320 research outputs found

    Neural Dynamics of Motion Perception: Direction Fields, Apertures, and Resonant Grouping

    Full text link
    A neural network model of global motion segmentation by visual cortex is described. Called the Motion Boundary Contour System (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyse how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The Motion BCS describes how preprocessing of motion signals by a Motion Oriented Contrast Filter (MOC Filter) is joined to long-range cooperative grouping mechanisms in a Motion Cooperative-Competitive Loop (MOCC Loop) to control phenomena such as motion capture. The Motion BCS is computed in parallel with the Static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the Motion BCS and the Static BCS, specialized to process movement directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1 --> MT and V1 --> V2 --> MT are made, notably the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the Motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions-of-contrast. Interactions of model simple cells, complex cells, hypercomplex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (90-0083); Office of Naval Research (N00014-91-J-4100

    Filling-in the Forms: Surface and Boundary Interactions in Visual Cortex

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-l-0409); Office of Naval Research (NOOO14-95-1-0657)

    An Effect of Relative Motion on Trajectory Discrimination

    Get PDF
    Psychophysical studies point to the existence of specialized mechanisms sensitive to the relative motion between an object and its background. Such mechanisms would seem ideal for the motion-based segmentation of objects; however, their properties and role in processing the visual scene remain unclear. Here we examine the contribution of relative motion mechanisms to the processing of object trajectory. In a series of four psychophysical experiments we examine systematically the effects of relative direction and speed differences on the perceived trajectory of an object against a moving background. We show that background motion systematically influences the discrimination of object direction. Subjects’ ability to discriminate direction was consistently better for objects moving opposite a translating background than for objects moving in the same direction as the background. This effect was limited to the case of a translating background and did not affect perceived trajectory for more complex background motions associated with self-motion. We interpret these differences as providing support for the role of relative motion mechanisms in the segmentation and representation of object motions that do not occlude the path of an observer’s self-motion

    Chromatic assimilation: spread light or neural mechanism?

    Get PDF
    AbstractChromatic assimilation is the shift in color appearance of a test field toward the appearance of nearby light. Possible explanations of chromatic assimilation include wavelength independent spread light, wavelength-dependent chromatic aberration and neural summation. This study evaluated these explanations by measuring chromatic assimilation from a concentric-ring pattern into an equal-energy-white background, as a function of the inducing rings’ width, separation, chromaticity and luminance. The measurements showed, in the s direction, that assimilation was observed with different inducing-ring widths and separations when the inducing luminance was lower or higher than the test luminance. In general, the thinner the inducing rings and the smaller their separation, the stronger the assimilation in s. In the l direction, either assimilation or contrast was observed, depending on the ring width, separation and luminance. Overall, the measured assimilation could not be accounted for by the joint contributions from wavelength-independent spread light and wavelength-dependent chromatic aberration. Spatial averaging of neural signals explained the assimilation in s reasonably well, but there were clear deviations from neural spatial averaging for the l direction

    Cortical Dynamics of 3-D Figure-Ground Perception of 2-D Pictures

    Full text link
    This article develops the FACADE theory of 3-D vision and figure-ground separation to explain data concerning how 2-D pictures give rise to 3-D percepts of occluding and occluded objects. These percepts include pop-out of occluding figures and amodal completion of occluded figures in response to line drawings, to Bregman-Kanizsa displays in which the relative contrasts of occluding and occluded surfaces are reversed, to White displays from which either transparent or opaque occlusion percepts can obtain, to Egusa and Kanizsa square displays in which brighter regions look closer, and to Kanizsa stratification displays in which bistable reversals of occluding and occluded surfaces occurs, and in which real contours and illusory contours compete to alter the reversal percept. The model describes how changes in contrast can alter a percept without a change in geometry, and conversely. More generally it shows how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representations that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T-junctions at which occluded figures contact occluding figures, but there are no explicit T-junction detectors in the network. Rather, the contextual balance of boundary cooperation and competition strengthens some boundaries while breaking others. These boundaries control the filling-in of color within multiple, depth-sensitive surface respresentations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. It is suggested how both the boundary and the surface representations of occluded objects may be amodally completed, even while the surface representations of unocclucled objects become visible through modal completion. Distinct functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortex. Model concepts provide a mechanistic neural explanation and revision of such Gestalt principles as good continuation, stratification, and non-accidental solution.Office of Naval Research (N00014-91-J-4100, N00014-95-I-0409, N00014-95-I-0657, N00014-92-J-11015

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 125

    Get PDF
    This special bibliography lists 323 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1974

    Statistical and image processing techniques for remote sensing in agricultural monitoring and mapping

    Get PDF
    Throughout most of history, increasing agricultural production has been largely driven by expanded land use, and – especially in the 19th and 20th century – by technological innovation in breeding, genetics and agrochemistry as well as intensification through mechanization and industrialization. More recently, information technology, digitalization and automation have started to play a more significant role in achieving higher productivity with lower environmental impact and reduced use of resources. This includes two trends on opposite scales: precision farming applying detailed observations on sub-field level to support local management, and large-scale agricultural monitoring observing regional patterns in plant health and crop productivity to help manage macroeconomic and environmental trends. In both contexts, remote sensing imagery plays a crucial role that is growing due to decreasing costs and increasing accessibility of both data and means of processing and analysis. The large archives of free imagery with global coverage, can be expected to further increase adoption of remote sensing techniques in coming years. This thesis addresses multiple aspects of remote sensing in agriculture by presenting new techniques in three distinct research topics: (1) remote sensing data assimilation in dynamic crop models; (2) agricultural field boundary detection from remote sensing observations; and (3) contour extraction and field polygon creation from remote sensing imagery. These key objectives are achieved through combining methods of probability analysis, uncertainty quantification, evolutionary learning and swarm intelligence, graph theory, image processing, deep learning and feature extraction. Four new techniques have been developed. Firstly, a new data assimilation technique based on statistical distance metrics and probability distribution analysis to achieve a flexible representation of model- and measurement-related uncertainties. Secondly, a method for detecting boundaries of agricultural fields based on remote sensing observations designed to only rely on image-based information in multi-temporal imagery. Thirdly, an improved boundary detection approach based on deep learning techniques and a variety of image features. Fourthly, a new active contours method called Graph-based Growing Contours (GGC) that allows automatized extractionof complex boundary networks from imagery. The new approaches are tested and evaluated on multiple study areas in the states of Schleswig-Holstein, Niedersachsen and Sachsen-Anhalt, Germany, based on combine harvester measurements, cadastral data and manual mappings. All methods were designed with flexibility and applicability in mind. They proved to perform similarly or better than other existing methods and showed potential for large-scale application and their synergetic use. Thanks to low data requirements and flexible use of inputs, their application is neither constrained to the specific applications presented here nor the use of a specific type of sensor or imagery. This flexibility, in theory, enables their use even outside of the field of remote sensing.Landwirtschaftliche Produktivitätssteigerung wurde historisch hauptsächlich durch Erschließung neuer Anbauflächen und später, insbesondere im 19. und 20. Jahrhundert, durch technologische Innovation in Züchtung, Genetik und Agrarchemie sowie Intensivierung in Form von Mechanisierung und Industrialisierung erreicht. In jüngerer Vergangenheit spielen jedoch Informationstechnologie, Digitalisierung und Automatisierung zunehmend eine größere Rolle, um die Produktivität bei reduziertem Umwelteinfluss und Ressourcennutzung weiter zu steigern. Daraus folgen zwei entgegengesetzte Trends: Zum einen Precision Farming, das mithilfe von Detailbeobachtungen die lokale Feldarbeit unterstützt, und zum anderen großskalige landwirtschaftliche Beobachtung von Bestands- und Ertragsmustern zur Analyse makroökonomischer und ökologischer Trends. In beiden Fällen spielen Fernerkundungsdaten eine entscheidende Rolle und gewinnen dank sinkender Kosten und zunehmender Verfügbarkeit, sowohl der Daten als auch der Möglichkeiten zu ihrer Verarbeitung und Analyse, weiter an Bedeutung. Die Verfügbarkeit großer, freier Archive von globaler Abdeckung werden in den kommenden Jahren voraussichtlich zu einer zunehmenden Verwendung führen. Diese Dissertation behandelt mehrere Aspekte der Fernerkundungsanwendung in der Landwirtschaft und präsentiert neue Methoden zu drei Themenbereichen: (1) Assimilation von Fernerkundungsdaten in dynamischen Agrarmodellen; (2) Erkennung von landwirtschaftlichen Feldgrenzen auf Basis von Fernerkundungsbeobachtungen; und (3) Konturextraktion und Erstellung von Polygonen aus Fernerkundungsaufnahmen. Zur Bearbeitung dieser Zielsetzungen werden verschiedene Techniken aus der Wahrscheinlichkeitsanalyse, Unsicherheitsquantifizierung, dem evolutionären Lernen und der Schwarmintelligenz, der Graphentheorie, dem Bereich der Bildverarbeitung, Deep Learning und Feature-Extraktion kombiniert. Es werden vier neue Methoden vorgestellt. Erstens, eine neue Methode zur Datenassimilation basierend auf statistischen Distanzmaßen und Wahrscheinlichkeitsverteilungen zur flexiblen Abbildung von Modell- und Messungenauigkeiten. Zweitens, eine neue Technik zur Erkennung von Feldgrenzen, ausschließlich auf Basis von Bildinformationen aus multi-temporalen Fernerkundungsdaten. Drittens, eine verbesserte Feldgrenzenerkennung basierend auf Deep Learning Methoden und verschiedener Bildmerkmale. Viertens, eine neue Aktive Kontur Methode namens Graph-based Growing Contours (GGC), die es erlaubt, komplexe Netzwerke von Konturen aus Bildern zu extrahieren. Alle neuen Ansätze werden getestet und evaluiert anhand von Mähdreschermessungen, Katasterdaten und manuellen Kartierungen in verschiedenen Testregionen in den Bundesländern Schleswig-Holstein, Niedersachsen und Sachsen-Anhalt. Alle vorgestellten Methoden sind auf Flexibilität und Anwendbarkeit ausgelegt. Im Vergleich zu anderen Methoden zeigten sie vergleichbare oder bessere Ergebnisse und verdeutlichten das Potenzial zur großskaligen Anwendung sowie kombinierter Verwendung. Dank der geringen Anforderungen und der flexiblen Verwendung verschiedener Eingangsdaten ist die Nutzung nicht nur auf die hier beschriebenen Anwendungen oder bestimmte Sensoren und Bilddaten beschränkt. Diese Flexibilität erlaubt theoretisch eine breite Anwendung, auch außerhalb der Fernerkundung

    Multi-Modal Enhancement Techniques for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of 8-bit color digital images based on spatial domain, wavelet transform domain, and multiple image fusion approaches are investigated in this dissertation research. In the category of spatial domain approach, two enhancement algorithms are developed to deal with problems associated with images captured from scenes with high dynamic ranges. The first technique is based on an illuminance-reflectance (I-R) model of the scene irradiance. The dynamic range compression of the input image is achieved by a nonlinear transformation of the estimated illuminance based on a windowed inverse sigmoid transfer function. A single-scale neighborhood dependent contrast enhancement process is proposed to enhance the high frequency components of the illuminance, which compensates for the contrast degradation of the mid-tone frequency components caused by dynamic range compression. The intensity image obtained by integrating the enhanced illuminance and the extracted reflectance is then converted to a RGB color image through linear color restoration utilizing the color components of the original image. The second technique, named AINDANE, is a two step approach comprised of adaptive luminance enhancement and adaptive contrast enhancement. An image dependent nonlinear transfer function is designed for dynamic range compression and a multiscale image dependent neighborhood approach is developed for contrast enhancement. Real time processing of video streams is realized with the I-R model based technique due to its high speed processing capability while AINDANE produces higher quality enhanced images due to its multi-scale contrast enhancement property. Both the algorithms exhibit balanced luminance, contrast enhancement, higher robustness, and better color consistency when compared with conventional techniques. In the transform domain approach, wavelet transform based image denoising and contrast enhancement algorithms are developed. The denoising is treated as a maximum a posteriori (MAP) estimator problem; a Bivariate probability density function model is introduced to explore the interlevel dependency among the wavelet coefficients. In addition, an approximate solution to the MAP estimation problem is proposed to avoid the use of complex iterative computations to find a numerical solution. This relatively low complexity image denoising algorithm implemented with dual-tree complex wavelet transform (DT-CWT) produces high quality denoised images
    • …
    corecore