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Abstract

Institute of Mathematics, Physics and Computer Science

Department of Computer Science

Doctor of Philosophy

by Olalekan Adebayo Lanihun

Humans appear to solve complex vision tasks in an almost effortless manner, as compared

to their computer counterparts. One major reason for this is the intelligent cooperation

between the sensory and the motor system, which is facilitated by development of motor

skills that help to shape visual information that is relevant to a specific vision task. This

dynamic interaction of sensory-motor components in biological systems can be a great

inspiration to how artificial systems, such as robots could use their visual mechanism to

interacts with their world. In this thesis, we seek to explore an approach to active vision

inspired by biological evolution, which does not use a predefined framework or assump-

tions, but develops motor strategies for a given task through progressive adaptation of

the evolutionary method. Thus, this kind of approach will give freedom to artificial

systems in the discovery of eye movement strategies that may be useful to biological

systems but are not known to us. The contributions of this thesis are:

1. We used this type of active vision system for more complex images taken from the

camera of the iCub robot.

2. We demonstrated the effectiveness of the active vision system in a more realistic

setting for 3D object categorisation using the humanoid robot (iCub) platform.

3. We extended the applicability of the system to the 3D environment for indoor and

outdoor environment classification task using the iCub platform.

4. We extended the system with pre-processing using Uniform Local Binary Patterns

[1] in both 2D and 3D environment categorisation tasks.

5. We further extended the system with pre-processing using Histogram of Oriented

Gradients [2] for classification tasks in the 2D and 3D environments.
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Analysis of the results from the system shows that the model was able to complete

discrimination tasks through: (i) exploiting sensory-motor coordination to experience

sensory stimuli that facilitates the classification tasks; (ii) an indication of integration

of perceptual information over time.
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Chapter 1

Introduction

1.1 Research Background

Numerous studies have shown that action and perception cannot be separated and mu-

tually influence one another [6][7]. In other words the sensory patterns the environment

provides to an agent partially determines the agent’s motor actions and these motor

actions in turn, by modifying the environment, partially shape the type of sensory pat-

terns experienced. Similarly, various studies show that the human eye is constantly

searching for visual information mainly in the form of saccadic eye movement [8][9]

(Fig. 1.1). These saccadic eye movements are very important because humans possess a

very limited high-resolution vision at the fovea, covering the central two degrees of their

visual field and have increasingly lower resolution towards the periphery [8]. There is

therefore a need for intentional eye movements to perceive an area of interest in high res-

olution which enhances recognition capability [8]. This concept of dynamic interaction

between a biological agent and its visual environment, which underscores the importance

of cooperation of sensory-motor components in object perception may also be useful in

artificial systems. This is because such dynamic interactions allow the system to intelli-

gently determine the visual resources that are useful for a specific task and at the same

time avoid disruptive information, as such they facilitate their cognitive capacities. In

this thesis, we investigate an evolutionary approach to active vision ([10][11][12]), that

allows an agent to dynamically explore its visual environment through sensory-motor

coordination. This model does not use assumptions for eye movements (action strate-

gies); instead, the model progressively adapts to the visual task at hand. Also, it is

very important to clarify that we are not trying to model any natural vision system, but

our model shares the following properties with natural systems: (i) it is situated in an

environment and therefore its future outputs can be determined by its interaction with

1
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this environment; (ii) the tasks performed by our system are also performed by natural

agents, and as such similar strategies used by natural systems can be adapted by our

system for the same tasks.

This chapter is detailed as follows: Section 1.2 introduces the active vision models and

our evolutionary active vision model; this leads to our research questions in Section

1.3; in Section 1.4, we discuss our research methodology; in Section 1.5, we outline the

major contributions of the thesis and finally, in Section 1.6, we provide a summary of

the chapter.

Figure 1.1: Example of a saccadic eye movement of a person while scanning (image
from [3])

1.2 Active Vision

Active vision is the process of exploring a visual scene to obtain relevant features for

subsequent meaningful and intelligent processing. This is very important and very use-

ful in that visual systems usually have a form of control, and are intelligently guided to

only those areas of the image surface being processed that have relevant and valuable

information to the task at hand. Vision is not a passive process as has been known in

conventional computer vision [1][13][14], but is action dependent [15][16][17]. In most

traditional computer vision, the local image sample does not guide the scanning pro-

cess, but instead use an exhaustive search (e.g window sliding methods [18][19] and the
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constellation method [20]). However, research shows that the use of action in perception

can reduce the computational cost of vision tasks [21][22], and at the same time simplify

very difficult tasks [23][24]. Consequently, as action has been shown to be an integral

part of perception, the challenge in developing active vision models is finding intelligent

action strategies that will enhance the vision task at hand [25].

In some models the assumption made is that vision is an iterative process of state

estimation and the selection of relevant actions [26][27][28], however, in this work our

aim is to develop an active vision system that has the following properties: (i) it does

not make use of any kind of assumptions or predefined framework for its action strategy

(eye movement); and (ii) it does not need any kind of ground truth. This is because

such assumptions or ground truth may not allow the model to discover strategies that

are not known to us and may be existing in properties of biological agents. We have

therefore chosen an evolutionary adaptive model used in the field of evolutionary robotics

[29][30] for learning the control of the active vision. This technique does not make

use of assumptions or predefined frameworks for its action strategies (eye movements),

but delegates the matter to the adaptation process of the evolutionary method. It is

important to clarify here that it is not only evolutionary methods that can be used to

achieve this objective, other adaptive methods such as reinforcement learning [31][32]

can also be employed. However, we have chosen an evolutionary approach because of

the following inherent properties: firstly, it is a semi-supervised algorithm and therefore

can be used to model a system in which we know the goal but do not know the actions

strategies to achieve this goal, and as a result we can optimise the actions towards

achieving this task; secondly, because of its semi-supervised nature, it can find non-

greedy action strategies, in order to optimise the performance of the model towards the

final goal; and thirdly, multiple parts of the model can be optimised at the same time.

For instance, we can adapt the visual features and the controller for the active vision at

the same time (e.g. [33] and [34]).

Early research work on evolutionary active vision was used as a proof of concept. For

instance, an evolutionary algorithm was applied to a robot in [35], that had to approach

a triangle and avoid a rectangle, both drawn on the walls of the arena in which the

robot had to manoeuvre. In a similar fashion to [35], Kato and Floreano [24] used an

active vision model to discriminate between black squares and triangles in static images

corrupted by various amount of noise. However, later work involved more complex task.

For example, Nolfi and Marroco [12] developed an active system that guides a simple

robot placed in a rectangular environment and was able to use its camera for discrimi-

nating between different landmarks on the walls. An active vision system controlled by

an evolved recurrent neural network was developed by Morimoto and Ikegami [11] which

dynamically discriminates between rectangular and triangular objects. In this system
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when the agent moves through the environment it develops neural states which are not

just a symbolic representation of rectangles or triangles, but allow it to distinguish these

objects. Mirolli et al. [23] used an active vision system controlled by an evolved neural

network in categorising five handwritten italic letters at different scales. According to

Mirolli et al. [23], previous systems that used active categorisation perception were used

for fewer than five categories. Furthermore, Guido De Croon [25] also developed an ac-

tive vision system that used evolutionary adaptation for its eye movements. The system

was used for the classification of object images with category ranges from 25 to 100.

However, he mentions in his thesis that this model employed an explicit belief state in

determining the probabilities of the classes, which is not completely consistent with the

evolutionary robotics point of view that believe that the inner working of the classifica-

tion task should also be self-organised. According to Guido De Croon, the compromise

was made so that the model could be used in direct comparison with other existing

active vision models (probability models), which also employed an explicit belief update

in the object categorisation task. As such, his model is slightly different from our flavour

of active vision model and the previously mentioned active vision models that also used

a self-organising process for its classification task.

However, our work is different from the previously mentioned evolutionary approaches

in the following respects:

(i) We aim to show the plausibility of biological active vision systems in complex artifi-

cial systems using our evolutionary method for categorisation tasks. As such, we have

extended our method for categorisation to more realistic natural 2D images and to 3D

environment using a Humanoid robot platform.

(ii) We investigated two pre-processing techniques in computer vision, i.e. Histogram of

Oriented Gradients (HOG) [2] and Uniform Local Binary Patterns (ULBP) [1][36], so

as to show how active vision can be enhanced by low level processing [37][38][39].

Our goal, therefore in this thesis is to develop an active system that can work in com-

plex scenes and environments towards classification without the use of assumptions or

predefined frameworks for its action strategies (eye movements). In the next section, we

progress to the research questions for the thesis.

1.3 Research Questions

In this thesis we investigate the plausibility of evolutionary adaptive methods of control

for an active vision in complex environments and how they use their motor skills in

learning for classification. This, therefore leads us to the following research questions:
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1. Do evolutionary methods of control of active vision systems for categorisation work

in complex scenes and environments?

2. Can we make them work better e.g. with pre-processing techniques in computer

vision?

1.4 Research Methodology

In order to answer the research questions, we have used the research methodology as

follows.

Firstly, we did a thorough literature research on the existing active vision models to

gain insight into their theoretical properties. On the basis of this, we identified not only

their strengths and weaknesses, but also the ways in which these could be explored in

the larger context of fulfilling the goal of the thesis. Secondly, we chose an existing

evolutionary active vision system by Mirolli et al [23] as a bench-mark for our proposed

system. The decision to use this particular system as our bench-mark was based on the

following reasons:

1. The system uses an adaptive neural network controller, which shows its biological

plausibility and therefore is similar in principle to our proposed model in building

an abstraction of a human biological vision control.

2. The bench-mark system has all the inherent properties of current evolutionary

active vision systems in the literature, which exploits coordination of sensory-

motor information and/or with integration of experience sensory information over

time [10][24][25].

3. The system was also trained in a semi-supervised manner that used an evolutionary

optimised control system to improve a categorisation task.

4. The system was used for a complex categorisation task with a considerable number

of categories and level of variability as compared to previous evolutionary active

vision systems.

We used this benchmark system by Mirolli et al [23] for 2D static images as a proof

of concept and also to demonstrate how an active vision system could be enhanced by

low-level pre-processing techniques.

This was then extended to a 3D environment using the humanoid robot (iCub) platform,

so as to show the plausibility of our system in more complex robotic systems. The review
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of the literature is presented in Chapter 2, our methods and Gaze control framework

are presented in Chapter 3. In Chapter 4, we demonstrate the enhancement of an

active vision system with pre-processing techniques in 2D natural images using our

benchmark for object categorisation. In Chapter 5, we instantiate our gaze control

framework for object categorisation in 3D environment using the iCub robot simulator,

while in Chapter 6 the same platform was used for indoor and outdoor environment

classification. The reason for using these vision tasks for classification in our experiments

was because the tasks have different problem structures and therefore different sensory-

motor strategies are expected to be employed in the solving of these tasks. This will

thus give us a more objective and conclusive means to answer our research questions.

Finally, Chapter 7 gives a general discussion with conclusion on the research work and

suggested areas for future work.

1.5 Outline of Thesis Contributions

1. Our first contribution is the extension of an evolutionary active vision system for

object categorisation using more complex (natural) images taken from the camera

of the iCub robot. Our bench-mark Mirolli et al. [23], which to the best of our

knowledge has the largest number of categories in this type of active vision to date

was used for handwritten images (Chapter 4).

2. The extension of evolutionary control active vision for object categorisation in

a 3D environment (Chapter 5). Evolutionary active vision systems for object

categorisation to the best of our knowledge have only been used in 2D environments

(e.g [24][40]), mainly as a proof of concept. To gain a better insight into how this

might behave in the real world, we have tested an agent interacting with the 3D

environment using the coordination of sensory and motor information. This was

implemented with a humanoid robot (iCub) simulator platform.

3. We further proved the use of the evolutionary active vision system for 3D indoor

and outdoor environment classification using the humanoid robot platform (Chap-

ter 6). To our knowledge, no computational model has been used for indoor and

outdoor environment classification tasks on an humanoid robot platform until now.

Various computer vision models have been used for 2D indoor and outdoor im-

age classification for purposes such as categorisation and retrieval from databases

[41][42][43]. Others that have been used on the 3D platform were mainly for scene

categorisation of indoor or outdoor environments alone [44].

4. We extended the active vision system with pre-processing using Uniform Local

Binary Patterns (ULBP)[1] (Chapter 4, 5, 6). The novelty here is using ULBP
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originally developed by Ojala et al [1] as a pre-processing technique for the active

window. Previous active vision models used simple techniques for pre-processing,

such as average grey-scale values [23] and pixel sub-sampling [24]. We have taken

advantage of the uniforms patterns of the ULBP method as a texture representa-

tion that is robust in terms of monotonic grey-scale transformation and less prone

to noise [45]. This method has been shown to be a very good feature descrip-

tor in many recognition tasks in the computer vision literature, such as in face

recognition [46][47].

5. We further extended the active vision system with pre-processing using Histogram

of Oriented Gradients (HOG)[2] (Chapter 4, 5 and 6). It is known that the low-

level processing in the mammalian visual cortex makes use of gradient features

which enhances its capability in recognition tasks [48]. It has also been commonly

used in state of the art research works in computer vision especially that which

involves structure of objects using gradients features such as in human detection

[2][49] and object detection [50][51].

1.6 Chapter Summary

In this chapter we have discussed how an evolutionary active vision system does not use

assumptions for the eye action strategies, but allows dynamic interaction of the system

with its environment, and progressively adapts to a vision task. This gives the model

freedom in discovering the action strategies that may be vital for the success in humans

but are unknown to us.

However, evolutionary active vision systems have mostly been used in 2D categorisation

tasks. This thesis extends evolutionary active vision to more complex categorisation

tasks in 2D and 3D environments and enhances the categorisation capabilities with pre-

processing techniques in computer vision. In the next chapter, we place our work in

context by reviewing the active vision and categorisation models.



Chapter 2

Literature Review

2.1 Introduction

This thesis is about learning control of active vision for categorisation, which may be

further improved with pre-processing, given the strong dependencies between perception

and motor control. However, active vision models are inspired by the theory of sensory-

motor coordination, in which behaviour of an organism emerges from the dynamical

interaction between the organism and the external environment [52][53][54][55][56]. The

conventional approach to visual perception views vision as a product of the brain, by

which it first produces a detailed internal representation of the world and the activation

of this internal representation is what gives rise to the experience of seeing [52]. On the

other-hand, the sensory-motor approaches view vision as a mode of exploration of the

world that is mediated by knowledge of sensory-motor contingencies [52]. In the words

of Kevin O’Regan, and Alva Noe [52] “seeing is a way of acting in an outside world that

serves as its own external representation”. According to them, the experience of seeing

occurs when the organism masters the governing rules of sensory-motor contingencies.

Within this view, perception and motor action cannot be separated, and the behaviour

that leads to visual perception emerges out of dynamic coordination of sensory-motor

components. However, most existing gaze control models, that model the attention

mechanism and active vision do not closely model the process of active vision, in that

they usually set pre-defined features that determines the attention locations [57]. These

models generally process the entire image and so do not allow feature selections to be

determined by the behaviours emerging from the interaction between the agent and the

environment [10]. In this chapter, we start by looking at the existing attention models

that fail to meet with the requirements of an active vision model and as such do not

closely model the active vision process [25]. A gaze control or attention model typically

8
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models gaze shifts that determine the attention locations in a visual scene (Varella and

Wyatt [58]). It is very important to state here that not all gaze control models are

active vision models, but all active vision models are gaze control models. Typically

active vision models should satisfy the following conditions:

1. They should have a limited high-resolution field of view known as the retina (fovea)

which compels the agent to direct it around in order to perceive more information

from its environment. It does not process the entire image or scene at a time [8].

2. The gaze control must be task oriented [25].

3. There is a closed loop dynamic relationship between the sensory stimuli and cor-

responding motor (action) responses [30][10].

However, not all the existing gaze control models satisfy these requirements. We proceed

to review the current attention models, active vision models and subsequently models

for object and environment categorisation. Section 2.2 discusses the common attention

models that fail to meet the requirements for active vision systems, while Section 2.3

reviews the major active vision models in the literature. Section 2.4 discusses object

categorisation and gives a review of the current methods use in object categorisation,

and Section 2.5 gives a review of environment categorisation. Finally, in Section 2.6 a

summary of the chapter is given.

2.2 Attention Models

We discuss the models of attention that do not meet all the requirements as specified

above for an active vision system.

The first models in this group fail to meet the first requirement of our active vision

system in that they process the entire image. Common among these models are bottom-

up, stimulus-driven systems that construct a list of gaze locations ranked according to

visual saliency. They predict human gaze locations in images based on the degree of

saliency [59][60][61][62][63][64][65].

For instance, Itti et al. [60], constructed a visual saliency map by combining multi-scale

image features into a single topographic saliency map. They used a winner-takes-all

neural network to detect the next attended location in the image in the order of decreas-

ing saliency. Likewise, Gao et al. [61] also used a visual saliency model for character

recognition in natural scenes, such as in billboards and signboards. They deduced that

characters have different visual properties from their non-characters neighbours which
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make them more salient. However, in some situations, characters belonging to scene text

might not be as salient. For example, a signboard is usually very salient, but the charac-

ters on it may not be as salient globally. They proposed a hierarchical saliency method

that improved on the conventional saliency map model in the character-detection ex-

periment. Furthermore, Perazzi et al. [66] used contrast-based filtering in determining

salient locations in an image. Their model decomposes an image into homogeneous el-

ements that abstract unnecessary details, and computes two measures of contrast that

rate the uniqueness and contribution of these elements. The common trend in all the

above models is that they process the entire image in order to determine the most salient

locations, and use the ranking of the order of saliency to determine the eye movement.

This kind of model does not closely model the active vision system in that it generally

gives a set of pre-defined features which are exploited by the attention model. They do

not consider that the type of features extracted each time depends also on the sensory-

motor and behavioural characteristics of the organism in the environment (Floreano [10],

Croon [25]).

The second models among the attention methods are those that do the determination of

the gaze movements independently of a task [67][68]. These methods are mainly devoted

to the modelling and prediction of eye movements and the focus is not actually to solve

any specific task. For instance, Torralba [67] proposed a top-down attention method that

uses contextual and scene information for attention guidance based on the global scene

configuration. It was shown using the scheme that statistics of low-level features across

an image can be used to prime the presence or absence of objects in a scene and predict

their locations, scale and appearance before exploring the image. Also, Zhang et al.

[68] proposed a system based on a Bayesian framework that constructs a visual saliency

map which is used to predict fixation locations of people involved in the free viewing

of an image. Unlike the existing saliency measures which depend on the statistics of a

image being viewed, their measure of saliency is derived from natural image statistics,

obtained in advance from a collection of natural images. In the same vein Itti and

Baldi [59] developed a model that can predict a low-level surprise at every location in a

video stream. The algorithm significantly correlates with two humans watching complex

video clips which includes television programs of 17936 frames and 2152 saccadic gaze

movements. The system allows more sophisticated and time-consuming image analysis

to be efficiently focused only on the subsets of incoming data. On the other hand,

Boriji and Itti [69] used top-down information for the model of observers playing 3 video

games (driving, flight combat and time scheduling) using a dynamic Bayesian network

to infer probabilistic distributions over attended objects and spatial locations directly

from observed data to determine gaze locations. The common trend among this second
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group of attention methods is that the system tries to model the attention locations in

comparison to a human subject and they are not actually used to solve any specific task.

2.3 Active Vision Models

Various active vision models have been proposed in the literature that select their actions

(eye movements) in different ways and mostly for a specific task. For instance, there are

models for detecting edges (e.g. [70]), for controlling the gaze of a simulated fish (e.g.

[71]) and for detecting an object in a visual scene (e.g. [72]). However, there are also oth-

ers that are instances of a more general approach to active vision. We have distinguished

two general approaches as: (i) the probabilistic approach [73][74][75][76][77][78][79], and

(ii) adaptive approach [6][12][21][10][11][30][24][34][74][80][81].

2.3.1 Probabilistic Approach

The central aim of the probabilistic models is to reduce uncertainty in the world state. It

regards active vision as a series of iterative steps of state estimation and action selection,

and therefore uses a pre-determined probabilistic framework for action selection [82]. All

the probabilistic models have one thing in common: they take action with the goal of

reducing uncertainty in the belief state but they use different strategies in their action

selection [25][82]. We distinguish probabilistic active vision models into three major

groups described in what follows.

The first group of models calculates the expected usefulness of all actions on the ba-

sis of mutual information and then select the best one for actual execution [75][73][77].

For instance, Dames Amauric and Marchand [75] proposed a mutual information based

system for a vehicle visual navigation that does not rely on an expensive feature extrac-

tion technique, matching, and tracking of geometric features such as key-points. Their

model instead maximises shared information between the current image and the next

key image in a visual path which it uses for successive visual navigation. Their system

was tested in simulation and in a real vehicle. In the same vein, Huber et al. [83] pro-

vided a probabilistic approach to active vision using a Bayesian model to actively select

camera parameters to recognise an object from a finite set of object classes. They used a

Gaussian process regression to learn the likelihood of the image features from the object

categories and the camera parameters where the object recognition task was treated as

Bayesian state estimate. In order to improve recognition accuracy, the selection of the

appropriate parameters was formulated as a sequential optimisation problem. The min-

imisation of the state estimation uncertainties was achieved using mutual information
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which maximises the information from camera observations. Furthermore, Pirrone [44]

developed an active vision system for classification of indoor environments, such that it

could distinguish a bedroom from a kitchen. The system uses context-free and context-

dependent analyses to infer high-level scene properties from low-level image features by

identifying the probabilistic characteristic connected to the objects contained within the

environment and defining the mutual probabilistic relationship and properties.

Among the second group of models are those that learn their action policy on the basis

of entropy loss in the belief state (e.g. [78][76][84][85]). For instance, Ramanathan and

Pinz [86] presented a multi-view approach to object categorisation using a humanoid

robot (Nao) platform. The robot was presented with various 3D objects by a human-

operator. Hand and head motion were used by the robot to actively obtain several

different view points, and a view-planning scheme that uses entropy minimisation was

used to reduce the number of views required in order to achieve the categorisation task.

The results, obtained on a database of 3D objects of 4-classes, shows that the multi-

view approach attained a significantly higher level of performance as compared to a

single-view approach. Also, Porta et al. [78] used an efficient entropy reduction method

for robot localisation, where the robot can execute actions with the sole purpose of

gaining information on its localisation in an environment. While, Seekircher et al. [84]

proposed a model according to which estimation of the robot’s world can be improved by

actively sensing the environment through consideration of the current world estimate,

and therefore reducing the entropy of the underlying particle distribution for active

control of the robot’s head.

Lastly, the third group of models are those that rank all actions in advance e.g. for a

class and execute the action that has the highest ranking for the most probable class

([87][88][89][79]). For example, Browatzki et al. [87] developed an active vision approach

for a humanoid robot (iCub) to resolve the view-point problem in 3D-object recognition.

They proposed an active vision gaze planning algorithm to obtain and optimise the best

view-point that may be selected, among infinite viewpoints in a 3D scene, in order to

facilitate the recognition process. This was done to resolve the usual visual ambiguities

that are common to a view-point in a 3D-object. Their method was inspired by the

fact that humans effortlessly resolve this ambiguity with proprioceptive information

to augment the information obtained from the current view-point, and based on this,

move to the best view- point location (e.g using their hands, heads, and bodies). To

illustrate the usefulness of their work, the active system allows an efficient in-hand object

exploration and perception-driven recognition process. In the same vein, Arbel and

Ferrie [88] used gaze-planning that employs an entropy map to guide mobile observer:

from a single monochrome television camera for recognising objects in an unstructured
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environment, the observer is guided along an optimal trajectory that minimises the

ambiguity of recognition.

The common theme among these models of active vision is that they all make some

explicit assumptions for the eye movement as a predefined probabilistic framework.

2.3.2 Adaptive approach

Adaptive approaches do not use assumptions for their action (eye movement) strategy,

but they are progressively adapted in order to optimise the performance of the task

at hand. That aside, there are additional predefined attributes which also impose some

limitations, such as the choice of the controller (e.g neural network) and the optimisation

technique. However, in this model the goal is not to predetermine what the active

vision system does internally. Typical tasks executed by these models are behavioural

classification and control.

For instance, in Harvey et al. [35], an evolved neural network was applied to a robot in a

real world: both its neural network control system and visual morphology were evolved

to perform a discrimination task by generating the correct behaviour. The robot was

given a classification task of discriminating between a triangle and a rectangle drawn

on the opposite wall of the arena in which it was situated. At the beginning of each 4

trials, the robot was randomly located at different positions and orientations, such that

it was not biased towards any of the opposite walls. The best evolved individuals from

15 evolutionary run exhibited the behaviour of moving towards the triangular shapes

and avoiding the rectangles. The robot performed the categorisation task by exhibiting

a behaviour in which it had to move toward the target shape on the wall.

In the same vein, Kato and Floreano [24] investigated a similar task but of static images

in which the simulated active vision system had to discriminate between triangular and

square shapes corrupted with some noise. The evolved controller used a simple neural

network without hidden units. Two units of the output layer encoded the two different

geometric shapes, with the most activated unit being the correct response. This model

was similar to that of Harvey et al.[35] in that the two systems discriminate geometric

shapes based on visual features; however, the mode of the discrimination were different.

The system in [35] used a behavioural method of discrimination of moving towards the

desired shape for the discrimination task, while that of [24] used an encoding system of

the output units for discrimination.

Marrocco and Floreano [30] also extended the active vision network architecture in [24]

to an all-terrain mobile robot equipped with mobile camera. The camera (pan and tilt)
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was autonomously controlled through evolution of the neural network controller. Just

as in [35][24], the active vision system dynamically select relevant features in the visual

scene for the vision task. However, the strategy used in [30] was to allow the camera

to select the correct features enabling the generation of efficient navigation trajectories

along which obstacles would be avoided, in contrast to the strategy of [35] and [24] in

which active features selection were mainly used to enhance discrimination between two

shapes.

Leopold et al. [90] used a combination of reinforcement learning and belief revision in

the context of adaptive vision environment. The active vision model interacted with

the environment by rotating objects depending on past perceptions with the aim of

acquiring views which were advantageous for the requisite recognition demanded by

object categorisation tasks. This active vision system differed from that in [35][24][30]

in that the adaptive active vision process used a rule-based system and a numerical

learning method.

On the whole, even though there are other approaches to adaptive active vision,such

as reinforcement learning, the approach used in this thesis is based on Evolutionary

Robotics [29] [91][33]. The system possesses desirable properties for our active vision

model such as: (i) a semi-supervised nature that optimises its action strategy for eye

movements oriented towards a desired known task; and (ii) different parts of the model

such as visual extraction and the controller, can be optimised together.

2.3.2.1 Evolutionary Robotics

Evolutionary robotics is a research field that uses simulated evolution to produce robot

controllers. The aim is to build dynamic robot control systems, in which behaviours

exhibited when interacting with the environment are generated autonomously, without

actually programming each individual behaviour. There are many methods that can

be used to evolve controllers, such as: genetic algorithm [92][93]; genetic programming

[94]; and evolution strategy [95]. Also, apart from the commonly used neural networks,

other forms of robot-evolved controllers can be used, such as evolving rule-based control

[96]. However, neural networks have the following desirable properties: (i) they are

resistant to the noise that is often present in robot/environment interaction (Nolfi [92]);

and (ii) the low-level primitives, such as synaptic weights and nodes, are very good for

the evolutionary process and avoid undesirable choices made by a human designer (Cliff,

Harvey and Husband [97]).

In this approach, an evolutionary process normally involves an initial population of

different “genotypes” each of which codifies the control system of the robot that are
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generated randomly. Each robot is evaluated in an environment and assigned a fitness

score based on the ability of the robot to perform some task. The robots that have

obtained the highest fitness scores are then allowed to reproduce by generating copies

of their genotypes with the addition of random changes (“mutations”). The process is

repeated until a desired performance is achieved (for methodological information, see

Cangelosi and Parisi [98], Cangelosi [99], Nolfi et al. [12], Tuci [93], Suzuki [33], Chapter

3 and experiment chapters of this thesis).

The most natural way of applying evolutionary computation to robotics is to perform

direct evaluation of control systems on real robot hardware. However, evolution is

a long term process, which may require many control system evaluations to obtain

satisfactorily results, leading to significant run-times. Also, the robots may enter some

dangerous states in which the hardware may be damaged, especially in the early stages

of evolution [100]. These issues have led most researchers in evolutionary robotics to first

evolve robots in simulation and then transfer the best evolved individuals into real robots

[100]. However, simulated evolution of a robot requires the designer to carefully choose

the simulated conditions of the real robotic environment, to give a greater chance of

transferring the learned skills to the real environment. One of such ways is to add noise:

Reynoid [101] pointed out that, without adding noise to the simulation, evolutionary

computation will find brittle solutions that would not work in real robots. Jakobi et al.

[102] also discovered that if there is significantly more noise in the simulation than on

the real system, then new random strategies become feasible that do not work in actual

practice.

2.3.2.2 Evolutionary Active Vision System

Evolutionary active vision is a research area in which evolutionary robotics methods

are used to design control mechanisms for vision systems that autonomously explore

the environment to perform a visual discrimination task. The significance of using an

evolutionary approach to active vision is to allow the model to evolve for itself action

strategies for eye movements through dynamic interaction of the agent (controller) with

the environment, rather than imposing restrictions by a model. This kind of system

has the advantage of discovering strategies that are unknown to us, the designers, that

may help in solving a given vision task ([25]). The vision system usually has a limited

or restricted field of view [8]. In some models this limited view is divided into a cen-

tral smaller high-resolution view (fovea) and a wider outer periphery area with radially

decreasing resolution ([23]). There also exist some architectures that do not have a divi-

sion within the visual field (e.g. [24][30][103]). These types of model of the active vision

system have great advantages: (i) they reduces the computational resources required
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to complete a vision task, since they only process information within this limited area;

and (ii) the eye is guided to the local visual information within the visual scene that

enhances the solution to a given vision task.

In general we have discerned two different areas of research based on the complexity

of the controller (i) reactive systems that rely solely on sensory-motor co-ordinations

in determining the motor behaviours; and (ii) proactive systems that are provided with

neural mechanisms that allow the system to integrate sensory-motor information through

time to internal states to co-determine the motor behaviours.

Reactive active vision systems

Active vision systems that rely solely on sensory-motor coordination are also known as

reactive systems [104]. Reactive systems make use of controllers without an internal

state and always reacts with the same motor actions to the same sensory states. In

neural network contexts, they are mainly feed-forward neural networks with or without

hidden units, but without any form of memory or recurrent connections.

For instance, Nolfi and Marroco [12] developed an active vision system in which mobile

robots were able to visually discriminate between different landmarks. Individuals were

evolved in simulation and tested on physical robots. The controller used a very simple

feed-forward neural network without any form of memory. The sensory states were very

ambiguous, i.e. a large and a short rectangular stripe, but nevertheless the evolved

individuals were still able to visually navigate towards the right landmark (large stripe).

This was only possible through the coordination of evolved individuals’ sensory-motor

components. For example, when the robots were initially placed in the north-east of

the environment facing south, the robots rotated until they faced one of the two corners

of the landmarks and started to move forward slightly on the right. This allowed the

robots to lose visual contact more quickly with short stripe than with the large, and this

allowed the robots to reach the large landmark by moving significantly more towards it.

Similarly, Schembri [40] implemented an active vision system using a simple 3-layer feed-

forward neural network controller evolved with a genetic algorithm. In this experiment,

the simulated agent moved in a 2D square arena populated with small and big circles

randomly placed in a grid of 5 x 5 positions. There were 10 small circles and 10 large

circles. The agent, represented also by a circle was provided with a linear array of visual

receptors by which it was able to see the object in front of it. The goal of the agent was to

hit as many small circles as possible and to avoid the big ones over the course of a lifetime

that of 10000 simulation steps. The genetic algorithm was used to run 10 replications of

the evolutionary run with different seeds. Analysis of the best individual showed that
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the agent showed some behaviours that enhanced the categorisation tasks. In this case,

the agent developed some exploratory behaviours that consisted of: circumnavigating

their centres and moving slowly until an object falls within the receptive field; and then

moving close to the object in back and forth oscillations. If the object was a small circle,

the agent moved forward and hit it; and if it was a large circle, the oscillating behaviour

ended with the agent distancing itself from the object.

Generally, the common features shared by the systems described above was that, de-

spite their very simple architecture they were able to use their intelligent sensory-motor

coordination to select sensory patterns that were favourable to the given vision tasks.

Proactive active vision systems

Reactive systems that use strict sensory-motor coordination in determining motor be-

haviours are not common for vision tasks. In most situations the system may not be

able to find stimuli regularities that can be used to solve the problem through sensory-

motor coordination alone. To bridge this gap it will also need the addition of internal

state dynamics of the network to integrate partial discriminative visual evidence over

time [23]. In that case, the active vision system must have recourse to more complex

strategies based on the internal states in addition to sensory-motor coordination. Proac-

tive systems extract internal states by integrating sensory-motor information over time

and later use these internal states in modifying their behaviour according to the current

environmental circumstances [105]. Most works in evolutionary active vision systems

use some form of internal states; however, the complexity of internal states also varied

which may be due to the nature and complexity of the vision task.

Firstly, there are some systems in which the internal states are determined solely by

the recurrent connections or feedback of memory provided in the controllers and may or

may not have hidden layers [24][30] [57][10][34][106].

This is the case of an active vision system in Kato and Floreano [24] that autonomously

interacts with different 2D shapes (triangles or squares). The controller of the system

has a very simple discrete time recurrent neural network architecture, with no hidden

nodes, and was evolved by a genetic algorithm. The active vision system was able to

discriminate between different shapes irrespective of their locations and sizes in different

trials by developing a behavioural strategy of exploring different areas of the shapes

in order to enhance the categorisation task. In this case, the best evolved individual

exhibited two behaviours in which: (i) the retina slides back and forth along the vertical

edges of the shapes; and (ii) the retina scans the corners of the edges to enhance the

discrimination tasks.
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In the same vein, Marocco and Floreano [30] extended the simple active vision model in

[24] for a robot navigation problem posed for a mobile robot equipped with a pan and

tilt camera. The robot was positioned in a square arena and asked to navigate as far as

possible without hitting a wall. The evolved robots were able to solve this problem by

exhibiting a behaviour where they select simple visual features and actively maintain

them on the same retina position. This kind of behaviour exhibited by the evolved

robots was able to simplify the recognition task, in order to generate efficient navigation

trajectories. The evolved robots developed behaviour for navigation that maintain the

edge between the floor and the wall in sight of the camera.

Furthermore, Peniak et al. [57] evolved an active vision system of similar architecture to

[24][30], that had the ability to navigate and avoid obstacles in unfamiliar and unstruc-

tured environments of planetary terrains. The active vision system was implemented on

a 3D simulated model platform, the Mar Science Laboratory (MSL) rover. Simulated

test environments were also generated to model the planetary terrain that had various

obstacles such as rocks and holes on a very rough terrain. The free parameters of the

controller were evolved by a genetic algorithm. The results obtained from 5 evolutionary

runs showed that the evolved robots developed effective behaviours that allowed them to

navigate in the environment and to avoid obstacles of different kinds (rocks and holes) by

relying on the active vision system. The behaviours exhibited by the evolved individuals

in which active cameras were used to select features that allowed them to maintain the

correct navigation trajectory and to detect obstacles had some resemblance with that of

[30], in which the evolved individuals used strategies of detecting edge features between

the dark floor and white wall arena in which they were located to maintain a successful

trajectory for navigation.

The common theme with these active vision systems is that even though the controllers

have very reduced internal states in the form of only recurrent connections or memory

feedback, by their dynamic interactions with the environment, however, they were able

to generate behaviours that allowed them to exploit regularities in way appropriate to

the vision tasks.

There are also active vision systems that have more complex internal sates, such as those

that are provided by Continuous Recurrent Neural Networks (CTRNN) [23][25][107][108].

In this case, in addition to the recurrent connections, the neurons also have some dy-

namics that realises internal states.

For instance, Mirolli et al. [23] used an active vision system with a 3-layer Continuous

Recurrent Neural Network, which was evolved by a genetic algorithm. The active vision

system was given the task of categorising five italics letters at different scales (sizes),

i.e. 25 sizes in the training stage and 50 sizes in the testing stage (re-evaluation). The
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movement of the artificial eye was controlled by motor neurons of the output units,

which determined the eye location per time step, in order to capture relevant input

features for the neural network controller. The system was rewarded only for its ability

to discriminate between the shapes of the letter and left free to determine how to explore

the visual scene. Subsequent analysis based on the best individual of all replications of

the evolutionary run showed that the agent was able to solve the problem by: (i) using

sensory-motor co-ordination to generate behaviours that allowed the agent to experience

visual regularities in different categorical contexts; and (ii) the integration of perceptual

and motor information over time.

By way of further example, Guido de Croon [25] developed an active vision model that

uses Continuous Recurrent Neural Networks for a car-driving simulation. Unlike the

active vision system in [23], the system had a modular structure of two Continuous

Recurrent Neural Networks, i.e. one controlling the eye movement and the other for

controlling the movement of a simulated car. The output units of the eye controller

determined the visual features that were being extracted as the car moved through a

simulated road per time step which formed the corresponding inputs to the two con-

trollers. The task of the agent was to drive over a simulated track as quickly as possible,

while avoiding various obstacles on the way. The controller parameters were optimised

with a genetic algorithm. Subsequent analysis showed that the system used the gaze

shifts: (i) to find relevant features that contributed to successful driving; (ii) to keep

relevant features in sight; and (iii) to avoid disruptive visual inputs while driving.

It was also noticed that there were some oscillatory kinds of movements exhibited by both

the car body and gaze within a certain time-step range. Consequently, further analysis

was done by fixing the visual inputs to confirm if the oscillatory movements were caused

by the internal states alone since CTRNN are capable of complex internal dynamics.

However, when the visual inputs were fixed the car went off track. This, according to

them, showed that the active vision system uses the oscillatory behaviour to stay on

track, especially when navigating curves on the road. It was therefore deduced that the

oscillatory behaviour must have arisen as a result of a coupling between controllers and

visual inputs from the environment, and this helped the car to successfully stay on track.

Finally, the common trend among these systems that used more complex internal states

was that they used the additional internal states in addition to recurrent connections,

and this helped the system to generate more complex dynamics for integrating sensory-

motor information over time.
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2.3.2.3 Evolutionary active vision system: from 2D to 3D in categorisation

Categorisation of objects by artificial systems such as robots is extremely difficult. The

main challenge is that regions in the robot input sensor space that belong to the same

category are not located contiguously or in close approximation, but are rather scattered.

Also, regions that correspond to different categories may be located not only close to

one another but also sometimes over-lap. The aim of evolutionary active vision is for

the system to act in intelligent ways so as to experience sensor information that is not

ambiguous in the input space but can be uniquely associated with a particular categorical

context.

In most active vision systems, sensory-motor coordination alone may not be enough

to solve object categorisation tasks; such systems will also require the integration of

perceptual information over time through internal state dynamics of the controller. One

such active vision systems is that of Mirolli et al. [23]. In particular, the complexity of

their task was due to: (i) the large number of categories that were involved as compared

to other evolutionary active vision systems; (ii) the possibility of sensing only a part of

the object that was being categorised; and (iii) the differences of scales in each category.

The agent therefore had to employ the extra internal state dynamics of the system in

order to complement the sensory-motor strategies by integrating the perceptual-motor

information over time.

Our work extends on Mirolli et al. [23] work with pre-processing techniques for more

complex 2D images taken from the camera of the iCub robot. The pre-processing was

inspired by the low-level processing that takes place in the human visual cortex [109], in

order to have improved categorisation capability, given the strong dependencies between

visual perception and eye movement.

Furthermore, we have extended their work with pre-processing for object categorisation

in 3D using the iCub platform. We have chosen the humanoid platform because it

will enable us to demonstrate this kind of categorisation problem with our method in

a complex robotic system. Subsequently, we extended the work also for indoor and

outdoor environment categorisation in 3D using the same humanoid platform. Our

work differs from previous studies of environment categorisation in the following ways:

(i) previous studies on indoor-outdoor environment categorisation were mainly oriented

towards image and video classification, database retrieval, and the like, and not on a

humanoid robotic system [41][42][110]; and (ii) previous work on active vision systems

for scene classification (e.g bedroom from kitchen) uses assumptions, such as “carpets

are laid on the floors”, “beds are in bedrooms”, “sinks are attached to the wall” (see

Pironne [44] on indoor environment categorisation). Our model does not use these kinds
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of assumption for its eye movement but is based on free exploration of the active vision

to obtain relevant information for a specific task. In this way, it will give freedom to

the active vision system in developing novel strategies for solving a particular problem

rather than imposing some fixed assumptions.

2.4 Object categorisation

Although this thesis is about learning the control of active vision for categorisation

using an evolutionary approach and not about categorisation itself, we feel it necessary

to discuss here the subject of categorisation. Although there is an extensive literature

on object categorisation, here, we review the literature mainly in the context of this

PhD research work.

Object categorisation is a generic type of object recognition, in that it involves the recog-

nition of an object from among many categories of object, by contrast, object recognition

involves identification and recognition of the same category. Object categorisation in-

herently faces most of the challenges of object recognition, such as: view-point variation,

illumination, occlusion, scale, background clutter etc. It also faces problems that are

specific to categorisation, such as intra-class variation and inter-class dependence. These

issues clearly make categorisation a non-trivial problem. Humans, however, find cate-

gorisation very easy [111], while machines such as computers and robots find it very

difficult [111]. The computer models used in solving the problem of categorisation are

either passive or active. The existing passive approaches involve scanning of the entire

image, in which local image samples are not intelligently used to guide the process of cat-

egorisation. This makes them computationally inefficient (e.g window-scanning method

[112][113] and the constellation method [114]). Generally speaking, the passive mod-

els of object categorisation in computer vision could be divided into generative models

[115][116][117][118][119] and discriminative models [120][121][122][113][123]. Typically

in passive methods of object categorisation, the first thing that is considered is how

one can best represent object categories in images, using feature descriptors, key-point

detectors, salient points etc. Then generative or discriminative models are learned from

these representation. Based on these models (generative or discriminative), a new set of

images can then be correctly classified for the object categories.

Discriminative models

Discriminative methods generally differ from generative models in that they attach no

importance to the image’s surface appearance but instead focus on the category itself.
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They try to map the category of an image directly to an image sample without consid-

eration of image details. Also, discriminative models seems to have higher classification

accuracies when similar categories have to be distinguished because each model is cre-

ated for each category [111]. There are approaches that learn discriminative models from

bag of key-points such as [124][125]. These approaches do not make use of any geometric

information about the key-points in the images. Other approaches learn discriminative

models based on Support Vector Machine or nearest-neighbour classification [121][126].

In general, even though all these discriminative models can be used for categorisation,

they are different from our active vision model in that there is no intelligent control over

the way the local image patches are being selected for processing.

Generative models

Generative models give consideration to the details of the image, for example, the geom-

etry. Categories are described as joint probability distributions of local salient patches

and shapes [111]. Generative models have some advantages over the discriminative

models, such as: prior knowledge can be integrated; new categories can be added;

many categories can be represented; and handling of correspondences between objects

parts can easily be accomplished [111]. Some generative methods of categorisation uses

“bag of visual words” also known as bag of visual words models [127][128][129][130]

[131][132][133][134][135][136][137], others are part-based models [114] [138][139] [140]

[141][142][143][144][145][146] and window-sliding models [147][148][149][150][151]. Some

discussion of bag of visual words and part-based models will now follow.

Bag of visual words models: In bag of visual words models images are divided into

different parts without consideration of the initial location of the parts or the geometric

relationship between them. In this approach salient points or parts are extracted from

images and descriptors are calculated to form a feature vector. The parts are put into

a code-words dictionary from which a classifier is built. Prominent among these models

are: (i) Probabilistic latent Semantic Analysis (pLSA) [127][128] and (ii) Latent Dirichlet

Allocation (LDA) [129][130][152].

(i) Probabilistic latent Semantic Analysis (pLSA): In these models the probability of each

co-occurrence of word (image parts) and the image itself as a mixture of conditionally

independent multinomial distributions. They employ a passive approach in the detection

of features and their descriptors.

(ii) Latent Dirichlet Allocation (LDA): This model allows sets of observed words (image

parts) in an image to be explained by unobserved categories, where each image is seen
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as a mixture of a small number of categories and each word creation is attributable to

one of the image’s categories.

Part-based models: These models make use of a lot of geometrical information. They

also make use of a lot of prior knowledge by applying priors to the parameters of the

images. Most common among these are constellation models ([146][153][154]) which

employs geometry in terms of spatial relations between key parts of objects models.

They usually proceeds in two major stages: detection of key-points and constellation

evaluations. An object is recognised if there is a constellation of recognised parts that

is sufficiently similar to a learned constellation object model. Others are sliding-window

methods ([148][155]): they scan passively to check for object presence at all locations of

an evenly spaced grid and extract a local sample at each grid point to classify as either

an object or as a part of background. Other examples of part-based models are one-shot

learning methods proposed by Fei-Fei et al.[156], that aim to learn information about

categories from one or few training images.

On the whole, all the models that we have discussed above used exhaustive scanning at

one time or another and the local image samples are not intelligently guided to the next

sample location. They are therefore different from the active vision models that have

been discussed in the previous sections.

2.5 Environment categorisation

In this section, we review some studies that have been conducted in environment cat-

egorisation. They mainly focus on outdoor environment for scene categorisation, such

as forest, beach, urban areas etc. [43][157][158][159][160][161][162][163] and indoor scene

categorisation such as bedrooms, kitchens, dining rooms, sitting rooms etc. [164] [165]

[166][167][168][169] and 2D image classification for indoor and outdoor environment

[170][171][172][173][174] [175][176][177][178][179][180]. The applications range from clas-

sifying the environment location of smart-phone devices [181][182], scene categorisation

by mobile robots ([183]) and indoor environment categorisation [168]. Environment cat-

egorisation is a more difficult problem than ordinary object categorisation in that there

are more variables involved in each image to be considered in terms of colour, texture

and structures (objects). Also, unlike object categorisation which mostly involves an in-

stance of an object in an image, there could be multiple instances of distinct objects in

an image and each object may be in a different spatial location. There could also be the

problem of multi-labels, where an image may contain multiple labels or categories ([184]).

For instance, a beach environment may contain a mountainous background and may be

properly labelled as a mountainous-beach environment. Various approaches have been
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used in the problem of environment categorisation such as models that involve either

generative or discriminative learning or a hybrid of these two approaches ([43][158][41]).

There are approaches that use varied representation techniques for feature description

(e.g. [157]).

For instance Bosch et al.[43] uses a probabilistic Latent Semantic Analysis (pLSA) in

an unsupervised manner to first discover objects in images that contain multiple object

(categories). The pLSA was applied to a bag of visual words that described each image

in the data-set, and the object distributions were then used to perform outdoor scene

classification using k-nearest neighbour classifier. Zou et al. [157] proposed a method for

scene classification that used collaboration representation fusion with local and global

features. In their method, a visual word code-book was first constructed by dividing

an image into dense regions, linear coding was employed on the dense regions via the

code-book and a pyramid matching strategy was then used to combine local features.

A method known as multi-scale completed local binary patterns was used to extract

global features. Kernel collaborative representation based classification was then finally

applied to the global and local features extracted and the class label of the testing image

was given according to the minimal approximation residual after fusion.

On the other hand, there are approaches that categorically distinguish between indoor

and outdoor environments that are used for smart-phone devices. For example, they

are able to automatically locate the environment of the current user and determine the

signal strength in these environments for Global System Networks (see [181][182]). Other

research into categorising indoor and outdoor environments focuses on image and video

retrievals in databases (e.g. Szummer and Piccard [41], Yailaya et al. [185], Luo et al.

[42], Balal et al. [186]). There are also studies on robotic application used to determine

the operational environment of an Un-manned Ground Vehicle (UGV) (e.g. [183]).

In general, all of the methods described are unsuitable for a robotic system because

in most cases exhaustive processing is involved; our proposed gaze control model by

contrast uses intelligent control of the eye to optimise visual resources.

2.6 Chapter Summary

We began this chapter with a review of the current gaze control models and pointed

out that, whereas not all gaze control models are active vision models, all active vision

models are gaze control models. A gaze control model cannot be classified as an active

vision model if the model processes the entire image by defining some predetermined

features for the entire image.
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We noted that the two major types of active vision models in the literature are proba-

bilistic and adaptive. The probabilistic models make use of some predefined framework

that define an iterative process of state estimation for its actions (eye movements). Our

model belongs to the second group, “the adaptive model”, which does not require the

designer to pre-determine what the model should do, but generates an active vision

model that progressively gets better at its task.

Evolutionary active vision systems uses intelligent sensory-motor interaction in order

to experience stimuli that will enhance the given vision task. However, in most vision

tasks, the system also uses internal state dynamics to complement the intelligent sensory-

motor co-ordinations. Typical among these tasks are categorisation tasks when stimuli

that belong to each category are very ambiguous or when the number of categories are

considerable, with large variations in things such as scale and orientation.

Most previous work using evolutionary active vision systems for categorisation have

been used for simpler problems in 2D environments. Our work builds on Mirolli et al.

[23] which deals with a considerably large number of categories and complex images as

compared to the previous evolutionary active vision systems. We extended their work

with pre-processing for more complex images taken from the camera of a humanoid robot

(iCub). We further extended their work with pre-processing to the 3D environment

for object and environment categorisation with the humanoid robot platform. In the

next chapter, we discuss our Gaze control framework and the methods used in the

implementation.



Chapter 3

Gaze Control Framework and

Methods

3.1 Introduction

In this chapter, we look at the requirements for the design of our active vision gaze con-

trol framework, the gaze control framework and the computational methods that were

used in the implementation. In Section 3.2, we highlight and discuss the requirements

for the design of our framework. In Section 3.3 we discuss the gaze control framework.

Section 3.4 describes the controller for the active vision model, while Section 3.5 dis-

cusses the optimisation method. In Section 3.6 we discuss the visual extraction methods

that were used for sensory representation. Section 3.7 gives a discussion of the iCub

platform, vision kinematics and the integration of the evolutionary methods. In Section

3.8, we discuss the software libraries and platforms used in the implementation of the

experiments. Finally, in Section 3,9, a summary of the chapter is given.

3.2 Requirements for the gaze control framework

In the active vision literature, we were able to distinguish some basic requirements of

an active vision system for classification tasks. We have used these requirements as

guidance for the design of our gaze control framework. We highlight and discuss these

requirements below:

1. A foveating vision system that processes a restricted part of the image per time

step based on the motor response. Normally the sensor is modelled as having high

26
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resolution at the centre and decreasing low resolution at the periphery, as used in

[23].

2. A pan and tilt movement for the active vision system which is influenced by the

input features and/or the internal state of the model.

3. A classification module that determines the categorisation tasks.

4. A visual representation module that pre-processes the visual stimuli using a grey-

scale averaging method as in [23][24] or Histogram of Oriented Gradients (HOG)[2]

or Uniform Local Binary Patterns (ULBP)[1].

5. Feedback of visual information, sensor values (e.g in the form of pan and tilt

rotation angles) and category estimates.

3.3 The Gaze Control Framework

   Classification        Control

Evolved Neural Network

Visual Extraction

Visual Stimuli

Figure 3.1: The Gaze Control Framework

The gaze control framework is inspired by the model in Mirolli et al [23] and is supple-

mented with the neural network update equations of Tuci [29] (Fig. 3.1). We have built

our framework on their periphery-only architecture, which gave the best performance

among all the architectures experimented with in [23]. The periphery-only architecture

implies that there is no division between fovea and the periphery and that the visual
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inputs neurons are connected to both the motor neurons and the internal neurons. They

also mentioned that based on their investigation of the different architectures, separate

fovea and periphery units may not be necessary in improving categorisation performance.

Since our emphasis in this thesis is on improving performance and enhancement with

pre-processing techniques, we do not find it necessary to replicate the fovea architec-

ture, which was done in [23] for 2D object categorisation. However, we extended this

framework with pre-processing techniques for visual representation. The active vision

system autonomously takes an input from a visual scene restricted by the active win-

dow. The visual stimuli are processed by a visual extraction method and are mapped

by an evolved neural network controller to gaze shifts and classification units. The vi-

sual extraction module is processed by either a grey-scale average method as used in

[23] or pre-processing techniques [2][1] are adopted. The gaze shifts which enhance the

performance of the task are determined by the visual features, previous gaze shifts/cat-

egorisation outputs at time t − 1, and/or the internal state of the controller. At the

new gaze location the process of feature extraction and gaze shifting are repeated. The

iterative process stops when a stopping criterion is reached.

3.4 The Controller

We have used a neural network controller, and our justification for this is based on

the following: (i) a neural network resembles natural vision systems in the sense that it

processes information in a distributed manner; (ii) it can be extended to include memory

and other dynamic capabilities; (iii) it can handle a continuous flow of input and output;

and (iv) it is well studied and implemented as a controller in robotic research.

In all of our experiments, we predefined a specific architecture for the neural network.

However, there are other methods that optimises both structure and the weights (e.g.

Mattiussi and Floreano [187], and Stanley and Miikkulainen [188]). Even though such

methods have met with some success, they are not guaranteed to give better solutions

than methods that use predefined structures (Floreano, Dürr and Mattiussi [189]).

The gaze control model uses a continuous time recurrent neural network similar in design

to Mirolli et al. [23], but with similar update equations as used by Tuci [29]. It has

three layers: (i) an input layer, whose vector size is determined by the visual feature

extraction method, and a copy of the motor/gaze control units and classification units

at the previous time step; (ii) recurrent hidden layer units; and (iii) an output layer of

motor/gaze control units and classification units.
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The values of the input, hidden, and output neurons are updated using equations 3.1,

3.2 and 3.3 respectively. In these equations, using terms derived from an analogy with

real neurons, yi represents the cell potential, g is a gain factor, τi the decay constant.

Ii with i = 1, ..., n − 1 is the activation of the ith input neuron. Also, i = n....k − 1

and i = k....u are the range of the number of hidden and output neurons respectively.

wji is the weight of the synaptic connection from pre-synaptic neuron j to post-synaptic

neuron i. βj is the bias term and σ(yj + βj) is the firing rate. All input neurons share

the same bias βI , and the same holds for all output neurons βO. σ(x) = 1
(1+e−x)

is

the sigmoid function. The decay constants, bias terms, weights and gain factor are

genetically specified network parameters. We approximated the dynamics of differential

equation 3.2 using the standard forward Euler method with an integration time step ∆T

= 0.1.

yi = gIi; i = 1, ...., n− 1 (3.1)

τiẏi = −yi +

j=k−1∑
j=1

wjiσ(yj + βj); i = n, ...., k − 1 (3.2)

yi =

j=k−1∑
j=n

wjiσ(yj + βj); i = k, ...., u (3.3)

3.5 Optimisation method

Although, there are other adaptive optimisation algorithms such as reinforcement learn-

ing [32][190], simulated annealing [191][192], cross-entropy search [193][194] and random

search[195][196], we have chosen an evolutionary algorithm [197][198][199] for our gaze

control model based on the following reasoning:

(i) Evolutionary algorithms have been shown to perform better than reinforcement learn-

ing for ambiguous visual inputs [200]. They also allow for the optimisation of any part

of the model that can be parametrised, while reinforcement learning focuses solely on

action strategy. For instance, evolutionary algorithms can be used to optimise visual

features and the action strategy simultaneously [25].

(ii) Random search does not exploit any structure in the search space which makes it

very inefficient [25].
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(iii) Evolutionary algorithm, cross-entropy search and simulated annealing are very sim-

ilar optimisation algorithms. However, our choice of evolutionary algorithm is based on

the premise that it has been consistently proven with good results and, as such, is a

common choice in the field of Evolutionary Robotic Research [6][92].

3.5.1 The adaptive task and the evolutionary process

In this section we explain the adaptive task and the general evolutionary framework,

where the specific instances are described in the experiments in Chapters 4, 5 and 6.

In each trial of the evolutionary adaptation process, the artificial eye (active window)

is left to freely explore the visual scene in the first part of the trial. The task of the

active vision agent is to correctly classify an object when it has explored the image

for a sufficient length of time, that is during the second half of a trial. The agent is

evaluated by the fitness function F as used in Mirolli et al.[23], and is comprised of two

components: the first, F1 (t, c) rewards the agent’s ability to rank the correct category

higher than the other categories; the second, F2 (t, c) rewards the ability to maximise

the activation of the correct unit while minimising the activations of the wrong units,

with both terms given equal weighting:

F =

T∑
t=1

C∑
c=S

(0.5 ∗ F1 (t, c) + 0.5 ∗ F2 (t, c))

T ∗ (C − S)
(3.4)

F1 (t, c) = 2−rank(t,c) (3.5)

F2 (t, c) = 0.5 ∗ yt,cr +
∑
w∈Ω

(
1− yt,cw

)
∗ 0.5

N − 1
(3.6)

where F1 (t, c) and F2 (t, c) are the values of the two fitness components at time step c

of trial t, rank (t, c) is the ranking of the activation of the categorisation corresponding

to the correct category (that is, from 0, meaning the most activated and l, meaning the

least activated: where l is 1 less than number of categories), yt,cr is the activation of the

output corresponding to the current (correct) category, yt,cw is the activation output of

the wrong category w at trial t and time step c (where Ω is the set of wrong categories).

N is the number of categories, T is the number of trials, C is the number of time steps

in a trial and S is the time step in which we start to compute fitness.
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The free parameters of the neural controller are adapted through a genetic algorithm.

The initial population consists of n randomly-generated genotypes, each encoding the

free parameters of the corresponding neural controller, which include all the connection

weights, gain factors, biases, and time constants. The genotypes encoding for the free

parameters of the agent controllers are vectors comprising of n real values chosen with

uniform randomness from the range [0, 1]. In order to generate the phenotypes, weights

and biases are linearly mapped in the range [−x, x] and [−y, y] respectively, while the

time constants are mapped in [−t1, t2]. Note: the “variables values” of the evolutionary

framework and other related details are given in the specific implementation of the

framework in Chapters 4, 5 and 6.

3.6 Visual Feature Extraction

We used the following visual extraction methods in all the experiments in this thesis:

the grey-scale averaging method [23], Uniform Local Binary Patterns (ULBP) [1] and

Histogram of Oriented Gradients (HOG) [2]. We have chosen ULBP and HOG because

they are simple to implement as well as their usefulness as feature descriptors in many

computer vision applications, such as face recognition [47] and object detection [51]. It is

very important to state here that we did not use the pre-processing methods mentioned

above to process the entire image; instead we allowed the active vision to dynamically

select an area to be processed per time step and afterwards used one of the visual

extraction methods to process the pixels within the active window (Fig. 3.2). As such,

we still keep to our philosophy of an active vision model that does not process the entire

image or give a predefined set of features for the model but instead allows the system to

actively select features through the dynamic interaction of sensory-motor components

[57][25].

Figure 3.2: Shows the image of a soft-toy and the active window dynamically
selecting the area to be processed as was done in our experiment (Chapter 4).
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3.6.1 Grey-scale averaging method

In the grey-scale averaging method, the coloured image is first converted to a grey-scale

image. The active vision model then takes a visual input from a gaze window of s x s

pixels extracted from the grey-image of m x m in a time step. The window is sub-divided

into k x k input cells and the average value calculated in each cell, resulting in k2 visual

inputs. The iterative step continue until a certain stopping criterion is met.

3.6.2 Local Binary Patterns

Local Binary Patterns (LBP) are a modification and improvement on a method used

for texture classification using a texture spectrum by Wang and He [201]. Wang and

He [201] proposed a model of texture analysis based on texture unit, where a texture

image can be characterised by its texture spectrum. A texture unit is represented by

eight elements each of which has possible values of (0,1,2) and which is obtained from

a neighbourhood of 3 x 3 pixels. In this case there are a total of 38 = 6561 possible

texture units describing spatial patterns in a 3 x 3 neighbourhood.

However, Ojala et al. [202] proposed Local Binary Patterns involving a two-level pattern

also in a 3 x 3 neighbourhood for a texture unit (Fig. 3.3). In this two-level version there

are only 28 = 256 possible texture units instead of 6561. It is a grey-scale invariant

method and provides a robust way of describing pure local binary patterns in a texture.

The reduced size of possible numbers of pattern (256 as opposed to 6561) originally

proposed by Wang and He [201] makes it a more computationally efficient method to

describe a texture region. The LBP operator computes the feature vector (descriptor)

for an examined window of an image in these simple steps: (i) it divides the examined

window into cells of y x y pixels; (ii) for each pixel in the cell it compares it to its

8 neighbours (i.e. in a clockwise or counter-clockwise direction) and where the centre

pixel is greater or equal, considers the result as 1 or otherwise 0; (iii) it converts the

resulting bit string to decimal; (iv) it computes the histogram of frequency of occurrence

of the binary patterns in each cell (the histogram is a 256-dimensional feature vector)

and optionally normalises the histogram (iv) it concatenates the histogram of all cells.

The basic version of LBP which considered only an eight-pixel neighbourhood can easily

be extended to include all circular neighbourhoods with any number of pixels [1], where

gc represents the grey value of the centre pixel (xc, yc) of a local neighbourhood, gp the

grey value of P equally-spaced pixels on a circle of radius R. The values of neighbours

that do not fall exactly on pixels are estimated with bi-linear interpolation.
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Figure 3.3: Illustrate the basic LBP algorithm which threshold the centre pixel in an
image with its 8 neighbours in a clockwise direction and expresses the result as binary.

3.6.2.1 Uniform Local Binary Patterns

Uniform Local Binary Patterns (ULBP) are an extension of LBP that considers only

uniform patterns. Uniform patterns of texture units are those that have a maximum

of 2 bit-wise transitions, i.e from 0 to 1. For instance, in an eight-circle neighbourhood

texture unit, bits patterns ‘00000000’ (0 transition), ‘00110000’ (2 transition) are uniform

patterns, while non-uniform patterns such as ‘00010100’ (4 transitions) and ‘00101010’ (6

transitions) are not. In ULBP, there is a separate output label for each uniform pattern

and one output label for all the non-uniform patterns. Thus, the number of output label

for the mapping of patterns P is P (P − 1) + 3. For instance, ULBP produces 59 output

labels for an eight-neighbourhood texture unit and 243 for 16 circular neighbourhood

sampling points. There are two justifications for omitting the non-uniform patterns:

1. Most of the LBP patterns in natural images are uniform. Ojala et al. [1] found

in their research investigation that about 90 percent of LBP patterns in (8,1)

neighbourhoods are uniform patterns, and they account for about 70 percent in

(16, 2) neighbourhoods.

2. Uniform patterns have proved to be more robust in terms of recognition results

and less prone to noise in many applications [45][203]. Also considering only uni-

form patterns makes the number of possible LBP patterns considerably lower and

therefore reduces the size of the feature descriptor.
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Active-Uniform Local Binary Patterns

We therefore chose ULBP as a pre-processing technique for feature extraction of the

active vision system based on the following reasons: (i) it has been proven with good

recognition results in computer visions applications [45][203]; (ii) it has also proven to

be less prone to noise in natural images [45]; and (iii) it has a lower feature descriptor

size as compared with the original LBP which make it more suitable for our active vision

model on grounds of computational efficiency.

However, because of the peculiar nature of active vision systems and the computational

cost of evolutionary methods in training, we have implemented the ULBP method so

that it will be suitable for the model. For instance, all forms of pre-processing have to

be done within the active window (retina region) per time step, instead of processing

the entire image. We also have to use a considerably reduced number of cells. We

therefore prefer to term it Active-Uniform Local Binary Patterns (Active-ULBP). The

Active-ULBP algorithm was implemented as follows:

1. An image was presented to the active vision model in each trial of the evolutionary

run.

2. In each time step of a trial: (a) a Gaussian blur function was used to reduce the

noise within the active window (retina region); (b) the retina region was divided

into 4 cells and a histogram of uniform patterns of size 59 was constructed for each

cell; (c) the histogram of each cell was normalised with an L2-norm scheme; (d)

the normalised histograms of all cells were concatenated to form a feature vector

of size 236; (e) the feature vector was combined with the copies of the movement

and categorisation output units at the previous time step which formed the input

vector for the neural network.

3.6.3 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) descriptor was originally developed by

Dalal and Triggs [2] for describing edges and gradients over a local image region using

a sliding window over an entire image. It computes histograms over dense grids of

uniformly spaced cells and contrast normalises for improved performance (Fig. 3.4).

They are reminiscent of Sift descriptor [204], edge orientation histograms [205][206] and

shape contexts [207].
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In their research work Dalal and Triggs [2] used HOG as a local image feature set

for human recognition in pedestrian image data set and using Linear Support Vector

Machine as a classifier of the normalised histogram features.

The fundamental idea is that object appearance and shape over a local region can

be characterised very well with intensity gradients distribution. The image window is

divided into small spatial cells over dense grids. Histograms are computed for the cells

and contrast normalised to form the feature sets. The general steps in their method of

implementation are:

(i) The input image is optionally processed with gamma equalisation.

(ii) A detector window tiled with a grid of overlapping blocks is scanned across the image

at all positions and scales.

(iii) A histogram is computed for each cell in each block using spatial orientation binning.

Orientation bins are evenly spaced over 0−180 degrees (unsigned gradients) and 0−360

degrees (signed gradients). To reduce aliasing, votes (using magnitude of gradients

in x and y direction) are interpolated bi-linearly between neighbouring bins in both

orientations and positions.

(iv) Contrast normalisation of the histograms is done across overlapping cells in each

block using various normalisation schemes such as L1-norm, L2-norm.

In their implementation they tested the effects of various parameters on the overall

results of the descriptor and their findings were:

(i) Smoothing using Gaussian blur drastically reduces its performance.

(ii) Gamma normalisation has little or no effect on the different colour space used, e.g.

RGB and LAB for the different colour channels.

(iii) Among the different derivative masks used, such as, 1-D point derivative (uncentred

[−1, 1] and centred [−1, 0, 1]), cubic corrected [1,−8, 0, 8,−1], and 3 x 3 sobel masks.

The simple 1-D [−1, 0, 1] masks at σ = 0 worked best.

(iv) Spatial orientation binning is essential for good performance and performance in-

creases up to 9 bins with extra bins not having an effect. Orientation bin space of 0-180

degrees gave the best performance, that is using only the unsigned gradients.

(v) An effective local normalisation scheme over cells grids is essential for good perfor-

mance.
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Figure 3.4: Illustate the Histogram Orientation (HOG) algorithm which calculate
the gradient orientation and magnitude of each pixel of a cell in an image and adds
the magnitudes into a corresponding bin of 9.

Active-Histogram of Oriented Gradients

We adopted the Histogram of Oriented Gradients [2] for the pre-processing of visual

stimuli of the active vision in order to give improved visual representation, and on this

basis to provide better control of the active vision. However, in the adoption of HOG

in our model we considered two major factors: (i) the computational complexity of

the pre-processing, since evolving a neural network will only be practicable with lower

dimensional feature vectors; and (ii) suitability for the active vision concept, which

processes a part of the image scene at each time step. Consequently, the HOG used

in our model is a very simple version of the original algorithm and we prefer to call it

Active-Histogram of Oriented Gradients (Active-HOG) because of its adoption in the

Active Vision System.

Listed below are the differences from and similarities to the original HOG.

(i) Just as in the original HOG by Dalal and Triggs [2] we did not use any form of

smoothing as we also noticed a reduced performance.

(ii) The original HOG processes the entire image. However, in our implementation we

process only the restricted active window region per time step. This was done in order

to reduce the computation complexity of our method and also to maintain consistency

with the active vision concept.

(iii) In order to reduce computational cost, we did not use weighted overlapping cells,

instead only four non-overlapping cells were used. This vastly reduced the size of our

feature vector to 36 as compared to that of the original HOG implementation of 3780.
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(iv) The preferred bin orientation space for the histograms in the original implementation

was 0-180 degrees using only the unsigned gradients. However, in our implementation

signed gradients of a bin orientation space of 0-360 degrees gave us better results.

(v) Normalisation over all the cells in the window with an L2-norm scheme also gave us

improved results just as stated in the original paper [2].

We list the complete steps of the Active-HOG algorithm below:

(i) Input an image for each trial of the active vision evolutionary process.

(ii) In each time step of each trial perform the following process: (a) compute the

gradients for each pixel in the active window in x and y direction i.e dx and dy; (b)

divide the active window into 2 x 2 cells giving a total of 4 cells; (c) in each cell compute

gradient magnitudes as
√
dy2 + dx2 and gradient directions as Θ = arctan( dydx); (d)

quantize gradient orientations into 9 bins with a bin size of 40 degrees of orientation space

between 0-360 degrees; (e) add magnitude into each bin; (f) concatenate all histograms

into a feature descriptor of dimension 4 cells x 9 bins giving a feature vector of size 36;

(g) normalise the feature vector with L2-norm, i.e. V = V
||V || ; (h) input a normalised

feature vector into the neural network along with the copies of motor and categorisation

outputs in the previous time steps.

3.7 The Gaze Control Framework: iCub platform

In this section, we introduce the iCub humanoid robot platform that we used for the

implementation in the 3D environment. Here, we discuss the iCub vision and kinematics

mainly in the context of its extension to the Gaze Control Framework. The iCub is a

humanoid robot designed to simulate a 3.5 year old child and developed by the European

Robocub research project [208][209]. The design of the iCub has two main goals: (i)

provide a common platform for research in embodied recognition; and (ii) improve the

understanding of cognitive systems by exploiting this platform in the study of cognitive

development. The iCub is provided with the ability to learn how to interact with the

environment through complex manipulation and how to develop its perceptual and motor

capabilities for the purpose of goal-oriented tasks. It is about 90cm tall, weighs 23 kg

and has a total of 53 degrees of freedom specified as follows: 6 for the head, 3 for the

torso, 8 for each hand, 7 for each leg and 7 for each arm.

In our experiments (Chapters 5 and 6), we used a simple iCub simulator developed by

Tuci [210] because of the computational overhead that would have been involved in using

the original iCub simulator for our evolutionary method. However, the use of simulator
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Figure 3.5: A simple illustration of iCub vision kinematics (image from [4])

might not provide a full model of the complexity present in the real environment and

as such might not guarantee the transfer-ability of the controller from the simulation

environment to the real one. That said, use of the iCub simulator (robotic set-up) has

the following benefits:

(i) It will enable us to study the behaviour of embodied agents such as the iCub without

facing the problem of maintaining a complex hardware device.

(ii) It can be a quick way of testing our algorithm in order to identify any problem before

actual transfer of the controller to the real iCub robot. This also will allow us to study

the plausibility of our models in such a complex robotic system.

3.7.1 iCub Vision Platform and Evolutionary Active Vision

The iCub vision has 3 degrees of freedom (DOF). Both eyes can pan for vergence and

version control (2 DOF) and tilt simultaneously (1 DOF) Fig. 3.5. However, we only

make use of the 2 degrees of freedom of the right eye (pan and tilt) and as such exclude

the vergence and version control. We also exclude head, neck and other proprioceptive

information from our experiments. This allows us to study the robustness of our system

because of the limited degrees of freedom and exclusion of proprioceptive information

that may enhance the recognition tasks.

In the evolving of the iCub system we only make use of the modules that are directly

related to our experiments, i.e. 2 degrees of freedom of the right eye. In each time step

of every trial in the evolutionary run, we calculate the tilt (Tiltstep), equation 3.7 and

pan (Panstep), equation 3.8 and normalise the updates initially in radians that go back

as inputs (Tiltinput), equation 3.11 and (Paninput), equation 3.12 to the neural network

as follows:

Tiltstep = ((O1)− 0.5) ∗MAXstep (3.7)
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Panstep = ((O2)− 0.5) ∗MAXstep (3.8)

where O1 and O2 are the neural network controller outputs for the eye movements (i.e

the tilt and pan) respectively. MAXstep = ONE PI ∗ 5 is the maximum step for the

pan and tilt in radian (ONE PI = π/180), and the value 0.5 is used to scale the tilt and

pan eye movements for negative and positive angles (radians). For instance, an output

of pan or tilt of 0.5 will give 0 radian (i.e when there is no eye movement in the pan or

tilt).

Tiltnew = Tiltnew−1 + Tiltstep (3.9)

Pannew = Pannew−1 + Panstep (3.10)

Tiltinput =
Tiltnew − Tiltlow limit

Tilthigh limit − Tiltlow limit
(3.11)

Paninput =
Pannew − Panlow limit

Panhigh limit − Panlow limit
(3.12)

Where the new tilt (Tiltnew = θ6), equation 3.9 and pan (Pannew = θ7), equation

3.10 updates, and the link parameters, a and d (Table 3.1) are used to calculate the

forward kinematics for the iCub right eye (equation 3.13), based on Denavit-Hartenberg

notation. Note: link parameters i=6 and i=7 are at the end of the iCub kinematic chain,

starting from torso, but we are only interested in the last two joints, i.e of the right eye,

and so considered the offset from the head centre.

Table 3.1: Shows the link parameters a, d, α, θ of the iCub right eye (for the tilt
i=6 and pan i=7), where a and d are in millimetres, and α and θ are in radians

Link (i) ai (mm) di (mm) αi (radian) θi (radian) 

i=6 0 34 -pi/2 Θ6 
i=7 0 0 pi/2 Θ7 - pi/2 

 

Ai =


cos(Θ) −sin(Θ)cos(α) sin(Θ)sin(α) cos(Θ) ∗ a
sin(Θ) cos(Θ)cos(α) −cos(Θ)sin(α) sin(Θ) ∗ a

0 sin(α) cos(α) d

0 0 0 1

 (3.13)
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3.8 Software Libraries and Platforms

The conventional programming language used in implementing the experiments in this

research work was C++. However, it was interfaced with several software libraries in-

order to enhance application re-usability. In this section we will discuss the software

platforms used in this work, but with a focus on how they are relevant to the implemen-

tation of our experiments.

3.8.1 Open Source Computer Vision (OpenCV) Library

OpenCV as the name implies is an open source computer vision library. It is free for

both academic and commercial purpose, and is basically targeted towards real-time

applications. The application of OpenCV in this research work was limited and mostly

used in the 2D experiments. OpenCV has several re-usable libraries for computer visions

algorithms: Gaussian blur, median blur, and bilateral filter for smoothing operations;

Sobel derivatives, Scharr derivatives, and Canny edge detector for gradients and edge

detection. However, we will discuss only those that were used in our experiments and

as related to the research work.

(i) Smoothing: We used Gaussian blur for the removal of noise from the active window

area of images in the ULBP [1] method. This enhances the performance of the ULBP

method. However when used in the HOG [2] method it gave a reduced performance.

The Gaussian filtering is done by multiplying the values in the local neighbourhood of

each pixel with a Gaussian kernel centred on the pixel, and then summing the values to

produce the output.

(ii) Gradients Computations: In the implementation of the HOG [2], we investigated

three derivatives filters: (i) 1D [−1, 0, 1]; (ii) Sobel operator; and (iii) Scharr operator

for the computation of an approximation of gradient of image intensity. We investigated

a small kernel size of 3 for the Sobel and Scharr operators for computational efficiency.

However, in our investigation the Scharr operator performed better than the other two

operators. For this reason, we used the Scharr operator for the gradient computation in

all HOG implementations in this thesis. The Scharr operator computes gradients of an

image with 3 x 3 kernel filter values of [−3, 0, 3], [−10, 0, 10], [−3, 0, 3] for the gradients in

x direction and [−3,−10,−3], [0, 0, 0], [3, 10, 3] for gradients in y direction by convolving

the pixels with the filter.

(iii) Edge Detection: As will be discussed later in Chapter 4, a Canny Edge Detector

was only used in the 2D image experiments so as to successfully adopt the method used

by Mirolli et al. [23] for the image dataset used in our experiment. It has no bearing
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on our method and the input values used in the training. A Canny Edge Detector just

like the Sobel and Scharr operator uses a mask (filter) to calculate gradients along the

x and y directions of an image. In addition: (i) it finds the gradient intensity and

the direction rounded up for one of four possible angles (0◦, 45◦, 90◦, 135◦); (ii) it uses

non-maximum suppression to remove pixels that are not considered edges; and (iii) it

sets two thresholds high and low, with gradient of pixels higher than the high threshold

accepted as edges, and those lower than the low threshold rejected, and those in between

are accepted only if they are connected to pixels above the high threshold.

3.8.2 Open Graphics Library (OpenGL)

The OpenGL is a cross-language and cross-platform Application Programming Interface

(API) for rendering 2D and 3D vector graphics. It is typically used to interact with

a graphic processing units (GPU) in order to achieve hardware-accelerated rendering.

The OpenGL platform was used in the design of the 3D environments implementation

in this PhD project. We used OpenGL because it is well documented, the availability

of tuturials to support its user base, and it is easily portable to different platforms.

However, because of the particular nature of our experiments and the evolutionary

method, some features of the OpenGL played very significant roles in the project.

1. Display Lists: Display lists may improve performance since they can be used to

store OpenGL commands for later execution. This characteristic may significantly

enhance performance in graphics models especially when the commands are used

to redraw the same geometry multiple times. By using display lists it is possible to

define the geometry and/or state changes once and execute them multiple times.

Some OpenGL operations such as glRotate involve heavy trigonometric compu-

tations, and these may result in onerous computational overheads for the system

when executed many times. However, when such commands are cached in display

lists this cost could be reduced. We therefore took advantage of the display list

feature in optimising parts of our code that involve high graphics, and at the same

time were redrawn in each time step of every trial of an evolutionary run. This

improved system performance, especially in the environment classification exper-

iments over the course of which we used texture mapping to a spherical shape in

each time step to simulate our environment.

2. Texture and texture mapping: This feature of OpenGL was mainly used in the

indoor and outdoor environment classification experiments. We used texture im-

ages to simulate our 3D indoor and outdoor environments. Texture mapping is

the mapping of textures to one or more faces of a 3D model. In the environment
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classification experiment (presented in Chapter 6), the 3D model was a sphere and

the texture images for the indoor and outdoor environments were dynamically

mapped to it at run-time. To make texture mapping operational, first the texture

image has to be loaded into the OpenGL environment, texture coordinates have

to be supplied with the vertices to map the texture, and sampling operations need

to be performed from the texture using the coordinates where, for example, the

texture coordinates are UV maps which are generated and the UV coordinates are

scaled between 0 and 1 in order to derive the pixel colour (Fig. 3.6).

The basic implementation could be summarised with the following steps: (i) we

initialised all the texture images in memory; (ii) we used the glEnable function to

enable our texture type which is GL TEXTURE 2D; (iii) we used the OpenGL function

glGenTextures(index, m texture objects) to generate a number of texture ob-

jects and used their handles in a GLUint array which was a pointer to the texture

images that were in memory; (iv) the texture objects were bound to the texture tar-

gets which in this case were 2D images using the glBindTexture(GL TEXTURE 2D,

m texture objects) function; (v) we used the glTexParameteri function to

specify the filtering type to be used for magnification and minification and the tex-

ture target, while linear filtering type was used for precision; (vi) the glTexImage2D

function was used to load the texture data itself; several parameters were specified

in this function such as texture target, width and height of the texture, and the

internal format in which OpenGL stored the texture.

Figure 3.6: Texture mapping application in the UV space and as effected on a 3D
model (image from [5])
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3.8.3 OSMesa

This is an off-screen API for rendering into user allocated memory without any sort of

window system or operating system dependencies. Its is used for rendering interactive 3D

graphics. In our implementation we used the OSMesa platform for off-screen rendering.

This off-screen rendering is very important in that our program needed to be parallelised

and run on High Performance Computing machines (HPC Wales). In this way, during

the training mode we would be able to avoid the additional computational overhead

involved in the graphics.

3.8.4 Message Passing Interface (MPI)

MPI is a message passing API, which is designed for programming parallel computers.

It has the goal of performance, scalability, and portability. The MPI API is able to

interface with programming languages such as C, C++ and Fortran.

Implementation of the process of artificial evolution which often involves repetitive eval-

uations over several thousands of generations may incur prohibitively expensive compu-

tational overheads in a sequential mode. Thus, the evolutionary process using a genetic

algorithm was parallelised with the MPI. Each individual ran its evaluation as a sepa-

rate process and the respective fitness was communicated to the root process which in

turn carried out the evolution and subsequently generation of a new set of controllers.

The details of the MPI process are as follows: firstly, we initialised the MPI environ-

ment with the function MPI Init and the type of the communication that was used with

MPI Comm rank. The MPI COMM WORLD communicator was used to communicate among

the processes and each process was assigned a rank. In the evolutionary method each

genotype encoding controller parameters was dedicated as a process and assigned a rank.

The root rank was used to send all the genotypes as processes to the other ranks with

the MPI Send function; the size of the ranks was equal to the number of genotypes. The

remaining ranks received the genotypes for processing using MPI Recv. The root rank

went through the entire evolutionary process that is up to the breeding stage and other

ranks had to wait for the root rank at the beginning of the evaluation process using

the MPI Barrier function. The root rank also used the MPI Gather function to receive

all the evaluated fitness from the ranks and performed the breeding of new genotypes.

Finally, MPI Finalize was called to terminate the MPI environment at the end of the

execution of the program.
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3.9 Chapter Summary

We started this chapter by outlining the requirements for the design of our proposed

gaze control framework. We also described the computational methods that were used

in the modelling of the framework. Subsequently, we discussed the software libraries

and platforms used in the implementation of the computational models. In the subse-

quent chapters (4, 5, 6), we describe the various experiments in which our gaze control

framework was instantiated.



Chapter 4

Experiment 1: Gaze Control in

2D Object Categorisation

4.1 Introduction

In Chapter 3, we discussed our gaze control framework and the requirements for the

design. It was also mentioned that the gaze control framework was inspired by Mirolli

et al. [23]. However, we have extended their control architecture with a gaze control that

uses pre-processing techniques from computer vision. We also discussed software libraries

used in our experiments. This chapter documents 2D object categorisation experiments

using pre-processing techniques to improve object categorisation capability. This was

done with the conjecture that human vision performs some kind of low-level processing

in the mammalian visual cortex [109][211], which gives better visual representation for

recognition. In addition, the pre-processing techniques we investigated have proved to be

useful in a number of computer vision tasks, such as object detection [50][51], and provide

robustness to variations in brightness, illumination, etc. Thus, we demonstrate this by

first repeating the experiment as performed in [23] for italic letter categorisation to show

that our system can correctly replicate the performance of their system. Secondly, we

extended their architecture with pre-processing methods for more complex images taken

from the camera of a humanoid robot, and we did so in order to show the effectiveness

of pre-processing for active vision in categorisation tasks. We did not use pre-processing

on the letter images as we were interested in more realistic images. In Section 4.2, we

describe the experimental set up, while in Section 4.3, the results are presented. Section

4.4 gives a general discussion of the results of our experiments. Finally, in Section 4.5

we give a summary of the chapter.

45
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4.2 Experimental Set-Up

We begin this section by introducing the neural network controller architecture and

the optimisation technique used in our experiment. This was inspired by Miroli et al.

[23]; however, it also incorporated the update equations of Tuci [29]. As mentioned in

Chapter 3, our gaze control framework is based on the periphery-only architecture of

Mirolli et al [23], and as such, it is used in our experiments which test categorisation

of 5 italic letters (‘l’,‘u’,‘n’,‘o’,‘j’) and of the iCub images categorisation in this chapter.

Table 4.1 lists the main terms and their meanings as used throughout the chapter.

Table 4.1: List the main terms and their meanings as used in this chapter.

Terms Meanings 

Genotype A set of real values representing the parameters of a 
neural work controller. 

Agent A robot simulated as a neural network controller. 
Generation A time length in which a new population of genotypes 

is generated and subsequently evaluated for 
performance. 

Evolutionary run Such a run consists of many generations and is 
instantiated with a new seed to randomly generate a 
new population of genotypes for the first generation. 

Best evolved 
genotype 

Genotype that produced the best solution in each 
generation of an evolutionary run. 

Trial A time length in which an image is presented to an 
agent with a random initial eye position. 

Time step A single time frame in which the sensory patterns of 
the retina are input into the neural network. 

Re-evaluate Evaluation of genotypes derived from an evolutionary 
run for performance with a set of images different 
from the training set, and with a different initial eye 
position in each trial. 

Best evolutionary run 
 

The replication of an evolutionary run in which one of 
its re-evaluated best evolved genotypes produced the 
best performance among all evolutionary runs. 

Best Fitness Fitness of the best evolved genotype from each 
generation of an evolutionary run. 
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The neural network controller

Eye movement Categorisation
  

Visual inputs

Output Layer

Hidden Layer

Input Layer

Figure 4.1: The architecture of our adopted periphery only Continuous Recurrent
Neural Network, with recurrent hidden neurons.

The neural network controller is a continuous time recurrent three-layer architecture,

with the updates equation as described in Chapter 3 (Fig. 4.1). The visual input vector

size was determined by the method chosen for the pre-processing of the active window.

It also has one hidden layer of 5 recurrent neurons, and an output layer of 7 neurons.

In the output layer, 2 of the neurons determine the movement of the eye (size 50 x 50

pixels) per time step (maximal displacement of [−12, 12] pixels in X and Y directions),

and the other 5 neurons are for labelling the 5 categories. The input layer consists of

units which encode the current activation state of the neurons for the visual stimuli of

the active window, the copies of the 2 motor neurons, and the 5 categorisation units at

the previous time step t− 1.

The activations of the input neurons were normalised between 0 and 1, however with 0

representing a fully white visual field, while 1 represents fully black for the grey-scale (as

it was done in Mirolli et al. [23]). A random value with a uniform distribution within

the range of [-0.05,0.05] was added to the activation values of the grey-scale method,

Active-ULBP and Active-HOG at each time step, in order to take into account that

sensor data are subject to noise. Note: we have adopted the parameters such as eye

(active window size), maximal displacement per time step (i.e [12,-12] pixels) and the
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number of hidden neurons (5) from the architecture of Mirolli et al. [23] in order to

maintain consistency with their system.

The task and the evolutionary process

In this section, we explain the evolutionary process described in Chapter 3, as it pertains

to the two major experiments described in this chapter, i.e. the grey-scale letter and

iCub images categorisation.

In each trial, the eye was left to freely explore the image, however, a trial was terminated

when the eye could no longer perceive any part of the object in the image for three

consecutive time steps. The task of the agent was to correctly label the category of the

current object during the second half of the trial, i.e., when the agent had explored the

image for a sufficient length of time.

The initial population for each generation of the evolutionary process consisted of 100

randomly-generated genotypes sampled from a uniform distribution in the range [0, 1],

each encoding the free parameters of the corresponding neural controller, which includes

all the connection weights, gain factors, biases, and the time constants of the hidden

neurons. In order to generate the phenotypes, weights and biases were linearly mapped

in the range [−10, 10] and [−5, 5] respectively, while the time constants were mapped

in [−1, 1.8]. Generations following the first were produced by a combination of selec-

tion with elitism, recombination and mutation. For each new generation, the genotype

with the highest fitness value (“the elite”) from the previous generation was retained

unchanged. The worst 30 were then removed. The remaining 99 genotypes of the new

generation were formed by randomly selecting two genotypes from the older generation

using roulette wheel selection, and a new genotype was created by combining the ge-

netic material of these two old genotypes with a probability of 0.3 with cross-over point

selected during the recombination. Mutation was done with the probability of 0.05,

which entails that a random Gaussian offset was applied to each real-valued component

encoded in the genotype. The mean was 0 and its standard deviation was 0.1. Note:

the parameter values used as specified above both for the genotype/phenotype (neural

network) mapping and the genetic algorithm were adopted from Tuci [29].
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4.2.1 Letter Categorisation Experiment

Eye movement Categorisation
 l, u, n, o, j

25

Visual inputs

Figure 4.2: The architecture of the adopted periphery-only Continuous Recurrent
Neural Network in the letter categorisation experiment

Figure 4.3: The above figure shows the five italic letter images

This experiment involved a moving eye located on an image of 100 x 100 pixels and was

used to display the letters one at a time. The artificial eye consisted of 5 x 5 photo-

receptors uniformly distributed over a square and which covered the entire retina. Each

photo-receptor detected an average grey level of an area corresponding to 10 x 10 pixels

of the image. The activation of each photo-receptor ranged from 0 to 1. The image

was used to display five italic letters (‘l’,‘u’,‘n’,‘o’,‘j’) each of five different sizes, with a

variation of ±10% and ±20% to the original size. Fig. 4.2 shows the letter ‘l’ displayed

on the image and scanned by the moving eye, and Fig. 4.3 shows all the letters. The

letters are displayed in black and grey over a white background as shown in Fig. 4.2 for

the letter l.
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At the beginning of each trial: (i) one of the 25 letter images of varied sizes was presented

to each individual (the controller/genotype); (ii) the state of the internal neurons of the

agent’s neural controller was initialised to 0.0; and (iii) the eye was initialised in a random

position within the central third of the image. The entire evolutionary run lasted for 3000

generations, with each individual/genotype evaluated for 50 trials (i.e. each image was

presented twice to each individual), and each trial lasted 100 time steps (a presumably

sufficient length of time for exploration in a trial). The results are presented in Section

4.3.

4.2.2 iCub-Images Categorisation Experiment

Eye movement Categorisation
 ST , RC , MC , BW , H

Visual inputs

Figure 4.4: The Continuous Recurrent Neural Network architecture and the active
window scanning the presented soft toy grey image in a trial for categorisation. In the
categorisation units, the objects are represented as soft toy: ST, remote control: RC,
microphone: MC, board wiper: BW, hammer: H

In this experiment we tested the ability of the proposed feature extraction methods (i.e

Active-ULBP and Active-HOG) to enhance object categorisation tasks in an active vi-

sion system. This is shown, with a comparative experiment of the proposed methods

with the grey-scale averaging method [23] for categorisation of objects in images taken

from the camera of the iCub. The images are coloured, and of size 320 x 240 pixels of

five different objects, namely: soft toy, TV remote control, microphone, board wiper,

and hammer. The data-set consists of 350 images divided into two folds for training and

validation. The first fold of 7 different sizes for each object varied between [−20%, 20%]
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with respect to the original size; and each size of 5 different orientations varied between

[−4, 4] degrees with respect to the original orientation. The second fold also of 7 dif-

ferent sizes varied between [−30%, 30%] of the original size; and each size of 5 different

orientations varied between −9, 9] degrees with respect to the original orientation. We

used a larger range of scale and orientation in the second fold so as to make the cate-

gorisation task more challenging. The original coloured images were first converted into

grey-images. Also, in order to make the images suited for the system, in which trials

were terminated when the active window of (50 x 50 pixels) could no longer perceive

any part of the object for three consecutive time steps, we used a Canny Edge Detector

to detect the edges in each image presented. Subsequently, in each trial, a rectangu-

lar mask was set on the object in the image, and every white (edge) pixel outside the

boundary of the rectangular mask were set to black. Through this means, we were able

to get edge images that consisted of total outside boundaries of black, and objects of

white and black. Fig. 4.5 shows the original coloured images, Fig. 4.6 shows the grey-

images, Fig. 4.7 shows the images after being processed by the Canny Edge Detector

and Fig. 4.8 shows the images after setting the rectangular masks on the Canny Edge

Detector processed images. It should be noted that the above processing of the grey

images by the Canny Edge Detector and rectangular masking, which finally led to the

images shown in Fig. 4.8 were only used to terminate each trial after the active window

lost total focus of the object for more than 3 consecutive time steps and as a result time

was saved during training. The input vector into the neural work was obtained from the

grey-images processed by the visual extraction methods, and the copies of the movement

and categorisation units at previous time step t− 1 as shown in Fig. 4.4.

At the beginning of each trial: (i) one of the 175 images (in a fold) was presented to each

individual; (ii) the state of the internal neurons of the agent’s controller was initialised

to 0.0; and (iii) the eye was initialised in a random position within the central third

of the image. The entire evolutionary process lasted for 3000 generations, with each

individual/genotype evaluated for 350 trials (i.e each image was presented twice to each

individual) and each trial lasted for 100 time steps. The results are presented in Section

4.3.

Soft toy:ST Remote:RT Microphone:MC Board wiper:BW Hammer:H

Figure 4.5: The original coloured images.
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Soft toy:ST Remote:RT Microphone:MC Board wiper:BW Hammer:H

Figure 4.6: The converted grey-images.

Soft toy:ST Remote:RT Microphone:MC Board wiper:BW Hammer:H

Figure 4.7: The images after being processed by the Canny Edge Detector.

Soft toy:ST Remote:RT Microphone:MC Board wiper:BW Hammer:H

Figure 4.8: The images after setting rectangular masks on the Canny Edge Detector
processed grey-images.

Grey-scale averaging

Figure 4.9: Original
active window area of
soft-toy grey-image

Figure 4.10: the
active window area after
grey-scale averaging

In this experiment, we adopted the grey-scale averaging method in Mirolli et al. [23],

described in Chapter 3, for the processing of the active window. We have used the same

number of parameters as used in their work, so as to be consistent with their system.

The inputs were the average grey-levels of 10 x 10 pixels for each of the 25 inputs into the

neural network. Fig. 4.9 shows the active window grey-image patch that was processed
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in each iteration. Fig. 4.10 shows the average pixels of the active-window that were

input into neural network.

Active-Uniform Local Binary Patterns

We instantiated the Active-ULBP described in Chapter 3 to process the active window,

so as to take advantage of the uniform patterns that are present in texture images.

Fig. 4.11 below shows the histograms and the concatenated histograms of the 4-cells of

the active-window of a patch of the soft-toy image. The histograms were normalised and

input to the neural network along with the output copies of motor units and classification

units at the previous time step of each trial.

                                                                

                                                                                   

                                                                    

                                                                                        

                                                                        

                                                                     

                                                 

 

                                   Active-ULBP Concatenated Histograms 

A C

B D

A B                   C                     D

Figure 4.11: Active-ULBP histograms of the cells of the active window, and the
concatenated histograms
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Active-Histogram of Oriented Gradients

In order to further evaluate whether pre-processing can be used to improve the per-

formance of active vision for categorisation tasks, we instantiated the Active-HOG de-

scribed in Chapter 3. The visual inputs of the active vision in this case were normalised

HOG features. As shown in Fig. 4.12, the concatenated histograms had a much smaller

vector size of 36 as compared to that of Active-ULBP. The normalised concatenated

histograms were input to the neural network controller along with the copies of cate-

gorisation and motor units in every time step of each trial.

                                                             
  

                                                                                                     

                                                                 

              

 

 

                                                 Active-HOG Concatenated Histograms        

                                                                                                                                        

A C

B D

A                           B                            C                              D

Figure 4.12: Active-HOG histograms of the active window image patch and the
concatenated histograms
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4.3 Results

In this section, we present the results and analysis for all the experiments. We first

present the results of the replicated letter categorisation experiment which is only used

to show that our system can reproduce the results of Mirolli et al. [23]. The results of

the iCub image experiment are also presented, with a comparative analysis of the three

methods of visual extractions, i.e. grey-scale averaging [23], Active-ULBP and Active-

HOG. In order to assess the ability of the agent to correctly categorise the current objects

in all of these experiments, we calculated the percentage of times, over the course of the

second half of each trial, the categorisation unit corresponding to the current object

(correct class) was the most activated.

4.3.1 Grey-Letters Categorisation

We performed 12 evolutionary runs, with each run lasting for 3000 generations (as shown

in Appendix A, Fig. A.1). Each individual was evaluated for 50 trials and each trial

lasted 100 time steps. Also, in order to assess the performance of the agent and its

ability to generalise its skill, we performed another experiment in which we re-evaluated

the best evolved genotypes from each of the evolutionary runs on the 50-sized set of

letter images that were of different scales from those in the training. We present the

results of the evolution, and the categorisation performance from the re-evaluation of

the best evolved genotypes here.

4.3.1.1 Evolution

We discuss here the evolution of the letter-categorisation experiment. The best run

from the 12 evolutionary runs (Fig. 4.13) started with sharp growth for about the first

400 generations and afterwards showed a more steadier growth. It finally peaked at

a fitness close to the optimum value. However, considering the pattern of fitness for

all evolutionary runs (Fig. 4.14), which shows the average (mean) of the best fitness

in all generations of the 12 evolutionary runs and their positive and negative standard

deviation. One can observe that at the beginning of the evolutionary runs (i.e in about

the first 50 generations) the fitness of all the runs was very close to the mean, but

after that point it largely deviated from the average for approximately another 2700

generations, and reduced in deviation in the remainder of the evolutionary runs. This

suggest that on average all evolutionary runs improve towards their completion.
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Figure 4.13: The best fitness graph of the best evolutionary run

Figure 4.14: Shows the graph of the mean (average) of all best fitness in each
generation of the 3000 generations for 12 evolutionary runs and their positive (+ve
stdev) and negative (-ve stdev) standard deviation in each generation.

4.3.1.2 Categorisation Performance

In order to assess the best genotypes in all evolutionary runs for categorisation perfor-

mance, we re-evaluated (for testing) the best genotypes of the last 1000 generations of

the evolutionary runs for the categorisation task. This was simply because the last 1000

generations should have a relatively higher fitness pattern than the other generations
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and as a result yield better solutions. The best genotypes were exposed to 50 images

of the same italic letters used in the evolutionary runs (training) but of different scales.

The letters were scaled within the range [−15%, 15%] to the original size with a uni-

form variation. The re-evaluation was done for 10000 trials during which the eye was

randomly located in 200 different initial starting positions on each image size.

The results are as shown in Table 4.2 and Table 4.3. The confusion matrix in Table

4.2 shows the average performance of the best performing re-evaluated genotype for

all trials. Table 4.3 gives a statistical summary of categorisation performance. The

metrics used in statistical summary of (Table 4.3) are as follows: Max represents the

best performance from the best evolved genotypes re-evaluated in all runs; Average

represents the average of the best performance in each run; Worst is the worst of the best

performance in each run; and stdev is the standard deviation of the best performance

of all runs. The best performance from all re-evaluated best evolved genotypes in all

runs was 96.70%, while the average of the best performance from all runs was 92.76%,

and the worst performance was 82.60%. The performance result from our experiment of

12 evolutionary runs was comparable to that of the original implementation by Mirolli

et al. [23] of 20 evolutionary runs. Their best and average performance was 99.87% and

86.85% respectively, as compared to our best and average performance of 96.70% and

92.76% respectively. The difference in the results may be due to the following reasons:

(i) The difference between the Continuous Recurrent Neural Network (CTRNN) update

equations used, as we have used the update equation in Tuci [29].

(ii) The difference in the number of replications of evolutionary run (12 versus 20).

(iii) The random elements involved, including the seed and selection process. It is likely

that the differences in results are not statistically significant.

Table 4.2: The confusion matrix showing the average performance of the best
performing re-evaluated genotype for all trials of letters

  Average Activation Rates (Highest in Bold) 

Current category l u n o j 

l 89.81 0.00 0.00 0.02 10.17 

u 0.00 99.27 0.37 0.36 0.00 

                 n 0.00 1.11 97.30 1.58 0.00 

 o 0.15 0.03 2.65 97.12 0.06 

                 j 0.00 0.00 0.00 0.00 100.00 

 

Table 4.3: Best, average and worst performance in all runs.

Max Average Worst Stdev 

96.70 92.76 82.60 ±3.52 
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4.3.2 iCub-Images Categorisation

This section presents the results of the three methods of visual representation for active

vision. As comparative analysis was conducted for the purpose of method comparison,

all other conditions in the evolutionary process were constant; the only difference was

the input vector size which was determined by the visual extraction method.

4.3.2.1 Evolution

During the evolutionary stage, we performed 20 evolutionary runs for each of the visual

extraction methods for the 2-fold cross validation (as shown in Appendix A, Fig. A.2,

Fig. A.3 and Fig. A.4). Each evolutionary run had 3000 generations, with each genotype

evaluated for 350 trials, and each trial consisting of 100 time steps. The first 10 runs

were for the first fold, while the last 10 runs were for the second fold of the 2-fold cross

validation.

Observation of the best fitness graphs of the best runs of the three methods (Fig. 4.15)

reveals that the Active-ULBP had a fitness pattern that was higher overall than the other

two methods, while the grey-scale was slightly higher than the Active-HOG. Active-HOG

also seems to have peaked earlier than the other methods. However, in Fig. 4.16, that

shows the average (mean) of the best fitness in all generations of all evolutionary runs

and their positive and negative standard deviations for the three methods of visual

extraction, one can observe that the general average (mean) fitness pattern was higher

for the Active-ULBP than for the other two methods in most generations. Also, the mean

pattern for grey-scale was slightly higher than that of Active-HOG. Observing standard

deviation from the mean for the three methods, one can observe that all three methods

produced a best fitness that was very close to the mean in the first few generations;

however larger deviations are observed in the remaining generations. Moreover, Active-

HOG exhibits a larger deviation from the mean at an earlier stage than the other two

methods.

Overall, the fitness patterns of all runs seems to be closer to the mean for the Active-

ULBP than for the other two methods, especially from approximately 700 generations

onwards. By contrast, the fitness patterns for the grey-scale and Active-HOG methods

were very similar. This suggests that the fitness patterns for all runs of the Active-ULBP

in general seem to progressively improve in all generations as compared to the other two

visual extraction methods.
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Figure 4.15: The best fitness graphs of the best evolutionary runs of the three
visual extraction methods in the 2-fold cross-validation.

Figure 4.16: Shows the graph of the mean (average) of all best fitness in each
generation of the 3000 generations for 20 evolutionary runs and their positive (+ve
stdev) and negative (-ve stdev) standard deviation in each generation for the three
methods of visual extraction

4.3.2.2 Categorisation Performance

In order to assess the performance of the system, we re-evaluated the best genotypes of

the last 1000 generations of the evolutionary runs for the categorisation task for each
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fold of the 2-fold cross validation for the three methods of visual extraction. A total of

700 trials were done, with each image of each fold (175 images) presented 4 times to the

agent with a random initial eye position in each trial. The categorisation performance

was based on the percentage of times in which the categorisation unit corresponding

to the current (correct) category was the most activated in all trials. The confusion

matrices of the best performing re-evaluated evolved genotypes for the three methods of

visual extraction show that the current category had the highest percentage of correct

categorisation in all trials (Table 4.4, Table 4.5, Table 4.6). However, that of the Active-

ULBP and the grey-scale methods were slightly better than that of the Active-HOG.

Table 4.4: The average performance of the best performing re-evaluated genotype of
grey-scale averaging in all trials of the iCub-images.

  Average Activation Rates (Highest in Bold) 

Current category soft toy remote control microphone board wiper hammer 

soft toy 99.60 0.32 0.00 0.08 0.00 

remote control 0.00 99.58 0.00 0.00 0.42 

microphone 0.00 0.00 100.00 0.00 0.00 

board wiper 0.00 0.00 0.00 100.00 0.00 

hammer 0.00 0.31 0.60 0.04 99.06 

 

Table 4.5: The average performance of the best performing re-evaluated genotype of
Active-ULBP in all trials of the iCub-images.

  Average Activation Rates (Highest in Bold) 

Current category soft toy remote control microphone board wiper hammer 

soft toy 99.95 0.00 0.00 0.05 0.00 

remote control 0.00 98.93 0.00 0.00 1.07 

microphone 0.00 0.04 99.96 0.00 0.00 

board wiper 0.02 0.00 0.00 99.98 0.00 

hammer 0.00 0.00 0.00 0.00 100.00 

 

Table 4.6: The average performance of the best performing re-evaluated genotype of
Active-HOG in all trials of the iCub-images.

  Average Activation Rates (Highest in Bold) 

Current category soft toy remote control microphone board wiper hammer 

soft toy 95.98 0.00 0.00 4.02 0.00 

remote control 0.00 100.00 0.00 0.00 0.00 

microphone 1.17 0.33 97.07 1.28 0.16 

board wiper 1.62 0.00 0.00 98.38 0.00 

hammer 0.00 0.00 0.62 0.00 99.38 

 

The overall performance for the three methods of visual extraction can be estimated

by observing the summary of statistics of categorisation performance in (Table 4.7).

The metrics used are: Max is the best performance from all re-evaluated best evolved

genotypes of all runs; Average represents the average of the best performance in each

run; Worst is the worst of the best performance in each run; and stdev is the standard
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Table 4.7: The summary of performance statistics of the three visual extraction
methods in the 2-fold cross-validation (i.e. 20 evolutionary runs).

Visual extraction methods Max Average Worst Stdev 

Grey-scale averaging 99.65 95.77 87.26 ±4.13 

Active-ULBP 99.77 96.82 91.75 ±2.49 

Active-HOG 98.16 92.87 77.81 ±5.26 

 

deviation of the best performance of all runs. From the table one can see that the Active-

ULBP best performance of 99.77% was slightly better than that of grey-scale (99.65%)

and Active-HOG (98.16%). Also, Active-ULBP exhibited the highest average perfor-

mance of 96.82% as compared to that of grey-scale (95.77%) and Active-HOG (92.87%).

Active-ULBP, also showed the best worst performance of 91.75% as compared to that

of grey-scale (87.26%) and Active-HOG (77.81%). Furthermore, the standard deviation

also shows that the best performance of Active-ULBP in all runs were less sparsely dis-

tributed than those of the grey-scale and Active-HOG, while those of grey-scale were

slightly less sparsely distributed than those of Active-HOG. Fig. 4.17 also shows the

average of the best performance of all runs for each method of visual extraction.
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Figure 4.17: The bar-charts above shows the average categorisation performance
and standard deviations of the three methods of visual extraction in all runs.

Statistical Analysis

We further tested if the averages of the three visual extraction methods were signifi-

cantly different with the t-test. However, the commonly used t-test is mainly used for

comparison between two means. Since we made our comparison among three methods,

we used the extension of the t-test that exams if there is a significant difference among

three or more means (averages). This test is also known as the one-way analysis of



Active vision system 62

variance (ANOVA). We tested the significance of the differences of the averages (means)

with a (p-value<0.05) and a more stringent (p-value<0.01). Table 4.8 shows a statistical

summary of the three visual extraction methods that was used to calculate the values of

the results of the ANOVA test. The tables metrics are as follows: the Visual extrac-

tion methods column indicate the type of pre-processing techniques; the Count gives

the number of evolutionary runs; the Sum is the sum of the individual performances

of the best performing re-evaluated genotypes from all runs of the three methods of

visual extraction; and the Average and Variance columns indicate respectively the

averages and variance of the performance of the best performing re-evaluated genotypes

from all runs of the three methods. Table 4.9 statistically summarises the results of the

ANOVA test, and its metrics are as follows: the first column represents the Source

of variations (between and within the groups) for which averages were compared (i.e.

grey-scale averaging, Active-ULBP, Active-HOG); SS represents the sum of squares; df

is the degree of freedom; MS represents the means squares; F refers to the F distribution

value; P-value is the significance level of the averages that were considered; and F crit

denotes the F critical value.

Table 4.8: Summary of the statistics of the best performing re-evaluated genotypes
of the three visual extraction methods from 20 evolutionary runs that was used in the
anova test.

SUMMARY 

Visual Extraction Methods Count Sum Average Variance 

Grey-scale averaging 20 1915.33 95.77 17.04 

Active-ULBP 20 1936.30 96.82 6.22 

Active-HOG 20 1857.34 92.87 27.65 

 

Table 4.9: The results of the anova test.

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 167.29 2 83.65 4.93 0.0106 3.16 

Within Groups 967.33 57 16.97       

Total 1134.62 59         

 

Table 4.10: The significant test results using a paired t-test with test conditions of
(p-value<0.05) and (p-value<0.01).

Compared Groups t-value p-value 

Signf. Level=0.05 Signf. Level=0.01 

Bonf. Corr=0.0167 Bonf. Corr=0.003 

Active-ULBP and Grey-scale 0.81 0.2862 Not Significant Not Significant 

Active-ULBP and Active-HOG 3.03 0.0052 Significant Not Significant 

Grey-scale and Active-HOG 2.23 0.0354 Not Significant Not Significant 

 

The obtained p-value of 0.0106 as shown in the Table 4.9 was less than our first signif-

icance level of 0.05, this represents a strong evidence against the null-hypothesis that
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the averages for the three visual extraction were equal. Therefore, we reject the null

hypothesis. On the other hand, the obtained value was slightly higher than the second

significance level of 0.01, or what we might consider to be “highly significant”. We then

investigated which method pairs were significantly different by using pairwise t-tests and

applying a Bonferroni correction for the two significance levels of 0.05 and 0.01. The

purpose of the ANOVA test is to indicate if there is a need to proceed with pairwise

significance tests, or if there is insufficient evidence to have confidence that any differ-

ences were not due to chance. Nevertheless, we still computed the Bonferroni correction

for the second significance level of 0.01, since the obtained p-value of 0.0106 was only

slightly higher than 0.01 and. as such, could be referred to as showing a trend towards

being “highly significant”. As shown in Table 4.10, the Bonferroni corrected value for

significance level of 0.05 is 0.0167, while that of 0.01 is 0.003.

The result of the paired t-test of the averages of the three groups (visual extraction

methods) using Bonferroni correction is shown in Table 4.10. The first column indicates

the paired groups that were compared, the second and third columns indicate the t-

values and the p-values of the averages compared for each paired group, while the fourth

and fifth columns indicate the level of significance of each paired group averages using

the Bonferroni corrected values. Comparing the three groups in the table at the 0.05

significance level with Bonferroni correction of 0.0167, the variation in averages between

Active-ULBP and grey-scale was not significant, i.e. the difference could have arisen

by chance and, while that of Active-ULBP and Active-HOG was significant and that

of grey-scale and Active-HOG was not also significant. Therefore, for the significance

level of 0.05, we fail to reject the null-hypothesis that the averages of the two groups

Active-ULBP and grey-scale, and grey-scale and Active-HOG were equal, but we reject

the null hypothesis for the case of Active-ULBP and Active-HOG.

On the other-hand, for the significance level of 0.01, the averages of all three groups

compared (i.e. Active-ULBP and grey-scale, Active-ULBP and Active-HOG, grey-scale

and Active-HOG) were not significantly different. We therefore fail to reject the null

hypothesis that the averages were equal for these three groups.

4.3.2.3 Dynamics of the Categorisation Process

This section deals with the dynamics of the categorisation process in the case of iCub

images experiment. In particular, we investigate:

(i) To what extent the sensory stimuli provided by one of the visual extraction techniques,

and experienced by the agent during interaction with the images, have been sufficient

to provide the regularities required to facilitate the categorisation process.
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(ii) To what extent the agent succeeded in self-selecting the stimuli that can be unam-

biguously associated with a particular category.

Note: stimulus ambiguity may depend on the nature of the stimulus, the field of view

of the artificial eye and the eye location.

The categorisation answers given by our system were dependent on the visual informa-

tion that was provided, apart from the copy of the outputs categorisation and motor

units at the previous time step. However, since our focus is mainly on the influence of

visual representation on control of the active vision in order to improve learning for cate-

gorisation, we only investigate here the visual sensory channel (i.e. we exclude the motor

and the categorisation copies). In order to do this we focus our analysis on comput-

ing the Modified Version of the Geometric Separability Index (MGSI). The Geometric

Separability Index (GSI) was originally proposed by Thorton [212], while the MGSI is a

modified version of the GSI and was proposed by Mirolli et al. [23]. The GSI computes

the percentage rate at which the nearest pattern of each experienced pattern belonged

to the same category; however the MGSI is more demanding in that it takes into account

not only the nearest neighbour but all the stimuli belonging to the same category. We

chose to use this more demanding measure because the nature of our problem is very

similar to that of Mirolli et al. [23]. The MGSI is defined by the equation below:

MGSI(P ) =

∑
s∈P

∑
n∈Ns

ICs(n)

|Cs|

|P |

Which is defined as the average over all patterns, of the proportions of patterns belonging

to the same category, that are in the |Cs| nearest patterns (computed from Euclidean

distance), where |Cs| represents the total number of patterns in the same category as

pattern s. Where P is the set comprising all the patterns, |P | is the cardinality of the

set P , Cs is the set of all patterns belonging to the same category as pattern s (s does

not belong to Cs), Ns is the set of the |Cs| patterns nearest to pattern s, and ICs (n)

is the indicator function of set Cs, that returns 1 if n is in set Cs and 0 otherwise.

We computed the MGSI of the best performing re-evaluated evolved genotypes for all

three visual extraction methods for 1750 trials during which the agent experiences the

five different categories (i.e. soft toy, remote control set, microphone, board wiper and

hammer) of the 35 different samples for each category, 10 times each with different

initial eye positions. For each type of visual extraction method of the sensory patterns

the MGSI has been calculated for each of the 100 time steps of a trial.

Observing the change in the MGSI for the three methods of visual extraction (Fig. 4.18,

Fig. 4.19, Fig. 4.20):
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Figure 4.18: Modified Geometric Separability (MGSI) of the stimuli provided by
grey-scale averaging.
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Figure 4.19: Modified Geometric Separability (MGSI) of the stimuli provided by
the Active-ULBP method.
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Figure 4.20: Modified Geometric Separability (MGSI) of the stimuli provided by
the Active-HOG method.

.
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(i) The fact that the MGSI increased for all conditions (visual extraction methods)

and for all objects, shows that the system moved away from very ambiguous to less

ambiguous stimuli.

(ii) The MGSI never reached a value of 1. This means that the system never managed to

generate unambiguous stimuli for all the visual extraction methods. This was obviously

not a problem given by the performance of the three visual extraction techniques.

(iii) The Active-ULBP method generated less ambiguous stimuli than the grey-scale

and Active-HOG methods, however grey-scale was more consistent. This means that

the stimuli generated by the system for Active-ULBP were generally more separated in

sensory space than the other two, but with the grey-scale more consistent.

(iv) Active-HOG reached a peak that was almost equal the lowest levels of Active-ULBP

and grey-scale and maintained the same approximate level over time. This means that

in the case of the Active-HOG, the system did not exhibit as great a tendency to move

towards less ambiguous stimuli when compared with the other two methods.

(v) For some objects, the system managed to generate less ambiguous patterns than for

other objects. This means the system produced more discriminative patterns for those

objects than for others.

4.4 Discussion

We started this chapter by trying to replicate our benchmark model (Mirolli et al. [23])

for letter categorisation. The average performance of our system was comparable and the

difference may be due to the use of different update equations, the number of repeated

evolutionary runs and the random elements involved. We then extended the benchmark

system with pre-processing for images taken from the iCub camera. We discuss: (i)

Visual representation and active vision categorisation; (ii) Learning control of the active

vision system.

Visual Representation and Active Vision Categorisation

We investigated three methods of visual extraction, i.e. grey-scale averaging method

[23], Uniform Local Binary Patterns [1] (as Active-ULBP) and Histogram of Oriented

Gradients [2] (as Active-HOG). Consequently, we discuss here the impacts of the visual

representation methods on categorisation performance. In our investigation, Active-

ULBP demonstrated the best average performance, while grey-scale also outperformed
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Active-HOG. However, further investigation based on statistical analysis using two sig-

nificance levels of 0.05 and 0.01, showed that at the 0.05 level of significance, Active-

ULBP’s higher level of performance compared to grey-scale was not statistically signifi-

cant, while its higher level of performance compared to Active-HOG was significant. The

better performance of grey-scale in comparison to Active-HOG was also not statistically

significant.

On the other-hand, at the 0.01 level of significance, none of the three visual extraction

methods was found to be significantly better than the others when compared.

Therefore, we could deduce that based on a more comprehensive significance test (i.e.

using significance levels of 0.05 and 0.01), higher average performance of Active-ULBP

relative to Active-HOG was significant but not “highly significant”.

On the whole, the very good performance of Active-ULBP lends further support to

ULBP as an effective feature descriptor for texture information. The performance of

Active-HOG also showed that it can be an effective feature representation for images

characterised by some level of structural information. Overall, the good performance of

the two pre-processing methods investigated has demonstrated their potential for good

visual representation in active vision systems.

Learning Control of the Active Vision System

Intelligent cooperation between sensory and motor systems can help to facilitate a cat-

egorisation process. Not only does the motor system help to shape the visual stimuli

experienced by an agent, but the type of stimuli experienced by the agent can also de-

termine the corresponding motor responses that help to improve recognition capability.

The improvement of MGSI values over time for the three visual extraction methods

investigated shows the impacts these kind of sensory patterns can have on corresponding

motor actions which can in turn facilitate categorisation performance.

Moreover, the fact that Active-ULBP generated less ambiguous stimuli over time than

the other two methods, showed that the sensory patterns provided by Active-ULBP have

more productively generated motor behaviours that facilitate learning for categorisation.

This may be due to the fact that ULBP has been shown to work well for texture images,

and as a result must have given better sensory patterns that facilitate the learning

process. The fact that grey-scale improvement was generally more consistent, also shows

its ability to assist the system in experiencing more discriminative stimuli with more

consistency than the other two methods. Active-HOG also helped the active vision
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system in experiencing less ambiguous stimuli over time, though with not as much

impact when compared to Active-ULBP and grey-scale.

Finally, the performance of the three visual extraction methods was close to optimum, in

spite that their stimuli were not fully separated in the input space (i.e. the MGSI never

reached a value of 1). This indicates that the system must have integrated sequences of

experienced sensory states over time through internal dynamics of the neural network

controller.

4.5 Chapter Summary

In this chapter, we began by trying to replicate the experiment of Mirolli et al. [23]

for letter categorisation, which was used as the bench-mark for our active vision model.

We found it necessary to do this to determine if our system can effectively reproduce

the performance of their system. Our active vision system in the letter categorisation

experiment had a best performance of 96.70% in 12 evolutionary runs, as compared

to the best performance of 99.87% recorded by Mirolli et al. [23] in 20 evolutionary

runs. Moreover, the average performance of our system was 92.76% as compared to the

equivalent value 86.85% documented for their system. The difference in performance

may be due not only to the use of different update equations, but also the different

number of replications of evolutionary runs used in our system.

Subsequently, the bench-mark model was extended with pre-processing using Uniform

Local Binary Patterns [1] (as Active-ULBP) and Histogram of Oriented Gradient [2]

(as Active -HOG) on images taken from the iCub camera. The results achieved by pre-

processing the visual stimuli showed that Active-ULBP had an average performance of

96.77% which compared favourably with Active-HOG (92.87%) and grey-scale (95.77%).

However, statistical analysis showed that the average performance of Active-ULBP was

not significantly different from that of grey-scale and not “highly significantly” different

from that of Active-HOG. There was also no significant difference between the average

performance of grey-scale and Active-HOG.

The analysis result of the Modified Geometric Separability Index (MGSI) [23] showed

that the performance of the active vision system using the three visual extraction meth-

ods was based on intelligent coordination between sensory and motor units, and should

also involve integration of the perceptual information over time, since the stimuli pro-

vided by the three methods were never completely separated in the input space.
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The next chapter extends the active vision system for object categorisation in the 3D

environment using a simulated iCub robot platform.



Chapter 5

Experiment 2: Gaze Control in

3D Object Categorisation

5.1 Introduction

We investigated pre-processing techniques in the last chapter for improving the cate-

gorisation capability of an active vision system in a 2D environment. In particular, we

extended the work of Mirolli et al. [23] with Histogram of Oriented Gradients [2] and

Uniform Local Binary Patterns [1] for improved visual perception. However, in order

to demonstrate how active vision is performed in the real world, we further explore the

3D motor-space. Consequently, we chose the humanoid iCub platform to investigate

how biological agents use their vision system to perform object categorisation. Section

5.2 describes the experimental set-up, while Section 5.3 provides the results. Section

5.4 gives general discussion of the chapter and the results, and finally in Section 5.5, a

summary of the chapter is given.

5.2 Experimental Set-Up

This experiment is designed to investigate how a simulated agent (the iCub) can exploit

its eye movement to improve object categorisation. Furthermore, given the strong inter-

dependencies between motor responses and sensory stimuli, we also investigated how this

categorisation capability can be improved with pre-processing techniques. We trained

the simulated robot controller through an evolutionary technique, in order to investigate

how the agent exploits its eye movement to improve perception for object categorisation.

The encoded free parameters of the evolutionary technique, that regulate how the agent

70
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interacts with its environment and the agent’s categorisation responses were randomly

varied, and variations were retained or discarded on the basis of the agent’s ability to

perform the categorisation task.

5.2.1 The iCub agent and the environment

Figure 5.1: Shows iCub
scanning the sphere object. Inset
on top right shows the object
from the iCub point of view

Figure 5.2: Shows the iCub
scanning the cube object. Inset
on top right shows the object
from the iCub point of view

Figure 5.3: Shows iCub
scanning the cone object. Inset
on top right shows the object
from the iCub point of view

Figure 5.4: Shows the iCub
scanning the torus object. Inset
on top right shows the object
from the iCub point of view

The experimental scenario involved a simulated iCub agent equipped with a right-eye

vision. The agent was situated in a 3D environment in-front of a coloured object on

a coloured table against a black background (e.g. Fig. 5.1). We chose four different

coloured objects, i.e. a sphere, cube, cone and torus, in which the stimuli are highly

ambiguous, and render the categorisation task more arduous. The four different coloured

objects were presented to the agent for categorisation one at a time (Fig. 5.1, Fig. 5.2,

Fig. 5.3 and Fig. 5.4). In each presentation, the objects were uniformly randomly scaled

with a variation of [-10%,10%] to the original size, and uniformly randomly rotated

within the range [−10◦, 10◦] on the y axis. In each trial, the agent eye perceived each

object presented with visual extraction from grey-scale averaging [23], ULBP [1] or HOG

[2].
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It is also very important to emphasise here that the agent located in the 3D environment

never perceived the entire environment at the same time as the virtual camera was

located in the eye position and the degree of freedom was limited to that of the eye.

Therefore, the part of the object and the table perceived each time step was determined

by eye orientation as a result of the pan and tilt, as shown in the iCub view, inset in

Fig. 5.1, Fig. 5.2, Fig. 5.3 and Fig. 5.4.

5.2.2 The neural network controller

Pan and Tilt unit Categorisation unit

Visual inputs

Pan and Tilt 
(proprioceptive feedback)

Input Layer

Hidden Layer

Output Layer

Figure 5.5: The architecture of the Continuous Recurrent Neural Network
controller. In the input layer: the left block consists of the visual inputs of one of the
three visual extraction methods, the middle block of two input units encodes the state
of the proprioceptive inputs from pan and tilt, and the last four inputs encode the
state of the categorisation output units at the previous time step. The hidden layer
has five hidden recurrence neurons, while the left and right blocks of the output layer
are the two units for the pan and tilt, and four units for categorisation respectively at
time step t

The neural network is a three-layer continuous time recurrent architecture inspired by

[23], with the updates equation as described in Chapter 3 (Fig. 5.5). It has an input-

layer whose vector size is determined by the method of visual extraction. It also has one

hidden layer of 5 recurrent neurons, and an output layer of 6 neurons.
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In the output layer, 2 of the neurons determine the movement, i.e. the pan and tilt in

the iCub visual motor space, and the other 4 neurons are for labelling the categories

per time step. The input layer consists of units which encode the current activation

state of the neurons of the retina region, the copies of 4 classification units at previous

time step t− 1, and proprioceptive information of the pan and tilt (i.e. normalised pan

and tilt values between 0 and 1, as paninput, and tiltinput). A random value of uniform

distribution within the range of [-0.05,0.05] was added to the inputs of the visual stimuli

in order to take into account that sensor data are subject to noise.

5.2.3 The task and the evolutionary process

The agent was evaluated for 48 trials in which each of the four objects (sphere, cube,

cone and torus) was presented to the iCub agent 12 times; and each trial lasting 100

time steps (a presumably sufficient length of time for exploration in a trial). At the

beginning of each trial: (i) each object was randomly scaled, rotated and presented

to each individual (iCub agent); (ii) the state of the internal neurons of the agent’s

controller was initialised to 0.0; and (iii) the eye was initialised in each quadrant of

the iCub gaze-space, but randomly located in each initialisation within a quadrant, and

with the object within the eye view. During each time step of a trial, we calculated the

panstep and tiltstep and normalised their updates and input as proprioceptive feedback

(paninput, and tiltinput) along with the categorisation outputs at the previous time step

into the network (as described in Chapter 3). In each trial the eye was left to freely

explore the environment; however, in order to save time and improve exploration, a

trial was terminated when the eye (pan or tilt) reached the iCub pan limit ([-0.523616,

0.523616] radians) or tilt limit ([-0.663243, 0.314177] radians) for three consecutive time

steps. The task of the agent was to correctly label the category of the current object

during the second half of the trial, i.e. when the agent had explored the environment

for a sufficient duration of time.

The initial population consisted of 60 randomly-generated genotypes within the range

[0, 1], each encoding the free parameters which were determined by a genetic algorithm

for the corresponding neural controller, and included all the connection weights, gain

factors, biases, and time constants of the hidden neurons. In order to generate the

phenotypes, weights and biases were linearly mapped in the range [−10, 10] and [−5, 5]

respectively, while the time constants were mapped in the range [−1, 2.2]. Subsequent

generations to the first were produced by a combination of selection with elitism, re-

combination and mutation. For each new generation “the elite”, i.e the genotype with

the highest fitness value was copied unchanged from the previous to the new generation,

while the worst 10 were dropped. The remaining 59 genotypes of the new generation were
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formed by randomly selecting two genotypes from the older generation using roulette

wheel selection scheme, and a new genotype was formed by combining the genetic mate-

rial of these two old genotypes with a probability of 0.3 with a cross-over point selected

during the recombination. Mutation, which entails that a random Gaussian offset was

applied to each real-valued component encoded in the genotype, was performed with a

probability of 0.04. The mean was 0 and the standard deviation was 0.1. Note: the

parameter values indicated above for both the genotype/phenotype (network controller)

mapping and the genetic algorithm were adopted from Tuci [29].

5.2.4 Visual Extraction Methods

We investigated three visual extraction methods that were used as sensory inputs into

neural network controlled active vision system. We present the three methods, i.e grey-

scale averaging [23], Uniform Local Binary Patterns [1] (as Active-ULBP) and Histogram

of Oriented Gradients [2] (as Active-HOG) as they were used in the experiment. In the

3D experiment we have used a larger active window size of 100 x 100 pixels for the

following reasons:

(i) The larger window size of 100 x 100 pixels (as opposed to the window size of 50 x

50 pixels used in the 2D experiment) would give more visual information with a view to

improving the object categorisation performance.

(ii) Preliminary experiments using 2 replications of an evolutionary run of 5000 gener-

ations for object categorisation for the 100 x 100 pixels window size showed significant

improvement over window size of 50 x 50 pixels. Also, initial work estimating object

location for 1 replication of an evolutionary run of 5000 generations showed better per-

formance using a window size of 100 x 100 pixels rather than a window size of 50 x 50

pixels.

Given the long timescales involved in the evolutionary training it was decided to only

proceed with 100 x100 pixels.

Grey-scale averaging

The grey-scale averaging method [23] of visual vector size 25 discussed in Chapter 3 and

as used in Mirolli et al. [23] was instantiated in every time step of a trial to process the

visual stimuli of the receptive field of the iCub. The visual input to the neural network

in every time step was as shown in Fig. 5.7.
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Figure 5.6: shows the
grey-scale image patch
of the area covered by
the iCub retina.

Figure 5.7: shows the
grey-scale average
values that were input
to the neural network.

Active-Uniform Local Binary Patterns

We instantiated the Active-ULBP of feature vector size 236 discussed in Chapter 3 as

a pre-processing method of the visual receptive field. The features were extracted as

uniform patterns from four equally divided cells of the receptive field and concatenated

to form a vector size of 236 (Fig. 5.8). The normalised histograms were input to the

neural network in every time step of the trials of an evolutionary run.
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Figure 5.8: shows the concatenated Active-ULBP histogram features that were
normalised and input into the neural network
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Active-Histograms of Oriented Gradients

In order to further investigate the use of pre-processing techniques for object categori-

sation in the 3D environment, the Active-HOG described in Chapter 3 was instantiated

for feature extraction of the simulated iCub receptive field region. The features ex-

tracted as gradient magnitudes in 9-histograms bins of four cells in the receptive field

were concatenated and normalised as an input vector of the neural controller (Fig. 5.9).
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Figure 5.9: shows the concatenated Active-HOG histogram features that were
normalised and input into the neural network

5.3 Results

In this section, we present the results and the analysis of all three methods of visual

extraction used by the active vision system for the object categorisation. We assess the

ability of the iCub agent to correctly categorise the objects by calculating the percentage

of times in the second half of each trial, the categorisation unit corresponding to the

correct object was the most activated. Finally, we give a comparative analysis of the



Active vision system 77

evolution, performance and dynamic process of categorisation used by the active vision

system for the three methods of visual extraction.

5.3.1 Evolution

Figure 5.10: The best fitness graphs of the best evolutionary runs of the three
methods of visual extractions. Left: The best fitness graph of the best run of the
grey-scale averaging method. Middle: The best fitness graph of the best run of the
Active-ULBP method. Right: The best fitness graph of the best run of the
Active-HOG method. The y-axis represents the fitness of the best evolved genotype of
each generation, while the x -axis represents the number of generations.

In the evolution of the active vision system, we performed 6 evolutionary runs for each

of the visual extraction techniques (as shown in Appendix B, Fig. B.1, Fig. B.2 and

Fig. B.3). Each evolutionary run lasted 5000 generations with 48 trials for each genotype,

and 100 time steps in each trial. We present here a comparison of the best runs and

all evolutionary runs for the three methods of visual extraction. Comparing the pattern

of evolution in the best runs of the three methods of visual extractions (Fig. 5.10), the

grey-scale and the Active-ULBP start at the same level with a jump-start in the fitness

to approximately 0.24 in both methods, but the curves differs from about the 0.6 fitness

mark and the grey-scale peaks at a slightly higher level than the Active-ULBP at the

end of the runs. On the other hand, the Active-HOG starts from the 0 fitness mark

and increases sharply to about 0.87 in around 1000 generations, and terminates at a

higher fitness value than the other two methods. Also, comparing the pattern of fitness

of all runs of the three visual extraction methods, which shows the mean of the best

fitness in all generations of all evolutionary runs and their positive and negative standard

deviation from the mean (Fig. 5.11), one can observe that the mean fitness pattern of the
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Figure 5.11: Shows the graph of the mean (average) of all best fitness in each
generation of the 5000 generations for 6 evolutionary runs and their positive (+ve
stdev) and negative (-ve stdev) standard deviation in each generation for the three
methods of visual extraction

Active-HOG was generally higher than that of the other two methods in all generations

of the evolutionary runs, while that of the grey-scale was a bit higher than that of

the Active-ULBP. This suggest that Active-HOG fitness values over all generations in

all evolutionary runs were generally higher than those of the other two methods. The

grey-scale also generated higher fitness values in all runs than the Active-ULBP. Also,

comparing the patterns of standard deviations, the grey-scale generally had a closer

deviation to the mean than the other two methods, while that of Active-HOG was also

closer than that of Active-ULBP. This shows that the variation in the individual fitness

of each generation in all runs was smaller in the grey-scale method than the other two

methods. The differences of individual fitness of Active-HOG were also smaller than the

Active-ULBP in all runs.

5.3.2 Categorisation Performance

We assessed the performance of the system using the best evolved genotypes of 100

consecutive generations that had a relatively higher and more stable fitness pattern as

compared to the other generations in all evolutionary runs. This differs from the 2D

experiment described in Chapter 4, where we took a more systematic approach by re-

evaluating the best genotypes of the last 1000 generations. The number of genotypes

chosen for re-evaluation has been reduced in order to keep the re-evaluation time within

reasonable limits, considering the high computational costs of the 3D experiments. Also
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we did not limit ourselves to the re-evaluation of the genotypes of the last 100 gen-

erations, since in various runs these solutions turned out not to be among the most

successful when compared to solutions that appeared in other evolutionary times.

Table 5.1: The average performance of the best performing re-evaluated genotype of
grey-scale averaging in all trials of the testing stage.

  Percentage of Correct Categorisation (Highest in Bold) 

Current category sphere cube cone torus 

sphere 98.92 0.00 0.00 1.08 

cube 0.00 100.00 0.00 0.00 

cone 0.00 0.00 93.04 6.96 

torus 0.49 0.00 16.92 83.08 
 

Table 5.2: The average performance of the best performing re-evaluated genotype of
Active-ULBP in all trials of the testing stage.

  Percentage of Correct Categorisation (Highest in Bold) 

Current category sphere cube cone torus 

sphere 97.48 0.4 2.12 0.00 

cube 8.00 92.00 0.00 0.00 

cone 0.00 0.00 89.02 10.98 

torus 0.00 0.00 26.38 73.62 

 

Table 5.3: The average performance of the best performing re-evaluated genotype of
Active-HOG in all trials of the testing stage.

  Percentage of Correct Categorisation (Highest in Bold) 

Current category sphere cube cone torus 

sphere 98.00 0.00 0.00 2.00 

cube 0.00 100.00 0.00 0.00 

cone 0.08 0.00 99.92 0.00 

torus 0.00 0.00 0.00 100.00 

 

The system was tested on the four categories of object used in the training by ran-

domly scaling and rotating each object presented in a trial. The objects were randomly

scaled within the range [-15%, 15%] relative to their original size and rotated in the

range [−10◦, 10◦] on the y axis, with a uniform distribution. A total of 200 trials were

performed, with each object presented 50 times to the agent in all trials and the eye

was initialised in each quadrant of the iCub gaze-space, but randomly located in each

initialisation within a quadrant, and with the object within the eye view.

The categorisation performance was based on the percentage of times in which the

categorisation unit corresponding to the correct category was the most activated in all

trials. We discuss here the general trends in the categorisation performance for all the

genotypes re-evaluated here. Tables 5.1, 5.2 and 5.3 show the confusion matrices of the
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best performing re-evaluated genotypes for the grey-scale, Active-ULBP, and Active-

HOG methods respectively. The three tables show that the current (correct) categories

had the highest average categorisation performance in all trials for the categorisation

tasks. One can also deduce that Active-HOG had the best performance, while grey-scale

also outperformed Active-ULBP.

Table 5.4: The statistics of the best performing re-evaluated genotypes in all runs
for each visual extraction methods.

Visual extraction methods Max Average Worst Stdev 

Grey-scale averaging 93.76 74.47 66.19 ±12.01 

Active-ULBP 88.03 68.53 49.36 ±13.32 

Active-HOG  99.48   98.07   95.08  ±1.9 
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Figure 5.12: Bar-charts showing the average categorisation performance of the three
methods of visual extraction in all runs

Overall performance of the genotypes re-evaluated for all evolutionary runs of the three

visual extraction methods can also be estimated by observing Table 5.4. The metrics

used are: Max indicates the best performance from all the genotypes re-evaluated in all

runs; Average is the average of the best performance in each run; Worst is the worst

of the best performances in each run; and stdev is the standard deviation of the best

performance of all runs. From the table one can see that Active-HOG had the overall best

performance of 99.48% as compared to that of grey-scale (93.76%) and Active-ULBP

(88.03%). Active-HOG, also, had a higher average performance of 98.07% as compared

to that of grey-scale (74.46%) and Active-ULBP (68.53%). It also had the best worst

performance of 95.08% as compared to that of grey-scale (66.19%) and Active-ULBP

(49.36%). Looking at the standard deviation values, the performance values achieved by

Active-HOG for all best performing genotypes in all runs were less sparsely distributed
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than those of Active-ULBP and grey-scale. The average categorisation performance of

all the visual extraction methods in all runs are also shown in Fig. 5.12.

Finally, we can deduce from the summary of the performance results that the three

methods of visual extraction of the active vision system have actually translated the

skills learned during training to actual categorisation performance in the testing stage.

Statistical Analysis

As was done in Chapter 4, we used an extended version of a t-test to detect if significant

differences exist between the averages of the three visual extraction methods. We used

the extended version of the t-test also known as ANOVA which is commonly used in

significance testing among three or more means (averages). We tested the significance

of the differences of the averages with the (p- value<0.05) and a more demanding (p-

value<0.01). Table 5.5 shows the statistical summary of the three visual extraction

techniques that were used to calculate the results of the ANOVA. The first column,

Visual extraction methods indicate the visual extraction techniques, the number

of evolutionary runs is indicated by Count, the sum of the individual performance of

the best performing re-evaluated genotypes from all runs of the three visual extraction

methods is represented by Sum, while the Average and Variance indicate the averages

and variance of the performance of the best performing re-evaluated genotypes from all

runs of the three methods. In the second table for the ANOVA test, Table 5.6, the first

column represents the Source of variations between and within the groups (visual

extraction methods) of which the averages were compared, SS represents the sum of

squares, df represents the degree of freedom, MS represents the group means squares,

F is the F distribution value, P-value indicates the significance level of the differences

of averages that were considered and F crit represents the F critical value.

The obtained p-value of 0.0004 as shown in Table 5.6 is less than our first and second

significance level of 0.05 and 0.01 respectively and this indicates strong evidence against

the null-hypothesis that the averages for the three visual extraction methods were equal,

and therefore we reject the null hypothesis based on these two p-values (0.05 and 0.01).

Since the null hypothesis was rejected, we carried a Bonferroni correction for the two

significance levels of 0.05 and 0.01 to ensure that the overall significance level does not

exceed these two values as the significance level of each individual t-test to be carried

out. As shown in Table 5.7, the Bonferroni corrected value for a significance level of

0.05 is 0.0167, while that of 0.01 is 0.003. The result of the t-test of the averages of

the three groups (visual extraction methods) using Bonferroni correction is shown in

the Table 5.7. In the table, the first column indicates the compared paired groups, the
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Table 5.5: Summary of the statistics of the best performing re-evaluated genotypes
of the three visual extraction methods from 6 evolutionary runs that were used in the
anova test

SUMMARY 

Visual extraction methods Count Sum Average Variance 

Grey-scale averaging 6 446.79 74.47 144.31 

Active-ULBP 6 411.17 68.53 177.40 

Active-HOG 6 588.44 98.07 3.61 

 

Table 5.6: The results of the anova test

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 2930.97 2 1465.49 13.51 0.0004 3.68 

Within Groups 1626.59 15 108.44    

Total 4557.56 17     
 

Table 5.7: The significant test results using a paired t-test with test condition of
(p-value<0.05) and (p-value<0.01)

Compared Groups t-value p-value 

Signf. Level=0.05 Signf. Level=0.01 

Bonf. Corr=0.0167 Bonf. Corr=0.003 

Active-HOG and Grey-scale 3.93 0.0014 Significant Significant 

Active-HOG and Active-ULBP 4.91 0.0002 Significant Significant 

Grey-scale and Active-ULBP 0.99 0.2371 Not Significant Not Significant 

 

second and third columns indicate the t-values and p-values of the compared averages

of the paired groups, while the fourth and fifth column indicate the level of significance

of paired group average comparison based on the Bonferroni corrected p-values.

Comparing the three groups in the table at the 0.05 significance level with the Bonferroni

correction of 0.0167, the variation in averages of Active-HOG and grey-scale was signif-

icant, while those of Active-HOG and Active-ULBP were also significant. However, the

variation in averages of grey-scale and Active-ULBP was not significant, which means

that the resultant difference could have been by chance. Therefore, for the significant

level of 0.05, we reject the null-hypothesis that the averages of the two groups Active-

HOG and grey-scale, and Active-HOG and Active-ULBP were equal, while we fail to

reject the null hypothesis for that of grey-scale and Active-ULBP.

Furthermore, considering the significance level of 0.01 with Bonferroni correction of

0.003, the difference in averages of Active-HOG and grey-scale was considered strongly

significant, while those of Active-HOG and Active-ULBP were also strongly significant.

The difference in averages of grey-scale and Active-ULBP, however, was not significant,

which means that the resultant difference could have been by chance. Therefore, for the

significance level of 0.01, we reject the null-hypothesis that the averages of the two groups
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Active-HOG and grey-scale, and Active-HOG and Active-ULBP were equal, while we

fail to reject the null hypothesis for those of grey-scale and Active-ULBP

5.3.3 Dynamics of Categorisation Process

In this section we investigate the process of object categorisation in the 3D environment.

In particular, we examine:

(i) To what extent the sensory patterns provided by the three visual extraction methods

and experienced by the agent during interaction with the objects have been able to

provide the discriminative stimuli that facilitate the categorisation process.

(ii) To what extent the agents succeed in self-selecting the stimuli that are associated

with a particular category.

Note: stimulus ambiguity may depend on the nature of the stimulus, the field of view

of the agent and the eye location.

The classification outputs of our system depend on the visual information that was

provided, apart from the copy of the outputs of categorisation and motor units at the

previous time step. However, since our focus is mainly on the influence of visual features

on the control of the active vision in order to improve learning for categorisation, we only

investigate the visual sensory channel. In order to carry out this investigation, we extend

the Modified Geometric Separability Index (MGSI) proposed in [23] and described in

Chapter 4 to the 3D domain for object categorisation. We computed the MGSI of the

best performing re-evaluated evolved genotypes for all three visual extraction methods

in all evolutionary runs for 200 trials during which the agent experienced the stimuli

from the four categories (i.e, sphere, cube, cone, and torus), where each object was

uniformly and randomly scaled between [10%, -10%] to the original size and rotated

within the range [−10◦, 10◦] relative to the original orientation with 50 different initial

eye positions. For each type of visual extraction method using the sensory patterns,

the MGSI was computed for each of the 100 time steps of a trial (Fig. 5.13, Fig. 5.14,

Fig. 5.15).
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Figure 5.13: Modified Geometric Separability (MGSI) of the stimuli provided by
grey-scale averaging
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Figure 5.14: Modified Geometric Separability (MGSI) of the stimuli provided by
the Active-ULBP method
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Figure 5.15: Modified Geometric Separability (MGSI) of the stimuli provided by
the Active-HOG method
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(i) The fact that the MGSI increased for grey-scale, showed that the system moved

away from very ambiguous to more discriminative stimuli when using the grey-scale

visual extraction method.

(ii) The fact that the MGSI only showed modest improvement for the Active-ULBP, i.e.

mainly for the sphere and cube, showed that the system could only use slight intelligent

coordinated motor behaviours to experience less ambiguous stimuli over time for these

two objects.

(iii) Active-HOG generated less ambiguous stimuli than grey-scale and Active-ULBP.

This means that it produced more discriminative stimuli in the input space than the

other visual extraction methods. In fact, the Active-HOG MGSI reached 1.0 in some

time steps. This means that Active-HOG sensory patterns experienced at this time steps

were fully discriminative.

(iv) The fact that Active-HOG MGSI generally did not show improvement over time

and even deteriorated in the case of cone object, showed that the system was not able

to move to less ambiguous stimuli over time when the stimuli were generated by the

Active-HOG visual extraction method.

(v) Active-HOG exhibited some kind of oscillatory behaviour in most time steps for all

the objects. This might have been some kind of complex behaviour developed by the

system as a result of the reduced ambiguity provided by the Active-HOG stimuli from

the start, and, as such, there was not much need in this case to use the eye movements

to reduce ambiguity.

(vi) The MGSI never reached a value of 1 for the grey-scale and Active-ULBP. This

means that the system never managed to generate unambiguous stimuli for these two

visual extraction methods. However, the system was still able to achieve overall success

rates.

(vii) For some objects, the system managed to generate less ambiguous patterns than

for other objects. This means that the system produces more discriminative patterns

for those objects than the others.

5.4 Discussion

We have extended the evolutionary active vision system to the 3D environment for object

categorisation using our benchmark architecture (Mirolli et. al. [23]). We have chosen

the iCub platform (iCub) because it will help to show the plausibility of our methods in

complex artificial systems. We started this chapter by extending the evolutionary active



Active vision system 86

vision for object categorisation in the 3D environment using the grey-scale averaging

method [23] as the visual extraction method. We further sought to improve system

performance in the 3D environment for object categorisation using two pre-processing

methods from computer vision, i.e. Uniform Local Binary Patterns [1] (as Active-ULBP)

and Histogram of Oriented Gradients [2] (as Active-HOG). We discuss: (i) visual repre-

sentation and active vision categorisation; and (ii) learning control of the active vision

system.

Visual Representation and Active Vision Categorisation

As we previously did in the 2D environment, we investigated three visual extraction

methods, that is (i) grey-scale averaging [23], (ii) Uniform Local Binary Patterns [1] (as

Active-ULBP), and (iii) Histogram of Oriented Gradients [2] (as Active-HOG) as visual

representations for the active vision in the 3D environment. The Active-HOG achieved

higher average performance than the other two visual extraction methods. grey-scale

also performed better on average than Active-ULBP.

Furthermore, the results of the statistical analysis using 0.05 and 0.01 significance levels

showed that there was a significant difference between the average performance of Active-

HOG when compared to the other two visual extraction methods. However, there was

no significant difference between the average performance of grey-scale when compared

to that of the Active-ULBP. This implies that using the two significant levels, the higher

average performance of grey-scale over Active-ULBP might have been by chance.

The fact that Active-HOG performed better than grey-scale and Active-ULBP in the 3D

object classification scenario may be due to the more structural nature of object cate-

gorisation problem. This boosts the credentials of HOG as an effective feature descriptor

for applications that involve structures e.g. object detection [51] and human recognition

[2]. The fact that Active-ULBP also demonstrated good performance provides further

evidence of ULBP as an effective feature descriptor in many applications [45][203].

Finally, the performance of the visual extraction methods may further show that pre-

processing methods in computer vision can have great applicability for visual represen-

tation in active vision systems.

Learning Control of the Active Vision System

Sensory-motor coordination helps biological agents to interact with their visual envi-

ronment by intelligently using their motor mechanism to exploit regularities in this

environment that enhance vision problems. This intelligent cooperation can be greatly



Active vision system 87

dependent on local visual information perceived each time which guides the active vision

system to experience stimuli that enhance the vision task and at the same time avoid

disruptive information. Replication of this process in artificial systems, such as in a

robot may greatly improve the tackling of vision tasks, such as object categorisation.

Since intelligent control of the motor mechanism can be influenced by the kind of visual

information that is being perceived, it is therefore imperative to investigate how visual

representation can contribute to learning in active vision systems.

From the perspective of the three visual extraction methods investigated in this chapter,

only the grey-scale has been able to significantly use intelligent control of the active vision

system to experience more discriminative stimuli over time, given the improvement of

the Modified Geometric Separability Index (MGSI). Active-ULBP, by contrast, showed

very little improvement over time. The fact that Active-HOG generated less ambiguous

stimuli than the other methods, may be due to the gradient features provided by Active-

HOG, and which might have also enhanced the recognition of the 3D structural problem.

However, the stimuli provided by Active-HOG did not help the system to move to less

ambiguous stimuli over time. This may be because of the unambiguous stimuli provided

by Active-HOG from the start. They probably did not give the system much need to

use eye movements as a strategy in solving the categorisation tasks since the behaviours

of an agent are partially determined by the sensory stimuli experienced [105].

Also, the oscillatory behaviour developed by the system as a result of the stimuli provided

to it by the Active-HOG was probably a strategy the system developed in order to

continue to experience features with low ambiguity, and which led to good performance.

However, we are not absolutely sure of this, and a future investigation may be needed to

examine this further. The ability of the system to use the stimuli provided by the Active-

HOG in solving the categorisation tasks nevertheless shows that HOG is an effective

feature descriptor for structural applications since it helped to reduce ambiguity in the

object categorisation task.

5.5 Chapter Summary

In this chapter we have extended an evolutionary active vision system for object cat-

egorisation from 2D to 3D with the grey-scale averaging visual representation method

[23], and sought further improvement in performance with two pre-processing techniques

in computer vsion, i.e. Uniform Local Binary Patterns [1] (as Active-ULBP) and His-

togram of Oriented Gradients [2] (as Active-HOG).
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The best grey-scale performance of all replications of evolutionary runs was 93.76% and

the average performance was 74.47%. The best Active-HOG performance of all runs

was 99.48% and the average performance was 98.07%. In the case of Active-ULBP, the

best performance was 88.03% and the average performance was 68.53%.

Statistical analysis that compared the average performance of the three visual extraction

methods showed that the higher average performance of Active-HOG over the other

two methods was significant. On the other hand, the higher average performance of

grey-scale over that of Active-ULBP was not significant. This means that the better

performance of grey-scale in comparison to Active-ULBP might have occurred by chance.

Analysis based on a Modified Geometric Separability Index (MGSI) showed that the

stimuli provided by grey-scale helped the system to experience more discriminative

stimuli over time than the other two methods. Active-ULBP also showed very little

improvement, while Active-HOG generally did not show any improvement, even though

the stimuli provided by it were less ambiguous from the start than the other two meth-

ods.

Analysis also showed that since MGSI never reached a value of 1 for the grey-scale and

Active-ULBP cases, and in very few time steps did so in the Active-HOG case, the

categorisation process may also have involved some kind of integration of perceptual

information over time.

The next chapter further extends the evolutionary active vision system for indoor and

outdoor environment categorisation in 3D using the iCub robot platform.



Chapter 6

Experiment 3: Gaze Control in

3D Environment Categorisation

6.1 Introduction

In the last chapter, we extended our gaze control framework to object categorisation

in the 3D environment. We also showed that pre-processing can be used to enhance

active vision object categorisation in the 3D domain. In this chapter, we further extend

our evolutionary active vision system with pre-processing into the problem of indoor

and outdoor environment classification in 3D using the Humanoid (iCub) platform. The

extension to this other classification domain is necessary mainly because it has a different

problem structure and therefore different sensory-motor strategies are expected to be

used in addressing it. Thus, it will give a greater need to use the eye for exploration when

compared to object categorisation, and as such give a more objective and conclusive

means in answering our research questions. In Section 6.2, we describe the general

experimental set-up, and in Section 6.3 we provide the results. Section 6.4 gives a

general discussion of the chapter and the results, and finally in Section 6.5 a summary

of the chapter is given.

6.2 Experimental Set-Up

To investigate how a simulated agent (the iCub) can exploit its eye movement in the clas-

sification of indoor and outdoor environments, a simulated robot controller was trained

using an evolutionary technique. We also investigated if classification performance could

be improved with pre-processing techniques. The encoded free parameters of the evo-

lutionary technique that regulate how the agent interacts with these two environments

89
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(indoor and outdoor) were randomly varied, and variations were retained or discarded

based on the agent’s ability to perform the categorisation task.

6.2.1 The iCub agent and the environment

Figure 6.1: Shows the iCub in
an outdoor environment. Inset on
top right shows the environment
from the iCub point of view.

Figure 6.2: Shows the iCub in
an indoor environment. Inset on
top right shows the environment
from the iCub point of view.

The experimental set-up involved a simulated Humanoid robot agent equipped with just

a right-eye vision capability. The agent was situated in various 3D indoor and outdoor

environments. The environments (indoor and outdoor) were represented with 20 texture

images, which were downloaded from Google’s image database (website)[213] using the

keywords “indoor and outdoor panoramic texture images”, “panoramic outdoor texture

images”and “outdoor panoramic scene sphere texture map”. The indoor environments

were enclosed and objects were confined within the enclosed environment, while the out-

door environment were not enclosed and totally opened to the sky. The texture images

were dynamically mapped to the interior of a 3D sphere containing the iCub (Fig. 6.1 and

Fig. 6.2). The entire data-set of 20 texture images representing the environments were

divided into 2-equal halves for training and validation sets for a 2-fold cross-validation

(Appendix C, Fig. C.4 and Fig. C.5). The agent was situated in each environment one

at a time and the environment randomly rotated within the range [−40◦, 40◦] on the z

axis with a uniform distribution and subsequently used its pan and tilt movement to

explore the environment in each time step. The rotation of the environment ensured

that the agent was always seeing different part of the environment in any given trial

Fig. 6.3. The visual information perceived with the retina was processed with one of

the visual extraction methods, i.e. grey-scale averaging, Active-ULBP or Active-HOG

as described in Chapter 3.

It is very important to underscore here that the agent could not perceive the entire

environment in each time step. Therefore, the environment was represented as texture



Active vision system 91

images mapped into the interior of a sphere, and the iCub agent was located inside it,

with the virtual camera located in the eye position. For instance as shown in Fig. 6.1

and Fig. 6.2, the agent cannot see the front and back of the environment (image) at the

same time, and its freedom of movement was limited to its eye. Therefore, what the

agent perceived per time step was determined by eye orientation as a result of pan and

tilt.

Figure 6.3: Shows the images of indoor environment in 9 different view directions of
the simulated iCub robot.
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6.2.2 The neural network controller

Pan and Tilt unit Categorisation unit

Visual inputs

Pan and Tilt 
(proprioceptive feedback)

Input Layer

Hidden Layer

Output Layer

Figure 6.4: The architecture of the Continuous Recurrent Neural Network. On the
input layer: the left block is made up of the visual inputs of one of the three visual
extraction methods, the middle block of two input units encode the state of the
proprioceptive inputs from pan and tilt, and the last two inputs encode the state of
the categorisation output units at previous time step. The hidden layer has five
hidden recurrence neurons, while the left and the right blocks of the output layer are
the two units for the pan and tilt and five units of categorisation at time step t.

The simulated robot controller is a 3-layer continuous recurrent neural network inspired

by [23] and with the updates equation as described in Chapter 3. It has one input-layer

whose vector size is determined by the method chosen for visual feature processing. It

also has one hidden layer of 5 recurrent neurons, and an output layer of 4 neurons. In

the output layer, 2 of the neurons determine the eye movement, i.e the pan and tilt

in the iCub visual scene, and the other 2 neurons are for labelling the categories (i.e.

indoor or outdoor) per time step. The input layer consists of units which encode the

current activation state of the neurons of the retina region, the copies of 2 classification



Active vision system 93

units at previous time step t− 1, and the pan and tilt, normalised between 0 and 1 (as

paninput and tiltinput). A random value with a uniform distribution within the range

of [-0.05,0.05] was added to the inputs of the visual stimuli processed by any of the

visual extraction methods at each time step in order to simulate the effect of noise in

the sensors.

6.2.3 The task and the evolutionary process

The agent was evaluated for 20 trials, with the iCub agent situated 10 times in each

environment (indoor or outdoor) and each trial lasting 100 time steps (a presumably

sufficient length of time for exploration in a trial). At the beginning of each trial: (i)

the agent was situated in an environment (indoor or outdoor) randomly rotated in each

trial; (ii) the state of the internal neurons of the agent’s controller was initialised to

0.0; and (iii) the eye was initialised in each quadrant of the iCub gaze-space, although

randomly located in each initialisation within a quadrant. Also, in each time step of a

trial, the panstep and tiltstep values were calculated and their normalised updates were

input as (paninput, and tiltinput) as proprioceptive feedback along with the categorisation

outputs at previous time step into the network (as described in Chapter 3). In each trial,

the eye was left to freely explore the environment; however, in order to savve time and

improve exploration, a trial was terminated when the eye (pan or tilt) reached the iCub

pan limit ([-0.523616, 0.523616] radians) or tilt limit ([-0.663243, 0.314177] radians)

for three consecutive time steps. The task of the agent was to correctly classify the

environment (indoor or outdoor) during the second half of the trial, that is, when the

agent had explored the environment for a sufficient length of time.

The evolutionary run began with an initial population of 60 randomly-generated geno-

types in the range [0, 1]. Each genotype encoded the free parameters for the correspond-

ing neural controller, and included all the connection weights, gain factors, biases, and

the time constants of the hidden neurons. For the generation of the phenotypes, weights

and biases were linearly mapped in the range [−10, 10] and [−5, 5] respectively, while

the time constants were mapped in [−1, 2.2]. Subsequent generations to the first were

produced by a combination of selection with elitism, recombination and mutation. With

each new generation “the elite”, i.e. the genotype with the highest fitness value was

copied from the previous to the new generation, while the worst 10 were dropped. The

remaining 59 genotypes of the new generation were formed by randomly selecting two

genotypes from the older generation using roulette wheel selection, and a new geno-

type was formed by combining the genetic material of these two old genotypes with a

probability of 0.3 with cross-over point selected during the recombination. Mutation,

which entails that a random Gaussian offset was applied to each real-valued component
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encoded in the genotype, was done with a probability of 0.04. The mean was 0 and

the standard deviation was 0.1. Note: the parameter values as specified above for the

genotype/phenotype (controller) mapping and the genetic algorithm were adopted from

Tuci [29].

6.2.4 Visual Extraction methods

We discuss the three visual extraction methods, i.e. grey-scale averaging [23], and our

proposed Uniform Local Binary Patterns [1] (as Active-ULBP) and Histogram of Ori-

ented Gradients [2] (as Active-HOG) methods as they were used in this experiment.

Also, as we mentioned in Chapter 5, in the 3D experiment we used a larger active window

size of 100 x 100 pixels for the following reasons:

(i) The larger window size of 100 x 100 pixels as opposed to 50 x 50 pixels window size

used in the 2D experiment, will give more visual information which may improve the

object categorisation performance.

(ii) Preliminary experiments using 2 replications of the evolutionary run of 5000 gen-

erations for object categorisation for a 100 x 100 pixel window size showed significant

improvement over a window size of 50 x 50 pixels. Also, initial work estimating object

location for 1 replication of the evolutionary run in 5000 generations showed better per-

formance using a window size of 100 x 100 pixels rather than a window size of 50 x 50

pixels.

6.2.5 Grey-scale averaging

Figure 6.5: Shows the
grey-scale image patch
of the area covered by
the iCub retina at a
time step t.

Figure 6.6: Shows the
image of the grey-scale
average values that was
input to the network at
time step t.
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We used the grey-scale averaging method [23] to process the perceived area of the indoor

or outdoor environment by the agent in every trial of the evolutionary run. The grey-

scale average vector size of 25 of the perceived area of the environment by the agent at

each time step formed the sensory inputs of the neural network (Fig. 6.5 and Fig. 6.6).

6.2.6 Active-Uniform Local Binary Patterns

We instantiated the Active-ULBP with a feature vector size of 59 for each of the four

cells of the iCub receptive field covering the environment stimuli at each time step.

The histograms for all four cells were concatenated to form a feature vector size of 236

(Fig. 6.7). The normalised concatenated feature vector was subsequently input into the

neural network.

                                                              

                                                                             

                                                                               

                                                                         

                                        

      

                                               Active-ULBP Concatenated Histograms 

                                                       

C D

A B

A B C D

Figure 6.7: Shows the concatenated Active-ULBP histogram features that were
normalised and input into the neural network at time step t.
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6.2.7 Active-Histogram of Oriented Gradients

In each time step of a trial of an evolutionary run, the Active-HOG was used to process

the environmental visual stimuli within the retina area of iCub vision, and the magni-

tude of the gradients in x and y direction of each pixel location were input into one of

9-histogram bins as explained in Chapter 3. The features extracted as gradient magni-

tudes in 9-histogram bins in each of the four cells of the retina were concatenated and

normalised as an input vector to the neural controller (Fig. 6.8).
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Figure 6.8: Shows the concatenated Active-HOG histogram features that were
normalised and input into the neural network at time step t.

6.3 Results

In this section, we present the results and comparative analysis of the categorisation

process for the three methods of visual extraction. The capability of the iCub agent
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to correctly classify the category of an environment (indoor or outdoor) was assessed

by the percentage of times in the second half of each trial that the categorisation unit

corresponding to the current environment where the agent was situated, was the most

activated.

6.3.1 Evolution

Figure 6.9: The best-fitness graphs of the best evolutionary runs of the three
methods of visual extractions. Left: The best run of the grey-scale averaging method.
Middle: The best run of the Active-ULBP method. Right: The best run of the
Active-HOG method.

In the evolution of the active vision system, we performed 12 evolutionary runs for each

of the visual extraction techniques (as shown in Appendix C, Fig. C.1, Fig. C.2 and

Fig. C.3). The first 6 runs were for the first fold of the 2-fold cross validation, while the

remaining 6 runs were for the second fold. Each evolutionary run had 5000 generations,

with each genotype evaluated for 20 trials and 100 time steps in a trial. Fig. 6.9 shows

the best fitness graphs of the best runs of the three visual extraction methods. Looking

at the graphs for the three methods of the visual extraction, one can observe a common

fitness pattern in which fitness growth reached close to the optimal value of 1.0 at the

early stage of the evolution around 1000 generations. However, one will also notice that

Active-ULBP and Active-HOG were more stable over the last generations than the grey-

scale. Also, Fig. 6.10 shows the average (mean) of the best fitness in all generations of

all evolutionary runs and their positive and negative standard deviation from the mean.

The mean of the best fitness in all generations of all evolutionary runs for the three visual

extraction methods had a common trend of close approximation to 1.0 from about 1000
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Figure 6.10: Shows the graph of the mean (average) of all best fitness in each
generation of the 5000 generations for 12 evolutionary runs and their positive (+ve
stdev) and negative (-ve stdev) standard deviation in each generation for the three
methods of visual extraction.

generations onwards. However, looking at the standard deviation, the deviation from

the mean seems to be more obvious from about 300 to 1000 generations for all three

methods, with Active-ULBP having a larger deviation than the other two methods.

The Active-HOG also had larger deviation within this generational period than the

grey-scale.

The early optimal solutions of the three visual extraction methods as reflected in the

training may be due to the small number of images that were used in order to reduce

the time complexity of the evolutionary method. Therefore, the system might have

formulated easy solutions to these problem because of the small number of images that

were used, and also small number of trials that were performed. It probably developed

some strategies of detecting a particular cue common to these environments (images),

and the apparent close to optimal classification performance might have been by chance.

Therefore, the importance of re-evaluation (testing) is to test the robustness of the

model by introducing more variability into the system, for example: changing the initial

position of the eye in each trial, rotations of the environment/stimuli and increasing the

number of trials. This is not possible in the evolutionary runs because of computational

cost. For this reason, the complexity of the problem was in the generalisation of the

skills learned by the evolved genotypes to unseen images coupled with the additional

variability and trials introduced in the testing. This is shown in the next section on

categorisation performance.
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6.3.2 Categorisation Performance

As was the case in the 3D object categorisation experiment in Chapter 5, we assessed

the performance of the system using the best evolved genotypes of 100 consecutive gen-

erations that had a relatively higher and more stable fitness pattern as compared to the

other generations in all evolutionary runs. This is unlike the 2D iCub-image categori-

sation experiment described in Chapter 4, where we took a more regular approach by

re-evaluating the best genotypes of the last one thousand generations. We reduced the

chosen number of genotypes for re-evaluation in order to keep the re-evaluation time

within reasonable limits, considering the high computational costs of the 3D experi-

ments. We also did not restrict ourselves to the re-evaluation of the genotypes of the

last 100 generations, since in several runs these solutions turned out not to be among

the most successful when compared to solutions arising from other evolutionary times.

The 100 genotypes for each of the 12 evolutionary runs were tested on 10 unseen texture

images mapped to a 3D sphere as a representation of indoor or outdoor environments.

Also, the conditions set in identical fashion to the training, i.e. in each trial the eye

was initialised in each quadrant of the iCub gaze-space, but randomly located in each

initialisation within a quadrant, and the environment was randomly rotated in the range

[−40◦, 40◦] with a uniform distribution on the z axis.

A total of 200 trials were performed, i.e. in each trial the iCub agent was evaluated in

each unseen indoor or outdoor environment with different initial random eye positions

and the environment randomly rotated. We assessed the categorisation performance

in the second half of each trial. The categorisation performance assessment of the

active vision system was based on the percentage of times in which the categorisation

unit corresponding to the current category in the second half of the trials was the

most activated. Tables 6.1, 6.2, 6.3 shows the confusion matrices of the categorisation

performance of the best performing re-evaluated genotypes from all the evolutionary

runs for the three visual extraction methods. It can be seen from the tables that even

though the correct categories had the highest average categorisation performance in all

trials of the categorisation tasks, the performance were not close to optimum as was

reflected in the evolution stage. However, Active-HOG still had a performance close to

the optimum level and Active-ULBP also performed better than the grey-scale.

The summary of performance of the re-evaluated best genotypes from all evolutionary

runs for the three methods of visual extractions are also shown in Table 6.4. The metrics

used are as follows: Max represents the best performance from all re-evaluated geno-

types in all runs; Average is the average of the best performance in each run; Worst

is the worst of the best performances in each run; and stdev is the standard deviation

of the best performance of all runs. From the table, one can see that Active-HOG had
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the overall best performance of 99.15% as compared to those of Active-ULBP (91.48%)

and grey-scale (88.31%). Active-HOG, also had highest average performance of 85.39%

as compared to those of Active-ULBP (75.17%) and grey-scale (69.82%). Furthermore,

Active-HOG had the best worst performance of 70.34% as compared to those of Active-

ULBP (54.78%) and grey-scale (58.55%). However, the standard deviation values show

that the distribution of performance for these three visual extraction methods had a

similar pattern. In general, the average performance of all three methods shows that

they performed well; however their performance was not close to the optimum in the

testing stage as was reflected in the evolution stage (Fig. 6.11).

The difficulty encountered in the generalisation of the skills learned in the training to

the testing data-set may be due to the following reasons: (i) even though the data-

sets used were not many, it is very difficult to generalise the discriminatory labelling

of environments as either indoor or outdoor because of the huge variability in these

kinds of environment such as texture and structures; and (ii) the random rotation of the

environment in each trial, coupled with the large number of trials that were performed.

In the next section, we discuss the statistical significance results of the three methods

of visual extraction during the testing stage.

Table 6.1: The average performance of the best performing re-evaluated genotype of
grey-scale averaging in all trials of the testing stage.

  Percentage of Correct Categorisation (Highest in Bold) 

Current category outdoor indoor 

outdoor 81.15 18.84 

indoor 4.55 95.45 

 

Table 6.2: The average performance of the best performing re-evaluated genotype of
Active-ULBP in all trials of the testing stage.

  Percentage of Correct Categorisation (Highest in Bold) 

Current category outdoor indoor 

outdoor 91.13 8.87 

indoor 8.17 91.83 

 

Table 6.3: The average performance of the best performing re-evaluated genotype of
Active-HOG in all trials of the testing stage.

  Percentage of Correct Categorisation (Highest in Bold) 

Current category outdoor indoor 

outdoor 98.62 1.38 

indoor 0.31 99.69 
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Table 6.4: Shows the summary of the statistics of the best performing re-evaluated
genotypes in all runs for each visual extraction methods.

 

 

Visual extraction methods Max Average Worst Stdev 

Grey-scale averaging 88.31 69.82 58.55  ±9.74 

Active-ULBP 91.48 75.17 54.78  ±11.23 

Active-HOG 99.15 85.39 70.34  ±9.74 
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Figure 6.11: Bar-chart showing the average categorisation performance of the three
methods of visual extraction in all runs.

Statistical Analysis

We tested if the averages of the three visual extraction methods were significantly dif-

ferent with an extended version of t-test, as we have done in the 2D and 3D objects

categorisation experiments. We tested the significance of the differences of the averages

with the (p-value<0.05) and a more stringent (p-value<0.01). The statistical summary

of the visual extraction methods used to calculate results of the anova test are shown in

Table 6.5 where: the Visual extraction methods column indicate the methods of vi-

sual extraction; the Count represent the number of evolutionary runs for each method;

the Sum indicates the sum of the individual performances of the best performing geno-

types of the three methods; and the Average and Variance indicate the averages and

variance of the performance of the best performing genotypes of all runs for the three

visual extraction techniques.

Likewise, for the ANOVA test, the columns of Table 6.6 are: Source of variations

indicates the source of variations between and within the groups for which averages



Active vision system 102

were compared (i.e grey-scale averaging, Active-ULBP, Active-HOG); SS represents the

sum of squares; df represents the degree of freedom; MS represents groups mean square;

F is the F distribution value; P-value indicates the significance level of the difference

in averages considered (i.e. for the three methods of visual extraction); and F crit

represents the F critical value. The obtained p-value of 0.0027 in the table is less than

the two significance levels of 0.05 and 0.01, and this indicates strong evidence against

the null hypothesis that the averages for the three visual extraction methods were equal

and therefore we reject the null hypothesis. We then carried a Bonferroni correction for

the two significance levels of 0.05 and 0.01 to ensure that the overall significance level

does not exceed these two values as the significance level of each individual t-test to be

carried out. The obtained Bonferroni corrected p-values for 0.05 and 0.01 significance

levels (i.e. 0.0167 and 0.003 respectively) were then used as the new significance levels

for the results of a paired t-test comparison of the three visual extraction methods (Table

6.7). In the table, the first column indicates the paired groups that were compared, the

second and third columns indicate the t-values and p-values of the means (averages)

comparisons, while the fourth and fifth column indicate the significance levels based on

the Bonferroni corrected p-values.

Table 6.5: Summary of the statistics of the best performing re-evaluated genotypes
of the three visual extraction methods from 12 evolutionary runs that were used in
the anova test.

SUMMARY 

Visual extraction methods Count Sum Average Variance 

Grey-scale averaging 12 837.83 69.82 94.92 

Active-ULBP 12 902.07 75.17 126.08 

Active-HOG 12 1024.70 85.39 94.95 

 

Table 6.6: The results of the anova test.

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 1502.35 2 751.17 7.13 0.0027 3.29 

Within Groups 3475.31 33 105.31    

Total 4977.66 35     
 

Table 6.7: The significance test result using paired t-test with test conditions of
(p-value<0.05) and (p-value<0.01).

- 

 

Compared Groups  t-value p-value 

Signf. Level=0.05 Signf. Level=0.01 

Bonf. Corr=0.0167 Bonf. Corr=0.003 

Active-HOG and Grey-scale 3.72 0.0010 Significant Significant 

Active-HOG and Active-ULBP 2.44 0.0237  Not Significant Not Significant 

Grey-scale and Active-ULBP 1.28 0.1742  Not Significant  Not Significant 
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Comparing the three groups in the table at the 0.05 significance level with a Bonferroni

correction of 0.0167, the variation in averages of Active-HOG and grey-scale was sta-

tistically significant, while those of Active-HOG and Active-ULBP, and Active-ULBP

and grey-scale were not statistically significant, which means that the resulting differ-

ences in their averages could have been by chance. Therefore, for the significance level

of 0.05, we reject the null hypothesis that the averages of the groups Active-HOG and

grey-scale were equal, while we fail to reject the null hypothesis for the other groups

(i.e. Active-HOG and Active-ULBP, and Active-ULBP and grey-scale).

On the other hand for the strongly significant level of 0.01, the variation in averages

of Active-HOG and grey-scale was statistically significant, while those of Active-HOG

and Active-ULBP, and Active-ULBP and grey-scale were not statistically significant,

that means that the resultant differences in their averages could have been by chance.

Therefore, for the significance level of 0.01, we reject the null hypothesis that the averages

of the groups Active-HOG and grey-scale were equal, while we fail to reject the null

hypothesis for the other groups (i.e. Active-HOG and Active-ULBP, and Active-ULBP

and grey-scale).

6.3.3 Dynamics of Categorisation Process

This section investigates the categorisation process in the 3D indoor and outdoor envi-

ronment. In particular, we examine:

(i) To what extent the sensory patterns provided by the visual extraction methods and

experienced by the agent during interaction with the indoor and outdoor environments

have been able to provide the discriminative stimuli that facilitated the categorisation

process.

(ii) To what extent the agent self-selection has succeeded in associating stimuli with a

particular category.

Note: stimulus ambiguity may depend on the nature of the stimulus, the field of view

of the iCub eye and the eye location.

The classification answers provided in the output units of our system are dependent on

the visual information that was provided and the copy of the outputs of the categorisa-

tion and motor units at the previous time. However, since our focus is mainly on the

influence of visual stimuli on control of the active vision in order to improve learning

for categorisation, we only investigate the visual sensory channel. In order to do this

investigation, we extend the Modified Geometric Separability Index (MGSI) proposed
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in [23] and used in Chapters 4 and 5 to the indoor and outdoor environment categori-

sation. The MGSI of the best performing re-evaluated evolved genotypes of the three

visual extraction methods of all evolutionary runs was computed for 200 trials during

which the agent experienced 10 different indoor and outdoor environments, with each

environment uniformly and randomly rotated within the range [−40◦, 40◦] to the origi-

nal orientation with 20 different initial eye positions. For each type of visual extraction

method of the sensory patterns, the MGSI had been computed for each of the 100 time

steps (Fig. 6.12, Fig. 6.13, Fig. 6.14).
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Figure 6.12: Modified Geometric Separability Index (MGSI) of the stimuli provided
by grey-scale averaging.
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Figure 6.13: Modified Geometric Separability Index (MGSI) of the stimuli provided
by the Active-ULBP method.
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Figure 6.14: Modified Geometric Separability Index (MGSI) of the stimuli provided
by the Active-HOG method.

The fact that the MGSI did not show much improvement either for all conditions (visual

extraction methods) or the two environments (indoor and outdoor) showed that the

system did not make much use of intelligent motor control in order to disambiguate the

ambiguous visual information. This actually was not a problem given the performance

of the three visual extraction techniques. The system must have relied heavily on the

internal states of the controller for the integration of sequences of experienced sensory

states over time.

6.4 Discussion

We have extended the evolutionary active vision system with pre-processing to 3D for

indoor and outdoor environment categorisation using the iCub robot platform. This

extension is important because it has a different problem structure with greater need

for exploration.

We have used just 20 texture images to represent the indoor and outdoor environments

because of the high computational costs incurred by the evolutionary method in a 3D

context. However, we tried to compensate for the small data-set used with random

rotation of the environment in different trials of the evolutionary runs; in this way, the

agent would always see different views of the environment in different trials. However,

the system seems to have found easy solutions to the problem as was evidenced by

the early attainment of optimum fitness in the evolutionary runs. The complexity of

the problem, however, was in the generalisation of the skills learned by the system in

the training to the new set of environments (images) in re-evaluation (testing) stage,
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with more variability introduced, such as the number of trials coupled with environment

rotations and different initial eye positions of the iCub agent. This consequently lowered

the performance as compared to what was reflected by the system (grey-scale, Active-

ULBP and Active-HOG) in the evolutionary (training) stage, of which many trials were

not possible because of the computational cost.

We further continue our discussion in two areas: (i) visual representation and active

vision categorisation; and (ii) learning control of the active vision system.

Visual Representation and Active Vision Categorisation

We extended three visual extraction methods i.e. (i) grey-scale averaging [23], Uniform

Local Binary Patterns [1] (as Active-ULBP) and Histogram of Oriented Gradients [2] (as

Active-HOG), as visual representation of the active vision system for the environment

categorisation problem. The average performance of Active-HOG was higher than the

other two visual extraction methods, while Active-ULBP also outperformed on average

the grey-scale method. However, statistical analysis results showed that the average

performance of Active-HOG was only significantly better than that of the grey-scale.

The Active-ULBP was also not significantly better than the grey-scale. This implies

that the higher performance of Active-HOG relative to Active-ULBP and the better

performance of Active-ULBP relative to grey-scale may have occurred by chance. The

improvement shown by Active-ULBP in the environment categorisation problem may

be due to the fact that ULBP is a good feature descriptor for detecting local binary

texture patterns in texture images [45]. HOG may also work well for texture images,

especially if there are a lot of structures in the images. Overall, the fact that the two

pre-processing methods investigated (i.e ULBP and HOG) evinced good performance

in the 3D indoor-outdoor environment categorisation shows the potential of these kinds

of visual extraction methods as effective visual representation methods in active vision

systems.

Learning Control of the Active Vision System

We have investigated the extent to which an active vision system has been able to use its

intelligent control to detect the regularities that are peculiar to each environment. As we

have seen for the three visual extraction methods, the MGSI for the two environments

(indoor and outdoor) did not increase over time. The inability of the system to use

intelligent sensory-motor coordination to experience regularities that are unique to the

different environments may be due to the complexity of their visual stimuli, where it may

be difficult for the agent to fully separate the unique stimuli that pertain to these two
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environments in the input space. It is difficult to generalise the kind of features that make

up indoor and outdoor environments, and the agent may in most cases experience similar

stimuli for the two different environments during its interaction with them. Therefore,

this may explain why there was not much improvement in the MGSI over-time. However,

since the three visual extraction methods still performed well, the active vision system

must have relied heavily on the integration of the sensory patterns over time by the

internal dynamics of the controller.

6.5 Chapter Summary

In this chapter, we have extended the evolutionary active vision system for 3D indoor and

outdoor environments categorisation using the grey-scale averaging visual representation

method [23]. The best performance for the grey-scale averaging method was 88.31% and

the average performance was 69.82%.

We also used the two pre-processing techniques in computer vision, i.e. Uniform Local

Binary Patterns [1] (as Active-ULBP) and Histogram of Oriented Gradients [2] (as

Active-HOG) in order to improve the performance of the active vision system. The best

and average performance of Active-ULBP were 91.48% and 75.17% respectively, while

those of the Active-HOG were 99.15% and 85.39%.

Statistical analysis investigation that compared the average performance of the three

methods, shows that the performance of Active-HOG was only significantly better than

that of grey-scale. Also, Active-ULBP was not significantly better than the grey-scale.

Analysis based on a Modified Geometric Separability Index (MGSI) shows that the

categorisation tasks must have been dependant on the integration of the perceptual

information over time, since the visual stimuli belonging to the indoor and outdoor

environment were not clearly separated in the input space.



Chapter 7

Discussion and Conclusion

7.1 Introduction

This thesis investigated an evolutionary method of control of active vision for learning

in categorisation. We tried to impose minimal assumptions on the active vision system

in order to freely develop novel strategies for categorisation through dynamic interaction

with the environment. We have therefore chosen an evolutionary method which leaves

control of the active vision to the adaptation process of the evolutionary algorithm.

We subsequently chose Mirolli et al. [23] as our benchmark architecture because of

the following inherent properties of the system: (i) the biological plausibility of using

a neural network as a controller,;(ii) the architecture is able to combine control with

classification; (iii) the complexity of the categorisation task to be performed as compared

to previous evolutionary active vision systems; and (iv) the system’s inherent sensory-

motor coordination property, and the ability to integrate sensory-motor information

over time, which may be necessary for solving complex categorisation tasks. We sought

to improve on their work with pre-processing techniques for visual extraction in the

2D environment, and subsequently extended it to the 3D domain. We demonstrated

this in 2D for object categorisation of more complex images taken from the camera of

the iCub and with object and environment categorisation in the 3D environment using

the iCub platform. This chapter first gives general discussion of the thesis, and then

concludes with answers to our research questions, and lists the key contributions of the

PhD project. We subsequently outline some drawbacks of our method and possible

directions of future research.
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7.2 General Discussion

We started our research investigation in the 2D environment with three visual extraction

methods i.e. grey-scale averaging [23], Uniform Local Binary Patterns [1] (as Active-

ULBP) and Histogram of Oriented Gradients [2] (as Active-HOG). We proposed Active-

ULBP and Active-HOG for our benchmark evolutionary active vision system, with a

view to improving performance over the currently used grey-scale averaging. Over-

all, in all replications of the evolutionary run, Active-ULBP evinced the best average

performance for 2D. Grey-scale also on average outperformed Active-HOG. The close

to optimal performance results we obtained for the three visual extraction methods is

highly commendable given the large variability in the data-sets. This is quite interest-

ing, because it demonstrates the potential utility of pre-processing techniques for active

vision systems.

Furthermore, we continued our investigation of the active vision system with prepro-

cessing in the 3D environment. We chose the iCub platform because it allowed us to

show the plausibility of our methods in complex robotic systems. We intentionally used

only one eye with the iCub with fewer degrees of freedom as we felt this was sufficient

to demonstrate the robustness of our system in complex categorisation tasks.

In the experiment of object categorisation in 3D, the first challenge was the randomly

varied size and orientations in each trial, and the second challenge was the high ambiguity

of the stimuli of the objects that were investigated (i.e, sphere, cube, cone, and torus).

Despite, the complexity of the problem, the three visual extraction methods that were

investigated performed handsomely. Active-HOG boasted the best average performance

for 3D, while the grey-scale outshone Active-ULBP in average performance.

On the other hand, the complexity of the indoor and the outdoor environment classifi-

cation may be due to the following reasons:

(i) In contrast to the object categorisation problem in which categorisation involves one

category of object in each trial, environment categorisation can involve many objects

within the same environment, which may or may not belong to shared category, and each

of which may be in different spatial locations. Apart from this structural information,

there is also textural information to be processed.

(ii) The system therefore may have to use the totality of contextual information within

each environment to complete the discrimination task, coupled with random rotation in

each trial.
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In spite of the complexity of the problem, the active vision system also performed well

over the course of testing all the visual extraction methods under investigation. Active-

HOG evinced the best average performance, while Active-ULBP also achieved a better

average performance than grey-scale.

Moreover, due tothe high computational cost of evolutionary system in 3D environ-

ments, we only used a small number of training and testing texture images. We tried

to compensate for this with the additional variability introduced by random rotation of

the environment in each trial, and also with many trials in the testing stage. This was

to ensure that the iCub always saw a different view of the environment in each trial. It

is very important to state here that we do not claim that our system can discriminate

any kind of indoor and outdoor environment of all data-sets. However, we do say that

the system was able to discriminate indoor from outdoor environments of the data-sets

given based on the contextual information within the environment. Therefore, given

more computational resources with more training data-sets, the system has a greater

chance of generalising its skills to very large testing data-sets.

7.2.1 Visual representation in active vision categorisation

We have investigated three visual extraction methods, i.e. grey-scale averaging [23], Uni-

form Local Binary Patterns [1] (as Active-ULBP) and Histogram of Oriented Gradients

[2] (as Active-HOG). We proposed Active-ULBP and Active-HOG in order to determine

if pre-processing techniques in computer vision can yield better representation for active

vision systems for improved performance.

In the 2D object categorisation experiment, Active-ULBP had the best average perfor-

mance of 96.82% as compared to those of grey-scale (95.77%) and Active-HOG (92.87%).

However, a comprehensive statistical analysis test shows that none of the three visual

extraction methods performed “highly significantly” better than the others. This implies

that the apparent differences in their averages might have arisen by chance.

In the 3D object categorisation experiment, the Active-HOG had the best average per-

formance of 98.07% as compared to an average of 68.53% for Active-ULBP and an

average of 74.47% for grey-scale. Also, further statistical analysis shows that the av-

erage performance of Active-HOG was both statistically significantly better than that

of Active-ULBP and grey-scale, but the grey-scale was not significantly better than the

Active-ULBP.

Also, in the 3D indoor-outdoor environment categorisation, Active-HOG showed the

best average performance of 85.39% as compared to those of Active-ULBP (75.17%)
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and grey-scale (69.82%). However, with this experiment, the results of a statistical

analysis test shows that the Active-HOG performed only significantly better than the

grey-scale. The average performances of Active-ULBP and grey-scale did not differ to

any statistically significant degree.

The improvement in performance of Active-HOG in the 3D object categorisation may

be due to the more structural nature of the object categorisation problem. Equally the

good performance of Active-HOG also in indoor-outdoor environment categorisation

may have been due to more structural information in the data-sets. Typically in most

indoor and outdoor environments, the objects and structures are more conspicuous. For

instance, a typical indoor environment may have conspicuous objects, such as tables,

chairs, beds, and so on, while outdoor environments may have structures, such as houses,

cars, trees and the like. On the other hand, the fact that Active-ULBP performed well in

categorisation tasks irrespective of the environmental context (2D images or 3D indoor-

outdoor) is evidence that ULBP is good feature descriptor for detecting local binary

uniform patterns in texture images, and a good feature descriptor in many applications

[47][214].

Overall, Active-HOG seems to be more robust in performance than the other two visual

extraction methods for the following reasons:

(i) Based on the statistical analysis test in the 2D experiment (using p-value<0.05 and

p-value<0.01), none of the visual extraction methods was “highly significantly” better

than the others. This implies that the apparent differences in the average performance

of the three methods might have been by chance, and given a new or larger data-set,

any of the three methods might have performed better than the others.

(ii) However, since, Active-HOG performed better than the other two visual extraction

methods in the 3D object categorisation, and the grey-scale in the indoor-outdoor envi-

ronment classification, Active-HOG may have greater chance of achieving better results

given new data sets in both 2D and 3D environments.

7.2.2 Learning for control in active vision categorisation performance

The categorisation performance of an active vision system may not depend as much

on the complexity of the system design as on the extent to which the agent may use

the dynamic interaction of the sensory-motor components to exploit regularities that

pertain to the different categories in the sensor input-space. We investigated with the

Modified Geometric Separability Index (MGSI) in order to analyse the extent to which

the active vision system used its intelligent motor control to experience sensory stimuli
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that could be unambiguously associated with a particular category for each of the three

visual extraction methods in the input space.

In the 2D environment in particular, the MGSI results showed that all three visual

extraction methods generated sensory patterns that allowed the system to move from

very ambiguous to less ambiguous stimuli. Active-ULBP also provided less ambiguous

stimuli than the other methods. However, grey-scale was a little bit more consistent

over time than Active-ULBP.

In the 3D object categorisation, grey-scale was able to use sensory- motor coordination

over time to experience more discriminative stimuli than the other two visual representa-

tion methods. Active-ULBP also showed some slight use of motor responses in moving to

less ambiguous stimuli over time. However, even though Active-HOG generally had less

ambiguous stimuli from the start, it was not to a great extent able to use eye movements

to experience less ambiguous sensory stimuli. The low ambiguity of Active-HOG in most

time steps may be due to the highly structural nature of the problem, and this may also

have enhanced its recognition capability. That said, the inability to use sensory-motor

coordination to experience less ambiguous stimuli over time, might have been due to the

low ambiguity experienced by the system with Active-HOG stimuli from the outset. In

this context, there was little need to make use of eye movements to reduce ambiguity

over time. The behaviours generated by evolutionary active vision systems are partially

determined by the nature of the stimuli that are experienced [105][6]. The oscillatory

behaviours produced in most of the time steps were probably strategies the system de-

veloped in order to continue to experience highly discriminative features, which in turn

led to good performance. However, we are not committed to this view and this may be

a subject of future research.

On the whole, in both the 2D and 3D object categorisation, grey-scale used more eye

movements than the other two methods to influence the performance of the active vi-

sion system. Active-ULBP also evinced more use of eye movements to reduce visual

ambiguity in 2D than in 3D and outperformed Active-HOG in both environments.

On the other hand, in both indoor and outdoor environment categorisation experimental

contexts, the active vision system seems to have relied heavily on the internal dynamics

of the neural network controller. This was because there was only a slight improvement

in the MGSI values for the three visual extraction methods over time. Since the per-

formance of the three visual extraction methods was good, the system must have used

the internal states to integrate the very ambiguous perceptual information over time.

Moreover, the probable reason for the poor learning of the active vision system as com-

pared to the object categorisation experiments may be due to the different context of

categorisation. In the object categorisation experiments there was only one object to be
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categorised in an image/environment, whereas in the indoor and outdoor environment

categorisations there was more variability. For example, there were many structures,

each of varying sizes and spatial locations. There were also other variables such as tex-

ture, and some of the variables may not be peculiar to a particular environment, which

is to say that some structures are common to both indoor and outdoor environments.

It may therefore be difficult for the system to discover regularities that are particular to

an environment (indoor or outdoor) through dynamic sensory-motor interaction alone.

7.3 Conclusion

We started our work in the 2D environment using the Mirolli et al. [23] architecture as

our benchmark, and for more complex images taken from the camera of a iCub robot. We

further extended the model to the 3D environment using the iCub platform for object

and indoor-outdoor environment categorisation tasks. Analysis based on the MGSI

showed that our active vision system using grey-scale averaging visual representation

was able to use a good deal of intelligent control of eye movements in solving both 2D

and 3D object categorisation tasks. However, in the environment classification tasks,

it seems to have relied more on the internal states of the system for the integration of

perceptual information over time. By contrast, the pre-processing methods have been

able to learn to control eye movements mainly in the 2D categorisation tasks, while

only using a small degree of learning in the 3D object categorisation task with Active-

ULBP. They also seem to rely mainly on the internal states of system in the environment

categorisation tasks.

In general, the system was able to solve the categorisation problems through the dynamic

interaction of sensory-motor components, and/or integration of perceptual information

over time through the internal dynamics of the neural network controller. It should be

noted that other analyses can be performed apart from the Modified Geometric Sepa-

rability Index (MGSI) to understand more of the categorisation process. However, the

focus of this PhD research is mainly on learning control of active vision for categorisa-

tion performance and not on underlying phenomena beyond the categorisation process.

We only performed the MGSI to investigate the extent to which the sensory patterns of

the different visual extraction methods contributed to learning, for performance in cat-

egorisation, given the strong coupling between perception and motor responses. Here,

we re-visit our research questions and key contributions.

The research questions for this thesis are:
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(i) Do evolutionary active vision systems for categorisation work in more complex scenes

and environments?

It has been shown that evolutionary active vision system can work in complex scenes and

environments. This was demonstrated by the extension of our bench-mark evolutionary

active vision model (Mirolli et al. [23]) using the three visual extractions methods, i.e.

the grey-scale averaging method [23], Uniform Local Binary Patterns [1] (as Active-

ULBP) and Histogram of Oriented Gradients [2] (as Active-HOG) in 2D natural images

and 3D environments for object categorisation, and indoor-outdoor environment cate-

gorisation. (Chapter 4, 5 and 6)

(ii) Can we make them work better with pre-processing techniques in computer vision?

It was shown with the improved performance (average and statistical significance) of

Active-HOG over grey-scale in 3D for object and indoor-outdoor environment cate-

gorisation that an active vision categorisation performance can be enhanced through

pre-processing (chapter 5 and 6).

7.3.1 Key Contributions

The following are the list of key contributions of this PhD research work:

(i) We extended the evolutionary active vision system for object categorisation using

more complex (natural) images taken from the camera of the iCub robot. Our bench-

mark Mirolli et al. [23], which to the best of our knowledge (in this flavor of active

vision) has been used for largest number of categories to date, used hand written images

(Chapter 4).

(ii) We extended the evolutionary active vision system for object categorisation in the

3D environment using the humanoid iCub robot platform. To the best of our knowledge

no work has been done using evolutionary methods for object categorisation on this

platform before (Chapter 5).

(iii) We further extended the evolutionary active vision system for indoor and outdoor

environment classification in 3D using the humanoid robot (iCub) platform. To the best

of our knowledge no work has been done with any computational model for distinguishing

between indoor and outdoor environments on any humanoid robotic platform to date

(Chapter 6).

(iv) We extended an active vision system with pre-processing using Uniform Local Binary

Patterns [1] (as Active-ULBP) for 2D object categorisation (Chapter 4) and 3D object

and environment categorisation (Chapters 5 and 6).
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(v) We extended an active vision system with pre-processing using Histogram of Ori-

ented Gradients [2] (as Active-HOG) for object categorisation in both 2D and 3D envi-

ronments; and indoor-outdoor environment categorisation in 3D (Chapters 4, 5 and 6).

We further showed improved performance with pre-processing with Active-HOG in the

3D object and indoor-outdoor environment categorisations over the grey-scale averaging

method (Chapters 5 and 6).

7.4 Drawbacks

The evolutionary method approach of evolving controllers for active vision systems has

shown promise but at the same time has these following drawbacks:

(i) Training time: the training time using this method may be very lengthy and this

may render it impractical for some real life vision problems. This was the case for the

environment categorisation problems in Chapter 6, where training with more images

may give more generality to the system for testing with previously unseen images. In

our case we had to give more variability (e.g. random rotation) to the environment in

order to improve its generalisation capability.

(ii) The flexibility granted to determine eye-movement strategy may produce a solution

of reduced generality. In the language of machine learning, the model here has a smaller

learning bias than existing active vision models. This may result in overfitting, especially

if the training set of images is not very large, as noticed in Chapter 6 of our experiment

on environment categorisation. The extra degree of freedom given to the active vision

system may introduce a greater risk of having a strategy that exploits spurious regu-

larities in the training set of images. This may then result in a case where the system

may perform very well in training but not as well in testing. As could be seen in the

indoor and outdoor environment categorisation experiment, where the system was close

to optimal performance in all the evolutionary runs, but did not perform to the same

level in testing (except in the case of Active-HOG).

(iii) Since the system does not search the entire image, it runs a higher risk of miss-

ing the pattern of interest than is the case in passive vision systems. Therefore, the

great challenge posed by active vision systems is finding intelligent eye movements that

will compensate for this loss of general information by discovering regularities that will

enhance a particular vision task.
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7.5 Future Work

In the section, we discuss five main directions of possible future research. The first two

mainly involve further understanding of the behaviour of the current system, while the

remaining three are open new areas of research.

The first possible area of future research is to investigate the process of categorisation

by the system. For instance, it would be interesting to investigate with an active vision

system equipped with a reactive controller, i.e. a controller that does not have any

form of internal states or memory. However, a reactive system may not work for the

environment categorisation experiment, as was indicated in the MGSI because of its

high dependent on controller internal states. Therefore, this future research may focus

on the object categorisation experiment, especially 3D object categorisation, mainly to

investigate the kind of behaviours exhibited by Active-HOG in the current system. In

this reactive experiment all other conditions of the system will remain the same, such as

the objects (stimuli) and other variabilities introduced into the system (scales, rotations

and so on). An MGSI experiment may now be carried out to see if the behaviours shown

by the system are similar to those of the current memory-using system. For instance,

if Active-HOG gives similar oscillatory behaviour to the present system, it will be a

further indication that the behaviour was a response to Active-HOG stimuli. However,

since many transformations take place in the pre-processing methods, as compared to

the grey-scale averaging method that uses raw image pixels, it may be difficult to deduce

the exact cause of the behaviour.

The second area of research is to fix the eye movement of the present system that uses

memory. This may be done at the re-evaluation stage with the best genotypes derived

from the three methods of visual extraction (grey-scale, Active-ULBP and Active-HOG),

and with similar re-evaluation conditions with the system that uses adaptive eye move-

ments. In this experiment, if the performance still remains at a level comparable to the

system that uses autonomous eye movement, it will be a further indication of systemic

reliance on the internal states of the controller to complement sensory-motor coordina-

tion.

The third possible area of research is to increase the degree of freedoms in the iCub robot

experiments. In this research, we have only used the right eye. It would be desirable

to also include the left eye. This will give the iCub wider field of view and greater

depth of perception in the 3D for the purposes of recognition. Also, additional degrees

of freedom, in combination with proprioceptive information such as movement of the

neck and head as additional parameters for the neural network controller may help to
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resolve visual ambiguities in some 3D objects, where two different 3D objects may have

the same 2D experience from a certain view point.

The fourth interesting area of research is to investigate other methods of visual represen-

tation for the active vision system. For example, one possible method would be a Gabor

filter to extract features within the active window as input into the neural network. Scale

and orientation invariant 2D Gabor filters have been widely used to model the behaviour

of V1 simple cells as they exhibit similar behaviour to the impulse stimuli [215][216]. It

would therefore be desirable to see how this can enhance visual discrimination in arti-

ficial systems. Another method of visual representation that can be investigated for an

active vision system is a deep convolutional neural network. Convolutional neural net-

works have been shown to give state of the art performance in many object recognition

and categorisation tasks ([217][218]). The model of the convolutional neural network

has been inspired by the hierarchical architecture of the visual cortex in primates, in

which complex functional responses generated by complex cells are created from more

simplistic responses from simple cells. It should be noted to maintain consistency with

our philosophy of an active vision system as we have done for the three pre-processing

techniques investigated, the visual representation method (Gabor filter or convolutional

neural network) would not be used to pre-process the entire image at once. The active

vision system would determine the location in the visual scene (image) to be processed

and the Gabor filter or convolutional neural network would be used to extract high level

features for the neural network controller per time step.

Finally, it would be useful and informative to implement the active vision system in

the actual robotic hardware platform in order to see if the system could replicate the

same level of performance in the real system. Although, we had tried to simulate the

conditions of the real world as much as possible, it is not automatic that the algorithms

will perform as well in the real system.

7.6 Publications

The PhD project has yielded several publishable pieces of work, with the following

conference papers already published:

(i) Olalekan Lanihun, Bernie Tiddeman, Elio Tuci, and Patricia Shaw. Enhancing ac-

tive vision system categorisation capability through uniform local binary patterns. In

Artificial Life and Intelligent Agents Symposium, pages 31–43. Springer, 2014.
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(ii) Olalekan Lanihun, Bernie Tiddeman, Elio Tuci, and Patricia Shaw. Improving

active vision system categorisation capability through histogram of oriented gradients.

In Conference Towards Autonomous Robotic Systems, pages 143–148. Springer, 2015.

In addition to the two conference papers listed above, there is also a journal paper in

preparation for submission.
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Experiment 1: 2D Object

Categorisation

A.1 Letter Categorisation Experiment

Figure A.1: Grey-scale (Letters): The best fitness graphs for all the
evolutionary runs
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A.2 iCub Images Experiment
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Figure A.2: Grey-scale (iCub images):The best fitness graphs for all
evolutionary runs in the 2-fold cross-validation
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Figure A.3: Active-ULBP: The best fitness graphs for all evolutionary runs in
the 2-fold cross-validation
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Figure A.4: Active-HOG: The best fitness graphs for all evolutionary runs in
the 2-fold cross-validation
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Experiment 2: 3D Object

Categorisation
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Figure B.1: Grey-scale: The best-fitness graphs of all evolutionary runs.
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Figure B.2: Active-ULBP: The best-fitness graphs of all evolutionary runs.
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Figure B.3: Active-HOG: The best-fitness graphs of all evolutionary runs.
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Experiment 3: 3D Environment

Categorisation
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Figure C.1: Grey-scale: The best-fitness graphs of all evolutionary runs.
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Figure C.2: Active-ULBP: The best-fitness graphs of all evolutionary runs.
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Figure C.3: Active-HOG: The best-fitness graphs of all evolutionary runs.
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3584 pixels x 1792 pixels 3840 pixels x 2161 pixels

3584 pixels x 1792 pixels 2048 pixels x 1024 pixels

1920 pixels x 1080 pixels 1200 pixels x 797 pixels

1200 pixels x 900 pixels 1024 pixels x 512 pixels

1920 pixels x 1080 pixels 770 pixels x 385 pixels

Figure C.4: Shows the images of outdoor environments used in Experiment 3 with
image sizes in pixels (i.e. width x height)

.
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2048 pixels x 1024 pixels 2400 pixels x 1200 pixels

2048 pixels x 1024 pixels 640 pixels x 320 pixels

800 pixels x 400 pixels 550 pixels x 275 pixels

512 pixels x 256 pixels 1024 pixels x 512 pixels

318 pixels x 159 pixels 318 pixels x 159 pixels

Figure C.5: Shows the images of indoor environments used in Experiment 3 with
image sizes in pixels (i.e. width x height)
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