectangular region that contains the ear and a small portion of its neigh-

bourhood. Examples resulting from this method are presented on Figure 5.4.

As can be seen in, ear samples, presented on the dataset, contain different degrees of quality.

In some of them, the ear is partially covered by hair while in others, earrings are presented. Fur-

thermore, they suffer from several light variations as well as slightly different poses related to the

acquisition method. These variations contribute to a better simulation of a real-life context.

Full dataset Results

After the segmentation, images were scaled to 12.5% of its original size. This value was chosen

having in mind computation complexity and the previous results experienced on computing the

algorithm over different size samples. Performance related to the full dataset was used to assess

how the algorithm behaves and to evaluate if it is adaptable to traits other than the periocular

region. The results presented in the Table 5.7 are referent to GS colorspace.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: MoBIAC Ear samples.

R1 Dec
SIFT 38.8 ±1.68 1.84 ±0.05
GIST 85.4 ±0.00 3.96 ±0.10

HOG-F 31.2 ±0.52 1.58 ±0.02
HOG-DT 26.4 ±1.27 1.40 ±0.08

ULBP 22.3 ±0.76 1.21 ±0.03

Table 5.7: Results obtained regarding the full MoBIAC ear dataset.

The direct comparison between different traits is not the most correct way of evaluate the trait,

however it can be made to have an idea of the trait unique characteristics. Ear performed the best

results between the 3 traits presented in MoBIAC and once again GIST descriptor stood out from

the others for its outstanding capabilities.

Ethnicity comparison

In order to evaluate how the algorithm behaves to ethnicities variation the two image groups were

computed independently. The results are presented on Tables 5.8 and 5.9 . It is important to have in

mind that better results are expected when comparing to the full dataset, since in this experiment,

the individuals’ pool comprises only 25 identities.
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R1 Dec
SIFT 38.4 ±1.16 1.65 ±0.05
GIST 82.8 ±3.62 3.16 ±0.11

HOG-F 25.8 ±0.52 1.14 ±0.02
HOG-DT 18.6 ±2.47 1.00 ±0.07

ULBP 25.4 ±1.27 0.94 ±0.02

Table 5.8: Performance results regarding the ear related to the African individuals of the MoBIAC dataset.

R1 Dec
SIFT 38.4 ±1.16 1.65 ±0.05
GIST 93.2 ±0.98 4.44 ±0.11

HOG-F 42.8 ±1.58 1.82 ±0.04
HOG-DT 38.8 ±4.63 1.45 ±0.05

ULBP 29.9 ±0.64 1.32 ±0.05

Table 5.9: Performance results regarding the ear related to the Caucasian individuals of the MoBIAC
dataset.

5.4 Conclusions

The extrapolation of the proposed methodology to the MoBIAC dataset served to evaluate not only

its capability of being applied to different traits but also the assess its performance on a dataset

regarding periocular images acquired under heavy unconstrained scenarios. During this chapter it

was also observable how each descriptor behaves regarding different conditions like trait, lighting

and quality variance. By comparing the three traits performance, it is interesting to observe that

the descriptors presented similar results regarding the full sets. Still, when the sets are divided by

ethnicities the algorithm behaves differently. While for periocular region the algorithm performed

better for Caucasian group, for palmprint, the best performance was achieved onto African group.

This proves the importance of test the system in a scenario as close to the real as possible. While

for a Caucasian population, periocular region can performed better than palmprint, for an SSA

context hand can provide more accurate results by palmprint recognition.



Chapter 6

Conclusions and future work

This work aimed to evaluate a multimodal biometric recognition system to be applied in SSA

context regarding its unconstrained image acquisition scenarios.

With the existing gap in biometric data regarding African individuals, a multimodal database

construction was motivated comprising biometric data from Africans and Caucasians. The Mo-

BIAC dataset was built regarding periocular region, ear and hand biometric traits. The dataset

presents, for each trait, images with variable quality regarding light, pose and external noise vari-

ations.

In order to evaluate the behavior of a biometric system in such unconstrained scenarios, a state

of the art algorithm was chosen. This algorithm was presented and its performance was assessed

on the CSIP periocular dataset by testing a set of 5 different variations, each one using a differ-

ent conventional descriptor. Among the descriptors, GIST proved to be the most robust, showing

outstanding descriptive power. Some fusion scenarios, regarding score-level, were evaluated but

none brought significant improvements to the system, except for the RGB score-level fusion. Per-

formance using GS colorspace was also assessed, presenting results that make it a more reliable

alternative rather than relying on a single color channel.

After evaluating the algorithm’s performance for periocular recognition on Caucasian popu-

lation and regarding different variations, its performance was also assessed on a different set of

conditions from the MoBIAC dataset. It was possible to achieve, for the 3 traits available, re-

sults similar to the ones achieved only on CSIP. This fact, proved the algorithm’s robustness to

be applied not only in different single trait applications, but also in multimodal systems. Inter-

esting observations were also performed regarding differences in performance between African

and Caucasian individuals recognition. Hand, for example, was presented as providing a more

distinguishable trait for Africans than for Caucasians, thus further proving the importance of con-

textualization in the design of biometric systems.

Although, extensive work was carried out around the presented algorithm for unconstrained

scenarios, there is still a lot of work to develop regarding other methods to improve its robustness.
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6.1 Future Work

Considering the work still to be done about this project, there are several improvements to be

evaluated regarding this system:

A quality assessment method must be implemented to evaluate how the removal of images

with less relevant information (for examples, closed eyes or severly low or high illumination) can

affect system performance.

New fusion methods, at different levels should be evaluated as well, specially regarding fu-

sion at the feature level, by merging feature vectors comprising information regarding different

descriptors.

The work developed gave less attention to multimodality as it could be desirable. A method to

fuse different traits must be implemented to improve system robustness when information regard-

ing a single trait is not reliable enough.

Regarding the CSIP dataset, the algorithm must be tested and trained with data from different

setups, since this is a very common scenario in nowadays, due to the high smartphone variability

with which an individual might have to interact routinely during his/her daily life.

To increase MoBIAC’s relevance in biometric recognition it would be also interesting to ex-

pand it to not only comprise information from different mobile phones, but also to have more

information regarding SSA individuals. This could be achieved by creating an online platform

where anyone could leave their images. It could be also interesting to study the impact of aging in

this kind of systems.

Finally, the algorithm implementation in a more efficient platform, such as C++’s OpenCV

computer vision library, must be completed. Its application on a real smartphone is compromised

by MATLAB’s multiplatform limitations.
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Results
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AR1 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 80.9 0 3.67 0.00 80.9 0 3.79 0.00 71.3 0 3.55 0.00 87.2 0 3.93 0.00 94.7 0 4.39 0.00
4 86.4 0.67 4.03 0.03 88.3 0.87 4.12 0.05 81.1 0.45 4.04 0.03 91.5 2.75 4.15 0.11 97.9 0.5 4.80 0.02
8 93.8 1.65 4.47 0.11 92.6 1.81 4.48 0.10 92.5 1.06 4.26 0.16 93.6 1.81 4.69 0.06 99.3 0.88 5.16 0.07

16 98.1 1.1 4.79 0.16 95.5 1.31 4.74 0.12 96.1 1.51 4.45 0.07 96.6 0.84 5.06 0.07 99.7 0.51 5.32 0.09
32 95.5 1.49 4.75 0.05 97.7 0.67 4.87 0.10 95.4 0.88 4.60 0.05 98.8 0.34 5.17 0.06 100.0 0 5.23 0.06
64 95.1 0.55 4.49 0.06 98.6 0.51 4.80 0.09 95.7 0.71 4.51 0.08 99.0 0.93 4.90 0.11 100.0 0 4.95 0.06
128 96.5 1.01 4.45 0.09 99.2 0.98 4.42 0.07 96.9 1.27 4.32 0.09 98.7 0.98 4.66 0.13 99.7 0.51 4.69 0.05
AR1 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 59.6 0 2.04 0.00 62.8 0 1.98 0.00 59.6 0 2.10 0.00 62.8 0 1.95 0.00 63.8 0 2.07 0.00
4 66.0 2.84 2.16 0.11 68.5 1.25 2.16 0.01 66.8 2.06 2.28 0.03 64.3 1.68 2.10 0.07 73.3 1.37 2.25 0.04
8 75.2 1.74 2.74 0.12 76.5 1.7 2.55 0.09 76.3 2.3 2.72 0.08 74.6 1.84 2.47 0.07 79.7 1.46 2.79 0.04

16 77.0 1.25 2.96 0.10 80.7 2.03 2.91 0.07 77.7 2.61 2.95 0.05 80.9 2.79 2.91 0.10 81.7 1.21 3.06 0.04
32 80.7 2.9 3.01 0.16 81.1 1.31 2.97 0.22 79.0 1.81 2.90 0.14 81.2 1.67 3.20 0.17 84.4 1.59 3.14 0.12
64 79.0 2.66 3.10 0.10 79.9 2.48 3.03 0.07 77.3 1.33 3.03 0.11 79.7 1.37 3.10 0.11 83.9 1.06 3.24 0.07
128 74.2 2.01 2.65 0.11 77.3 2.7 2.62 0.05 73.4 3.4 2.49 0.08 76.3 1.81 2.61 0.08 80.1 2.3 2.73 0.04
AR1 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 71.3 0 2.35 0.00 73.4 0 2.26 0.00 70.2 0 2.31 0.00 74.5 0 2.25 0.00 75.5 0 2.34 0.00
4 74.5 2.24 2.69 0.09 78.4 0.72 2.57 0.01 81.7 0.67 2.64 0.03 76.6 0 2.72 0.00 79.2 0.55 2.76 0.03
8 79.9 1.7 3.06 0.12 80.9 0 2.87 0.06 80.9 1.74 2.93 0.11 78.9 0.67 2.85 0.06 80.7 1.17 3.04 0.08

16 83.7 1.13 3.11 0.04 83.7 0.72 3.07 0.05 83.2 1.1 3.16 0.05 83.7 1.23 3.06 0.06 85.0 0.34 3.22 0.06
32 85.9 1.74 3.35 0.08 84.7 0.9 3.30 0.12 83.3 0.72 3.44 0.10 85.7 0.9 3.33 0.06 85.4 0.51 3.52 0.05
64 86.8 1.03 3.21 0.08 86.0 1.1 3.11 0.07 83.7 1.13 3.33 0.11 87.7 1.35 3.17 0.06 87.2 1.12 3.34 0.06
128 86.6 1.35 2.95 0.09 86.6 1.25 2.74 0.10 83.6 1.14 2.78 0.05 86.3 1.27 2.86 0.10 88.5 0.67 2.96 0.05
AR1 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 55.3 0 2.27 0.00 60.6 0 2.23 0.00 60.6 0 2.40 0.00 59.6 0 2.13 0.00 62.8 0 2.40 0.00
4 63.8 0 2.51 0.00 67.7 0.9 2.43 0.02 65.7 0.45 2.65 0.02 67.5 0.74 2.42 0.04 70.6 0.9 2.69 0.02
8 73.1 1.51 2.90 0.05 71.4 2.48 2.80 0.03 72.1 1.21 3.03 0.04 76.3 0.72 2.79 0.03 76.7 1.27 3.19 0.03

16 75.6 1.62 3.06 0.06 73.6 1.79 3.02 0.08 75.9 1.33 3.10 0.12 78.1 1.82 3.27 0.08 78.7 0.71 3.37 0.05
32 73.9 2.14 2.67 0.06 75.5 1.74 2.73 0.07 78.0 1.01 2.79 0.04 78.0 1.42 3.01 0.06 79.0 1.01 2.99 0.04
64 41.0 2.76 1.86 0.03 42.8 4.67 1.96 0.04 74.3 1.86 2.09 0.07 72.7 2.3 2.43 0.04 55.4 2.38 2.20 0.03
128 9.5 2.58 0.77 0.04 10.9 1.79 0.89 0.03 38.9 1.68 1.32 0.04 46.8 2.51 1.57 0.04 16.9 1.17 1.11 0.03
AR1 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 89.7 1.01 4.09 0.02 94.7 0 4.29 0.00 95.7 0 4.30 0.00 94.7 0 4.23 0.00 94.8 0.34 4.36 0.00
4 90.9 0.55 4.44 0.01 94.0 0.9 4.71 0.02 93.5 0.34 4.81 0.03 93.8 0.67 4.71 0.06 94.0 0.9 4.86 0.04
8 93.1 1.35 4.84 0.14 94.6 0.6 5.01 0.08 96.6 1.49 5.21 0.17 94.9 0.84 5.02 0.15 94.9 1.31 5.25 0.08

16 95.2 1.03 4.91 0.21 96.2 0.55 5.07 0.25 97.0 1.1 5.22 0.18 95.9 0.78 5.13 0.21 96.7 0.6 5.42 0.17
32 97.6 1.01 5.06 0.26 98.0 0.34 5.18 0.31 98.5 0.74 4.98 0.25 98.3 0.9 5.23 0.28 98.4 0.9 5.53 0.21
64 — — — — — — — — — — — — — — — — — — — —
128 — — — — — — — — — — — — — — — — — — — —

Table A.1: Rank-1 ratio and decidability performance regarding AR1 setup images.



Results 63

AR0 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 34.1 0 2.13 0.00 42.1 0 2.01 0.00 37.5 0 2.01 0.00 36.4 0 2.01 0.00 54.6 0 2.46 0.00
4 43.1 1.73 2.31 0.13 43.0 2.06 2.20 0.03 43.8 4.52 2.24 0.06 45.1 1.08 2.21 0.03 63.0 2.02 2.80 0.05
8 46.7 2.65 2.38 0.07 45.8 3.39 2.36 0.04 46.9 4.15 2.30 0.07 50.5 2.16 2.24 0.09 67.6 2.29 2.93 0.05
16 58.5 2.69 2.54 0.08 52.5 3.78 2.64 0.08 51.3 2.7 2.29 0.05 58.8 2.94 2.53 0.06 73.2 1.95 3.01 0.08
32 62.6 2.3 2.61 0.08 57.3 2.35 2.50 0.06 54.0 2.85 2.31 0.06 61.7 3.22 2.49 0.04 75.5 0.96 2.92 0.05
64 63.0 1.87 2.46 0.07 59.3 4.99 2.53 0.08 55.1 3.04 2.32 0.07 60.9 3.52 2.30 0.06 76.9 2.84 2.80 0.08

128 66.4 1.44 2.42 0.08 60.5 3.82 2.25 0.09 52.4 4.06 2.08 0.05 62.5 2.21 2.24 0.09 76.5 2.08 2.57 0.05
AR0 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 31.8 0 1.47 0.00 28.4 0 1.42 0.00 30.7 0 1.49 0.00 28.4 0 1.40 0.00 30.7 0 1.51 0.00
4 38.4 1.17 1.63 0.07 33.0 1.31 1.60 0.03 33.6 0.59 1.64 0.03 33.2 1.84 1.55 0.03 35.9 1.87 1.68 0.02
8 40.0 1.92 1.82 0.05 42.3 2.44 1.80 0.06 36.4 1.42 1.80 0.11 40.6 3.3 1.73 0.08 43.8 2.29 1.91 0.05
16 45.3 2.54 1.99 0.06 46.4 2.26 2.00 0.16 41.4 1.71 1.95 0.06 45.1 2.63 1.87 0.10 50.8 2.28 2.10 0.08
32 44.3 3.21 2.06 0.11 42.8 2.01 2.07 0.10 42.7 1.62 2.04 0.05 46.5 1.46 2.12 0.10 49.4 1.87 2.21 0.06
64 39.0 2.08 1.99 0.02 44.0 2.63 1.96 0.08 40.1 2.4 1.84 0.06 43.4 1.68 1.98 0.05 48.2 0.96 2.08 0.04

128 66.4 1.44 2.42 0.08 60.5 3.82 2.25 0.09 52.4 4.06 2.08 0.05 62.5 2.21 2.24 0.09 76.5 2.08 2.57 0.05
AR0 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 44.3 0 1.94 0.00 39.8 0 1.82 0.00 33.0 0 1.83 0.00 43.2 0 1.84 0.00 44.3 0 1.92 0.00
4 45.2 1.17 1.98 0.00 46.4 3.38 1.98 0.08 44.3 4.29 1.98 0.06 48.0 2.2 1.92 0.06 50.5 1.71 2.08 0.04
8 52.3 0 2.31 0.00 50.1 3.1 2.04 0.09 44.3 2.07 1.97 0.05 50.5 1.22 2.05 0.09 54.6 2.21 2.22 0.04
16 55.3 1.78 2.23 0.08 51.6 1.33 2.18 0.05 51.5 1.32 1.90 0.06 52.2 1.96 2.22 0.07 56.8 1.31 2.23 0.03
32 52.5 1.68 2.15 0.02 52.1 2.26 2.29 0.15 52.6 2.01 2.12 0.14 55.1 2.74 2.37 0.17 56.8 2.34 2.32 0.09
64 50.5 2.41 2.16 0.06 54.0 1.44 2.03 0.06 49.6 1.71 1.92 0.03 56.0 1.7 2.09 0.05 56.9 1.81 2.17 0.02

128 49.4 2.02 1.84 0.05 49.2 1.7 1.66 0.04 44.1 1.4 1.48 0.02 50.9 2.87 1.75 0.04 55.5 1.68 1.76 0.02
AR0 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 30.7 0 1.31 0.00 25.0 0 1.15 0.00 30.7 0 1.24 0.00 22.7 0 1.13 0.00 28.4 0 1.28 0.00
4 31.8 0 1.61 0.00 26.1 0 1.44 0.00 30.7 1.2 1.45 0.09 27.4 0.36 1.39 0.00 30.1 0.6 1.60 0.03
8 40.5 0.59 1.90 0.03 33.3 0.94 1.70 0.05 37.8 1.32 1.73 0.03 33.0 0 1.63 0.03 39.0 1.2 1.90 0.02
16 47.8 2.17 2.07 0.02 43.1 2.36 1.85 0.04 37.8 2.01 1.64 0.04 45.3 2.3 1.86 0.06 48.9 1.93 1.98 0.01
32 48.2 2.94 1.77 0.02 43.1 2.86 1.64 0.07 38.1 1.72 1.37 0.02 44.1 1.59 1.66 0.04 45.5 0.54 1.69 0.03
64 34.9 3.17 1.29 0.03 22.5 1.4 1.12 0.05 23.8 2.81 0.95 0.03 29.1 1.87 1.23 0.05 28.2 2.13 1.20 0.02

128 14.7 1.96 0.70 0.06 12.8 1.52 0.56 0.05 12.2 0.94 0.38 0.02 14.8 2.07 0.72 0.03 12.6 1.56 0.59 0.01
AR0 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 75.0 1.86 3.76 0.02 78.5 1.13 3.77 0.00 72.7 0 3.42 0.00 79.7 0.36 3.81 0.06 81.0 0.55 3.84 0.01
4 72.7 0 3.72 0.00 78.4 0 3.82 0.00 73.9 0 3.49 0.00 78.4 0 3.82 0.00 81.8 0 3.86 0.00
8 79.9 0.94 3.71 0.06 83.8 1.08 3.85 0.07 79.9 1.86 3.56 0.09 82.7 0.48 3.88 0.13 86.6 0.72 3.91 0.04
16 83.2 3.16 3.55 0.16 86.6 3.16 3.81 0.06 83.5 1.44 3.60 0.07 84.4 3.03 3.73 0.09 89.2 2.02 3.83 0.07
32 — — — — — — — — — — — — — — — — — — — —
64 — — — — — — — — — — — — — — — — — — — —

128 — — — — — — — — — — — — — — — — — — — —

Table A.2: Rank-1 ratio and decidability performance regarding AR0 setup images.



64 Results

BR1 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 64.7 0 3.36 0.00 70.6 0 3.61 0.00 64.1 1.86 3.27 0.12 75.3 0 3.64 0.00 82.4 1.24 4.54 0.01
4 77.2 1.49 3.52 0.03 80.8 2.15 3.84 0.03 74.4 0.5 3.64 0.06 81.4 2.76 3.86 0.07 88.4 1.17 4.65 0.04
8 80.1 2.18 3.70 0.07 85.9 1.57 4.04 0.10 85.3 1.39 3.92 0.03 88.5 1.91 4.14 0.20 91.4 0.79 4.75 0.05
16 81.3 1.29 3.64 0.08 90.7 2.51 4.04 0.12 90.5 1.7 3.86 0.05 89.4 2.08 3.86 0.13 93.1 1.03 4.40 0.03
32 84.6 2.38 3.44 0.05 89.3 1.29 3.76 0.07 91.7 1.29 3.67 0.07 90.2 1.76 3.76 0.08 94.1 0.78 4.02 0.04
64 83.3 2.34 3.05 0.06 90.0 1.69 3.50 0.08 90.4 1.65 3.46 0.06 90.8 0.93 3.60 0.04 93.4 1.14 3.63 0.03
128 83.4 0.87 2.90 0.07 90.1 0.99 3.39 0.07 88.6 1.57 3.25 0.08 89.8 1.67 3.52 0.05 92.6 1.93 3.43 0.05
BR1 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 49.4 0 1.91 0.00 54.1 0 1.64 0.00 51.8 0 1.75 0.00 54.1 0 1.77 0.00 56.5 0 1.82 0.00
4 56.5 0 2.03 0.00 54.1 0 1.81 0.00 52.9 0 1.88 0.00 52.9 0 1.92 0.00 58.8 0 1.97 0.00
8 65.5 4.04 2.28 0.05 64.6 0.87 2.20 0.04 62.8 2.61 2.26 0.07 66.9 1.51 2.33 0.03 69.4 1.11 2.36 0.03
16 65.4 2.61 2.32 0.08 68.9 1.77 2.26 0.18 66.9 2.03 2.39 0.04 67.3 2.13 2.40 0.11 73.2 1.45 2.45 0.09
32 63.7 2.25 2.35 0.14 71.1 2.37 2.42 0.07 66.9 1.79 2.12 0.07 72.6 4.26 2.51 0.11 73.3 2.42 2.49 0.07
64 64.2 1.68 2.37 0.04 72.0 2.87 2.42 0.09 69.7 1.45 2.33 0.09 77.1 2.9 2.54 0.06 77.9 1.45 2.56 0.06
128 60.9 2.4 1.92 0.06 62.8 2.95 1.97 0.08 56.7 2.47 1.80 0.08 63.7 3.3 2.12 0.10 69.1 2.54 2.05 0.04
BR1 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 60.0 0 2.23 0.00 61.2 0 2.09 0.00 58.8 0 2.18 0.00 62.4 0 2.25 0.00 62.4 0 2.26 0.00
4 65.9 0 2.35 0.00 70.6 0 2.26 0.00 71.8 0 2.51 0.00 69.4 2.48 2.42 0.04 74.1 0 2.51 0.00
8 65.3 2.24 2.43 0.07 73.1 1.7 2.50 0.04 72.0 0.74 2.55 0.06 72.5 1.14 2.57 0.04 76.8 0.97 2.65 0.05
16 72.9 1.84 2.61 0.09 78.4 1.68 2.53 0.22 76.1 1.25 2.67 0.04 78.4 1.59 2.74 0.11 81.4 1.45 2.75 0.11
32 80.7 2.55 3.05 0.18 81.2 1.24 3.00 0.08 73.8 2.15 2.67 0.07 80.9 1.82 3.03 0.14 83.9 1.12 3.11 0.08
64 78.9 3.66 2.89 0.06 81.2 2 2.81 0.06 75.2 3.57 2.57 0.04 81.8 1.86 2.83 0.05 85.8 1.17 2.93 0.03
128 71.4 3.68 2.20 0.06 76.6 1.79 2.35 0.06 69.7 2.59 2.11 0.03 78.2 2.02 2.37 0.04 81.1 1.61 2.37 0.02
BR1 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 44.7 0 1.95 0.00 48.2 0 1.57 0.30 49.4 0 1.72 0.00 47.1 0 1.83 0.00 46.8 1.82 1.88 0.14
4 52.9 0 2.09 0.00 56.5 3.04 2.07 0.00 51.8 0 2.01 0.00 56.6 1.7 2.11 0.04 59.8 1.22 2.22 0.01
8 57.9 1.08 2.07 0.07 60.7 2.16 2.17 0.03 55.3 2.29 2.18 0.08 64.1 2.62 2.25 0.05 64.8 1.96 2.34 0.05
16 60.2 2.06 2.12 0.11 59.5 2.09 1.89 0.04 58.7 2.03 2.09 0.05 66.4 1.38 2.07 0.05 63.8 1.98 2.26 0.04
32 52.0 2.53 2.03 0.08 50.0 4.97 1.38 0.11 51.5 2.4 1.53 0.03 59.3 3.65 1.56 0.06 59.9 3.01 1.78 0.06
64 34.1 2.35 1.30 0.04 29.7 3.36 0.82 0.03 31.2 4.34 0.92 0.07 34.4 3.54 0.95 0.04 35.3 1.84 1.08 0.04
128 22.9 1.78 0.64 0.07 17.2 3.69 0.34 0.04 20.4 3.64 0.41 0.03 21.1 2.91 0.44 0.06 24.1 2.17 0.50 0.03
BR1 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 82.4 0 3.66 0.00 89.4 0 4.20 0.07 87.1 0 4.18 0.00 88.2 0 4.03 0.00 89.4 0 4.23 0.03
4 89.3 0.37 3.98 0.00 89.3 0.37 4.34 0.04 90.6 0 4.12 0.01 89.3 0.37 4.25 0.05 91.7 0.37 4.29 0.02
8 86.8 0.93 4.03 0.03 89.4 0.55 4.48 0.11 90.8 1.55 4.09 0.12 88.2 1.11 4.15 0.15 91.5 0.74 4.37 0.05
16 89.1 1.36 3.90 0.09 91.2 1.49 4.14 0.09 91.9 1.17 4.08 0.11 91.5 1.08 3.98 0.09 93.8 1.08 4.26 0.07
32 – – – – – – – – – – – – – – – – – – – –
64 – – – – – – – – – – – – – – – – – – – –
128 – – – – – – – – – – – – – – – – – – – –

Table A.3: Rank-1 ratio and decidability performance regarding BR1 setup images.



Results 65

BR0 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 28.1 0 1.43 0.00 25.6 0 1.39 0.00 17.1 0 1.15 0.00 14.6 0 1.34 0.00 34.2 0 1.65 0.00
4 28.8 1.54 1.58 0.03 27.0 0.39 1.61 0.00 15.1 1.03 1.19 0.00 23.7 2.31 1.50 0.00 45.0 1.86 1.84 0.02
8 33.7 2.94 1.66 0.03 32.9 2.94 1.70 0.07 28.7 4.31 1.50 0.05 33.7 2.58 1.62 0.09 48.7 2.19 2.06 0.05
16 38.7 3.3 1.77 0.07 35.1 1.61 1.78 0.08 28.1 2.23 1.54 0.07 37.3 2.89 1.77 0.04 50.1 1.46 2.09 0.05
32 45.2 1.86 1.86 0.05 39.4 2.3 1.73 0.09 28.3 2.06 1.47 0.07 40.5 3.44 1.76 0.06 49.5 1.18 2.11 0.06
64 46.6 3.58 1.82 0.10 41.3 2.72 1.77 0.07 29.0 3.76 1.33 0.08 43.8 3.22 1.83 0.07 51.1 2.96 2.02 0.06

128 46.7 2.76 1.87 0.09 38.2 2.82 1.66 0.11 32.0 3.44 1.47 0.08 43.5 2.7 1.83 0.05 54.3 3.51 2.04 0.08
BR0 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 34.2 0 1.58 0.00 29.3 0 1.45 0.00 28.1 0 1.28 0.00 30.5 0 1.49 0.00 40.2 0 1.49 0.00
4 41.5 0 1.85 0.00 36.7 1.77 1.68 0.02 30.6 0.39 1.49 0.01 39.8 1.03 1.73 0.01 40.1 1.07 1.76 0.01
8 43.7 0.77 1.81 0.04 38.5 2.17 1.84 0.04 31.3 2.93 1.65 0.02 39.3 1.5 1.89 0.04 44.6 1.54 1.90 0.02
16 42.7 2.15 2.05 0.04 43.1 2.51 2.04 0.07 38.3 1.65 1.80 0.06 42.7 1.63 1.94 0.04 47.1 1.92 2.14 0.05
32 42.3 2.88 1.98 0.09 41.7 2.92 1.93 0.07 36.0 4.54 1.77 0.08 39.4 3.2 1.80 0.05 47.3 1.8 2.08 0.05
64 38.7 3.15 1.67 0.09 41.0 3.11 1.62 0.05 33.5 2.77 1.47 0.06 40.4 2.96 1.57 0.06 46.8 1.65 1.75 0.04

128 33.8 2.88 1.24 0.05 32.7 2.92 1.23 0.06 28.8 3.36 1.09 0.05 32.7 1.5 1.08 0.07 37.8 2.44 1.33 0.03
BR0 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 36.6 0 1.53 0.00 28.1 0 1.48 0.00 24.4 0 1.37 0.00 29.3 0 1.50 0.00 28.1 0 1.51 0.00
4 40.2 0 1.64 0.00 32.9 0 1.53 0.00 25.5 0.39 1.38 0.01 30.5 0 1.55 0.01 36.5 0.39 1.57 0.00
8 42.6 0.39 1.72 0.00 34.6 1.18 1.62 0.02 31.0 1.54 1.49 0.04 38.8 0.77 1.62 0.01 40.2 1 1.67 0.01
16 43.2 2.77 1.76 0.05 34.0 2.9 1.71 0.18 33.3 1.73 1.64 0.14 37.7 1.57 1.86 0.17 41.1 1.91 1.77 0.09
32 44.8 2.44 2.08 0.08 38.7 3.1 1.93 0.05 32.7 2.14 1.76 0.03 39.5 2.01 2.02 0.03 41.1 1.41 2.01 0.03
64 41.7 3.19 1.95 0.03 42.0 2.58 1.86 0.03 36.3 2.14 1.71 0.04 42.9 3.24 1.94 0.04 44.6 2.17 1.93 0.03

128 41.2 4.37 1.95 0.04 42.1 2.52 1.83 0.02 42.7 2.07 1.68 0.03 40.9 2.46 1.88 0.03 48.9 1.34 1.90 0.02
BR0 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 26.8 0 1.64 0.00 22.0 0 1.26 0.00 17.1 0 1.22 20.7 0 1.34 26.8 0 1.44 0.00
4 30.5 0 1.74 0.00 24.6 3.09 1.40 0.06 19.0 2.24 1.34 0.04 27.4 1.32 1.48 0.01 30.1 0.59 1.60 0.03
8 29.2 0.9 1.82 0.04 29.3 2.51 1.52 0.05 21.2 1.18 1.32 0.02 28.2 0.39 1.57 0.00 34.3 1.34 1.68 0.03
16 40.7 2.83 1.95 0.06 34.3 2.78 1.62 0.05 25.4 2.49 1.38 0.07 37.0 2.57 1.64 0.03 38.3 2.45 1.81 0.04
32 40.9 2.39 1.69 0.10 36.0 1.65 1.42 0.04 22.9 2.36 1.09 0.04 41.5 2.23 1.48 0.04 41.0 3.21 1.55 0.04
64 24.2 2.21 1.08 0.06 21.5 2.01 0.86 0.04 10.9 2.66 0.50 0.06 27.3 2.65 0.99 0.06 21.5 2.01 0.91 0.04

128 12.8 3.46 0.46 0.10 12.2 1.82 0.35 0.08 4.8 2.54 0.06 0.05 16.2 4.15 0.44 0.08 12.0 2.62 0.32 0.05
BR0 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 78.2 1.77 3.34 0.00 73.7 3.05 3.49 0.02 67.8 1.18 3.40 0.02 76.6 1.26 3.52 0.00 81.3 0.82 3.62 0.01
4 76.8 0 3.33 0.00 76.8 0.81 3.46 0.00 69.4 0.39 3.31 0.00 77.9 0.39 3.45 0.00 78.1 0 3.51 0.00
8 83.5 2.32 3.51 0.06 87.1 1.92 3.79 0.03 82.1 1.41 3.56 0.05 86.5 1.95 3.75 0.05 89.3 1.26 3.79 0.03
16 85.5 1.86 3.59 0.11 87.6 2.06 3.59 0.04 83.9 1.5 3.41 0.13 85.6 1.89 3.54 0.13 90.0 2.21 3.73 0.08
32 – – – – – – – – – – – – – – – – – – – –
64 – – – – – – – – – – – – – – – – – – – –

128 – – – – – – – – – – – – – – – – – – – –

Table A.4: Rank-1 ratio and decidability performance regarding BR0 setup images.



66 Results

BF0 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 30.5 0 1.78 0.00 32.9 0 1.88 0.00 29.3 0 1.81 0.00 25.6 0 1.96 0.00 42.7 0 2.06 0.00
4 40.1 0.39 2.05 0.00 37.8 0 2.06 0.00 31.1 0.64 1.88 0.04 31.7 0 2.14 0.00 50.7 0.63 2.32 0.02
8 36.1 2.65 2.10 0.04 35.6 3.14 2.09 0.01 33.5 3.31 1.84 0.01 34.3 1.21 2.11 0.05 53.5 2.96 2.30 0.04

16 45.6 3.21 2.27 0.12 41.2 2.14 2.16 0.07 37.1 2.77 1.96 0.04 39.5 2.31 2.19 0.05 60.1 3.4 2.42 0.07
32 49.2 2.64 2.15 0.05 51.6 4.15 2.30 0.05 39.6 1.93 1.88 0.04 49.5 1.92 2.20 0.04 63.1 1.91 2.39 0.05
64 48.5 2.14 1.93 0.06 50.2 4.02 2.02 0.07 39.2 3.07 1.82 0.08 50.4 2.08 2.06 0.09 55.6 4.07 2.17 0.05
128 45.2 3.37 1.72 0.05 46.2 2.78 1.84 0.07 36.2 2.37 1.54 0.06 40.5 2.43 1.79 0.09 50.2 2.98 1.95 0.04
BF0 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 18.3 0 1.30 0.00 19.5 0 1.25 0.00 14.6 0 1.18 0.00 17.1 0 1.26 0.00 17.1 0 1.27 0.00
4 26.8 2.15 1.34 0.07 30.9 1.41 1.36 0.02 20.0 3.78 1.31 0.03 28.7 3.6 1.36 0.02 30.4 1.34 1.38 0.02
8 30.5 3.81 1.42 0.13 29.4 1.86 1.40 0.06 25.4 2.14 1.38 0.12 29.6 2.44 1.41 0.08 31.2 1.54 1.45 0.06

16 33.9 1.89 1.61 0.11 30.7 1.89 1.55 0.10 30.4 2.78 1.52 0.08 34.0 1.07 1.63 0.10 33.8 1.82 1.63 0.04
32 38.1 2.75 1.77 0.09 32.0 2.14 1.70 0.06 31.1 2.01 1.59 0.06 34.8 2.17 1.72 0.06 35.6 0.96 1.75 0.04
64 34.8 1.75 1.85 0.04 32.3 2.17 1.74 0.03 30.2 2.49 1.67 0.06 33.9 2.06 1.84 0.04 36.8 1.38 1.84 0.03
128 31.0 1.18 1.80 0.06 32.9 2.44 1.63 0.05 28.1 2.3 1.57 0.04 32.2 2.31 1.73 0.05 34.8 1.65 1.74 0.04
BF0 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 36.6 0 1.53 0.00 28.1 0 1.48 0.00 24.4 0 1.37 0.00 29.3 0 1.50 0.00 28.1 0 1.51 0.00
4 40.0 0.77 1.65 0.03 33.3 1.16 1.53 0.00 26.5 2.7 1.39 0.03 30.5 0 1.56 0.00 37.2 1.55 1.58 0.01
8 42.5 0.39 1.72 0.00 34.8 1.19 1.61 0.03 31.7 0 1.51 0.00 38.9 0.9 1.62 0.02 40.5 0.77 1.67 0.01

16 40.5 4.37 1.78 0.08 36.2 3.04 1.88 0.12 34.6 3.31 1.62 0.15 38.2 2.51 1.90 0.17 39.9 1.53 1.83 0.05
32 43.9 1.82 2.09 0.05 37.2 1.75 1.94 0.03 33.2 2.21 1.77 0.03 40.0 1.8 2.02 0.04 39.9 1.29 2.02 0.02
64 41.8 2.99 1.96 0.04 41.7 1.5 1.85 0.03 36.1 2.09 1.71 0.04 42.4 2.75 1.95 0.04 43.9 2.15 1.93 0.02
128 40.4 2.11 1.96 0.03 42.6 2.84 1.84 0.03 41.7 2.21 1.67 0.03 41.8 2.99 1.88 0.05 47.7 1.46 1.91 0.01
BF0 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 20.7 0 1.14 0.00 18.3 0 1.04 0.00 19.5 0 1.04 0.00 17.1 0 1.06 0.00 22.0 0 1.08 0.00
4 31.7 0 1.28 0.00 23.2 0 1.20 0.00 29.3 0 1.25 0.00 26.8 0 1.21 0.00 31.7 0 1.27 0.00
8 28.4 4.74 1.28 0.07 29.8 2.38 1.30 0.02 33.7 1.18 1.28 0.01 30.2 2.06 1.36 0.00 35.6 1.89 1.33 0.02

16 41.8 1.29 1.70 0.06 33.1 1.07 1.55 0.03 33.4 2.17 1.50 0.03 36.6 1.29 1.55 0.04 38.9 1.77 1.64 0.02
32 38.1 2.29 1.59 0.03 34.6 1.74 1.48 0.02 31.8 1.67 1.41 0.03 37.4 1.16 1.47 0.03 37.7 1.07 1.55 0.01
64 30.7 2.06 1.47 0.05 32.8 1.46 1.26 0.02 27.7 2.08 1.12 0.04 34.4 1.61 1.28 0.02 32.2 1.03 1.34 0.03
128 12.8 3.51 0.81 0.03 13.1 1.41 0.60 0.04 8.7 3.01 0.50 0.05 11.8 2.51 0.65 0.03 12.6 1.41 0.67 0.03
BF0 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 54.9 0 2.90 0.00 64.6 0 3.11 0.00 53.7 0 2.71 0.00 65.9 0 3.13 0.00 58.5 0 3.13 0.00
4 57.9 1.19 2.96 0.05 64.8 3.12 2.89 0.16 49.3 1.18 2.49 0.05 64.4 1.97 2.91 0.06 60.7 0.77 3.03 0.09
8 56.2 1.46 3.01 0.04 63.3 1.21 3.35 0.04 60.8 2.14 2.95 0.08 65.2 1.04 3.27 0.03 67.2 2.03 3.37 0.04

16 63.5 3.12 2.81 0.03 72.3 2.88 3.21 0.03 67.8 4.31 2.96 0.04 72.8 3.68 3.15 0.04 77.6 1.92 3.24 0.02
32 – – – – – – – – – – – – – – – – – – – –
64 – – – – – – – – – – – – – – – – – – – –
128 – – – – – – – – – – – – – – – – – – – –

Table A.5: Rank-1 ratio and decidability performance regarding BF0 setup images.
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CR0 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 24.7 0 1.69 0.00 18.3 0 1.39 0.00 19.4 0 1.47 0.00 25.8 0 1.58 0.00 34.4 0 1.87 0.00
4 25.8 2.87 1.75 0.01 28.9 2.24 1.61 0.03 24.1 4.31 1.66 0.05 32.5 1.42 1.72 0.02 41.1 1.81 2.08 0.03
8 35.5 3.12 1.84 0.04 32.5 3.28 1.80 0.04 25.1 2.33 1.80 0.05 35.6 3.3 1.84 0.06 47.3 2.87 2.25 0.03
16 37.9 3.58 1.96 0.08 41.1 3.58 1.88 0.06 35.6 3.02 1.86 0.03 39.6 2.62 1.98 0.04 58.4 2.33 2.30 0.07
32 49.9 2.22 2.19 0.08 42.0 3.45 1.95 0.04 39.8 3.96 1.75 0.07 45.6 3.8 2.02 0.05 61.2 1.47 2.37 0.05
64 52.6 3.49 2.12 0.06 43.6 2.79 1.84 0.05 42.0 2.75 1.73 0.05 46.9 2.49 1.94 0.07 63.8 2.96 2.28 0.06

128 52.7 2.32 2.04 0.07 45.6 3.56 1.83 0.06 40.2 1.98 1.63 0.07 49.9 2.74 1.89 0.07 64.7 2.37 2.18 0.06
CR0 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 21.5 0 1.41 0.00 19.4 0 1.35 0.00 21.5 0 1.27 0.00 16.1 0 1.36 0.00 20.4 0 1.40 0.00
4 24.8 1.38 1.59 0.04 19.4 1.6 1.49 0.02 20.7 1.42 1.40 0.00 20.5 2.4 1.50 0.03 21.8 1.35 1.57 0.01
8 30.3 2.42 1.71 0.10 21.3 2.2 1.59 0.02 24.4 1.35 1.46 0.06 25.3 2.65 1.63 0.06 28.5 1.36 1.69 0.04
16 32.4 2.7 1.78 0.06 24.7 2.09 1.63 0.04 25.4 1.04 1.43 0.04 28.4 2.74 1.63 0.03 30.8 1.91 1.73 0.03
32 33.0 1.44 1.82 0.08 27.3 3.09 1.80 0.09 26.0 3.39 1.47 0.07 29.5 1.84 1.80 0.05 32.0 1.32 1.85 0.05
64 35.8 1.76 1.72 0.06 31.9 2.73 1.69 0.03 25.5 2.38 1.38 0.05 31.2 1.76 1.64 0.06 37.2 1.84 1.75 0.04

128 30.0 2.7 1.33 0.05 30.8 2.74 1.30 0.07 24.3 2.54 0.97 0.05 27.5 3.66 1.35 0.04 32.9 1.91 1.32 0.03
CR0 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 28.0 0 1.62 0.00 27.7 2.14 1.65 0.01 19.4 0 1.53 0.00 28.3 1.02 1.56 0.00 30.4 0.73 1.69 0.01
4 34.4 4.39 1.90 0.08 36.5 1.93 1.88 0.03 25.5 1.61 1.66 0.09 33.9 1.27 1.85 0.05 36.1 1.91 1.93 0.04
8 35.8 1.9 1.95 0.06 35.0 1.04 1.90 0.03 28.7 2.21 1.67 0.03 35.3 1.5 1.77 0.03 38.5 1.95 1.97 0.03
16 41.3 2.1 2.06 0.05 40.7 2.47 1.96 0.07 33.0 3.33 1.71 0.05 42.2 2.47 1.90 0.07 44.2 2.47 2.04 0.04
32 44.6 2.34 2.03 0.10 43.1 2.29 1.90 0.06 34.8 3.41 1.65 0.12 44.8 2.09 1.84 0.08 46.0 1.81 2.00 0.06
64 45.1 3.14 1.90 0.05 42.9 1.79 1.74 0.05 36.5 1.93 1.57 0.05 45.1 2.06 1.75 0.04 49.4 1.38 1.89 0.02

128 40.8 2.61 1.41 0.03 38.5 2.52 1.36 0.05 33.1 2.31 1.21 0.03 40.0 2.08 1.47 0.04 44.2 2.22 1.44 0.02
CR0 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 24.7 0 1.01 0.00 21.4 0.34 0.99 0.00 20.4 0 0.94 0.00 18.3 0 0.92 0.00 21.5 0 1.04 0.00
4 29.7 0.56 1.27 0.11 18.9 0.91 1.03 0.06 17.5 0.52 1.08 0.01 20.4 0 1.34 0.00 24.2 0.76 1.20 0.06
8 31.6 0.75 1.52 0.19 24.7 0 1.33 0.03 20.7 0.45 1.20 0.06 25.2 1.54 1.28 0.22 26.9 1.13 1.45 0.06
16 36.5 2.24 1.46 0.08 30.2 2.98 1.38 0.08 25.4 1.91 1.30 0.06 29.9 2.37 1.49 0.07 31.9 1.35 1.48 0.05
32 37.2 1.26 1.31 0.03 27.1 1.81 1.30 0.03 24.5 1.81 1.12 0.03 30.0 2.06 1.26 0.03 30.7 1.62 1.35 0.03
64 22.3 7.14 0.80 0.29 22.2 8.22 0.86 0.33 14.3 5.81 0.69 0.29 19.7 8.74 0.80 0.36 20.7 7.38 0.87 0.33

128 – – – – – – – – – – – – – – – – – – – –
CR0 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 66.7 2.27 2.70 0.02 67.9 1.56 2.76 0.00 66.8 0 2.85 0.00 68.8 0 2.74 0.00 70.1 0.45 2.87 0.01
4 63.4 0 2.80 0.00 65.6 0 2.85 0.00 68.8 0 2.97 0.00 68.6 0.45 2.82 0.00 68.8 0 2.96 0.00
8 74.7 1.04 2.91 0.07 74.4 0.85 3.11 0.11 77.2 1.5 3.14 0.07 75.8 2.39 3.06 0.13 77.1 1.44 3.15 0.06
16 71.9 1.93 2.77 0.05 71.8 2.01 2.81 0.10 76.3 1.68 2.95 0.08 73.2 1.64 2.87 0.12 77.9 1.26 2.95 0.07
32 – – – – – – – – – – – – – – – – – – – –
64 – – – – – – – – – – – – – – – – – – – –

128 – – – – – – – – – – – – – – – – – – – –

Table A.6: Rank-1 ratio and decidability performance regarding CR0 setup images.
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CR1 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 61.3 0 3.01 0.00 59.1 0 2.78 0.00 43.0 0 2.36 0.00 54.8 0 2.62 0.00 77.4 0 3.41 0.00
4 69.0 3.58 3.23 0.06 75.9 5.44 3.25 0.17 51.5 2.18 2.62 0.01 73.7 1.7 3.04 0.08 84.1 2.08 3.75 0.07
8 79.5 2.4 3.58 0.05 78.7 2.2 3.33 0.12 63.0 3.52 2.86 0.06 74.5 1.9 3.25 0.06 88.8 1.84 3.82 0.07
16 87.4 1.61 4.01 0.07 84.4 1.91 3.51 0.06 71.3 0.89 3.05 0.05 82.6 1.32 3.54 0.05 92.9 1.26 4.00 0.06
32 88.4 1.32 3.93 0.11 88.5 1.44 3.57 0.07 72.3 2.52 3.15 0.08 86.7 1.62 3.61 0.10 93.9 1.25 3.94 0.04
64 88.3 1.99 3.53 0.08 88.1 1.99 3.34 0.10 75.9 2.92 2.98 0.07 85.9 1.79 3.33 0.07 93.0 1.98 3.59 0.06
128 87.9 2.03 3.30 0.10 86.7 2.16 3.08 0.04 77.2 1.59 2.86 0.05 86.3 3.13 3.09 0.06 93.6 1.43 3.33 0.04
CR1 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 45.2 0 1.81 0.00 43.0 0 1.72 0.00 34.4 0 1.74 0.00 43.0 0 1.71 0.00 48.4 0 1.82 0.00
4 50.5 0 1.97 0.00 41.9 0 1.94 0.00 45.6 2.79 2.05 0.06 51.1 1.77 1.91 0.04 55.7 1.74 2.07 0.02
8 59.3 1.29 2.36 0.02 57.2 0.68 2.27 0.03 52.4 1.44 2.36 0.13 56.1 1.42 2.21 0.05 62.3 1.64 2.46 0.04
16 57.1 2.56 2.36 0.04 63.3 3.34 2.40 0.04 58.1 1.9 2.44 0.06 58.5 2.44 2.35 0.09 65.5 1.56 2.56 0.03
32 60.4 1.88 2.53 0.08 64.0 2.6 2.51 0.05 61.0 2.49 2.49 0.04 61.9 2.44 2.48 0.08 68.4 1.91 2.71 0.05
64 60.9 2.39 2.35 0.05 64.1 2.16 2.33 0.05 58.5 1.7 2.27 0.04 61.4 2.24 2.32 0.07 69.1 1.35 2.49 0.03
128 58.5 3.59 1.96 0.04 58.8 2.59 1.92 0.05 57.9 3.35 1.80 0.06 56.8 2.37 1.94 0.03 68.4 2.33 2.05 0.03
CR1 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 48.4 0 2.03 0.00 48.4 0 1.99 0.00 45.2 0 2.05 0.00 46.2 0 1.93 0.00 55.9 0 2.10 0.00
4 59.6 2.39 2.63 0.07 59.7 1.7 2.41 0.01 57.1 0.34 2.50 0.00 55.0 0.34 2.40 0.08 66.1 0.91 2.56 0.03
8 65.6 0 2.53 0.00 66.2 0.91 2.59 0.04 62.2 0.68 2.60 0.06 64.7 0.68 2.50 0.02 68.6 0.45 2.71 0.03
16 67.1 2.28 2.54 0.03 64.3 1.67 2.62 0.02 65.1 1.16 2.77 0.05 65.0 0.91 2.44 0.04 71.1 1.47 2.79 0.02
32 64.6 1.38 2.46 0.07 67.2 2.04 2.55 0.04 64.6 1.72 2.53 0.03 66.2 2.39 2.46 0.04 72.6 1.27 2.65 0.04
64 69.0 2.52 2.26 0.04 67.6 1.72 2.24 0.04 63.9 1.7 2.19 0.07 68.4 1.91 2.23 0.03 73.1 1.43 2.34 0.03
128 67.5 3.39 2.02 0.05 64.3 2.86 1.90 0.04 58.2 2.45 1.69 0.03 69.4 2.28 2.02 0.05 71.2 1.95 1.96 0.03
CR1 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 37.6 0 1.65 0.00 34.4 0 1.48 0.00 37.6 0 1.52 0.00 35.5 0 1.45 0.00 41.9 0 1.60 0.00
4 38.7 2.78 1.83 0.02 37.6 0 1.91 0.10 40.9 0 2.03 0.00 37.6 0 1.63 0.02 42.2 0.45 2.03 0.06
8 46.3 0.34 2.03 0.01 47.0 3.69 1.94 0.04 41.8 1.29 1.85 0.03 44.2 1.29 1.86 0.04 52.4 1.44 2.05 0.02
16 56.0 1.56 2.10 0.03 51.2 1.98 2.04 0.02 49.7 2.14 1.91 0.05 49.5 1.24 1.99 0.05 54.7 1.38 2.18 0.03
32 55.8 3.91 1.86 0.04 51.2 2.44 1.83 0.06 48.5 2.66 1.65 0.03 52.6 2.51 1.80 0.06 55.8 1.38 1.94 0.03
64 42.8 3.32 1.34 0.03 36.3 2.95 1.29 0.05 32.2 2.24 1.12 0.04 43.3 1.97 1.32 0.03 39.3 2.28 1.37 0.02
128 – – – – – – – – – – – – – – – – – – – –
CR1 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 71.5 0.57 3.17 0.00 75.3 0 3.42 0.00 77.9 0.56 3.52 0.00 71.0 0 3.40 0.00 75.3 0 3.44 0.00
4 71.0 0 3.32 0.01 74.6 1.26 3.41 0.07 81.8 1.29 3.58 0.01 74.2 1.43 3.48 0.06 77.4 0 3.54 0.02
8 83.4 0.91 3.74 0.06 82.5 1.67 3.91 0.07 82.6 1.67 3.87 0.04 83.2 3.17 3.86 0.04 85.7 0.73 4.00 0.03
16 86.1 1.72 3.60 0.07 85.5 1.27 3.73 0.15 86.6 1.36 3.56 0.13 86.3 1.35 3.76 0.12 87.5 0.75 3.78 0.06
32 87.1 2.53 3.20 0.11 87.5 1.36 3.43 0.14 88.4 1.22 3.38 0.08 88.1 1.64 3.41 0.10 89.1 1.56 3.48 0.09
64 – – – – – – – – – – – – – – – – – – – –
128 – – – – – – – – – – – – – – – – – – – –

Table A.7: Rank-1 ratio and decidability performance regarding CR1 setup images.
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DR0 SIFT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 24.0 0 1.26 0.00 20.0 0 1.33 0.00 12.0 0 1.14 0.00 24.0 0 1.31 0.00 29.3 0 1.57 0.00
4 27.9 2.03 1.53 0.06 28.0 2.95 1.49 0.05 17.5 2.03 1.26 0.04 29.6 0.56 1.53 0.04 38.3 2.18 1.84 0.04
8 31.9 4.19 1.62 0.07 33.6 3.65 1.60 0.09 21.7 3.21 1.38 0.08 34.1 3.45 1.60 0.06 42.7 3.01 1.94 0.06
16 40.9 3.08 1.70 0.06 34.8 1.72 1.66 0.08 26.4 3.31 1.43 0.07 36.4 4.17 1.70 0.09 46.3 2.6 2.01 0.05
32 39.7 3.49 1.79 0.07 37.3 2.95 1.70 0.07 26.8 2.31 1.41 0.09 38.9 4.74 1.78 0.07 45.2 2.39 2.01 0.06
64 38.5 2.47 1.79 0.11 36.4 2.36 1.61 0.12 27.9 5.35 1.29 0.16 39.7 4.35 1.69 0.09 46.9 3.54 1.93 0.09

128 35.9 4.42 1.70 0.09 36.1 2.84 1.58 0.09 25.9 3.34 1.23 0.09 38.0 4.41 1.64 0.07 45.9 2.68 1.85 0.05
DR0 HOG-DT
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 25.3 0 1.75 0.00 24.0 0 1.79 0.00 18.7 0 1.73 0.00 24.0 0 1.82 0.00 29.3 0 1.86 0.00
4 38.7 0 1.92 0.00 28.0 0 1.99 0.00 28.0 0 1.91 0.00 30.7 0 2.03 0.00 37.3 0 2.12 0.00
8 40.0 0.63 1.93 0.04 25.3 0.63 1.97 0.04 28.7 1.81 2.02 0.05 34.4 2.5 2.00 0.06 36.8 1.57 2.16 0.03
16 45.1 3.07 2.07 0.05 32.3 2.16 1.98 0.06 29.9 1.91 2.00 0.04 35.9 2.98 1.98 0.03 40.9 2.36 2.26 0.03
32 42.1 3.88 1.79 0.08 35.3 3.1 1.81 0.09 30.9 3.31 1.76 0.07 39.9 3.74 1.89 0.06 47.1 2.09 2.03 0.06
64 37.9 3.22 1.37 0.03 31.5 3.68 1.40 0.07 28.0 2.74 1.47 0.07 32.8 3.16 1.40 0.06 44.4 3.45 1.62 0.01

128 22.9 2.65 0.86 0.04 17.2 2.77 0.80 0.07 17.2 2.31 0.86 0.07 17.3 2.08 0.92 0.06 24.5 1.57 0.99 0.04
DR0 HOG-F
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 40.0 0 2.21 0.00 42.7 0 2.10 34.7 0 1.95 0.00 41.6 0 2.16 0.02 48.0 0.84 2.24 0.00
4 45.3 2.81 2.34 0.06 41.1 2.87 2.23 0.10 36.9 3.98 2.03 0.02 46.4 1.05 2.24 0.07 51.3 1.69 2.39 0.04
8 46.8 8.01 2.34 0.05 40.0 2.95 2.15 0.12 41.2 0.42 2.02 0.02 43.3 3.22 2.18 0.08 51.2 0.93 2.35 0.08
16 49.1 1.38 2.29 0.03 42.0 4.88 2.21 0.04 42.7 3.82 2.22 0.04 43.6 3.27 2.31 0.04 53.1 2.25 2.44 0.04
32 52.4 2.44 1.99 0.03 44.3 1.97 2.15 0.05 42.4 3.54 2.01 0.05 52.7 2.69 2.25 0.05 52.9 1.78 2.27 0.04
64 43.1 3.39 1.58 0.04 42.7 3.5 1.69 0.06 32.4 2.6 1.38 0.06 44.0 2.27 1.65 0.06 52.8 2.53 1.75 0.04

128 34.1 3.03 1.01 0.04 25.7 2.44 0.98 0.07 18.4 1.86 0.80 0.06 30.1 3.73 1.08 0.06 32.5 3.94 1.07 0.04
DR0 ULBP
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 33.3 0 1.75 25.3 0 1.58 22.7 0 1.36 38.7 0 1.63 0.00 33.3 0 1.65 0.00
4 33.6 1.38 1.78 0.00 31.3 3.22 1.61 0.03 25.5 1.6 1.41 0.02 34.7 0 1.65 0.00 35.2 2.28 1.70 0.02
8 43.1 2.67 1.89 0.05 41.5 2.7 1.69 0.05 31.1 1.1 1.47 0.04 46.5 0.42 1.74 0.01 47.2 2.1 1.81 0.02
16 45.5 2.31 1.61 0.07 43.9 2.7 1.57 0.07 34.5 4.33 1.36 0.09 45.6 2.33 1.56 0.06 51.7 3.65 1.67 0.04
32 26.8 4.38 1.13 0.06 22.9 2.42 1.06 0.04 19.2 3.28 0.92 0.05 35.3 3.34 1.19 0.06 23.7 2.8 1.18 0.04
64 13.1 4.61 0.63 0.10 13.6 2.65 0.66 0.10 12.8 3.03 0.52 0.09 17.7 3.27 0.77 0.10 14.9 3.76 0.73 0.08

128 – – – – – – – – – – – – – – – – – – – –
DR0 GIST
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
2 65.3 0 2.61 0.00 70.7 0 2.80 0.00 61.3 0 2.86 0.00 68.0 0 2.75 0.00 74.7 0 2.86 0.00
4 75.6 0.64 2.50 0.00 76.0 0 2.82 0.00 69.3 0 2.72 0.01 73.3 0 2.72 0.00 80.0 0 2.74 0.00
8 78.1 2.2 2.56 0.09 77.5 0.76 2.80 0.04 73.9 1.43 2.80 0.02 78.4 1.51 2.77 0.07 81.6 1.97 2.78 0.05
16 75.2 1.12 2.82 0.21 77.9 2.01 2.88 0.18 72.1 1.47 2.85 0.12 78.4 0.84 2.84 0.15 79.9 1.47 2.98 0.09
32 – – – – – – – – – – – – – – – – – – – –
64 – – – – – – – – – – – – – – – – – – – –

128 – – – – – – – – – – – – – – – – – – – –

Table A.8: Rank-1 ratio and decidability performance regarding DR0 setup images.

k = 16 Full CSIP Dataset
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
SIFT 36.2 0.94 2.15 0.02 35.2 1.29 2.13 0.01 32.4 0.43 2.02 0.02 38.5 0.61 2.15 0.01 46.7 0.51 2.47 0.01
GIST 70.4 0.31 3.18 0.04 71.8 0.8 3.25 0.05 70.8 0.14 3.21 0.05 72.1 0.91 3.25 0.05 73.1 0.33 3.34 0.04
ULBP 36.1 0.54 1.97 0.03 30.1 1.33 1.73 0.07 30.8 0.59 1.82 0.03 31.8 1.32 1.83 0.03 36.4 0.37 1.99 0.01

HOG-DT 24.8 1.21 1.42 0.02 21.8 0.46 1.38 0.05 21.2 0.84 1.36 0.04 22.7 0.82 1.36 0.05 24.9 0.65 1.45 0.01
HOG-F 29.8 0.33 1.51 0.03 24.1 0.6 1.39 0.03 24.4 0.58 1.41 0.01 25.8 0.49 1.40 0.04 28.7 0.27 1.49 0.01

Table A.9: Rank-1 ratio and decidability performance regarding Full CSIP dataset for 16-mixture GMM.



70 Results

k = 16 MoBIAC - Periocular Region - Full Dataset
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
SIFT 32.5 16.81 1.92 0.99 29.4 15.26 1.83 0.95 20.9 10.85 1.54 0.80 33.9 17.52 1.87 0.97 38.9 20.11 2.22 1.15
ULBP 24.3 1.32 0.86 0.04 18.8 1.16 0.77 0.05 15.9 1.57 0.69 0.05 19.6 2.79 0.77 0.07 27.0 1.29 0.92 0.02

HOG-DT 18.5 1.89 1.12 0.04 19.1 0.93 1.13 0.03 14.4 1.68 1.07 0.01 16.7 1.17 1.13 0.03 22.9 1.63 1.31 0.03
HOG-F 30.3 1.03 1.42 0.02 28.4 1.29 1.50 0.01 21.6 0.74 1.26 0.03 25.3 1.52 1.50 0.02 32.0 0.86 1.60 0.01
GIST 59.7 1.3 2.71 0.03 50.9 1.44 2.53 0.07 45.8 1.87 2.24 0.09 56.5 0.89 2.81 0.07 57.5 1.76 2.70 0.03
k = 16 MoBIAC - Periocular Region - African Samples

10 R G B Gray RGB
R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec

SIFT 30.4 1.88 1.55 0.09 25.0 3.26 1.35 0.11 19.9 3.14 1.09 0.02 30.4 1.88 1.47 0.02 37.7 3.32 1.74 0.08
ULBP 22.8 3.26 0.73 0.09 25.7 2.83 0.56 0.05 12.4 2.5 0.49 0.12 20.4 1.42 0.59 0.09 28.5 3.8 0.72 0.03

HOG-DT 25.7 2.83 0.87 0.16 19.1 2.94 0.89 0.03 18.9 1.97 0.80 0.10 18.0 2.25 0.88 0.02 25.4 2.94 1.03 0.10
HOG-F 30.4 2.31 1.09 0.10 21.5 3.3 0.99 0.05 20.7 4.92 0.96 0.05 24.4 1.46 1.06 0.07 34.4 1.97 1.17 0.06
GIST 57.0 2.38 2.32 0.08 51.3 1.42 2.25 0.10 42.2 2.09 1.86 0.08 56.1 0.97 2.57 0.06 56.7 1.19 2.38 0.03
k = 16 MoBIAC - Periocular Region - African Samples

10 R G B Gray RGB
R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec

SIFT 41.0 2.88 1.96 0.07 34.1 3.89 1.76 0.08 26.4 2.3 1.49 0.05 38.9 1.53 1.85 0.08 42.0 2.38 2.18 0.06
ULBP 29.7 5.29 0.88 0.10 26.6 3.59 0.80 0.11 23.8 4.02 0.71 0.08 32.9 2.63 0.84 0.09 35.8 1.78 0.99 0.02

HOG-DT 32.0 4.11 1.57 0.05 28.0 1.53 1.29 0.06 21.2 1.86 0.96 0.03 25.7 2.55 1.30 0.03 34.6 1.97 1.47 0.04
HOG-F 34.1 1.44 1.69 0.01 38.1 2.14 1.61 0.05 28.0 2.41 1.14 0.03 38.1 2.14 1.63 0.04 36.2 3.57 1.65 0.01
GIST 69.7 1.29 3.05 0.05 62.8 4.68 2.82 0.06 55.5 3.16 2.54 0.08 67.1 3.81 3.04 0.06 66.6 0.64 3.06 0.01

Table A.10: Rank-1 ratio and decidability performance regarding MoBIAC periocular region dataset with
respect to the full dataset and the two ethnicities groups for 16-mixture GMM.

k = 16 MoBIAC - Ear - Full Dataset
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
SIFT 42.6 1.33 2.03 0.04 37.5 1.27 1.82 0.05 31.7 1.4 1.47 0.05 38.8 1.68 1.84 0.05 48.4 0.76 2.06 0.05
ULBP 27.1 0.67 1.50 0.03 23.2 1.68 1.25 0.07 19.8 2 1.07 0.05 22.3 0.76 1.21 0.03 27.8 0.98 1.33 0.03

HOG-DT 36.6 1.68 1.66 0.07 27.1 1.68 1.44 0.05 25.6 1.05 1.30 0.03 26.4 1.27 1.40 0.08 33.2 0.96 1.53 0.04
HOG-F 36.3 1.17 1.87 0.03 33.1 1.28 1.69 0.01 26.6 2.09 1.56 0.05 31.2 0.52 1.58 0.02 36.1 1.12 1.78 0.03
GIST 86.4 0.76 3.97 0.15 85.6 1.21 4.03 0.10 77.1 1.51 3.69 0.10 85.4 0 3.96 0.10 84.8 0.58 4.09 0.03
k = 16 MoBIAC - Ear - African Samples

10 R G B Gray RGB
R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec

SIFT 44.0 3.01 1.85 0.07 40.5 1.91 1.52 0.04 32.6 2.73 1.13 0.09 38.4 1.16 1.65 0.05 46.7 1.52 1.71 0.05
ULBP 28.1 1.52 1.20 0.03 21.6 0.64 0.93 0.03 17.0 2.41 0.79 0.04 25.4 1.27 0.94 0.02 24.0 1.76 1.01 0.02

HOG-DT 28.6 1.76 1.25 0.05 21.9 2.24 1.06 0.03 17.2 0.52 0.82 0.02 18.6 2.47 1.00 0.07 23.5 2.24 1.08 0.02
HOG-F 33.3 2.8 1.44 0.02 27.2 1.33 1.19 0.04 20.7 2.08 0.91 0.05 25.8 0.52 1.14 0.02 28.4 2.92 1.23 0.03
GIST 84.4 1.04 3.25 0.11 81.6 1.91 3.15 0.06 67.9 1.76 2.87 0.04 82.8 3.62 3.16 0.11 79.5 2.41 3.24 0.02
k = 16 MoBIAC - Ear - Caucasian Samples

10 R G B Gray RGB
R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec

SIFT 46.1 3.76 1.99 0.06 45.4 3.18 1.99 0.06 36.2 3.26 1.63 0.06 44.2 3.39 2.03 0.05 56.9 2.71 2.22 0.05
ULBP 30.4 0.98 1.44 0.03 26.1 0.53 1.23 0.05 27.8 2.44 1.05 0.02 29.9 0.64 1.32 0.05 28.9 0.64 1.27 0.01

HOG-DT 50.8 2.55 1.79 0.06 37.4 4.11 1.60 0.07 33.7 3.87 1.46 0.03 38.8 4.63 1.45 0.05 44.9 3.05 1.70 0.03
HOG-F 51.3 1.78 2.05 0.03 45.9 2.2 1.98 0.03 41.9 2.44 1.73 0.04 42.8 1.58 1.82 0.04 53.2 2.26 1.99 0.02
GIST 95.3 0 4.71 0.12 93.4 0.64 4.58 0.11 93.2 0.53 4.42 0.08 93.2 0.98 4.44 0.11 93.9 0.53 4.87 0.05

Table A.11: Rank-1 ratio and decidability performance regarding MoBIAC ear dataset with respect to the
full dataset and the two ethnicities groups for 16-mixture GMM.
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k = 16 MoBIAC - Hand - Full Dataset
10 R G B Gray RGB

R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec
SIFT 29.8 1.95 1.43 0.05 30.0 1.82 1.52 0.13 25.1 1.59 1.37 0.06 30.8 1.39 1.52 0.05 37.6 0.96 1.69 0.04
ULBP 22.5 1.93 1.30 0.08 22.0 1.76 1.24 0.04 22.0 1.04 1.24 0.06 22.9 0.94 1.32 0.03 24.1 0.63 1.40 0.04

HOG-DT 23.3 1.04 1.25 0.03 25.1 1.82 1.39 0.04 18.9 1.7 1.28 0.06 21.4 2.12 1.33 0.05 25.2 1.13 1.41 0.03
HOG-F 20.8 0.53 1.27 0.07 18.1 1.46 1.34 0.07 12.8 0.53 1.24 0.07 16.2 0.57 1.32 0.04 16.6 0.53 1.36 0.03
GIST 56.8 2.26 2.42 0.03 64.4 2.26 2.81 0.05 59.1 1.59 2.64 0.02 62.5 1.58 2.80 0.03 61.4 1.27 2.74 0.01
k = 16 MoBIAC - Hand - African Samples

10 R G B Gray RGB
R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec

SIFT 37.4 3.78 1.53 0.08 39.5 5.97 1.61 0.11 29.0 3.8 1.37 0.05 37.7 3.69 1.52 0.05 51.3 3.95 1.77 0.08
ULBP 32.6 2.5 1.35 0.09 40.3 1.15 1.29 0.02 36.4 1.15 1.15 0.09 40.5 2.33 1.25 0.03 42.1 1.07 1.38 0.02

HOG-DT 32.8 3.91 1.47 0.13 38.5 2.03 1.54 0.05 29.7 1.4 1.38 0.07 36.9 5.08 1.56 0.07 38.7 1.4 1.57 0.03
HOG-F 25.4 2.78 1.15 0.07 23.9 1.46 1.29 0.07 17.2 1.46 1.10 0.02 24.1 2.11 1.37 0.07 24.1 1.07 1.26 0.04
GIST 73.9 0.7 3.16 0.07 82.6 1.94 3.58 0.10 79.2 1.67 3.46 0.10 81.3 1.46 3.45 0.12 80.8 0.91 3.57 0.07
k = 16 MoBIAC - Hand - Caucasian Samples

10 R G B Gray RGB
R1 % Dec R1 % Dec R1 % Dec R1 % Dec R1 % Dec

SIFT 27.3 2.05 1.04 0.05 28.5 2.24 1.12 0.05 27.3 1.85 1.04 0.08 31.8 4.01 1.23 0.08 34.3 1.9 1.31 0.07
ULBP 16.5 1.05 0.89 0.04 14.3 1.43 0.85 0.07 13.0 1.9 0.74 0.06 16.3 0.88 0.84 0.02 15.3 1.37 0.94 0.04

HOG-DT 17.5 1.25 0.57 0.07 17.3 1.05 0.62 0.07 15.8 1.68 0.46 0.04 17.8 1.85 0.54 0.06 21.8 1.12 0.59 0.03
HOG-F 18.0 0.68 0.47 0.02 10.3 0.56 0.44 0.03 9.3 0.68 0.28 0.00 13.5 0.56 0.47 0.04 11.5 1.37 0.42 0.01
GIST 46.3 2.34 1.95 0.03 62.0 2.74 2.50 0.08 55.0 1.53 2.26 0.07 58.5 4.45 2.42 0.03 56.3 1.98 2.44 0.05

Table A.12: Rank-1 ratio and decidability performance regarding MoBIAC hand dataset with respect to the
full dataset and the two ethnicities groups for 16-mixture GMM.
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